Published as a conference paper at ICLR 2024

MINILLM: KNOWLEDGE DISTILLATION OF LARGE
LANGUAGE MODELS

Yuxian Gu'2; LiDong?, Furu Wei?>, Minlie Huang'"

The CoAlI Group, Tsinghua University 2Microsoft Research
guyx2l@mails.tsinghua.edu.cn {lidongl, fuwei}@microsoft.com
aihuang@tsinghua.edu.cn

ABSTRACT

Knowledge Distillation (KD) is a promising technique for reducing the high com-
putational demand of large language models (LLMs). However, previous KD
methods are primarily applied to white-box classification models or training small
models to imitate black-box model APIs like ChatGPT. How to effectively dis-
till the knowledge of white-box LLMs into small models is still under-explored,
which becomes more important with the prosperity of open-source LLMs. In
this work, we propose a KD approach that distills LLMs into smaller language
models. We first replace the forward Kullback-Leibler divergence (KLD) objec-
tive in the standard KD approaches with reverse KLD, which is more suitable for
KD on generative language models, to prevent the student model from overesti-
mating the low-probability regions of the teacher distribution. Then, we derive
an effective optimization approach to learn this objective. The student models
are named MINILLM. Extensive experiments in the instruction-following setting
show that MINILLM generates more precise responses with higher overall qual-
ity, lower exposure bias, better calibration, and higher long-text generation perfor-
mance than the baselines. Our method is scalable for different model families with
120M to 13B parameters. Our code, data, and model checkpoints can be found in
https://github.com/microsoft/LMOps/tree/main/minillm,.
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Figure 1: The comparison of MINILLM with the sequence-level KD (SeqKD)' in terms of the
average Rouge-L score on the evaluation sets. Left: GPT-2-1.5B as the teacher and GPT-2 125M,
340M, 760M as the students. Middle: GPT-J 6B as the teacher and GPT-2 760M, 1.5B, GPT-Neo
2.7B as the students. Right: OPT 13B as the teacher and OPT 1.3B, 2.7B, 6.7B as the students.

1 INTRODUCTION

With the rapid development of large language models (LLMs; Brown et al., 2020; Han et al., 2021;
Bommasani et al., 2021; Chowdhery et al., 2022; OpenAl, 2023), a common technique to reduce
their high computational resource demand is knowledge distillation (KD; Hinton et al., 2015), where
we train a small student model with supervision from a large teacher model. Two categories of KD
are commonly applied: black-box KD, where only the teacher-generated texts are accessible, and
white-box KD, where the teacher model’s output distribution or intermediate hidden states are also
available (Jianping et al., 2021). Recently, black-box KD has shown promising results in fine-tuning
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'SeqKD (Kim & Rush, 2016; Chiang et al., 2023; Taori et al., 2023) directly trains the student model on the
texts generated by the teacher model, which is a widely used KD method for language models.
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small models on the prompt-response pairs generated by LLM APIs (Taori et al., 2023; Chiang et al.,
2023; Wu et al., 2023; Peng et al., 2023). With the emergence of more open-source LLMs (Zhang
et al., 2022; Touvron et al., 2023), white-box KD becomes more valuable for both research commu-
nities and industry sectors because student models receive better signals from the output distribution
and hidden states of teacher models, thereby potentially resulting in higher performance. However,
white-box KD approaches are mostly studied for small (< 1B parameters) language understanding
models (Sanh et al., 2019; Wang et al., 2020), while white-box KD for LLMs is yet to be explored.

In this work, we investigate white-box KD of LLMs where the output distribution of the teacher
model is available. We argue that the standard KD objectives (Kim & Rush, 2016; Song et al., 2020;
Chiang et al., 2023; Taori et al., 2023) are sub-optimal for LLMs that perform tasks in a generative
manner. Given the teacher distribution p(y|x) and the student distribution ¢y (y|x) parameterized
by 6, standard KD objectives (including several variants for sequence-level models) essentially min-
imize the approximated forward Kullback-Leibler divergence (KLD) between the teacher and the
student distribution, termed as KL[p||gs], which forces gy to cover all modes of p. For text classi-
fication tasks, KL[p||gs] works well because the output space usually consists of a finite number of
classes such that both p(y|x) and g (y|x) have few modes. However, for open-ended text gener-
ation tasks, the output spaces are much more complex, and p(y|x) can contain many more modes
than what gy (y|x) can express due to the limited model capacity. Minimizing forward KLD causes
Qo to assign unreasonably high probabilities to the void regions of p (Malinin & Gales, 2019) and
produces very unlikely samples under p during free-run generation (Huszar, 2015).

To alleviate this problem, we propose to minimize
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gions (Minka et al., 2005), as illustrated in Table 2 and

discussed in Section 2.1. In LLM text generation, this Figure 2: We fit a Gaussian mixture distri-
means that the student model avoids learning too many bution with a single Gaussian distribution
long-tail variants (Holtzman et al., 2020) in the teacher using forward KLD and reverse KLD.
model’s distribution and focuses on the correctness of

the generated cotents, which is critical in practical scenarios that require truthfulness and reliabil-
ity (Ji et al., 2023b). To optimize ming KL[gg||p], as shown in Section 2.2, we derive the gradient of
the objective with Policy Gradient (Sutton et al., 1999). To further stabilize and accelerate training,
we propose (1) single-step decomposition to reduce variance, (2) teacher-mixed sampling to allevi-
ate reward hacking, and (3) length normalization to eliminate the length bias. Finally, we introduce
the overall KD algorithm in Section 2.3. Our student models are named MINILLM, indicating our
method is suitable and works well for compressing large (generative) language models.

We apply our method to various generative language models (Radford et al., 2019; Zhang et al.,
2022; Touvron et al., 2023) with sizes ranging from 120M to 13B in the instruction-following set-
ting (Sanh et al., 2022; Wei et al., 2022a) that covers a large range of NLP tasks. We use 5 datasets
with Rouge-L (Lin, 2004), human judgment, and the GPT-4 feedback for evaluation. Experiments
show that MINILLM consistently outperforms standard KD baselines on all the datasets and scales
up well from 120M to 13B models (see Figure 1). More analysis shows that MINILLM yields lower
exposure bias, better calibration, and higher long response generation performance.

2  METHOD

We consider conditional text generation where the model produces a response y = {y; }7_; condi-
tioning on a prompt  sampled from the distribution p,,, which is typically how LLMs perform tasks.
We formulate KD as an optimization problem to minimize the difference between a fixed teacher
model distribution p(y|x) and a student model distribution ¢y (y|x) parameterized by . The stan-

p(y|z)
qo(ylz)’
where p’ can be real data distribution (word-level KD) or teacher distribution p (sequence-level KD).

dard KD methods approximately” minimize the forward KLD: KL[p||gs] = Exnps y~p’ l0g

>We say “approximately” because for word-level KD, y is sampled from the real distribution, not the teacher
distribution. For a strong enough teacher model, we can consider the two distributions approximately the same.
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Figure 3: Comparison between sequence-level KD (left) and MINILLM (right). Sequence-level
KD forces the student to memorize all samples generated by the teacher model, while MINILLM
improves its generated texts with the teacher model’s feedback.

Though widely used, KL[p||gs] tends to overestimate the void regions of p in text generation tasks
when ¢y is insufficiently expressive (Ji et al., 2023a). KD for LLMs fits the case because LLMs
perform tasks in a generative manner, such that the low-capacity student models cannot perfectly
imitate the complex text generation distribution of the teacher models or humans.

2.1 MINILLM: KNOWLEDGE DISTILLATION WITH Reverse KLD

We consider minimizing the reverse KLD between the student and teacher model distributions as
the learning objective for MINILLM:

0= argngnﬁ(ﬂ) = arg mginKL[ngp]

p(ylz) M
T~Ppa,Y~qo %(y\fﬂ) .

= argmin |—
0

Minimizing reverse KLLD has been shown to cause the mode-seeking behavior in generative model-
ing (Huszdr, 2015; Nowozin et al., 2016; Chen et al., 2018; Lee et al., 2023), where gy assigns high
probabilities to p’s large modes and ignore the small ones (illustrated in a toy experiment in Figure
2). In this work, we first study this property for KD of LLMs in text generation. Minimizing forward
KLD causes gy to place large probability mass on the zero-probability places of p, corresponding to
the low-quality text generation in practice, while reverse KLD focuses on p’s major modes, which
is crucial to ensure the correctness and faithfulness of text generation. As illustrated in Figure 3,
unlike sequence-level KD, MINILLM that minimizes reverse KLD does not force gy to fit all y
sampled from the teacher distribution p. Instead, it encourages the student to generate samples pre-
ferred by the teacher within its own capacities, which is more possible to achieve. Interestingly,
we also find another perspective of understanding MINILLM motivated by Inverse Reinforcement
Learning (Ziebart et al., 2008). We present the related derivation in Appendix A.1.

2.2 OPTIMIZATION WITH POLICY GRADIENT

Gradient Derivation We notice that the gradient of the objective function £(6) in Equation 1 can
be derived using the Policy Gradient Theorem (Williams, 1992; Haarnoja et al., 2017):

T
VL) =~ E > (Ri — 1)Vlog go(yily<:, @), ©)

z~pz,y~ae (-|®) 1

_ _ T Py Yo ®) - : _ Py ly<y )
where T’ = |y|and Ry = > ,,_, log 20Ty 18 the accumulation of ry = log 7= E <ty that

measures the quality of each step’s generation. Intuitively, the generated texts are supposed to have
high probabilities under the teacher distribution by increasing p(yy |y<, ), but simultaneously
stay diverse by lowering gg(yu |y<¢, ). The expectation in Eq. 2 is computed by Monte-Carlo
sampling. Full derivation can be found in Appendix A.2. However, policy gradient suffers from high
variance and reward hacking (Skalse et al., 2022), despite some subsequent solutions (Schulman
et al., 2017). Besides, we notice that R; favors short sentences, which causes the student model to
output empty responses. Therefore, we propose three strategies to mitigate these problems.

Single-Step Decomposition Czarnecki et al. (2019) has found that the single-step generation qual-
ity ¢ is critical to the training variance because the error in the front tokens accumulates along the
whole sentence. To pay more attention to r;, we re-write V.L(6) to decompose r; from R; and
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directly compute the gradient of |, ~q, 1) [¢] (see Appendix A.3 for the full derivation):

T
VLO)= T ZV E [r] JE — > Rip1Vioggo(yily<e, @)
y~<191(;mlw) =1 et y~aez(7-m\w) t=1 &)

= (VE)Sing]e + (Vﬁ)Longz

where qo(t) = qo(-|y<¢, ). Note that E,, g, [r:] can be computed directly by summing over
the vocabulary instead of using Monte-Carlo sampling and is derivable with respect to 6. This
decomposition gives a more precise and efficient estimation of the single-step generation quality,
which reduces the variance during training and accelerates convergence.

Teacher-Mixed Sampling We observe reward hacking (Skalse et al., 2022) when training with
Eq. 2 because gy sometimes produces degenerated sentences y that receive high scores from the
teacher (e.g., repeated phrases) during sampling, especially for small student models. To create a
better sampling distribution, we mix the teacher and the student distribution at each time step:

Pyily<e,®) = a - p(yely<e, @) + (1 — @) - qo (ye|y<e, @), “)
where « controls the strength of the teacher mix-in. Sampling from p suppresses low-quality gen-
eration with the teacher’s help and alleviates reward hacking. We re-write (V L)single and (V.L)rong
with importance sampling to get to an unbiased estimator of the gradient (Precup et al., 2000):

T
(V»C)Single = - E |:Z weV E [Tt]:| 5
x~pa,y~p(-|x)

=1 yt~qg(t)

(5)
(VE)Long = —

z~paz,y~p(-|T)

T
Y wiRen1Viog ao(yely<t, w)] ;
t=1

_ t 96 (Ye/ 1Y/ ®)
where we = Iluws Gy, jucy ) 1 . . = e
practice because it requires multiplying per-token importance weight over multiple time steps, and
thus the variance of each step accumulates. Therefore, we approximately set w; ~ % to

reduce the variance of the estimator in Eq. 5 (Serban et al., 2017; Levine et al., 2020).

is the importance weight. However, w, brings high variance in

Length Normalization We found that long sequences tend to have small R, 1, which encourages
the model to produce short responses. Therefore, we add length normalization to R;; in Eq. 3:
T

1 ’ ’
th\lfrlm — Z log p(yt ‘y<t 7:3) . (6)

r—t-1 ' =t+1 qg(yt’|y<t'aw)

In Summary Combining the strategies listed above, we have the final optimization gradient:

! ) Ormv b
VLO)=- E [Zwt VY a ly<i, @) Jlog LW1Y<t:2) | pom ‘M(MWH o

/
J5he = a0 (y'|ly<t, @) 6 (yt|y<i, @)
(V L)single part (Vﬁ)ff,’fﬁ“ part
where V' is the vocabulary size of the language model and (VE)ES;{; (VL)Long With RYOT™.

2.3 TRAINING ALGORITHM

We start from a student model pre-trained on a large long-document corpus Dpr. The algorithm to
train MINILLM adapts the student model to a text generation task with dataset D. We assume that
there is a teacher model performing well on D, such as an LLM fine-tuned on D (Taori et al., 2023;
Chiang et al., 2023) or that with good task-generalization (Chung et al., 2022; OpenAl, 2023).

In the training algorithm, we first fine-tune the student model on D and pick the checkpoint with the
lowest loss as an initialization for the following training. Then, we compute the gradients (V.£L)single
and (Vﬁ)N"rm based on Eq. 5 and Eq. 6, with a clipping strategy (Schulman et al., 2017) added to

Lon,
further improve stability. Same as Ouyang et al. (2022), we include a language modeling loss Lpr =
— Ed~Dy l0g go(d) to preserve the model performance on canonical NLP benchmarks. The student
model is finally updated using a combination of gradients (V £)singie + (Vﬁ){’g;m +V Lpr. The whole
training pipeline is similar to Reinforcement Learning from Human Feedback (RLHF Ouyangetal.,

2022). We present the details of the MINILLM training algorithm in Appendix B.
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3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

We take instruction-following (Ouyang et al., 2022) as the conditional text generation task, where
models are trained to generate responses according to the instructions. We fine-tune a large model
on the dataset D consisting of instruction-response pairs as the teacher model. Then, we compare
different KD methods on D by evaluating the student model’s instruction-following performance.

Base Models Our student models come from three model families with various sizes: GPT-
2 (Radford et al., 2019) (120M, 340M, 760M), OPT (Zhang et al., 2022) (1.3B, 2.7B, 6.7B), and
LLaMA (Touvron et al., 2023) (7B). For teacher models of each model family, we use GPT-2-1.5B,
OPT-13B, and LLaMA-13B respectively. These models are fine-tuned on D in advance. We also
present the results using GPT-J (Wang & Komatsuzaki, 2021) as the teacher in Appendix D.2.

Training We construct the training data from databricks-dolly-15K’ consisting of 15K
human-written instruction-response pairs. We filter out samples that exceed the context length of
the models. Then, we randomly split 0.5K and 1K samples for validation and testing, respectively,
leaving about 12.5K examples for training. For Dpt, we use OpenWebText (Gokaslan et al., 2019)
for the GPT-2 family and the RoBERTa training corpus (Liu et al., 2019) for other models. We set
the teacher-mix-in strength o = 0.2 throughout the experiments in Eq. 4. We use Rouge-L (Lin,
2004) scores on the validation set to search for hyper-parameters because it aligns better with human
preference than validation losses (Wang et al., 2022). More details are shown in Appendix C.1.

Evaluation We evaluate the trained models on 5 instruction-following datasets:
* Dolly: the 500-sample test set we split from the databricks-dolly-15K dataset.
* SelfInst (Wang et al., 2023): A user-oriented instruction-following set with 252 samples.
* Vicuna (Chiang et al., 2023): The 80 challenging questions used in the Vicuna evaluation.

e S-NI: The test set of SUPER-NATURALINSTRUCTIONS (Wang et al., 2022) consisting of 9K
samples ranging from 119 tasks. Following Peng et al. (2023), we split the set into 3 subsets
whose ground truth response lengths lie in [0, 5], [6, 10], and [11, +00]. We use the [11, +00]
subset in Section 3.2 and conduct an analysis on all subsets in Section 3.3.

e UnNI: The core set of UNNATURALINSTRUCTIONS (Honovich et al., 2023) containing 60K sam-
ples. Similar to S-NI, we first conduct the evaluations on the randomly sampled 10K examples in
the [11, +o00] subset, followed by an analysis of the performance on all subsets in Appendix D.4.

We adopt two metrics to evaluate the model-generated responses:
* R-L: The Rouge-L (Lin, 2004) score to measure the precision of the model generation. Wang
et al. (2022) has shown that Rouge-L is suitable for large-scale instruction-following evaluation.

* HumanEval: We conduct human evaluations on the SelfInst dataset following Peng et al. (2023)
by asking volunteers to compare two responses produced by different models and annotate “Win”,
“Tie”, or “Loss”. More human evaluation details can be found in Appendix C.3.

For all test sets, we sample the responses with the temperature = 1 and report the average scores of 5
generations for each prompt with different random seeds. We also include a supplemental evaluation
using the GPT-4 feedback (Zheng et al., 2023) by asking GPT-4 (OpenAl, 2023) to compare model-
generated responses with the ground truth answers and present the results in Appendix D.1.

Baselines We consider three baselines in our main experiment:
* SFT w/o KD directly fine-tunes the student model on D supervised by the golden responses.

* KD (Sanh et al., 2019; Song et al., 2020) fine-tunes the student model on D using the teacher
distribution as the supervision at each token step, also known as word-level KD.

¢ SeqKD (Kim & Rush, 2016; Chiang et al., 2023; Taori et al., 2023) fine-tunes the student model
on the data generated by the teacher model.

Shttps://github.com/databrickslabs/dolly/tree/master
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Model ~ #Params Method | Dolly | Selflnst | Vicuna | S-NI | UnNI
15B  Teacher | 276 | 143 | 163 | 27.6 | 318

SFTw/oKD | 23.3 10.0 14.7 16.3 18.5

120M KD 22.8 10.8 13.4 19.7 22.0

SeqKD 22.7 10.1 14.3 16.4 18.8

MINILLM 24.6 13.2 16.9* 25.3 26.6

GPT-2 SFT w/o KD | 25.5 13.0 16.0 25.1 28.1
340M KD 25.0 12.0 15.4 23.7 24.6

SeqKD 253 12.6 16.9% 22.9 233

MINILLM 254 15.6* 17.7* 27.4 30.8

SFTw/oKD | 254 12.4 16.1 21.5 24.0
KD 259 13.4 16.9% 253 28.0
SeqKD 25.6 14.0 15.9 26.1 29.1
MINILLM 26.4 15.9* 18.3*% | 29.3* | 34.5%

13B  Teacher 292 | 184 | 178 | 304 | 36.1
SFTwioKD | 260 | 114 | 156 | 23.1 | 284

760M

13B KD 254 12.2 14.9 21.9 27.0

’ SeqKD 26.1 12.7 16.6 214 28.2

MINILLM 26.7 14.8 17.9% 28.6 334

OPT SFTw/oKD | 27.1 13.9 16.6 249 323
27B KD 259 13.8 16.7 26.3 30.2

’ SeqKD 27.5 13.3 16.5 25.3 323

MINILLM 27.4 17.2 19.1*% | 30.7% | 35.1

SFTw/oKD | 27.6 16.4 17.8 30.3 28.6
KD 28.3 17.0 17.5 30.7% | 26.7
SeqKD 28.5 17.0 17.9% 30.4 28.2
MINILLM 29.0 17.5 18.7*% | 32.5% | 36.7*

13B  Teacher 297 | 234 | 194 | 358 | 385

SFTw/oKD | 263 20.8 17.5 324 35.8
KD 274 20.2 18.4 33.7 37.9
SeqKD 27.5 20.8 18.1 33.7 37.6
MINILLM 29.0 23.2 20.7* 35.5 | 40.2*

6.7B

LLaMA
7B

Table 1: Evaluation results. We report the average R-L scores across 5 random seeds. The best
scores of each model size are boldfaced, and the scores where the student model outperforms the
teacher are marked with *.

3.2 RESULTS

We present the Rouge-L evaluation results in Table 1, from which we have three observations.

First, by comparing the overall performance of MINILLM with the baselines, we observe that the
model distilled by our KD method outperforms the baselines in almost all cases, when trained with
different base models and tested on various evaluation sets. This verifies the good generalization
and high overall performance of our KD method. We also find that MINILLM generally works
much better on datasets other than Dolly compared with the baselines, indicating its good out-of-
distribution generalization.

Second, the Rouge-L scores show that the MINILLM produces the most precise responses that have
high overlaps with the ground-truth responses. In some cases, especially on Vicuna, S-NI, and UnNI,
student models reach even higher Rouge-L scores than the teacher models, which matches the ob-
servation in Furlanello et al. (2018). We conjecture that the standard teacher-forcing fine-tuning on
D brings training-inference discrepancy to the teacher model, also known as exposure bias (Bengio
et al., 2015). On the contrary, MINILLM is optimized with policy optimization methods, which
samples responses from student models during training and thus alleviates exposure bias (Pang &
He, 2021). We include further analysis on exposure bias in Section 3.3.
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—— MiniLLM KD 0.191 847 0.682 63.5

5 0 100 1%0 200  2%0 SeqKD 0.243 66.5 0.681 62.8

G ) MINILLM | 0.099 89.7 0.502 67.8
eneration Length

Figure 6: The excess error caused by the training-  Table 2: The ECE scores and accuracy scores
inference discrepancy (ExAccErr) accumulated (Acc.) on SST2 and BoolQ datasets. The best
with the generation length. Lower ExAccErr scores among student models are boldfaced.
means the method introduces less exposure bias.

Third, comparing the results across model sizes and model EMiniLLM Wins ETie [FIMiniLLM Loses
families, we can see that the improvement of MINILLM is SFT
consistent when the base model sizes vary from 120M to wie Eg
13B across three model families. This tendency is also illus-

trated in Figure 1, which demonstrates the excellent scala-
bility and generalization of our method in the era of LLMs. ~ Teacher S—
0% 20% 40% 60% 80% 100%

SeqkD

The human evaluation results on the SelfInst dataset based
on the LLaMA family are shown in Figure 4. MINILLM Figure 4: Human evaluation results.
obtains better human preference than all the baselines, per-  we uyse LLaMA-7B as the student

forming comparably to the teacher model. and LLaMA-13B as the teacher.

3.3 ANALYSIS

Scaling Law of Teacher Although it is intuitive that we

can distill better student models from larger teacher mod- E,‘), 22 1 *_/_*/_*
els, Mirzadeh et al. (2020) has shown that increasing the 3 .

5 s . & 20 A =&~ MiniLLM
teacher models’ sizes does not guarantee the improvement e Zo Seqkp
of student models, sometimes even harming the distilla- 189 R
tion performance. It is not clear how MINILLM works z ® " Student; 120M, SFT wio KD

when we scale up the teacher models’ sizes. Therefore, 400M  700M 1500M
we compare MINILLM and SeqKD using teacher models # of teacher parameters

with different sizes and fix the size of the student model. . .

We present the results based on the GPT-2 family in Figure Figure 5: The scaling law of teacher
5 and that based on the OPT family in Appendix D.3. We Pased on the GPT-2 family models. We
can see that MINILLM constantly outperforms SeqkD, ¢ompare MINILLM and SeqKD with
and the student model performance is positively correlated OGP T-2-125M as the student and GPT-2
with the teacher model sizes. This shows the potential of S+0M. 760M, and 1.5B as teachers.
our method to compress models with massive parameters.

Exposure Bias Language generation models trained to minimize forward KLD suffer from ex-
posure bias (Bengio et al., 2015) caused by the discrepancy between teacher-forcing training and
free-run generation. When training MINILLM, the student model sees samples generated by itself,
alleviating the training-inference mismatch (Pang & He, 2021). In Figure 6, we use the ExAccErr
metric (Arora et al., 2022) defined in Appendix C.5 to measure the excess accumulated error due
to exposure bias. The experiment is based on GPT-2-125M, with GPT-2-1.5B as the teacher, using
Dolly as the test set. For each prompt, we sample 10 responses to reduce the variance. We can see
that the ExAccErrs of the baselines continuously grow during generation, while MINILLM has a
much lower ExAccErr, and the error stops accumulating in long-text generation (> 150 tokens).

Calibration OpenAl (2023) has shown that models trained with policy optimization are likely to
be poorly calibrated. We test the calibration of MINILLM and the KD baselines on two widely-
used text classification datasets: SST2 (Socher et al., 2013) and BoolQ (Clark et al., 2019), based
on LLaMA-7B. We design zero-shot classification instructions (see Appendix C.2) and take the
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- Dolly SelfInst

& Dist-4 Loss Dist-4 Loss

g, Teacher | 993 355 991 444

z KD 994 393 988 536

< SeqKD 993 391 988 522
[0, 5] [6, 10] [11, +] MINILLM 99.0 3.95 98.6 5.33

Ground Truth Length Range

Table 3: The distinct 4-grams (Dist-4) and
Figure 7: The Rouge-L scores of the distilled language modeling loss (Loss) on the test sets
models against SFT models on the different sub- based on the LLaMA family. MINILLM pre-
sets of S-NI split by the golden responses’ length. serves generation diversity.

probability of the label words to compute the ECE scores (Nixon et al., 2019). From Table 2, we
observe that KD and SeqKD models are worse calibrated than the teacher model, which potentially
explains their low performance on canonical benchmarks (Gudibande et al., 2023). We suspect that
minimizing forward KLD causes the models to push high probabilities to void regions of the target
distribution, which leads to significant distribution differences between the student and the teacher
(see the example in Figure 2). In contrast, MINILLM focuses on accurately learning the major parts
of the target distribution and narrows the ECE scores gap between the student and the teacher.

Performance on Various Response Length We study the models’ performance when the golden
response lengths belong to different ranges. In Figure 7, we illustrate the Rouge-L scores of different
KD models against the SFT models on three S-NI subsets split by the length of the ground truth
responses. We can see that all methods achieve low scores on prompts that expect short responses
(< 5 tokens), probably because most responses in our training set are long sentences, introducing
a distribution shift between training and evaluation (Peng et al., 2023). Furthermore, the output
spaces of these prompts are relatively small, allowing the student model to cover most modes of
the teacher, and thus reverse KLD and forward KLD have similar performance. For prompts with
longer responses (> 6 tokens), the teacher distribution contains more modes than the students due to
the complex output spaces, which shows the advantage of MINILLM against standard KD models.
Similar results on UnNI are shown in Appendix D.4.

Generation Diversity Caccia et al. (2020) has found that the model optimized by minimizing re-
verse KLD is likely to lose modes, which affects the generation diversity. We follow Pang & He
(2021) to discuss generation diversity from three aspects: (i) generating multiple distinct responses
given a prompt. (ii) generating linguistically complex responses. (iii) the ability to generate contents
that have high coverage of the real data distribution. For (i), we argue that for many NLP applica-
tions, generating one correct response is sufficient, especially for those scenarios demanding high
truthfulness and reliability (Ji et al., 2023b). For (ii) and (iii), we report the responses’ distinct 4-
gram proportion and the language modeling loss on the test sets in Table 3, using the base models
from the LLaMA family (see Appendix C.4 for more details) . We can see that MINILLM preserves
the distinct 4-gram proportion in the generated responses and language modeling loss on the test set.

3.4 ABLATION STUDIES ON OPTIMIZATION STRATEGIES

We evaluate the effectiveness of the three strategies proposed to stabilize and accelerate optimization
in Section 2.2 by distilling a GPT-2-125M model from the GPT-2-1.5B model. More ablation studies
can be found in Appendix D.5. In Table 4, we report the best Rouge-L scores on the validation set of
each run and the evaluation results of the corresponding checkpoints. We also plot the reverse KLD
between the student and the teacher during training in Figure 8, where the curves are smoothed by
32 steps. We can see that Teacher-Mixed Sampling and Length Normalization works for stabilizing
training. Although the reverse KLDs also decrease without these strategies, we find that the models
quickly learn to generate repeated, short, or meaningless strings that have high probabilities in the
teacher distribution (see examples in Appendix E), which is known as reward hacking (Skalse et al.,
2022). This also leads to the low generation performance in Table 4. From Figure 8, we also observe
that the Single-Step Decomposition effectively reduces the variance of the training process, which
also results in higher scores on the validation and test sets.
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Table 4: The performance on the validation Figure 8: The reverse KLD between the teacher
and test set when different combinations of and the students during MINILLM training when
MINILLM optimization strategies are applied.  different optimization strategies are applied.

4 RELATED WORK

Large Language Models Large language models (LLMs; Brown et al., 2020; Thoppilan et al.,
2022; Chowdhery et al., 2022; OpenAl, 2023; Anil et al., 2023) have shown superior performance
by solving various NLP tasks in a generative manner. Recent works apply instruction tuning (Wei
et al., 2022a; Sanh et al., 2022; Chung et al., 2022) or learning from human feedback (Ouyang
et al., 2022; Bai et al., 2022) to improve the alignment of LLMs with humans further and create
general Al assistants (OpenAl, 2022; Google, 2023). There are also efforts to build open-source
LLMs (Zhang et al., 2022; Touvron et al., 2023; Biderman et al., 2023) to facilitate research and
industry development. Although appealing, the broad capacities of LLMs usually emerge with large
model sizes (Kaplan et al., 2020; Wei et al., 2022b) that require massive computational resources.
Therefore, model compression is critical for the practical deployment and further research of LLMs.

Knowledge Distillation Knowledge distillation (KDj; Hinton et al., 2015), as a widely used model
compression technique, aims at training a student model with the guidance of a teacher model (Rusu
etal., 2015; Sanh et al., 2019; Jianping et al., 2021). In the NLP community, many works apply KD
to text classification tasks by mimicking the teacher model’s output distribution (Song et al., 2020;
Liang et al., 2021; Zhang et al., 2023), hidden states (Jiao et al., 2020; Sun et al., 2019), or attention
scores (Wang et al., 2020; 2021). For text generation, the standard KD method is to approximately
minimize the forward KLD between the student’s and the teacher’s generation distribution by using
the teacher’s output at each time step as supervision (Sanh et al., 2019) or direct training on the
teacher’s generated texts (Kim & Rush, 2016; Taori et al., 2023; Chiang et al., 2023; Peng et al.,
2023). In this paper, we minimize the reverse KLD, which is more suitable for LLMs when the
teacher distribution is available. Concurrent works (Agarwal et al., 2023; Wen et al., 2023) also
explore more the distribution discrepancy metrics in KD.

Distribution Discrepancy Metrics in Text Generation The distribution discrepancy metrics play
a significant role in training text generation models. The forward KLD is widely used due to its
simplicity when derived as the Maximum Likelihood Estimate (MLE) objective (Zhang & Zhao,
2019). However, previous works show that minimizing forward KLD leads to zero-forcing behavior
where models try to cover all modes of the target distribution and sacrifice the accuracy of major
modes (Huszar, 2015). Some works resort to using other metrics to remedy this problem, such as re-
verse KLD (Jiang et al., 2020), Total Variation Distance (Ji et al., 2023a), and Optimal Transport (Li
et al., 2020). Our paper tackles this problem under the scenario of knowledge distillation for LLMs.

5 CONCLUSION

In this work, we investigate the problem of distilling the knowledge of LLMs into small language
models. We find that the standard distillation methods minimizing the forward KLD is sub-optimal
in language generation scenarios because the teacher’s output distribution contains more modes than
the student’s, and forward KLD forces the student distribution to overestimate the low-probability
regions of the teacher distribution. Therefore, we propose MINILLM that minimizes the reverse
KLD between the teacher and student distribution and design an algorithm to optimize this objec-
tive. Extensive experiments show that MINILLM produce more precise responses that have higher
overall quality than standard KD models. We also find that MINILLM has lower exposure bias,
better calibration, and higher performance in long-text generation with good generation diversity.
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A DERIVATIONS

A.1 A PERSPECTIVE OF MINILLM FROM INVERSE REINFORCEMENT LEARNING

In Section 2.1, we formulate KD as an optimization problem of minimizing the discrepancy between
the teacher distribution and the student distribution and finally reach the objective of minimizing re-
verse KLD. Alternatively, we can also regard KD as training the student model with the teacher
model’s guidance, which resembles an agent learning from the feedback from an environment. Fol-
lowing Pang & He (2021), we treat token generation as a Markov Decision Process. At each time
step t, the student model chooses an action (token) y; from the action space (vocabulary) V' condi-
tioning on the state (prefix) (y<¢, ) based on the policy (generation probability) qo (y¢|y<¢, ).

From this perspective, standard KD corresponds to behavior cloning (BC; Torabi et al., 2018) in
imitation learning (Ciosek, 2021). However, BC is known to under-perform Inverse Reinforcement
Learning (IRL; Ziebart et al., 2008), another imitation learning method that first recovers a reward
model from the environment demonstrations and then trains the policy with the reward using policy
optimization algorithms (Sutton et al., 1999; Schulman et al., 2017). Therefore, in the KD scenario,
we seek to first induce a reward 7(y;, (y<¢, x)) from the environment (the teacher model) and then
train the student model to maximize the reward as the objective. We take the maximum-entropy
inverse reinforcement learning framework (Ziebart et al., 2008; Chan & van der Schaar, 2021) and
thus the Q-function Q(y:, (y<+, x)) in the environment satisfies the soft Bellman Equation:

Qye, (Y<t, @) = (s, (y<i, ) + vlog > explQY, (y<i, @))]. ®)
y'ev
We follow Hao et al. (2022) to parameterize the Q-function as Q(yt, (y<¢,x)) = f(ye, (Y<t, T))
and assume v = 1, where f(y:, (y<¢, x)) is the output logits of the teacher model®. Then, the
reward is given by:
r(ys, (Y<t, @) = f(ye, (y<i,®)) —log > explf(y, (y<i, @))]- ©)
y'ev
To maximize the reward, we apply maximum-entropy reinforcement learning Haarnoja et al. (2017),
whose learning objective is
lyl

IHSIXJ(Q) = mgmx E Z [ (yt7 (y<t7 SB)) +H [q@(’|y<t7 ﬂ))“ ’ (10)
TP
y~gp () t=1
where H[go(-|y<t,®)] = —Ey,mgo(-lyr,a) 102 90(-|y<e, ) is the entropy of the student model

distribution at the time step .

Equivalence Between Objectives We prove an approximate equivalence between Eq. 10 and Eq.

1. We first rewrite the summation of the reward Zlyll 7(yt, (y<¢, x)) by the associative law:

|yl lyl
D r(ye (y<o, @) = [f(yt,(yq, —log > explf(y, (y<i, @ ))}] (1)
t=1 t=1 y' eV
lyl
:f(yh Y<1, T +Z yh y<t7 10g Z GXp[f Y<t, T ))} (12)
y' eV
—log Y explf(y, (Y<iy) @))] (13)
y'ev
Z [ (¥s, (y<t,®)) —log Y explf(y, (y<i,x ))}] (14)
t=1 y'ev
exp yt7(y<iyw))) 15
; e (s (Y=t 2))) (4>
yl
Z g p(y|y<t, @). (16)

exp(f(yt,(y<t,®)))
Syev exp(f (v (y<e,@)

*The teacher model’s distribution satisifies p(y:|y<:, x) =
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Then, 7 () can be approximately rewritten as:

ly|

JO)~ E > [ogp(yly<i,x) +Hlao( [y<:, z)] (17)
yr~agp(-|z) t=1
[yl

= E. Z [log p(yt|y<t, ®) — log [qo(-|y<t, z)]] (18)
y~ap (o) t=1

= — KL(qollp) (19)

= L(0). (20)

Therefore, maximizing 7 () is approximately equivalent to minimizing £(6).

A.2 DERIVATION OF EQUATION 2

We compute the gradient of £(0) = KL[gg||p] with respect to 6 using the Policy Gradient Theo-
rem (Sutton et al., 1999):

VL) = -V log 2¥1®) 21
D=V K %) ey
y~qo(-|x)
- M]
= /V [qa (y|x) log 2o (ul) dydz (22)
- / ao (@) V log LU 4yqz / log 2¥®) G0 (1) dyda (23)
q0(y|z) g0 (y|x)

=/qe(y\w)VIque(y\w)dydw7/qe(ylm) logMVIque(ylw)dydw (24)

q0(ylx)
€T
—— B (g 2 )9 i0ggo(yle) @
y~qo ()
T | m)
Z Zl plyrly<r,z) 1)V log go (yt|y<t, ) (26)
o B 90 (Yo |Y<vr, @)

y~agp(-|z) t=1 t/=1

T
Py |y<v, )
—1Vlio . T), 27)
:E/\/p Z Z g%(yylya/ x) ) g a0 (ye|y<t, @)

yr~gp(-|e) t=1 t'=t

where Eq. 27 is based on the fact that log go(y:|y<¢, ) can only affect tokens at > ¢ positions in y.

By setting R, = >,,_, log %, we obtain Eq. 2.

A.3 DERIVATION OF EQUATION 3

To derive Eq. 3, we first denote:

T
(VL)singte = — [Zv E [rt:| ,
yf{;f(’“‘”‘m) =1 vt~ae(t)
T (28)
(VL)Long = — :cwp Ri1V1og qo (ye|y<t, x).
y~ao(-l2) =1
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Then, we re-write V.L(6) as:

T
VLO)=- E > (R = 1)V log go(yi|y<i, )
y~ap (Jz) t=1
T
== E_ ZRt-HVIOg qo (yt|y<t, x)
y~aqg(-|z) t=1

T

P(yely<i, @) )
— B Y (tog Y=L ) Vlog gy .z
yfq:?ﬁmn:l( ol ) Bally<ee)

T

:(VE)Long - E E (10 w
yan ey t=1 vt~ Cly<e®) a0 (yely<t, )
3 g0 (ytly<t, )
o\Yt|Y<t,
=(VL)Long— E \v4 E {_ log 7}
" P Z yi~ao (ly<t,®) P(yt|y<e, x)

y~aqo(-|e) t=1

T
=(VL)tone = E [Z V E [m]}
v Clay Li=1 yer~qg(t)

= (VC)Long + (V»C)Singlm

where Eq. 33 uses the product rule of the gradient and r; = log 2¥tl¥<c.2).

90 (Yt|y<t,@)”

B ALGORITHM DETAILS

- 1> V log go (yt|y<:, )

(29)

(30)

€)Y}

(32)

(33)

(34)

(35)

Algorithm 1 MINILLM: Knowledge Distillation of LLMs

Input: Conditional generation dataset D consisting of prompts and ground-truth responses
Pre-training corpus Dpr consisting of long-document plain texts
A teacher model with output distribution p
An initial student model pre-trained on Dpr, with the output distribution gg,,
Learning rate 7;  Batch size M;  Clipping Threshold e

QOutput: A student model with the output distribution gg

Fine-tune the student model from 6y on D supervised by the ground truth responses and choose @ with the

lowest validation loss.
repeat

Sample a mini-batch of prompts from D and collect responses from p to get S = {(«™,y™)

Sample a mini-batch D'pr = {d™}}_, from Dpr

p(ytly<t, )

Compute (VL)single = =37 g yes 2ot—1 WiV 2o, v 40 (yey<e, ) log 90 (ytly<t@)
Compute (VL) = =17 Lo yes it BeeT V min[p:(6), clip(pe(60), 1 — €, 1+ €)],
> Eq. 5, Eq. 6

a0 (ytly<e,@)
p(ytly<t,x)

where p:(0) =

Compute the gradient of the language modeling loss: V Lpr = —ﬁ Zde D}, V log go(d)

Update model parameters: 6 <— 6 — 0 [(VL)singee + (V.L)rone + VLer]
until converge and return gy

>Eq. 5

C EXPERIMENTAL DETAILS

C.1 TRAINING DETAILS

Baselines Our baselines include SFT w/o KD, KD, and SeqKD. For models with less than 1.3B
parameters, we search for the learning rates in [Se-4, 1e-4, Se-5], the batch sizes in [32, 64], and train
these models for 20 epochs. For other models, we search for the learning rate in [5Se-5, le-5, Se-6],
the batch sizes in [32, 64], and train these models for 10 epochs. For KD, we follow Song et al.
(2020) to mix the distillation loss with the language modeling loss on the ground truth responses
by a mixture rate of 0.5. The checkpoints of each baseline are selected by the Rouge-L (Lin, 2004)
scores on the validation set because, as stated in previous works (Wang et al., 2022; Ouyang et al.,

2022), we also find that Rouge-L is better correlated with human judgments.
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Below is an instruction that describes a task.
Write a response that appropriately completes the request.

### Instruction:
{instruction}

### Input:
{input}

### Response:

Figure 9: The prompt wrapper for training and evaluation.

Below is an instruction that describes a task.
Write a response that appropriately completes the request.

### Instruction:
Determine the sentiment of the input sentence. Please respond as positive or negative.

### Input:
{sentence}

### Response:

Figure 10: Zero-shot text classification prompt for SST2.

MINILLM As stated in Section 2.3, training of MINILLM has two phases which is similar to
Reinforcement Learning from Human Feedback (RLHF;Ouyang et al., 2022).

e Phase 1: We fine-tune the student model on the instruction-response training set D to get a
starting point for the subsequent MINILLM training. We fine-tune the model for 3 epochs using
the best learning rate and batch size of the corresponding SFT w/o KD baselines. Note that
different from the SFT w/o KD baseline, we select the checkpoint with the lowest validation
loss, not the Rouge-L score in this phase.

¢ Phase 2: We continuously train the model from Phase 1 as described in Algorithm B using a
learning rate 5Se-6, a mini-batch size 64 in all cases. The training and validation set are same
as in Phase 1. Similar to Ouyang et al. (2022), we collect 256 sentences at once and adopt
4 inner epochs when doing the policy optimization. The clipping rate € is set to 0.2, and the
max length of the model is 512. We use temperature = 1 when sampling from gg. We train the
model for 5000 steps and select the final checkpoint using the Rouge-L score on the validation
set. Our experiments are based on the NVIDIA V100 32G GPUs. Distilling LLaMA-7B from
LLaMA-13B takes less than 10 ours on 16 GPUs.

C.2 AUTOMATIC EVALUATION DETAILS

During the evaluation, we sample the responses from each model using temperature = 1, a max-
length limit of 512, and random seeds [10, 20, 30, 40, 50]. Similar to Taori et al. (2023), we adopt
a prompt wrapper shown in Figure 9 to convert each instruction-response pair to a sentence. For
the classification tasks in the “Calibration” paragraph of Section 3.3, we prompt the model to do
zero-shot text classification with the prompt in Figure 10 and 11.

C.3 HUMAN EVALUATION DETAILS

Following Peng et al. (2023), we use Selflnst (Wang et al., 2023) to do the human evaluation. We ran-
domly sampled 50 prompts because we found that more prompts do not affect the results much. We
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Below is an instruction that describes a task.
Write a response that appropriately completes the request.

### Instruction:
Read the input passage and answer the question: {question}? Your answer should be “Yes”

or “NO”

### Input:
{passage}

### Response:

Figure 11: Zero-shot text classification prompt for BoolQ.

Below is an instruction that describes a task, paired with an input that provides further
context. Write a response that appropriately completes the request.

### Instruction:
Desk jobs require writing a lot of emails, so it isn’t surprising we get tired of repeating
ourselves. Come up with several synonyms for the given word.

### Input:
Sincerely

### Response:

#it#H Answer #1 #iHHHE
Fondly, affectionately, lovingly, tenderly, honestly, truly, faithfully, devotedly, passionately

#it#HH Answer #2 #iHHHE
Faithfully, Gullibly, Humbly, Piously, Strangely, Weirdly, Yours truly

1: Answer #1 is better
2: Answer #2 is better
3: Tie

Your choice:

Figure 12: The prompt wrapper for training and evaluation.

ask the annotators to compare the responses generated by the baseline models with the MINILLM
and decide which response is preferred or neither of them is significantly better. Note that which
model the responses come from is invisible to the annotators. The interface presented to annotators
is shown in Figure 12.

C.4 DETAILS ABOUT GENERATION DIVERSITY METRICS

In Table 3, we report the distinct 4-grams (Dist-4) and the language modeling loss (Loss) on the test
sets. More details about these two metrics are as follows:

 “Dist-4” is a fraction: N/C', where N is the number of the distinct 4-grams in the generated
responses and C' is the total number of 4-grams. It is a widely used metric to measure the gener-
ation diversity of a language model (Li et al., 2016). The (IN/C')s on the Dolly test set across 5
random seeds are shown in Table 5. Table 3 reports the average values across the 5 seeds.
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Seed
m 10 20 30 40 50
Teacher 23562/23696 23653 /23834 24306/24488 24207/24381 23803 /23967
KD 25880 /26064 24024/24197 25663 /25843  25611/25763 26178 /26339
SeqKD 25358/25519  25631/25822  26190/26370 25574/25748 26295 /26522
MINILLM 24187/24458  25011/25272  25100/25436  24067/24312  25205/25519

Table 5: The (N/C)s, where N is the number of the distinct 4-grams in the generated responses
and C' is the total number of 4-grams. We report the numbers computed on the Dolly test set when
evaluated with 5 random seeds [10, 20, 30, 40, 50].

We would like to request your feedback on the performance of two Al assistants in response
to the user instruction and input displayed above.

Please rate the helpfulness, relevance, accuracy, and level of detail of their responses. Each
assistant receives an overall score on a scale of 1 to 10, where a higher score indicates better
overall performance.

Please first output a single line containing only two values indicating the scores for Assistant
1 and 2, respectively. The two scores are separated by a space.

In the subsequent line, please provide a comprehensive explanation of your evaluation,
avoiding any potential bias and ensuring that the order in which the responses were pre-
sented does not affect your judgment.

Figure 13: GPT-4 evaluation prompt.

* “Loss” is the negative log-likelihood loss on the test set Dres: — 4 ooy, 108 G0 (Y|T). It
measures the mode coverage of the real data distribution because it is essentially the forward
KLD between the real data distribution and the model output distribution. This relates to diversity
as in the ability to generate different generations given one context with different random seeds.

C.5 EXPOSURE BIAS ANALYSIS

Following Arora et al. (2022), we compute the ExAccErr with the following formula:

R(l) —le(l)
le(l)

where R(l) is the accumulated regret of imitating the teacher distribution p at the time step ! during
the free-run generation:

ExAccErr(l) = x 100%, (36)

T

Rl - 9
0 90 (Yt|y<t, x)

E log

—1 Y<t~qe ()
t=1
yth(~|y<t7m)

37

and €(1) is the average per-step error between ¢y and p using the oracle context sampled from p as
the prefix:

P(Ye|y<s, )

. 38
qe(yt|y<tu a:) G8)

1 T
)= -
E( ) l ; 'y<t~I€‘7('|$)
T ye~ep(ly<e,x)

Intuitively, the regret of g9 during generation is made of two parts: the error to estimate p given
the oracle context and the error caused by the low-quality model-generated prefix. The former is
calculated by le(l), and the latter reflects the exposure bias. Therefore, ExAccErr measures the
relative error caused only by exposure bias.
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Model ~ #Params Method | Dolly | Selflnst | Vicuna
13B  Teacher | 790 | 755 | 65.1

SFTw/oKD | 73.0 69.2 61.6

LLaMA 5 KD 737 | 705 | 627
SeqKD 73.6 71.5 62.6

MINILLM 76.4 73.1 64.1

Table 6: Evaluation results by GPT-4 feedback based on LLaMA family. We report the average
GPT-4 feedback scores across 5 random seeds. The best scores of each model size are boldfaced.

Model Method | Dolly | Selflnst | Vicuna | S-NI | UnNI
GPT-I-6B Teacher | 273 | 173 | 174 | 280 | 33.6
SFTwioKD | 254 | 124 | 161 | 215 | 27.1
KD 267 | 134 | 164 | 259 | 332
GPT-2-760M 0 kD 260 | 140 | 153 | 255 | 325

MINILLM 25.8 16.3 19.1* 271 | 35.5%
SFT w/o KD | 27.6* 14.3 16.3 27.6 | 34.6*%

KD 266 | 145 | 165 | 27.6 | 34.9%
GPT-2-15B g.qkD 270 | 136 | 169 | 280 | 342+
MINILLM | 259 | 166 | 194* | 28.5% | 359+
SFTwoKD | 268 | 158 | 170 | 265 | 316
KD 267 | 160 | 169 | 272 | 327
GPT-Neo-2.78B e kD 256 | 162 | 169 | 261 | 329

MINILLM 28.5% 17.1 18.6% | 29.8* | 35.4*

Table 7: Evaluation results when GPT-J is the teacher model. We report the average R-L scores
across 5 random seeds. The best scores of each model size are boldfaced, and the scores where the
student model outperforms the teacher are marked with *.

D ADDITIONAL RESULTS

D.1 GPT-4 FEEDBACK SCORES

We include the GPT-4 feedback scores (Zheng et al., 2023) on the LLaMA family as a supplementary
evaluation metric, by asking GPT-4 to compare model-generated responses with the ground truth
answers’ and raise 1-10 scores for both responses. We apply the prompt in Figure 13 and set the
temperature = 0.7 to call the GPT-4 API°. We report the ratio of the total score of model responses
and ground truth answers. This metric is only applied to Dolly, SelfInst, and Vicuna. The results in
Table 6 indicate that MINILLM has the best overall performance.

D.2 GPT-J AS THE TEACHER MODEL

We present the evaluation results when using GPT-J as the teacher and GPT-2-760M, GPT-2-1.5B,
and GPT-Neo-2.7B (Black et al., 2021) as the student in Table 7. MINILLM outperforms the base-
lines in most cases.

D.3 SCALING LAW OF TEACHER BASED ON THE OPT FAMILY

We present the performance of MINILLM and SeqKD when we scale up the sizes of the teacher
models in Figure 14. Similar to the observations in Section 3.3, MINILLM constantly performs
better and distills better student models from larger teacher models.

SWe use the ChatGPT’s generation (OpenAl, 2022) for Vicuna’s ground truth responses.
SWe use the API version of 2023-3-15.
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Figure 14: The scaling law of teacher based on the  Figure 15: The Rouge-L scores of the dis-
OPT family models. We compare MINILLM and tilled models against the SFT models on the
SeqKD with OPT-1.3M as the student and OPT different evaluation subsets of UnNI split by

2.7B, 6.7B, and 13B as teachers. the golden responses’ length.
35
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Table 8: The effect of adding the pre-training
Figure 16: Effect of the o value in the teacher ]oss. “CLS” is the average accuracy scores on
mix-in exploration on the validation Rouge-L  SST2 and BoolQ. “Inst.” is the average Rouge-
score. Larger models to more robust to a. L score on Dolly, SelfInst, and Vicuna.

D.4 PERFORMANCE OF RESPONSE LENGTH ON U-NI

The performance on different U-NI subsets split by the length of the ground truth response is shown
in Figure 15. We have the same observation as in Section 3.3 that on short responses, all KD methods
perform similarly, and on long responses, MINILLM outperforms other methods.

D.5 MORE ABLATION STUDIES

Effect of Teacher-Mix-in Strength o In Figure 16, we plot the best Rouge-L scores on the vali-
dation set of GPT-2-125M, OPT-1.3B, and LLaMA-7B using GPT-2-1.5B, OPT-13B, and LLAMA-
13B as the teachers, with different teacher-mix-in strength o in MINILLM. o = 0.0 means we
only sample from the student distribution, and when o = 1.0, we sample entirely from the teacher
distribution. We find that & = 0.2 is generally suitable across different model families and sizes,
and larger models are more robust to the choice of a.

Effect of Adding Pre-Training Loss In Table 8, we study the effect of adding the pre-training
loss in Algorithm B by comparing MINILLM with its variant where the language modeling loss on
the pre-training corpus is removed (w/o Lpr). We have a similar observation as Ouyang et al. (2022)
that adding the pre-training loss helps to preserve the abilities on canonical NLP tasks while keeping
the performance on instruction-following tasks nearly unchanged.

E CASES

We provide some cases generated by the models distilled by different methods based on the LLaMA
model family in Table 9. The prompts are sampled from the SelfInst dataset. We find that MINILLM
generates more detailed and accurate responses compared with the baselines.
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Case #1

Instruction During writing, we added an asterisk for the word that did not come to
mind. You will need to provide several examples to demonstrate all the
words that can be used in the sentence instead of the asterisk.

Input | we * to know

SFT w/o KD | We can use “know” in the sentence instead of “we * to know”

KD we went to know\n we will go to know\n we can go to know\n we may
go to know\n we should go to know\n we must go to know

SeqKD we do to know\n we can do to know\n we should do to know\n we would
do to know\n we ought to do to know

MINILLM We can use the following words in place of the asterisk:\n - want\n -
have\n - do\n - used\n - ought\n - desire\n - need\n - must

MINILLM

w/o teacher-mixed We to know

Case #2
Instruction Take the title of the product and extract its attributes. The attributes in this

case refer to the characteristics of the products, such as their brand and
color. Your answer must a list following the format of “attribute: value”.

Input SAMSUNG 980 PRO SSD 2TB PCle NVMe Gen 4 Gaming M.2 Internal
Solid State Hard Drive Memory Card, Maximum Speed, Thermal Control,
MZ-V8P2TOB

SFT w/o KD | Attribute: Maximum Speed\n Value: 3500 MB/s

KD attribute: brand, attribute: color, attribute: memory card, attribute: maxi-
mum speed, attribute: thermal control

SeqKD brand: Samsung, color: black, size: 2TB, interface: PCle NVME Gen 4,
design: M.2 Internal

MINILLM brand: SAMSUNG\n color: 980 PRO\n capacity: 2TB\n interface:
PCIe NVME Gen 4\n speed: Maximum Speed\n threshold: Thermal
Control\n form factor: M.2 Internal

MINILLM

SAMSUNGC 980 Pro SSD 2TB PCIle NVME Gen 4 Gaming M.II Inter-
nal Solid State Hard Drive memory Card, Max Speed, Thermal Control,
AP1500K

w/o teacher-mixed

Table 9: Instruction-following cases from the SelfInst dataset. MINILLM better follows the in-
structions and provides more detailed and accurate responses. Without the teacher-mixed sampling
strategy in Section 2.2, the distilled model outputs short responses (Case #1) or simply repeats the
input (Cases #2).
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