

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 A BRAIN-INSPIRED GATING MECHANISM UNLOCKS ROBUST COMPUTATION IN SPIKING NEURAL NET- WORKS

006
007 **Anonymous authors**
008 Paper under double-blind review

010 011 ABSTRACT

013 While spiking neural networks (SNNs) provide a biologically inspired and energy-
014 efficient computational framework, their robustness and the dynamic advantages
015 inherent to biological neurons remain significantly underutilized owing to over-
016 simplified neuron models. In particular, conventional leaky integrate-and-fire
017 (LIF) neurons often omit the dynamic conductance mechanisms inherent in bi-
018 ological neurons, thereby limiting their capacity to cope with noise and temporal
019 variability. In this work, we revisit dynamic conductance from a functional
020 perspective and uncover its intrinsic role as a bio-inspired gating mechanism
021 that modulates information flow. Building on this insight, we introduce the Dy-
022 namic Gated Neuron (DGN), a novel spiking unit in which membrane conduc-
023 tance evolves in response to neuronal activity, enabling selective input filtering
024 and adaptive noise suppression. We provide a theoretical analysis showing that
025 DGN possess enhanced stochastic stability compared to standard LIF models, with
026 dynamic conductance intriguingly acting as a disturbance rejection mechanism.
027 DGN-based SNNs demonstrate superior performance across extensive evaluations
028 on anti-noise tasks and temporal-related benchmarks such as TIDIGITS and SHD,
029 consistently exhibiting excellent robustness. To the best of our knowledge, for the
030 first time, our results establish bio-inspired dynamic gating as a key mechanism
031 for robust spike-based computation, providing not only theoretical guarantees but
032 also strong empirical validations. This work thus paves the way for more resilient,
033 efficient, and biologically inspired spiking neural networks.

034 1 INTRODUCTION

035 Spiking Neural Networks (SNNs) offer a biologically inspired alternative to traditional neural archi-
036 037 038 039 040 041 042 043 044 045
046 047 048 049 050 051 052 053
054 055 056 057 058 059 060 061
062 063 064 065 066 067 068 069
070 071 072 073 074 075 076 077
078 079 080 081 082 083 084 085
086 087 088 089 090 091 092 093
094 095 096 097 098 099 100 101
0100 0101 0102 0103 0104 0105 0106 0107
0108 0109 0110 0111 0112 0113 0114 0115
0116 0117 0118 0119 0120 0121 0122 0123
0124 0125 0126 0127 0128 0129 0130 0131
0132 0133 0134 0135 0136 0137 0138 0139
0140 0141 0142 0143 0144 0145 0146 0147
0148 0149 0150 0151 0152 0153 0154 0155
0156 0157 0158 0159 0160 0161 0162 0163
0164 0165 0166 0167 0168 0169 0170 0171
0172 0173 0174 0175 0176 0177 0178 0179
0180 0181 0182 0183 0184 0185 0186 0187
0188 0189 0190 0191 0192 0193 0194 0195
0196 0197 0198 0199 0200 0201 0202 0203
0204 0205 0206 0207 0208 0209 0210 0211
0212 0213 0214 0215 0216 0217 0218 0219
0220 0221 0222 0223 0224 0225 0226 0227
0228 0229 0230 0231 0232 0233 0234 0235
0236 0237 0238 0239 0240 0241 0242 0243
0244 0245 0246 0247 0248 0249 0250 0251
0252 0253 0254 0255 0256 0257 0258 0259
0260 0261 0262 0263 0264 0265 0266 0267
0268 0269 0270 0271 0272 0273 0274 0275
0276 0277 0278 0279 0280 0281 0282 0283
0284 0285 0286 0287 0288 0289 0290 0291
0292 0293 0294 0295 0296 0297 0298 0299
0300 0301 0302 0303 0304 0305 0306 0307
0308 0309 0310 0311 0312 0313 0314 0315
0316 0317 0318 0319 0320 0321 0322 0323
0324 0325 0326 0327 0328 0329 0330 0331
0332 0333 0334 0335 0336 0337 0338 0339
0340 0341 0342 0343 0344 0345 0346 0347
0348 0349 0350 0351 0352 0353 0354 0355
0356 0357 0358 0359 0360 0361 0362 0363
0364 0365 0366 0367 0368 0369 0370 0371
0372 0373 0374 0375 0376 0377 0378 0379
0380 0381 0382 0383 0384 0385 0386 0387
0388 0389 0390 0391 0392 0393 0394 0395
0396 0397 0398 0399 0400 0401 0402 0403
0404 0405 0406 0407 0408 0409 0410 0411
0412 0413 0414 0415 0416 0417 0418 0419
0420 0421 0422 0423 0424 0425 0426 0427
0428 0429 0430 0431 0432 0433 0434 0435
0436 0437 0438 0439 0440 0441 0442 0443
0444 0445 0446 0447 0448 0449 0450 0451
0452 0453 0454 0455 0456 0457 0458 0459
0460 0461 0462 0463 0464 0465 0466 0467
0468 0469 0470 0471 0472 0473 0474 0475
0476 0477 0478 0479 0480 0481 0482 0483
0484 0485 0486 0487 0488 0489 0490 0491
0492 0493 0494 0495 0496 0497 0498 0499
0500 0501 0502 0503 0504 0505 0506 0507
0508 0509 0510 0511 0512 0513 0514 0515
0516 0517 0518 0519 0520 0521 0522 0523
0524 0525 0526 0527 0528 0529 0530 0531
0532 0533 0534 0535 0536 0537 0538 0539
0540 0541 0542 0543 0544 0545 0546 0547
0548 0549 0550 0551 0552 0553 0554 0555
0556 0557 0558 0559 0560 0561 0562 0563
0564 0565 0566 0567 0568 0569 0570 0571
0572 0573 0574 0575 0576 0577 0578 0579
0580 0581 0582 0583 0584 0585 0586 0587
0588 0589 0590 0591 0592 0593 0594 0595
0596 0597 0598 0599 0600 0601 0602 0603
0604 0605 0606 0607 0608 0609 0610 0611
0612 0613 0614 0615 0616 0617 0618 0619
0619 0620 0621 0622 0623 0624 0625 0626
0627 0628 0629 0630 0631 0632 0633 0634
0635 0636 0637 0638 0639 0640 0641 0642
0643 0644 0645 0646 0647 0648 0649 0650
0651 0652 0653 0654 0655 0656 0657 0658
0659 0660 0661 0662 0663 0664 0665 0666
0667 0668 0669 0670 0671 0672 0673 0674
0675 0676 0677 0678 0679 0680 0681 0682
0683 0684 0685 0686 0687 0688 0689 0690
0691 0692 0693 0694 0695 0696 0697 0698
0699 0700 0701 0702 0703 0704 0705 0706
0707 0708 0709 0710 0711 0712 0713 0714
0715 0716 0717 0718 0719 0720 0721 0722
0723 0724 0725 0726 0727 0728 0729 0730
0731 0732 0733 0734 0735 0736 0737 0738
0739 0740 0741 0742 0743 0744 0745 0746
0747 0748 0749 0750 0751 0752 0753 0754
0755 0756 0757 0758 0759 0760 0761 0762
0763 0764 0765 0766 0767 0768 0769 0770
0771 0772 0773 0774 0775 0776 0777 0778
0779 0780 0781 0782 0783 0784 0785 0786
0787 0788 0789 0790 0791 0792 0793 0794
0795 0796 0797 0798 0799 0800 0801 0802
0803 0804 0805 0806 0807 0808 0809 0810
0811 0812 0813 0814 0815 0816 0817 0818
0819 0820 0821 0822 0823 0824 0825 0826
0827 0828 0829 0830 0831 0832 0833 0834
0835 0836 0837 0838 0839 0840 0841 0842
0843 0844 0845 0846 0847 0848 0849 0850
0851 0852 0853 0854 0855 0856 0857 0858
0859 0860 0861 0862 0863 0864 0865 0866
0867 0868 0869 0870 0871 0872 0873 0874
0875 0876 0877 0878 0879 0880 0881 0882
0883 0884 0885 0886 0887 0888 0889 0890
0891 0892 0893 0894 0895 0896 0897 0898
0899 0900 0901 0902 0903 0904 0905 0906
0907 0908 0909 0910 0911 0912 0913 0914
0915 0916 0917 0918 0919 0920 0921 0922
0923 0924 0925 0926 0927 0928 0929 0930
0931 0932 0933 0934 0935 0936 0937 0938
0939 0940 0941 0942 0943 0944 0945 0946
0947 0948 0949 0950 0951 0952 0953 0954
0955 0956 0957 0958 0959 0960 0961 0962
0963 0964 0965 0966 0967 0968 0969 0970
0971 0972 0973 0974 0975 0976 0977 0978
0979 0980 0981 0982 0983 0984 0985 0986
0987 0988 0989 0990 0991 0992 0993 0994
0995 0996 0997 0998 0999 1000 1001 1002
1003 1004 1005 1006 1007 1008 1009 1010
1011 1012 1013 1014 1015 1016 1017 1018
1019 1020 1021 1022 1023 1024 1025 1026
1027 1028 1029 1030 1031 1032 1033 1034
1035 1036 1037 1038 1039 1040 1041 1042
1043 1044 1045 1046 1047 1048 1049 1050
1051 1052 1053 1054 1055 1056 1057 1058
1059 1060 1061 1062 1063 1064 1065 1066
1067 1068 1069 1070 1071 1072 1073 1074
1075 1076 1077 1078 1079 1080 1081 1082
1083 1084 1085 1086 1087 1088 1089 1090
1091 1092 1093 1094 1095 1096 1097 1098
1099 1100 1101 1102 1103 1104 1105 1106
1107 1108 1109 1110 1111 1112 1113 1114
1115 1116 1117 1118 1119 1120 1121 1122
1123 1124 1125 1126 1127 1128 1129 1130
1131 1132 1133 1134 1135 1136 1137 1138
1139 1140 1141 1142 1143 1144 1145 1146
1147 1148 1149 1150 1151 1152 1153 1154
1155 1156 1157 1158 1159 1160 1161 1162
1163 1164 1165 1166 1167 1168 1169 1170
1171 1172 1173 1174 1175 1176 1177 1178
1179 1180 1181 1182 1183 1184 1185 1186
1187 1188 1189 1190 1191 1192 1193 1194
1195 1196 1197 1198 1199 1200 1201 1202
1203 1204 1205 1206 1207 1208 1209 1210
1211 1212 1213 1214 1215 1216 1217 1218
1219 1220 1221 1222 1223 1224 1225 1226
1227 1228 1229 1230 1231 1232 1233 1234
1235 1236 1237 1238 1239 1240 1241 1242
1243 1244 1245 1246 1247 1248 1249 1250
1251 1252 1253 1254 1255 1256 1257 1258
1259 1260 1261 1262 1263 1264 1265 1266
1267 1268 1269 1270 1271 1272 1273 1274
1275 1276 1277 1278 1279 1280 1281 1282
1283 1284 1285 1286 1287 1288 1289 1290
1291 1292 1293 1294 1295 1296 1297 1298
1299 1300 1301 1302 1303 1304 1305 1306
1307 1308 1309 1310 1311 1312 1313 1314
1315 1316 1317 1318 1319 1320 1321 1322
1323 1324 1325 1326 1327 1328 1329 1330
1331 1332 1333 1334 1335 1336 1337 1338
1339 1340 1341 1342 1343 1344 1345 1346
1347 1348 1349 1350 1351 1352 1353 1354
1355 1356 1357 1358 1359 1360 1361 1362
1363 1364 1365 1366 1367 1368 1369 1370
1371 1372 1373 1374 1375 1376 1377 1378
1379 1380 1381 1382 1383 1384 1385 1386
1387 1388 1389 1390 1391 1392 1393 1394
1395 1396 1397 1398 1399 1400 1401 1402
1403 1404 1405 1406 1407 1408 1409 1410
1411 1412 1413 1414 1415 1416 1417 1418
1419 1420 1421 1422 1423 1424 1425 1426
1427 1428 1429 1430 1431 1432 1433 1434
1435 1436 1437 1438 1439 1440 1441 1442
1443 1444 1445 1446 1447 1448 1449 1450
1451 1452 1453 1454 1455 1456 1457 1458
1459 1460 1461 1462 1463 1464 1465 1466
1467 1468 1469 1470 1471 1472 1473 1474
1475 1476 1477 1478 1479 1480 1481 1482
1483 1484 1485 1486 1487 1488 1489 1490
1491 1492 1493 1494 1495 1496 1497 1498
1499 1500 1501 1502 1503 1504 1505 1506
1507 1508 1509 1510 1511 1512 1513 1514
1515 1516 1517 1518 1519 1520 1521 1522
1523 1524 1525 1526 1527 1528 1529 1530
1531 1532 1533 1534 1535 1536 1537

models that incorporate dynamic regulation of membrane conductance. Beyond their role in homeostatic adaptation, such conductance modulations can be viewed as intrinsic gating mechanisms, wherein membrane properties dynamically shape neuronal responsiveness based on prior activity. This biologically grounded form of gating operates independently of synaptic transmission and plays a central role in regulating neural computation.

Building on a series of biologically grounded studies on conductance-based neurons—including the influential work by Gütig (Gütig & Sompolinsky, 2009), which formulated their dynamic equations and revealed their time-warp-invariant property—we revisit this class of models to bridge the gap between biologically inspired dynamics and their underexplored integration into spiking neural network frameworks. We reintroduced the dynamic conductance mechanism into the LIF neuron model and proposed the Dynamic Gated Neuron (DGN) model. In DGN model, membrane conductance are dynamically modulated as a function of incoming activity. This process implements a bio-inspired gating mechanism that adaptively modulates the persistence of internal states based on input dynamics, allowing spiking neurons to control the retention and decay of past information—functionally analogous to gating operations in recurrent architectures such as the forget gate in LSTMs (Hochreiter & Schmidhuber, 1997). While models like LSTMs and GRUs (Cho et al., 2014) have achieved remarkable performance through engineered gating schemes, their designs are largely disconnected from biological mechanisms. By grounding gating dynamics in neurophysiological principles, our approach bridges this gap, offering a unifying theoretical framework that links spiking neural models with artificial gated recurrent units. This biologically inspired perspective not only enhances the interpretability of gating functions in artificial systems, but also promotes the development of more robust and adaptive architectures informed by the dynamics of real neural circuits.

Unlike traditional LIF neurons, which simplify neural dynamics by using fixed decay rates and static conductance parameters, our model introduces input-dependent modulation of membrane conductance. This enables neurons to selectively retain relevant information while suppressing irrelevant or noisy inputs, thereby implementing a bio-inspired gating mechanism. We evaluate the proposed model within multi-layer spiking neural networks and it achieves strong classification performance while demonstrating stronger resistance to noise and perturbation. Our contributions are summarized as follows:

- **DGN:** We propose the Dynamic Gated Neuron (DGN) model, a generalized spiking neuron model with a fully derived membrane potential formulation. Central to DGN is a dynamic conductance mechanism that functions as a bio-inspired gating mechanism, enabling adaptive control over information flow and memory retention within the neuron. DGN underscores the critical role of dynamic conductance, a biological mechanism, in the modeling of neuronal dynamics.
- **Bridging Biologically Inspired Dynamics and Artificial Gating Mechanisms:** We identify functional parallels between dynamic conductance modulation in our model and gating mechanisms in LSTM networks, offering a biologically grounded perspective that helps bridge the gap between brain-inspired computation and artificial neural networks.
- **Robustness Analysis and Accuracy Results:** We present a complete theoretical analysis of the anti-perturbation properties arising from dynamic conductance mechanisms. In addition, we conduct anti-noise experiments on benchmark datasets using the DGN model, which consistently demonstrates strong performance across both audio and neuromorphic tasks. Notably, our model achieves state-of-the-art top-1 accuracy of 99.10% on the TIDIGITS dataset using a small network.

2 RELATED WORK

2.1 BIOLOGICAL AND COMPUTATIONAL PARAMETRIC NEURON MODELS

The Hodgkin-Huxley (HH) model (Hodgkin & Huxley, 1952) introduced a biophysically detailed, conductance-based description of neuronal dynamics, capturing action potential generation via voltage-gated ion channels. Despite its accuracy, the computational cost of solving HH equations limited its adoption in spiking neural networks (SNNs), which typically rely on oversimplified models such as LIF (Koch & Segev, 1998) and SRM (Gerstner et al., 2014). Izhikevich’s comparative analysis (Izhikevich, 2004) further highlighted the trade-offs between biological plausibility and

computational efficiency in neuronal modeling. While conductance-based models offer richer dynamic properties, their integration into SNNs remains rare. In contrast, our work leverages dynamic conductance not merely for biophysical fidelity, but as a functional gating mechanism, bridging biological modeling with modern computational frameworks. To enhance the temporal modeling capacity of spiking neurons, recent studies have extended the classical LIF framework by incorporating more flexible parameterizations, leading to the emergence of Computational Parametric Spiking Neurons (Yao et al., 2022). Representative models include the Adaptive LIF (ALIF) neuron (Bellec et al., 2018), which introduces activity-dependent threshold adaptation; GLIF (Yao et al., 2022), which embeds gating mechanisms to modulate membrane potential dynamics; Heterogeneous LIF (Perez-Nieves et al., 2021), which enables learnable membrane time constants; and FS-neuron (Stöckl & Maass, 2021), which treats all membrane-related parameters as trainable. A recent model introduces a double-threshold mechanism to enable both positive and negative spike generation (Zhou et al., 2024). HetSyn (Deng et al., 2025) shifts temporal integration from the membrane potential to the synaptic current. While these models improve expressiveness through structural extensions or trainability, our approach is more biologically grounded: it incorporates dynamic conductance as a functional gating mechanism, enabling adaptive regulation of information flow and memory retention with competitive performance across tasks.

2.2 ROBUSTNESS ON SNNs

To enhance the robustness of SNNs against noise and adversarial perturbations, prior works can be broadly categorized into three types: structural modeling, training-based strategies, and biologically-inspired mechanisms. Structural approaches focus on neuron-level properties; for instance, adjusting firing thresholds and temporal windows significantly affects adversarial robustness (El-Allami et al., 2021), and precise spike timing has been shown to stabilize temporal representations (Ding et al., 2023). Other works have investigated the role of membrane potential leakage in LIF neurons, demonstrating that proper tuning can suppress high-frequency perturbations (Sharmin et al., 2020; Chowdhury et al., 2021). Recent methods further propose learnable and heterogeneous leak factors to adaptively regulate information retention across time steps (Fang et al., 2021; Perez-Nieves et al., 2021; Ding et al., 2024a). Training-based methods improve robustness by injecting adversarial examples during learning (Kundu et al., 2021) or applying Lipschitz regularization to limit gradient sensitivity (Ding et al., 2022), but they typically rely on static input encoding and overlook temporal dynamics. Biologically inspired strategies mimic mechanisms observed in neural systems, such as introducing stochastic gating to emulate biological randomness (Ding et al., 2024b), or leveraging frequency-based encoding to simulate selective attention by filtering high-frequency components at different time steps (Xu et al., 2024). Together, these efforts highlight the importance of combining robust training objectives with biologically-aligned temporal regulation to improve SNN robustness. Building on these insights, our DGN model proposes a novel robustness-enhancing framework that more closely aligns with biological neural dynamics, which is our dynamic conductance scheme.

3 METHODOLOGY

3.1 DYNAMIC GATED NEURON MODEL

Extensive research on neuronal conductance mechanisms has established diverse conductance-based models (FitzHugh, 1961; Morris & Lecar, 1981; Hille, 2001; Wilson & Cowan, 1972; Gütig & Sompolinsky, 2009), enhancing biological plausibility beyond traditional LIF frameworks. The neuronal dynamics of a basic conductance-based neuron can be described by the following formula:

$$\frac{dV}{dt} = -g_l V + \sum_i^N g_i (E_i - V) \quad (1)$$

$$\frac{dg_i}{dt} = -\frac{1}{\tau_s} g_i + C_i \sum_j \delta(t - t_i^j) \quad (2)$$

where g_l is the leak conductance. g_i represents the conductance of i -th synapse. N signifies the number of presynaptic afferent. t_i^j indicating the arrival time of the j -th presynaptic spike of the i -th afferent neuron before time t . τ_s is the synaptic time constant. C_i represents learning weights of

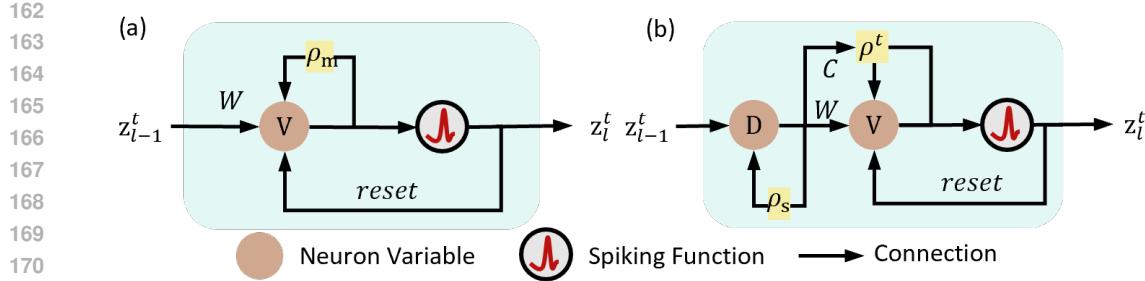


Figure 1: Schematic of the neuron models. (a) a standard LIF model ($\rho_m = e^{-g_l \Delta t}$). (b) the as-proposed DGN model described in Eq. 5-8 ($\rho_s = e^{-\frac{\Delta t}{\tau_s}}$).

conductance. E_i represents the equilibrium potential of the i -th synapse. E_i has excitatory synaptic values and inhibitory synaptic values.

Further analysis of conductance-based neuron models revealed that membrane conductance ($g_l + \sum g_i E_i$) exhibits activity-dependent plasticity modulated by presynaptic spiking patterns. This synaptic-driven mechanisms precisely regulate the decay rate of membrane potential, thereby modulating neuronal memory efficiency and temporal integration properties. Inspired by this, we present a Dynamic Gated Neuron (DGN) model that implements a biologically grounded gating structure to reconcile neuronal biophysics with computational efficiency. This framework introduces dynamic conductance as a fundamental gating mechanism, emulating biological neurons' adaptive signal integration while preserving critical information retention properties. The model's mathematical formulation controls membrane potential dynamics through two interacting gating components: input-dependent synaptic conductance and intrinsic leak conductance. The temporal evolution of membrane potential V obeys the differential equation:

$$\tau_s \frac{dD_i}{dt} = -D_i + z_i^t \quad (3)$$

$$\frac{dV}{dt} = -(g_l + \sum_i^N C_i D_i) V + \sum_i^N W_i D_i \quad (4)$$

where z_i^t is the input spike of the i -th synapse in time t . D_i is the exponentially decaying synaptic current to soma of the i -th synapse. W_i is learning weights of input current. Detailed derivations of these neuronal dynamics are provided in Appendix A.1.1. For practical implementation of SNNs based on connected spiking neurons, coupled with spike firing and spike resetting processes, the dynamics of the DGN model are typically rendered in a discrete iterative format:

$$D_i^t = e^{-\frac{\Delta t}{\tau_s}} D_i^{t-1} + z_i^t \quad (5)$$

$$\rho^t = \varphi(1 - g_l \cdot \Delta t - \Delta t \sum_i^N C_i D_i^t) \quad (6)$$

$$V^t = \rho^t \cdot V^{t-1} + \Delta t \sum_i^N W_i D_i^t - \vartheta z^{t-1} \quad (7)$$

$$z^t = \Theta(V^t - \vartheta) \quad (8)$$

where Δt represents the time interval between time steps in discrete form. φ represents numerical truncation function, such as the Sigmoid function. Θ represents Heaviside step function. An output spike z^t will be generated once the membrane potential V^t reaches the neuronal firing threshold ϑ as per Eq. 8. The membrane potential at the next time step will be soft reset as Eq. 7.

This study compares the biologically inspired DGN with the LIF model to elucidate their structural distinctions (Fig. 1(a-b)). Unlike the LIF model's fixed leakage conductance (g_l) and linear synaptic superposition, the DGN introduces dynamic conductance factors C_i to establish a dual-pathway regulatory architecture. It preserves the current injection pathway ($W_i D_i$) while adding a dynamic

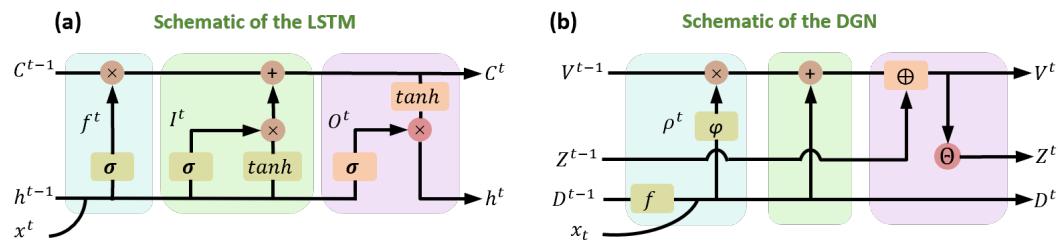


Figure 2: Schematic diagram of the model structure of LSTM and DGN. f : decay function. \oplus : reset processing.

conductance term ($C_i D_i$), forming a gated mechanism governed by $g_l + \sum C_i D_i$. This configuration can adaptively regulate the membrane potential decay rate in real time, thereby overcoming the limitations of LIF in simulating synaptic plasticity and increasing the efficiency of information transfer. This gated mechanism highlights DGN’s advantages in balancing biophysical accuracy and computational performance. Appendix A.3.2 demonstrates that the gating mechanism sustains excellent performance even with fewer parameters.

3.2 GATING STRUCTURE ANALYSIS IN CONDUCTANCE DYNAMIC SYSTEMS

The proposed Dynamic Gated Neural (DGN) model demonstrates fundamental topological homology with Long Short-Term Memory (LSTM) networks in both structural architecture and core information processing mechanisms, as illustrated in Fig. 2. Specifically, the self-adapting decay coefficient mathematically emulates the memory filtration function of LSTM’s forget gate (f^t) (Hochreiter & Schmidhuber, 1997). The mechanism of accumulating currents through dynamic presynaptic integration is computationally similar to the input gating operation (I^t) (Gerstner et al., 2014). DGN’s spike reset mechanism exhibits mathematical congruence with LSTM’s cell state update equations, both employing nonlinear gating variables to control state transitions. This homology underscores a profound insight: the gating mechanism is a universal computational principle for regulating information flow across both artificial and biological neural systems. The LSTM model was designed with a gating mechanism to address the vanishing gradient problem in vanilla RNNs ((Bengio et al., 1994)), while the gating mechanism of our DGN, inspired by dynamic conductance behavior in biological systems ((Kaczmarek, 1987; Chad & Eckert, 1986)), thereby provides a more biologically grounded instantiation of this computational paradigm. DGN not only validates crucial role of gating in spatiotemporal information processing but also serves as a crucial step toward closing the long-standing gap between brain-inspired computation and artificial neural networks, providing a biologically grounded perspective on the functional origins of gating itself.

3.3 STABILITY OF CONDUCTANCE DYNAMIC SYSTEMS

This section establishes the theoretical framework for analyzing noise robustness in DGN model through stochastic differential equation (SDE) approaches (Mao, 2007). By linearizing the nonlinear conductance dynamics under small perturbation assumptions, we derive closed-form expressions for steady-state voltage variances in both DGN and classical LIF model. Comparative analysis of these variance solutions reveals the superior noise suppression capability of the DGN architecture.

In order to compare fairly with other models, we directly analyze the case of adding perturbations to the presynaptic input current (D_i in Eq. 3). The investigation begins with stochastic input perturbations modeled as Gaussian white noise superposed on deterministic signals:

$$\hat{I}_i(t) = \mu_i + \sigma_i \xi(t), \quad \langle \xi(t) \xi(t') \rangle = \delta(t - t') \quad (9)$$

where μ_i denotes deterministic input components and σ_i quantifies noise intensity. The perturbed dynamic conductance $\hat{G}(t) = G_0 + \sum C_i \sigma_i \xi(t)$ induces voltage dynamics, where $G_0 = g_l + \sum C_i \mu_i$. The membrane potential control formula is:

$$\frac{dV}{dt} = -\hat{G}(t)V + \sum W_i \hat{I}_i(t) = \underbrace{-G_0 V + \sum W_i \mu_i}_{\text{Deterministic term}} + \underbrace{\left(-\sum C_i \sigma_i \xi(t) V + \sum W_i \sigma_i \xi(t) \right)}_{\text{Perturbation term}} \quad (10)$$

270 Linear noise approximation (Van Kampen, 1992) is applied by decomposing $V = V_{\text{steady}} + \delta V(t)$
 271 with $|\delta V| \ll V_{\text{steady}}$, where V_{steady} is the steady-state solution of the deterministic term. Performing
 272 Taylor expansion on nonlinear terms $C_i \sigma_i \xi(t) V$ and retaining only first-order contributions while
 273 discarding higher-order small terms ($\delta V \cdot \xi(t)$). The nonlinear perturbation term is linearized as:

$$274 \quad C_i \sigma_i \xi(t) V \approx C_i \sigma_i \xi(t) V_{\text{steady}} \quad (11)$$

275 After truncating higher-order terms, the original SDE reduces to a linear SDE:

$$277 \quad \frac{dV}{dt} = -G_0 V + \sum W_i \mu_i + \sum \sigma_i (W_i - C_i V_{\text{steady}}) \xi(t) \quad (12)$$

279 Using Itô calculus (Itô, 1944) the steady-state variance for DGN resolves to:

$$281 \quad \langle V^2 \rangle_{\text{DGN}} = \frac{\left[\sum_{i=1}^N \sigma_i \left(W_i - \frac{C_i \sum_{j=1}^N W_j \mu_j}{G_0} \right) \right]^2}{2G_0} \quad (13)$$

284 For classical LIF neurons with constant leak g_l , the corresponding variance reduces to:

$$286 \quad \langle V^2 \rangle_{\text{LIF}} = \frac{(\sum_{i=1}^N W_i \sigma_i)^2}{2g_l} \quad (14)$$

289 The derivation process of the above formula is detailed in A.1.3. Critical examination of Eq. 13 versus
 290 Eq. 14 demonstrates two synergistic noise suppression mechanisms in DGN. The denominator
 291 G_0 implements input-dependent leakage scaling, where intensified inputs μ_i amplify effective
 292 conductance to suppress voltage fluctuations. The numerator contains a compensatory term $\frac{C_i \sum W_j \mu_j}{G_0}$
 293 that introduces negative feedback proportional to synaptic weights W_i and coupling coefficients C_i .
 294 When W_i and C_i are positively correlated, this feedback cancels synaptic noise propagation through
 295 W_i , achieving partial noise rejection. In contrast, the LIF model’s fixed leakage g_l and absence of
 296 compensatory terms result in static noise scaling that cannot adapt to input statistics.

297 These analytical results quantitatively demonstrate that DGN neurons outperform LIF models in
 298 noise resilience through dynamic conductance modulation. The dual mechanism—adaptive leakage
 299 scaling and synaptic noise compensation—enables effective voltage stabilization during concurrent
 300 signal and noise processing. This theoretical framework provides fundamental insights into how
 301 conductance dynamics enhance neural computation robustness under stochastic perturbations.

302 4 EXPERIMENTS

305 4.1 COMPARISON WITH THE STATE-OF-THE-ART

307 Speech recognition tasks involve time-correlated contexts, making SNNs ideal due to their self-
 308 recurrent connections. To evaluate the efficiency of our DGN model, we conduct assessments on
 309 two categories of speech-related datasets: conventional audio classification benchmarks (Ti46Alpha
 310 (Mark Liberman et al., 1993) and TIDIGITS (R. Gary Leonard, 1993)) and neuromorphic speech
 311 datasets (SHD and SSC) (Cramer et al., 2020), generated through event-based encoding via
 312 CochleaAMS1b sensor processing. Details of the network architecture and training protocols are
 313 provided in Appendix A.2.2. Our experiments focus on both feedforward and recurrent SNNs with
 314 DGN model across all four datasets.

315 As shown in Tab. 1, the feedforward DGN network with a single 100-node hidden layer attains
 316 98.59% classification accuracy on the TIDIGITS dataset, surpassing comparably structured multi-
 317 layer spiking neuron networks. Notably, the dual-layer recurrent DGN achieves 75.63% accuracy
 318 on the SSC dataset, outperforming LSTM despite using fewer parameters, while both DGN and
 319 LSTM surpass other neurons lacking gating mechanisms. Our proposed DGN show excellent per-
 320 formance in both feedforward and recurrent networks, and their accuracy is comparable to or even
 321 better than several current SOTA methods in the field of SNNs, despite using fewer neurons and a
 322 simpler network structure. These results show that the introduced gating mechanism effectively im-
 323 proves the expressive power of a single neuron. The effectiveness of this mechanism in enhancing
 324 the efficiency of neuronal information transmission to process complex time series data has been
 325 effectively demonstrated.

Table 1: Comparison of model performance on Ti46Alpha, TIDIGITS, SHD, and SSC datasets. Rec=N/Y represents feedforward networks (N) and recurrent networks (Y), respectively. * indicates results we reproduced using public code, while bold entries indicate the best performance.

Datasets	Method	Rec	Hidden Layers	Accuracy(%)
Ti46Alpha	LIF + HM2-BP _{NeurIPS} (Jin et al., 2018)	N	800-800	90.98
	DGN(Ours)	N	100	95.69
	RNN*	Y	100	91.89
	LSTM*	Y	100	96.05
	LIF + SrSc-SNNs-BIP _{Neural Comput.} (Zhang & Li, 2021)	Y	400-400-400	95.90
	LIF + SrSc-SNNs-BIP_{Front. Neurosci.} (Zhang et al., 2024b)	Y	800	96.44
TIDIGITS	DGN(Ours)	Y	100	96.31
	LIF + BAE-MPDAL _{Front. Neurosci.} (Pan et al., 2020)	N	620-11	97.40
	LIF + Multilayer FE-Learn _{TNNLS} (Luo et al., 2022)	N	100-100	98.10
	LIF + BPTE _{IJCNN} (Lin et al., 2023)	N	400-11	98.10
	DGN(Ours)	N	100	98.59
	RNN*	Y	100	97.09
SHD	LSTM*	Y	100	97.88
	DGN(Ours)	Y	100	99.10
	LIF + data aug _{TNNLS} (Cramer et al., 2020)	N	128	49.70
	TC-LIF _{AAAI} , 2024 (Zhang et al., 2024a)	N	128-128	83.08
	DGN(Ours)	N	128	85.18
	RNN*	Y	100	76.53
SSC	LSTM_{TNNLS} (Cramer et al., 2020)	Y	128	89.20
	LIF + data aug _{TNNLS} (Cramer et al., 2020)	Y	1024	84.50
	Heterogeneous LIF _{Nat. Commun.} (Perez-Nieves et al., 2021)	Y	128	83.50
	ALIF _{TNNLS} (Yin et al., 2020)	Y	128-128	84.40
	TC-LIF _{AAAI} (Zhang et al., 2024a)	Y	128-128	88.91
	DGN(Ours)	Y	128	87.78
SSC	DGN(Ours)	Y	128-128	88.98
	LIF _{TNNLS} (Cramer et al., 2020)	N	128-128	38.50
	TC-LIF _{AAAI} (Zhang et al., 2024a)	N	128-128	63.46
	DGN(Ours)	N	128-128	67.54
	RNN*	Y	128-128	72.91
	LSTM_{TNNLS} (Cramer et al., 2020)	Y	128-128	73.10
SSC	LIF _{TNNLS} (Cramer et al., 2020)	Y	128-128	52.00
	Heterogeneous LIF _{Nat. Commun.} (Perez-Nieves et al., 2021)	Y	128	60.80
	ALIF + GaussianGradient _{Nat. Mach. Intell.} (Yin et al., 2021)	Y	128	74.20
	TC-LIF _{AAAI} (Zhang et al., 2024a)	Y	128	61.09
	DGN(Ours)	Y	128	66.18
	DGN(Ours)	Y	128-128	75.63

4.2 OVERALL PERFORMANCE FOR VARIOUS PERTURBATION

To evaluate the robustness of the proposed DGN model, we implement a rigorous framework where all models are trained on pristine datasets without artificial corruption or noise. Traditional robustness evaluations typically use hybrid datasets containing noisy samples in both training and testing sets, which can lead to noise pattern memorization (Bishop, 1995; Simard et al., 2003). Traditional method introduces significant dataset construction overheads and may yield misleading assessments of noise immunity due to varying pattern learning capacities among models (Tsipras et al., 2018; Thams et al., 2022; Zhang et al., 2021). In contrast, we adopt a more challenging approach that evaluates models using previously unseen noise patterns, thereby providing a more realistic assessment of their performance under suboptimal conditions.

We considered three types of noise commonly encountered in SNNs: additive noise, subtractive noise, and mixed noise. We also evaluated model robustness under three gradient-based adversarial attacks: FGSM (Goodfellow et al., 2014), PGD (Madry et al., 2018), and BIM (Kurakin et al., 2018).

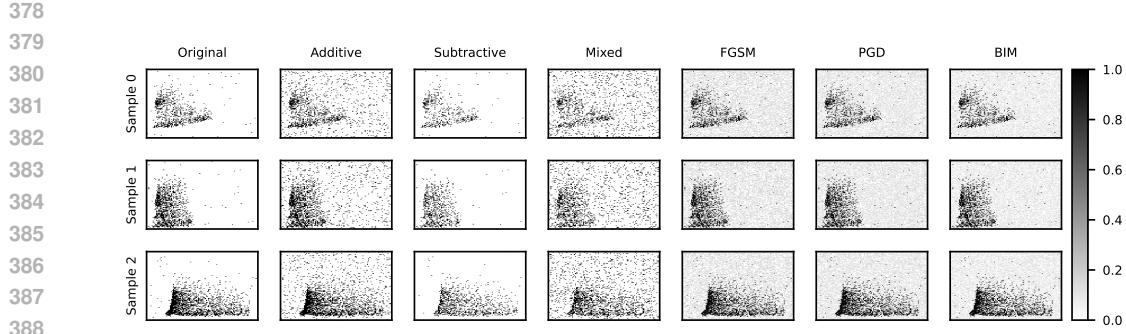


Figure 3: Noise sample visualization on SHD dataset. Each row corresponds to one SHD sample, and each column represents a noise type: Original, Additive, Subtractive, Mixed, FGSM, PGD, and BIM. The horizontal axis indicates time, and the vertical axis represents input channel indices.

Table 2: Accuracy (%) of the proposed DGN under different noise conditions and adversarial attacks on TIDIGITS and SHD. Bold entries indicate the best performance. *HeterLIF* denotes the heterogeneous LIF model proposed by Perez-Nieves et al. (2021).

Model	Clean	Noise			Attacks		
		Additive	Subtractive	Mixed	FGSM	PGD	BIM
TIDIGITS							
FF	LIF	97.02	46.83	93.70	44.20	39.53	15.39
FF	HeterLIF (Perez-Nieves et al., 2021)	96.52	77.49	89.37	72.78	52.48	43.94
	ALIF (Bellec et al., 2018)	96.99	63.29	93.17	60.58	42.50	19.80
	DGN(Ours)	98.59	95.34	93.70	78.12	90.35	86.76
	RNN	97.09	23.64	86.76	21.66	9.89	0.00
Rec	LSTM	97.88	65.12	79.25	64.77	64.97	60.66
	LIF	97.80	73.23	89.60	67.68	26.55	61.79
	HeterLIF (Perez-Nieves et al., 2021)	96.29	78.97	82.59	73.05	8.76	36.62
	ALIF (Bellec et al., 2018)	97.54	84.01	86.19	79.25	25.04	62.82
SHD							
FF	LIF	77.30	29.93	56.32	31.44	51.55	47.87
FF	HeterLIF (Perez-Nieves et al., 2021)	77.77	25.49	54.91	25.58	52.23	50.78
	ALIF (Bellec et al., 2018)	78.02	40.25	55.08	39.50	53.31	51.51
	DGN(Ours)	85.18	59.46	64.05	58.87	63.81	61.59
	RNN	78.24	27.47	52.29	28.06	17.35	11.93
Rec	LSTM	86.89	41.61	64.58	39.23	39.27	32.01
	LIF	75.77	9.24	57.44	9.25	17.78	30.59
	HeterLIF (Perez-Nieves et al., 2021)	79.85	39.57	58.19	38.87	44.76	49.12
	ALIF (Bellec et al., 2018)	82.08	46.59	63.32	47.28	52.2	58.01
SHD							
FF	DGN(Ours)	87.78	78.97	61.91	79.35	69.45	66.13
	RNN	78.24	27.47	52.29	28.06	17.35	11.93
	LSTM	86.89	41.61	64.58	39.23	39.27	32.01
	LIF	75.77	9.24	57.44	9.25	17.78	30.59
Rec	HeterLIF (Perez-Nieves et al., 2021)	79.85	39.57	58.19	38.87	44.76	49.12
	ALIF (Bellec et al., 2018)	82.08	46.59	63.32	47.28	52.2	58.01
	DGN(Ours)	87.78	78.97	61.91	79.35	69.45	66.13
	DGN(Ours)	87.78	78.97	61.91	79.35	69.45	66.13

We conducted anti-noise experiments on the TIDIGITS dataset and the SHD dataset to compare other models with our DGN model. Examples of how different noise types affect the input signals are shown in Fig. 3. The experimental setup is in Appendix A.2.4 and the extended experimental data is in Appendix A.5.

In Tab. 2, we select sampling points of different strengths for different perturbation. Noise generation probability $p = 0.006$ for additive noise, and $p = 0.3$ for subtractive noise. The perturbation $\epsilon = 0.003$ for all attacks, and iterative step $k = 4$, step size $\alpha = 0.01$ for PGD, BIM. All results were reproduced using publicly available code to ensure a fair comparison under identical conditions. Accuracies under the clean condition can be found in Appendix A.2.3.

As shown in Tab. 2, the DGN-based feedforward network keeps 95.34% accuracy under additive noise on the TIDIGITS dataset, surpassing the conventional LIF model by 48.51%, demonstrating that its adaptive dynamic conductance learning mechanism effectively isolates noise from salient features. The robustness of gated architectures is further evidenced by comparative analyses: under PGD attacks on SHD, LSTM outperforms vanilla RNN by 20.08%, while the recurrent DGN surpasses recurrent LIF by 35.54%, validating the robustness from gated mechanisms. Across all noise conditions and adversarial attacks, the DGN model exhibits superior resistance compared to classical SNN neurons and ANNs (RNN and LSTM), maintaining the highest baseline accuracy and minimal performance degradation. These results underscore that the biologically inspired gating structure, driven by dynamic conductance modulation, fundamentally enhances robustness.

4.3 ABLATION STUDY

Performance under Different Perturbation Strength. We systematically assess the robustness of spiking neuron models by measuring their classification accuracy under escalating perturbation intensities (p or ϵ). As shown in Fig. 4, the proposed gated neuron model maintains higher classification accuracy with only marginal degradation when subjected to intensified noise disturbances and diverse adversarial attacks. This performance advantage is attributed to the gating mechanism’s ability to dynamically adjust the neuron information transmission mode, thereby improving the model’s adaptability to perturbations. Extended experiments based on other datasets (Appendix A.3) further and consistently demonstrate the robustness of DGN.

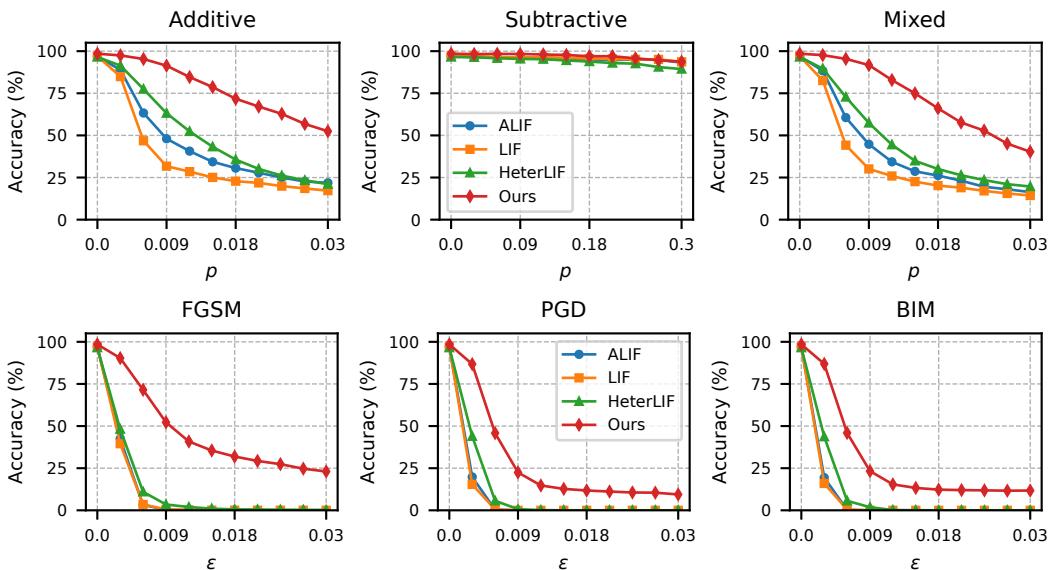


Figure 4: Performance of the model on TIDIGITS using a feedforward network under perturbations of different distribution probabilities p or attack strengths ϵ .

5 CONCLUSION

In this work, we address the lack of bio-inspired gating mechanisms in traditional spiking neural networks (SNNs) by revisiting the biophysical principle of dynamic conductance. Inspired by the temporal behavior of biological ion channels, we propose a novel neuron model that implements a biologically inspired gating structure. This mechanism significantly enhances the spatiotemporal expressiveness and information selectivity of the neuron, leading to substantial performance improvements in speech recognition. Moreover, our model demonstrates superior robustness under various noise perturbations and adversarial attacks. This work introduces a new modeling paradigm for SNNs, offering insights into both robust computation and biologically grounded design. Future directions include integrating our approach with other advances in the SNNs community, and exploring richer conductance-based gating models with enhanced spatiotemporal properties.

486 REFERENCES
487

488 Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert Legenstein, and Wolfgang Maass. Long
489 short-term memory and learning-to-learn in networks of spiking neurons. *Advances in neural*
490 *information processing systems*, 31, 2018.

491 Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient
492 descent is difficult. *IEEE Transactions on Neural Networks*, 5(2):157–166, 1994.

493 Chris M Bishop. Training with noise is equivalent to tikhonov regularization. *Neural computation*,
494 7(1):108–116, 1995.

495 JE Chad and R Eckert. An enzymatic mechanism for calcium current inactivation in dialysed helix
496 neurones. *The Journal of physiology*, 378(1):31–51, 1986.

497 Xiang Cheng, Yunzhe Hao, Jiaming Xu, and Bo Xu. Lisnn: Improving spiking neural networks with
498 lateral interactions for robust object recognition. In *IJCAI*, pp. 1519–1525. Yokohama, 2020.

499 Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
500 ger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder
501 for statistical machine translation. *arXiv preprint arXiv:1406.1078*, 2014.

502 Sayeed Shafayet Chowdhury, Chankyu Lee, and Kaushik Roy. Towards understanding the effect of
503 leak in spiking neural networks. *Neurocomputing*, 464:83–94, 2021.

504 Benjamin Cramer, Yannik Stradmann, Johannes Schemmel, and Friedemann Zenke. The heidelberg
505 spiking data sets for the systematic evaluation of spiking neural networks. *IEEE Transactions on*
506 *Neural Networks and Learning Systems*, 33(7):2744–2757, 2020.

507 Zhichao Deng, Zhikun Liu, Junxue Wang, Shengqian Chen, Xiang Wei, and Qiang Yu. Hetsyn:
508 Versatile timescale integration in spiking neural networks via heterogeneous synapses. *arXiv*
509 *preprint arXiv:2508.11644*, 2025.

510 Jianhao Ding, Tong Bu, Zhaofei Yu, Tiejun Huang, and Jian Liu. Snn-rat: Robustness-enhanced
511 spiking neural network through regularized adversarial training. *Advances in Neural Information*
512 *Processing Systems*, 35:24780–24793, 2022.

513 Jianhao Ding, Zhaofei Yu, Tiejun Huang, and Jian K Liu. Spike timing reshapes robustness against
514 attacks in spiking neural networks. *arXiv preprint arXiv:2306.05654*, 2023.

515 Jianhao Ding, Zhiyu Pan, Yujia Liu, Zhaofei Yu, and Tiejun Huang. Robust stable spiking neural
516 networks. In *Proceedings of the 41st International Conference on Machine Learning*, ICML’24.
517 JMLR.org, 2024a.

518 Jianhao Ding, Zhaofei Yu, Tiejun Huang, and Jian K Liu. Enhancing the robustness of spiking
519 neural networks with stochastic gating mechanisms. In *Proceedings of the AAAI Conference on*
520 *Artificial Intelligence*, volume 38, pp. 492–502, 2024b.

521 Paul Adrien Maurice Dirac. *The principles of quantum mechanics*. Number 27. Oxford university
522 press, 1981.

523 Rida El-Allami, Alberto Marchisio, Muhammad Shafique, and Ihsen Alouani. Securing deep spik-
524 ing neural networks against adversarial attacks through inherent structural parameters. In *2021*
525 *Design, Automation & Test in Europe Conference & Exhibition (DATE)*, pp. 774–779. IEEE,
526 2021.

527 Wei Fang, Zhaofei Yu, Yanqi Chen, Timothée Masquelier, Tiejun Huang, and Yonghong Tian. In-
528 corporating learnable membrane time constant to enhance learning of spiking neural networks.
529 In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 2661–2671,
530 2021.

531 Wei Fang, Yanqi Chen, Jianhao Ding, Zhaofei Yu, Timothée Masquelier, Ding Chen, Liwei Huang,
532 Huihui Zhou, Guoqi Li, and Yonghong Tian. Spikingjelly: An open-source machine learning
533 infrastructure platform for spike-based intelligence. *Science Advances*, 9(40):eadi1480, 2023.

540 Richard FitzHugh. Impulses and physiological states in theoretical models of nerve membrane.
 541 *Biophysical journal*, 1(6):445–466, 1961.
 542

543 Wulfram Gerstner, Werner M Kistler, Richard Naud, and Liam Paninski. *Neuronal dynamics: From*
 544 *single neurons to networks and models of cognition*. Cambridge University Press, 2014.

545 Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
 546 examples. *arXiv preprint arXiv:1412.6572*, 2014.
 547

548 Robert Gütig and Haim Sompolinsky. Time-warp–invariant neuronal processing. *PLoS biology*, 7
 549 (7):e1000141, 2009.
 550

551 Weihua He, YuJie Wu, Lei Deng, Guoqi Li, Haoyu Wang, Yang Tian, Wei Ding, Wenhui Wang, and
 552 Yuan Xie. Comparing snns and rnns on neuromorphic vision datasets: Similarities and differ-
 553 ences. *Neural Networks*, 132:108–120, 2020.

554 Bertil Hille. *Ion channels of excitable membranes*, volume 507. Sinauer Sunderland, MA, 2001.
 555

556 Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural computation*, 9(8):
 557 1735–1780, 1997.

558 Alan L Hodgkin and Andrew F Huxley. A quantitative description of membrane current and its
 559 application to conduction and excitation in nerve. *The Journal of physiology*, 117(4):500, 1952.
 560

561 Mark Horowitz. 1.1 computing’s energy problem (and what we can do about it). In *2014 IEEE*
 562 *International Solid-State Circuits Conference Digest of Technical Papers (ISSCC)*, pp. 10–14,
 563 2014. doi: 10.1109/ISSCC.2014.6757323.

564 Kiyosi Itô. 109. stochastic integral. *Proceedings of the Imperial Academy*, 20(8):519–524, 1944.
 565

566 Eugene M Izhikevich. Which model to use for cortical spiking neurons? *IEEE transactions on*
 567 *neural networks*, 15(5):1063–1070, 2004.
 568

569 Yingyezhe Jin, Wenrui Zhang, and Peng Li. Hybrid macro/micro level backpropagation for training
 570 deep spiking neural networks. *Advances in neural information processing systems*, 31, 2018.
 571

572 Leonard K Kaczmarek. The role of protein kinase c in the regulation of ion channels and neuro-
 573 transmitter release. *Trends in Neurosciences*, 10(1):30–34, 1987.

574 Leonard K Kaczmarek and Irwin B Levitan. *Neuromodulation: the biochemical control of neuronal*
 575 *excitability*. Oxford University Press New York, 1987.
 576

577 Christof Koch and Idan Segev. *Methods in neuronal modeling: from ions to networks*. MIT press,
 578 1998.
 579

580 Souvik Kundu, Massoud Pedram, and Peter A Beerel. Hire-snn: Harnessing the inherent robustness
 581 of energy-efficient deep spiking neural networks by training with crafted input noise. In *Proceed-
 582 ings of the IEEE/CVF international conference on computer vision*, pp. 5209–5218, 2021.

583 Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
 584 In *Artificial intelligence safety and security*, pp. 99–112. Chapman and Hall/CRC, 2018.
 585

586 Xiaocui Lin, Jiangrong Shen, Jun Wen, and Huajin Tang. Bipolar population threshold encoding for
 587 audio recognition with deep spiking neural networks. In *2023 International Joint Conference on*
 588 *Neural Networks (IJCNN)*, pp. 1–8. IEEE, 2023.

589 Xiaoling Luo, Hong Qu, Yuchen Wang, Zhang Yi, Jilun Zhang, and Malu Zhang. Supervised
 590 learning in multilayer spiking neural networks with spike temporal error backpropagation. *IEEE*
 591 *Transactions on Neural Networks and Learning Systems*, 34(12):10141–10153, 2022.
 592

593 Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
 594 *Neural networks*, 10(9):1659–1671, 1997.

594 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
 595 Towards deep learning models resistant to adversarial attacks. In *International Conference on*
 596 *Learning Representations*, 2018.

597

598 Xuerong Mao. *Stochastic differential equations and applications*. Elsevier, 2007.

599

600 Robert Amsler Mark Liberman et al. Ti 46word ldc93s9. *Philadelphia: Linguistic Data Consortium*,
 601 1993. URL <https://catalog.ldc.upenn.edu/LDC93S9>.

602

603 Qingyan Meng, Mingqing Xiao, Shen Yan, Yisen Wang, Zhouchen Lin, and Zhi-Quan Luo. Towards
 604 memory-and time-efficient backpropagation for training spiking neural networks. In *Proceedings*
 605 *of the IEEE/CVF International Conference on Computer Vision*, pp. 6166–6176, 2023.

606

607 James I Morgan and Tom Curran. Stimulus-transcription coupling in the nervous system: involve-
 608 ment of the inducible proto-oncogenes fos and jun. *Annual review of neuroscience*, 14(1):421–
 609 451, 1991.

610

611 Catherine Morris and Harold Lecar. Voltage oscillations in the barnacle giant muscle fiber. *Biophys-*
 612 *ical journal*, 35(1):193–213, 1981.

613

614 Zihan Pan, Yansong Chua, Jibin Wu, Malu Zhang, Haizhou Li, and Eliathamby Ambikairajah. An
 615 efficient and perceptually motivated auditory neural encoding and decoding algorithm for spiking
 616 neural networks. *Frontiers in neuroscience*, 13:1420, 2020.

617

618 Jing Pei, Lei Deng, Sen Song, Mingguo Zhao, Youhui Zhang, Shuang Wu, Guanrui Wang, Zhe
 619 Zou, Zhenzhi Wu, Wei He, et al. Towards artificial general intelligence with hybrid tianjic chip
 620 architecture. *Nature*, 572(7767):106–111, 2019.

621

622 Michael Pfeiffer and Thomas Pfeil. Deep learning with spiking neurons: opportunities and chal-
 623 lenges. *Frontiers in neuroscience*, 12:409662, 2018.

624

625 George R. Doddington R. Gary Leonard. Tidigits ldc93s10. *Philadelphia: Linguistic Data Conso-*
 626 *rtium*, 1993. URL <https://catalog.ldc.upenn.edu/LDC93S10>.

627

628 Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine intelligence
 629 with neuromorphic computing. *Nature*, 575(7784):607–617, 2019.

630

631 Saima Sharmin, Nitin Rathi, Priyadarshini Panda, and Kaushik Roy. Inherent adversarial robustness
 632 of deep spiking neural networks: Effects of discrete input encoding and non-linear activations. In
 633 *European Conference on Computer Vision*, pp. 399–414. Springer, 2020.

634

635 Andrew A Sharp, Michael B O’Neil, LF Abbott, and Eve Marder. The dynamic clamp: artificial
 636 conductances in biological neurons. *Trends in neurosciences*, 16(10):389–394, 1993.

637

638 Morgan Sheng and Michael E Greenberg. The regulation and function of c-fos and other immediate
 639 early genes in the nervous system. *Neuron*, 4(4):477–485, 1990.

640

641 Patrice Y Simard, David Steinkraus, John C Platt, et al. Best practices for convolutional neural
 642 networks applied to visual document analysis. In *Icdar*, volume 3. Edinburgh, 2003.

643

644 Richard J Smeyne, Karl Schilling, Linda Robertson, Daniel Luk, John Oberdick, Tom Curran, and
 645 James I Morgan. Fos-iacz transgenic mice: mapping sites of gene induction in the central nervous
 646 system. *Neuron*, 8(1):13–23, 1992.

647

648 Christoph Stöckl and Wolfgang Maass. Optimized spiking neurons can classify images with high
 649 accuracy through temporal coding with two spikes. *Nature Machine Intelligence*, 3(3):230–238,
 650 2021.

651

652 Nikolaj Thams, Michael Oberst, and David Sontag. Evaluating robustness to dataset shift via para-
 653 metric robustness sets. *Advances in Neural Information Processing Systems*, 35:16877–16889,
 654 2022.

648 Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry.
 649 Robustness may be at odds with accuracy. *arXiv preprint arXiv:1805.12152*, 2018.
 650

651 Nicolaas Godfried Van Kampen. *Stochastic processes in physics and chemistry*, volume 1. Elsevier,
 652 1992.

653 Ziming Wang, Runhao Jiang, Shuang Lian, Rui Yan, and Huajin Tang. Adaptive smoothing gradient
 654 learning for spiking neural networks. In *International conference on machine learning*, pp.
 655 35798–35816. PMLR, 2023.

656 Hugh R Wilson and Jack D Cowan. Excitatory and inhibitory interactions in localized populations
 657 of model neurons. *Biophysical journal*, 12(1):1–24, 1972.

658

659 Mengting Xu, De Ma, Huajin Tang, Qian Zheng, and Gang Pan. Feel-snn: Robust spiking neural
 660 networks with frequency encoding and evolutionary leak factor. *Advances in Neural Information
 661 Processing Systems*, 37:91930–91950, 2024.

662 Xingting Yao, Fanrong Li, Zitao Mo, and Jian Cheng. Glif: A unified gated leaky integrate-and-fire
 663 neuron for spiking neural networks. *Advances in Neural Information Processing Systems*, 35:
 664 32160–32171, 2022.

665 Bojian Yin, Federico Corradi, and Sander M Bohté. Effective and efficient computation with
 666 multiple-timescale spiking recurrent neural networks. In *International Conference on Neuro-
 667 morphic Systems 2020*, pp. 1–8, 2020.

668

669 Bojian Yin, Federico Corradi, and Sander M Bohté. Accurate and efficient time-domain classi-
 670 fication with adaptive spiking recurrent neural networks. *Nature Machine Intelligence*, 3(10):
 671 905–913, 2021.

672 Chong Zhang, Jieyu Zhao, Huan Zhang, Kai-Wei Chang, and Cho-Jui Hsieh. Double pertur-
 673 bation: On the robustness of robustness and counterfactual bias evaluation. *arXiv preprint
 674 arXiv:2104.05232*, 2021.

675

676 Shimin Zhang, Qu Yang, Chenxiang Ma, Jibin Wu, Haizhou Li, and Kay Chen Tan. Tc-lif: A two-
 677 compartment spiking neuron model for long-term sequential modelling. In *Proceedings of the
 678 AAAI conference on artificial intelligence*, volume 38, pp. 16838–16847, 2024a.

679 Wenrui Zhang and Peng Li. Skip-connected self-recurrent spiking neural networks with joint intrin-
 680 sic parameter and synaptic weight training. *Neural computation*, 33(7):1886–1913, 2021.

681 Wenrui Zhang, Hejia Geng, and Peng Li. Composing recurrent spiking neural networks using
 682 locally-recurrent motifs and risk-mitigating architectural optimization. *Frontiers in Neuroscience*,
 683 18:1412559, 2024b.

684 Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li. Going deeper with directly-trained
 685 larger spiking neural networks. In *Proceedings of the AAAI conference on artificial intelligence*,
 686 volume 35, pp. 11062–11070, 2021.

687

688 Feifan Zhou, Mingqian Fu, Yanxiu Gao, Bo Wang, and Qiang Yu. Rethinking spikes in spiking neu-
 689 ral networks for performance enhancement. In *2024 IEEE International Conference on Cyber-
 690 netics and Intelligent Systems (CIS) and IEEE International Conference on Robotics, Automation
 691 and Mechatronics (RAM)*, pp. 374–379. IEEE, 2024.

692

693 A APPENDIX

694 A.1 METHODOLOGY

697 A.1.1 DYNAMIC GATED NEURON

698 For reading convenience, Eq. 2 is repeated here:

$$700 \quad \frac{dg_i}{dt} = -\frac{g_i}{\tau_s} + C_i \sum_{t_i^j < t} \delta(t - t_i^j) \quad (15)$$

701

702 where t_i^j indicating the arrival time of the j th presynaptic spike of the i th afferent neuron before time
 703 t . $\delta(x)$ represents Dirac delta function (Dirac, 1981), so $\sum_{t_i^j < t} \delta(t - t_i^j)$ is equivalent expression of
 704 $z_i(t)$. Then we solve Eq. 15 using the general solution method for first-order linear nonhomogeneous
 705 differential equations:

$$\begin{aligned} 707 \quad g_i(T) &= e^{-\int_0^T \frac{1}{\tau_s} dt} (c + \int_0^T e^{\int_0^t \frac{1}{\tau_s} dk} C_i \sum_{t_i^j < t} \delta(t - t_i^j) dt) \\ 708 \\ 709 \\ 710 \quad &= e^{-\frac{T}{\tau_s}} (c + C_i \int_0^T \sum_{t_i^j < t} e^{\frac{t}{\tau_s}} \delta(t - t_i^j) dt) \end{aligned} \quad (16)$$

711 where $c \in \mathbb{R}$ is an arbitrary constant determined by the initial condition. We set $f(t, t_i^j) = e^{\frac{t}{\tau_s}} \delta(t -$
 712 $t_i^j)$, $\Delta t = T/n$, $d = \left\lceil \frac{t_i^j}{\Delta t} \right\rceil$ (ceiling function). Then:

$$\begin{aligned} 713 \quad \int_0^T \sum_{t_i^j < t} e^{\frac{t}{\tau_s}} \delta(t - t_i^j) dt &= \int_0^T \sum_{t_i^j < t} f(t, t_i^j) dt \\ 714 \\ 715 \quad &= \lim_{n \rightarrow \infty} \sum_{k=0}^n \sum_{t_i^j < k \cdot \Delta t} f(k \cdot \Delta t, t_i^j) \Delta t \\ 716 \\ 717 \quad &= \lim_{n \rightarrow \infty} \sum_{t_i^j < T} \sum_{k=d}^n f(k \cdot \Delta t, t_i^j) \Delta t \\ 718 \\ 719 \quad &= \sum_{t_i^j < T} \lim_{n \rightarrow \infty} \sum_{k=d}^n f(k \cdot \Delta t, t_i^j) \Delta t \\ 720 \\ 721 \quad &= \sum_{t_i^j < T} \int_{t_i^j}^T f(t, t_i^j) dt \end{aligned} \quad (17)$$

722 According to the properties of the Dirac delta function, we can get $\int_{t_i^j}^T f(t, t_i^j) dt = f(t_i^j, t_i^j) = e^{\frac{t_i^j}{\tau_s}}$.
 723 When $T = 0$, we set the conductance $g_i(T)$ of the i -th synapse to 0. Substituting this into Eq. 16
 724 yields $c = 0$. So, we finally get:

$$\begin{aligned} 725 \quad g_i(T) &= C_i \cdot e^{-\frac{T}{\tau_s}} \sum_{t_i^j < T} e^{\frac{t_i^j}{\tau_s}} \\ 726 \\ 727 \quad &= C_i \sum_{t_i^j < T} e^{-\frac{T-t_i^j}{\tau_s}} \end{aligned} \quad (18)$$

728 Then, we set $D_i^t = \sum_{t_i^j < t} e^{-\frac{t-t_i^j}{\tau_s}}$, yielding Eq. 3. Considering the discrete case in Eq. 5, we get:

$$729 \quad g_i(t) = C_i \sum_j e^{-\frac{t-t_i^j}{\tau_s}} = C_i D_i^t \quad (19)$$

730 Substituting the above formula into Eq. 1, we can get:

$$731 \quad \frac{dV}{dt} = -V(g_l + \sum_i^N C_i D_i) + \sum_i^N E_i C_i D_i \quad (20)$$

732 In neurobiological computational modeling, classical theoretical frameworks typically posit synaptic
 733 equilibrium potential E_i as a binary-state parameter (Gütig & Sompolinsky, 2009). However,
 734 our network construction process transcend this limitation by permitting heterogeneous equilib-
 735 rium potential parameters across individual synaptic units. So we set E_i as a learnable parameter.

The mathematical formalization method establishes the synaptic connection weight $C_i \cdot E_i$ as a learnable parameter W_i through a multiplicative relationship, because C_i and E_i are trainable parameters. This parameterization methodology preserves biophysical interpretability while enabling multidimensional regulatory mechanisms for synaptic efficacy. Crucially, such an approach not only transcends the theoretical constraints of conventional bistable equilibrium potentials but also substantially augments the modeling capacity for network dynamics characteristics through the incorporation of continuous-spectrum E_i values. So by slightly rearranging Eq. 20, we can get Eq. 5-Eq. 8.

A.1.2 RECURRENT DGN

Our recurrent DGN follows a standard RSNN design in which each neuron receives an additional recurrent pathway driven by spike activity from the previous time step. Practically, this is implemented through an extra decaying synaptic current to the soma, without explicit self-connections. This approach is widely adopted in recurrent SNNs and extends naturally from our feedforward formulation.

The resulting update equations are:

$$D_i^t = e^{-\frac{\Delta t}{\tau_s}} D_i^{t-1} + z_i^t \quad (21)$$

$$D_{i,\text{rec}}^t = e^{-\frac{\Delta t}{\tau_s}} D_{i,\text{rec}}^{t-1} + z^{t-1} \quad (22)$$

$$\rho^t = \varphi \left(1 - g_l \Delta t - \Delta t \sum_{i=1}^N C_i D_i^t - \Delta t \sum_{i=1}^N C_{i,\text{rec}} D_{i,\text{rec}}^t \right) \quad (23)$$

$$V^t = \rho^t V^{t-1} + \Delta t \sum_{i=1}^N W_i D_i^t + \Delta t \sum_{i=1}^N W_{i,\text{rec}} D_{i,\text{rec}}^t - \vartheta z^{t-1} \quad (24)$$

$$z^t = \Theta(V^t - \vartheta) \quad (25)$$

The recurrent model is also trained using standard backpropagation through time (BPTT). In practice, we observe that the introduced recurrent pathway further enhances the computational capability and robustness of the neurons, which demonstrates that our dynamic gating mechanism generalizes well beyond purely feedforward architectures and consistently improves performance on challenging temporal tasks (as also reflected in Tab 1). And the overall robustness is also better, as shown in follow:

Table 3: Overall Robustness on the SHD dataset from Tab.2

Datasets	Architecture	Overall Robustness(%)
TIDIGITS	FF	88.56 \pm 5.64
	Rec	91.67 \pm 3.62
SHD	FF	61.54 \pm 1.95
	Rec	70.36 \pm 6.60

We note that the recurrent DGN does not fundamentally change the underlying neuron dynamics; rather, it provides the network with additional temporal context through recurrent synaptic currents. This recurrent integration might be one of the key reasons that lead to better performance.

In terms of training behavior, both feedforward and recurrent DGNs converge reliably under the same optimization settings. The recurrent architecture is not inherently easier to train, but its recurrent pathway allows DGN neurons to leverage their dynamic conductance mechanism more effectively, resulting in stronger temporal credit assignment and improved performance.

810 A.1.3 DERIVATION OF SDE VARIANCE
811812 The perturbation satisfies:
813

814
$$\mathbb{E}(\xi(t)) = 0, \xi(t)dt = d\mathbb{W}_t, \mathbb{E}[d\mathbb{W}_t] = 0 \quad (26)$$

815

816 where \mathbb{W}_t is the Brownian motion used to describe random behavior. We have a linear SDE of a
817 DGN:

818
$$\frac{dV}{dt} = -G_0 V + \sum W_i \mu_i + \sum \sigma_i (W_i - C_i V_{\text{steady}}) \xi(t) \quad (27)$$

819

820 We take the expectation on both sides of dynamic equation Eq. 27. Then we get:
821

822
$$\frac{d}{dt} \mathbb{E}[V] = -G_0 \mathbb{E}[V] + \sum W_i \mu_i + \sum \sigma_i (W_i - C_i V_{\text{steady}}) \mathbb{E}[\xi(t)] \quad (28)$$

823

824
$$= -G_0 \mathbb{E}[V] + \sum W_i \mu_i \quad (29)$$

825

826 In steady state:
827

828
$$\mathbb{E}[V] = \frac{\sum W_i \mu_i}{G_0} \quad (30)$$

829
830

831 Applying Itô calculus (Itô, 1944) to V^2 , we can get the calculation formula:
832

833
$$d(V^2) = 2V dV + (dV)^2 \quad (31)$$

834

835 Substituting Eq. 27 into the above equation, we get
836

837
$$d(V^2) = -2G_0 V^2 dt + (\sum 2W_i \mu_i) V dt + \left[\sum \sigma_i (W_i - C_i V_{\text{steady}}) \right]^2 dt \quad (32)$$

838

839
$$+ 2 \left[\sum \sigma_i (W_i - C_i V_{\text{steady}}) \right] V \xi(t) dt \quad (33)$$

840

841 Taking the expectation on both sides, we get:
842

843
$$\frac{d\mathbb{E}[V^2]}{dt} = -2G_0 \mathbb{E}[V^2] + (\sum 2W_i \mu_i) \mathbb{E}[V] + \left[\sum \sigma_i (W_i - C_i V_{\text{steady}}) \right]^2 \quad (34)$$

844

845
$$+ 2 \left[\sum \sigma_i (W_i - C_i V_{\text{steady}}) \right] V \mathbb{E}[\xi(t)] \quad (35)$$

846

847 Substituting Eq. 30 into the above equation, we can get the following when taking steady state:
848

849
$$\langle V^2 \rangle = \mathbb{E}[V^2] - (\mathbb{E}[V])^2 = \frac{\left[\sum_{i=1}^N \sigma_i \left(W_i - \frac{C_i \sum_{j=1}^N W_j \mu_j}{G_0} \right) \right]^2}{2G_0} \quad (36)$$

850
851
852

853 Similarly, the steady-state variance of LIF neurons can be obtained.
854855 A.1.4 TRAINING DGN-SNNs WITH BPTT
856857 The network outputs at each timestep t are given by $o_t = W_L z_L^t$. Classification is based on the
858 average of these outputs across all timesteps, computed as $y_{\text{pred}} = \frac{1}{T} \sum_{t=1}^T o_t$. The loss function \mathcal{L}
859 is defined over averaged outputs and is typically formulated as $E = \ell(y_{\text{pred}}, y)$, where y represents
860 the true labels and ℓ could be the cross-entropy function, as noted in various studies (Zheng et al.,
861 2021; Meng et al., 2023; Fang et al., 2023; Wang et al., 2023)862 BPTT unfolds the iterations described in Eq. 7, and propagates gradients back along the computational
863 graphs across both temporal and spatial dimensions, as illustrated in Fig. 5. Subsequently, the

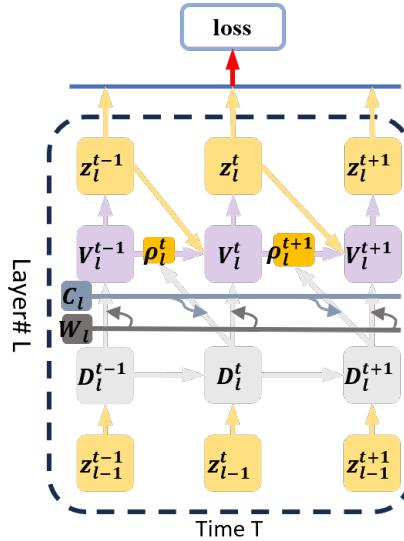


Figure 5: DGN unfolds over three time steps

weight update for single layer is determined among all timesteps T :

$$\frac{dE}{dW_i} = \sum_t^T \frac{dE}{dz^t} \frac{dz^t}{dW_i} \quad (37)$$

$$\frac{dE}{dC_i} = \sum_t^T \frac{dE}{dz^t} \frac{dz^t}{dC_i} \quad (38)$$

$$\frac{dE}{dz^t} = \frac{\partial E}{\partial z^t} + \sum_{k=t+1}^T \left[\prod_{j=t+1}^k (-\vartheta \Psi^j) \frac{\partial E}{\partial z^k} \right] \quad (39)$$

$$\frac{dz^t}{dW_i} = \Psi^t \left\{ D_i^t + \sum_{k=1}^{t-1} \left[\prod_{j=k+1}^t (\rho^j - \vartheta \Psi^{j-1}) D_i^k \right] \right\} \quad (40)$$

$$\frac{dz^t}{dC_i} = \Psi^t \left\{ -f' V^{t-1} D_i^t + \sum_{k=1}^{t-1} \left[\prod_{j=k+1}^t (\rho^j - \vartheta \Psi^{j-1}) (-f' V^{k-1} D_i^k) \right] \right\} \quad (41)$$

where:

- Ψ^t : surrogate gradient
- F' : derivative of the truncated function ϕ in Eq. 6
- f' : the value of F' at $1 - (g_l + \sum_i^N C_i D_i^t)$, i.e. $f' = F'(1 - (g_l + \sum_i^N C_i D_i^t))$

In the process of gradient propagation using BPTT, it is also necessary to manually set surrogate function to calculate surrogate gradient Ψ^t , which are used as dz^t/dV^t , that is:

$$\Psi^t = \frac{dz^t}{dV^t} \quad (42)$$

918 The detailed derivation process of Eq. 37 ~ Eq. 41 is as follows. The gradient of the loss function
 919 E with respect to the trainable weights C_i and W_i of synapse i is:
 920

$$\frac{dE}{dW_i} = \sum_t^T \frac{dE}{dz^t} \frac{dz^t}{dW_i} \quad (43)$$

$$\frac{dE}{dC_i} = \sum_t^T \frac{dE}{dz^t} \frac{dz^t}{dC_i} \quad (44)$$

927 Combining the calculation graph, we can obtain
 928

$$\frac{dE}{dz^t} = \frac{\partial E}{\partial z^t} + \frac{dE}{dz^{t+1}} \frac{dz^{t+1}}{dz^t} \quad (45)$$

931 Then:

$$\frac{dz^{t+1}}{dz^t} = \frac{dz^{t+1}}{dV^{t+1}} \frac{\partial V^{t+1}}{\partial z^t} \quad (46)$$

935 According to Eq. 8 and Eq. 42, we obtain respectively:
 936

$$\frac{\partial V^{t+1}}{\partial z^t} = -\vartheta \quad (47)$$

$$\frac{dz^{t+1}}{dV^{t+1}} = \Psi^{t+1} \quad (48)$$

942 By combining the above formula and substituting Eq. 46 into Eq. 45, we obtain:
 943

$$\frac{dE}{dz^t} = \frac{\partial E}{\partial z^t} - \vartheta \Psi^{t+1} \frac{dE}{dz^{t+1}} \quad (49)$$

946 To carry out the analysis, for any time $1 \leq t \leq T$, we expand the recursion:
 947

$$\frac{dE}{dz^t} = \frac{\partial E}{\partial z^t} + \sum_{k=t+1}^T \left[\prod_{j=t+1}^k (-\vartheta \Psi^j) \frac{\partial E}{\partial z^j} \right] \quad (50)$$

951 Combined with the calculation graph, we get:
 952

$$\frac{dz_t}{dW_i} = \frac{dz^t}{dV^t} \frac{dV^t}{dW_i} \quad (51)$$

$$\frac{dz_t}{dC_i} = \frac{dz^t}{dV^t} \frac{dV^t}{dC_i} \quad (52)$$

958 According to the calculation diagram of DGN over time, combined with Eq. 7, we can get:
 959

$$\frac{dV^t}{dW_i} = \frac{\partial V^t}{\partial W_i} + \frac{\partial V^t}{\partial V^{t-1}} \frac{dV^{t-1}}{dW_i} + \frac{\partial V^t}{\partial z_{t-1}} \frac{dz^{t-1}}{dW_i} \quad (53)$$

$$\frac{dV_t}{dC_i} = \frac{\partial V^t}{\partial \rho^t} \frac{d\rho^t}{dC_i} + \frac{\partial V^t}{\partial V^{t-1}} \frac{dV^{t-1}}{dC_i} + \frac{\partial V^t}{\partial z^{t-1}} \frac{dz^{t-1}}{dC_i} \quad (54)$$

965 Substitute Eq. 51 into Eq. 53, Eq. 52 into Eq. 54, and arrange them to get:
 966

$$\begin{aligned} \frac{dV^t}{dW_i} &= \frac{\partial V^t}{\partial W_i} + \frac{\partial V^t}{\partial V_{t-1}} \frac{dV^{t-1}}{dW_i} + \frac{\partial V^t}{\partial z_{t-1}} \frac{dz^{t-1}}{dV^{t-1}} \frac{dV^{t-1}}{dW_i} \\ &= \frac{\partial V^t}{\partial W_i} + \left(\frac{\partial V^t}{\partial V_{t-1}} + \frac{\partial V^t}{\partial z_{t-1}} \frac{dz^{t-1}}{dV^{t-1}} \right) \frac{dV^{t-1}}{dW_i} \end{aligned} \quad (55)$$

$$\begin{aligned}
\frac{dV^t}{dC_i} &= \frac{\partial V^t}{\partial \rho^t} \frac{d\rho^t}{dC_i} + \frac{\partial V^t}{\partial V^{t-1}} \frac{dV^{t-1}}{dC_i} + \frac{\partial V^t}{\partial z^{t-1}} \frac{dz^{t-1}}{dV^{t-1}} \frac{dV^{t-1}}{dC_i} \\
&= \frac{\partial V^t}{\partial \rho^t} \frac{d\rho^t}{dC_i} + \left(\frac{\partial V^t}{\partial V^{t-1}} + \frac{\partial V^t}{\partial z^{t-1}} \frac{dz^{t-1}}{dV^{t-1}} \right) \frac{dV^{t-1}}{dC_i}
\end{aligned} \tag{56}$$

According to the Eq. 5~8, we get:

$$\frac{\partial V^t}{\partial W_i} = D_i^t \tag{57}$$

$$\frac{\partial V^t}{\partial V_{t-1}} = \rho^t \tag{58}$$

$$\frac{\partial V^t}{\partial z^{t-1}} = -\vartheta \tag{59}$$

$$\frac{dz^t}{dV^t} = \Psi^t \tag{60}$$

$$\frac{dz^{t-1}}{dV^{t-1}} = \Psi^{t-1} \tag{61}$$

$$\frac{\partial V^t}{\partial \rho_t} = V^{t-1} \tag{62}$$

$$\frac{d\rho^t}{dC_i} = -F'(1 - (g_l + \sum_i^N C_i D_i^t)) D_i^t \tag{63}$$

Substitute the above formula into Eq. 55, Eq. 56 and sort it out to get:

$$\frac{dV^t}{dW_i} = (\rho^t - \vartheta \Psi^{t-1}) \frac{dV^{t-1}}{dW_i} + D_i^t \tag{64}$$

$$\frac{dV^t}{dC_i} = (\rho^t - \vartheta \Psi^{t-1}) \frac{dV^{t-1}}{dC_i} - f' V^{t-1} D_i^t \tag{65}$$

Expand the recursive calculation of equations Eq. 64 and Eq. 65, and we get Eq. 37 - Eq. 41

A.1.5 PSEUDOCODE FOR DGN COMPUTATION

We have now included pseudocode detailing the core computational steps of DGN—membrane update, dynamic conductance computation, and spiking—which aligns with Eq.5–Eq.8 and is compatible with mainstream deep-learning frameworks.

Algorithm 1 Hidden Layer States Update

Input: Input spike sequence: z_t , Hidden layer states: h_i, h_v, h_z

Output: Updated hidden layer states: $\text{pre_i}, v, z$

```

1:  $\text{pre\_i} \leftarrow \rho_s \cdot h_i + z_t$   $\triangleright$  Calculate presynaptic current
2:  $g \leftarrow \text{pre\_i} \otimes C$   $\triangleright$  Multiply by weight matrix to get dynamic conductance
3:  $\text{post\_i} \leftarrow \text{pre\_i} \otimes W$   $\triangleright$  Multiply by weight matrix to get somatic input current
4:  $v \leftarrow \phi(1 - dt \cdot g_l - dt \cdot g) \cdot h_v + \text{post\_i} - \vartheta \cdot h_z$   $\triangleright$  Neuronal potential decay, update membrane
   potential
5:  $z \leftarrow \Theta(v - \vartheta)$   $\triangleright$  Calculate spike emission
6: return  $\text{pre\_i}, v, z$ 

```

A.2 EXPERIMENTS

A.2.1 DATASETS

TI46Alpha: TI46Alpha is the full alphabets subset of the TI46 Speech corpus (Mark Liberman et al., 1993) and contains spoken English alphabets from 16 speakers. There are 4,142 and 6,628

spoken English examples in 26 classes for training and testing, respectively. The threshold encoding mechanism (Gütig & Sompolinsky, 2009) is used to encode the audio information into spike pattern. First, a spectrogram is computed with consecutive Fourier transforms (legacy function) from the original sound wave. Then the spectrogram is filtered by a filter bank of 16 triangular filters to obtain a mel-scale spectrogram. Next, for each mel-scale spectrogram bin corresponding to a filter, 30 neurons are used to encode its energy changes as spikes. Thus, a total of 480 neurons are used to encode an audio sample (more details, see (Gütig & Sompolinsky, 2009)). In order to increase the generalization ability of the model, we added 20 empty channels, each original audio has been converted into spike trains over 500 input channels.

TIDIGITS: TIDIGITS is a widely used speech recognition dataset that contains the utterances of 11 words from the digits “zero” to “nine” and “oh.” It contains a training set of 2464 samples and a test set of 2486 samples. The same preprocessing used for Ti46Alpha is adopted.

SHD: The Spiking Heidelberg Digits dataset is a spike based sequence classification benchmark, consisting of spoken digits from 0 to 9 in both English and German (20 classes). The dataset contains recordings from twelve different speakers, with two of them only appearing in the test set. Each original waveform has been converted into spike trains over 700 input channels. The train set contains 8,332 examples, and the test set consists of 2,088 examples (no validation set). In our experiments, we reduce the time resolution to speed up the simulation. Therefore, the preprocessed samples only have about 250 time steps. We determine that a channel has a spike at a certain time step of the preprocessed sample if there’s at least one spike among the corresponding several time steps of the original sample.

SSC: The Spiking Speech Command dataset, another spike-based sequence classification benchmark, is derived from the Google Speech Commands version 2 dataset and contains 35 classes from a large number of speakers. The original waveforms have been converted to spike trains over 700 input channels. The dataset is divided into train, validation, and test splits, with 75,466, 9,981, and 20,382 examples, respectively. The same preprocessing used for SHD is adopted.

A.2.2 TRAINING SETUP

Table 4: Network parameters for different datasets.

Dataset	Network	τ_m	τ_s	ϑ	(c, w)
Ti46Alpha	feedforward	10.00	2.0	1.00	$(0.01 \pm 0.005, 0.01 \pm 0.005)$
	recurrent	15.00	1.50	1.00	$(0.01 \pm 0.005, 0.01 \pm 0.005)$
TIDIGITS	feedforward	100.00	1.0	1.00	$(0.01 \pm 0.005, 0.001 \pm 0.0005)$
	recurrent	10.00	2.50	1.00	$(0.01 \pm 0.005, 0.01 \pm 0.005)$
SHD	feedforward	1.00	0.02	1.00	$(0.01 \pm 0.005, 0.01 \pm 0.005)$
	recurrent	1.00	0.02	1.00	$(0.001 \pm 0.0005, 0.001 \pm 0.0005)$
SSC	feedforward	1.00	0.02	1.00	$(0.01 \pm 0.005, 0.01 \pm 0.005)$
	recurrent	1.00	0.02	1.00	$(0.01 \pm 0.005, 0.01 \pm 0.005)$

We train the Ti46Alpha and TIDIGITS datasets for 64 epochs utilizing the Adam optimizer. Their learning rate are set to 0.001 for both feedforward and recurrent networks. For SHD and SSC datasets, we train the models for 128 epochs using the Adam optimizer. Their learning rate are set to 0.001 as well. Unlike standard binary spike trains, the SHD dataset have been temporally preprocessed to aggregate spikes within 4ms-windows (Zhang et al., 2024a; Yin et al., 2021; Cramer et al., 2020), resulting in integer spike counts per time step. We train all of the datasets on Nvidia GeForce RTX 4060 GPUs with 8GB memory for feedforward network and Nvidia GeForce RTX 4090 GPUs with 24GB memory for recurrent network.

We summarize the specific hyperparameter settings for all neuron models (including our proposed DGN and the reproduced baselines) in Tab. 4. These settings include the membrane time constant (τ_m), synaptic time constant (τ_s), and spike threshold (ϑ). In addition, (c, w) denote the initial values of the trainable parameters (C, W), where c is used only in the DGN model.

1080 To eliminate confounding factors and clearly attribute performance improvements to the dynamic
 1081 conductance gating mechanism itself, we evaluated models using relatively simple feedforward and
 1082 recurrent architectures, and correspondingly selected baseline SNN models with comparable struc-
 1083 tural complexity. Additionally, to avoid the confounding effects of complex components—advanced
 1084 spiking Transformer architectures introduce structural elements such as multi-head attention and
 1085 normalization modules, which may overshadow or obscure the independent contribution of dynamic
 1086 conductance gating and reduce the interpretability of mechanistic analysis—we did not include such
 1087 architectures in this study. Meanwhile, we fully acknowledge that integrating dynamic conductance
 1088 with spiking Transformers constitutes a promising research direction.

1089

1090 A.2.3 ACCURACIES UNDER THE CLEAN CONDITION

1091

1092 We reproduce the results on the datasets following the referenced paper, as shown in Tab. 5. To
 1093 ensure fairness in the subsequent experiments involving noise and adversarial attacks, we adopt the
 1094 same hyperparameter settings across all runs to obtain the base models. The discrepancy between
 1095 our reproduced accuracies and those reported in the original paper may partly stem from differ-
 1096 ences in experimental platforms. Nevertheless, conducting all evaluations under identical conditions
 1097 makes our comparisons more consistent and meaningful.

1098

1099 For the TI46Alpha and TIDIGITS datasets, we use a single hidden layer with 100 neurons, while
 for the SHD and SSC datasets, we use a single hidden layer with 128 neurons.

1100

1101 We conducted three runs of the DGN model using the same initialization but different random seeds.
 1102 As shown in Tab. 5, the first row reports the best result among the three runs, while the second row
 1103 presents the mean and standard deviation. The best-performing model was then used for the noise
 robustness experiments.

1104

1105 Table 5: Accuracy of each method we reproduced on different datasets without noise or attacks.

1106

	Method	Ti46alpha	Tidigits	SHD	SSC
FF	LIF	94.00	97.02	77.30	47.72
	HeterLIF	93.50	96.52	76.76	55.59
	ALIF	93.85	96.99	78.02	49.17
DGN(Ours)	95.69	98.91	85.18	58.77	
	(95.60 \pm 0.08)	(98.24 \pm 0.34)	(84.6 \pm 0.42)	(58.34 \pm 0.06)	
Rec	RNN	91.89	97.09	78.24	72.91
	LSTM	96.05	97.88	86.89	75.95
	LIF	90.89	97.80	75.77	53.16
	HeterLIF	91.31	96.29	79.85	57.47
	ALIF	90.28	97.54	82.08	55.96
DGN(Ours)	96.31	99.10	87.78	66.18	
	(95.74 \pm 0.35)	(98.67 \pm 0.26)	(86.33 \pm 0.58)	(65.72 \pm 0.27)	

1121

1122

1123 A.2.4 NOISE SETUP

1124

1125 Additive

1126 Each element of the input tensor is independently perturbed by adding a random binary value sam-
 1127 pled from a Bernoulli distribution with probability p . This operation is mathematically equivalent to
 1128 injecting Poisson noise with a rate of $p/\Delta t$ (Hz) into the dataset. The resulting noise tensor has the
 1129 same shape as the input tensor, and the perturbed values are truncated to ensure non-negativity.

1130

1131 Subtractive

1132 Each non-zero element in the input tensor is independently perturbed by subtracting a random binary
 1133 value sampled from a Bernoulli distribution with probability p . The perturbation only occurs where
 the original data is greater than zero. After the subtraction, the resulting values are clamped from
 below to ensure no negative values remain.

1134

Algorithm 2 Additive Noise

1135

Input: Data tensor $data$; Probability p

1136

Output: Perturbed data with Bernoulli noise

1137

- 1: $noise \leftarrow \text{Bernoulli}(p)$ samples with same shape as $data$
- 2: $perturbed_data \leftarrow data + noise$
- 3: $perturbed_data \leftarrow \max(perturbed_data, 0)$
- 4: **return** $perturbed_data$

1140

1141

1142

Algorithm 3 Subtractive Noise

1143

1144

Input: Data tensor $data$; Probability p

1145

Output: Perturbed data with Bernoulli noise

1146

- 1: $noise \leftarrow \text{Bernoulli}(p)$ samples with same shape as $data$
- 2: $mask \leftarrow (data > 0)$
- 3: $perturbed_data \leftarrow data - noise \times mask$
- 4: $perturbed_data \leftarrow \max(perturbed_data, 0)$
- 5: **return** $perturbed_data$

1149

1150

1151

1152

Mixed

1153

This approach combines both additive and subtractive Bernoulli noise. For non-zero elements, noise is subtracted with a higher probability scaled by a factor (default 10 \times). For zero elements, noise is added with the original probability p . All perturbations are performed independently, and the result is clamped to ensure no negative values remain. Since the input non-zero valid data is very sparse, only when the probability of subtractive noise is high can the interference effect be equal to (or even lower than) that of additive noise. Therefore, when constructing mixed noise, the probability of subtractive noise is magnified by 10 times.

1154

1155

1156

1157

1158

1159

1160

1161

Algorithm 4 Mixed Noise

1162

1163

Input: Data tensor $data$; Probability p ; Deletion scale factor γ (default: 10)

1164

Output: Perturbed data with mixed Bernoulli noise

1165

- 1: $delete_mask \leftarrow (data > 0)$
- 2: $delete_p \leftarrow \min(p \times \gamma, 1)$
- 3: $delete_noise \leftarrow \text{Bernoulli}(delete_p)$
- 4: $add_mask \leftarrow (data == 0)$
- 5: $add_noise \leftarrow \text{Bernoulli}(p)$
- 6: $perturbed_data \leftarrow data - delete_mask \times delete_noise + add_mask \times add_noise$
- 7: $perturbed_data \leftarrow \max(perturbed_data, 0)$
- 8: **return** $perturbed_data$

1170

1171

1172

Given a classification model f with dataset (x, y_{true}) , where x is the clean image and y_{true} is the corresponding correct label. The formulations of the attacks we used in this study are described as follows:

1173

1174

FGSM

1175

1176

1177

FGSM aims to perturb the original data x along the sign direction of the gradient on the loss function with one step to increase the perturbed linear output, thereby misleading the network, and it can be formalized as follows:

1178

1179

$$\hat{x} = x + \epsilon \cdot \text{sign}(\nabla_x \mathcal{L}(f(x), y_{\text{true}})), \quad (66)$$

1180

1181

where $\text{sign}(\cdot)$ is an odd mathematical function that extracts the sign of a real number.

1182

1183

1184

1185

PGD

1186

1187

PGD attack is the iterative variant of FGSM. It first starts from a random perturbation in the L_p -norm constraint around the original sample x , then takes a gradient iteration step in the sign direction to achieve the greatest loss output, it can be formalized as follows:

1188

1189

$$\hat{x}^0 = x + \mathcal{U}(-\epsilon, +\epsilon), \quad (67)$$

1190

1191

$$\hat{x}^{k+1} = \text{Clip}_{x, \epsilon} \left\{ \hat{x}^k + \alpha \cdot \text{sign}(\nabla_{\hat{x}^k} \mathcal{L}(f(\hat{x}^k), y_{\text{true}})) \right\}, \quad (68)$$

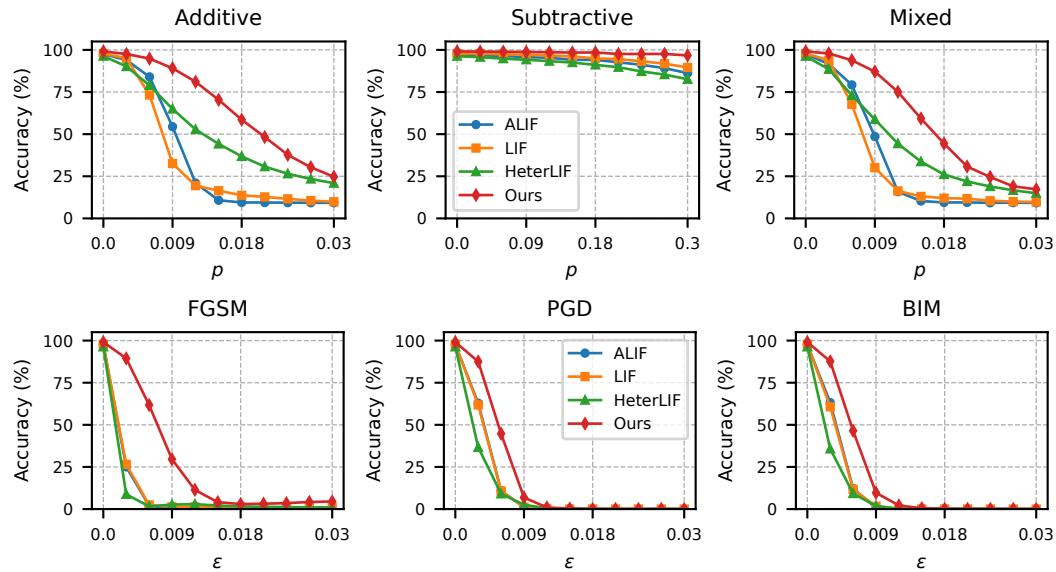
1188 where k is the iterative step, α is step size for each attack iteration, ϵ controls the perturbation level.
 1189 $\mathcal{U}(\cdot)$ is a uniform function, $\text{Clip}_{x,\epsilon}\{\cdot\}$ is the function which performs per-pixel clipping of the image
 1190 \hat{x} , so the result will be in L_∞ -norm ϵ -neighborhood of the original image x .

1191 BIM

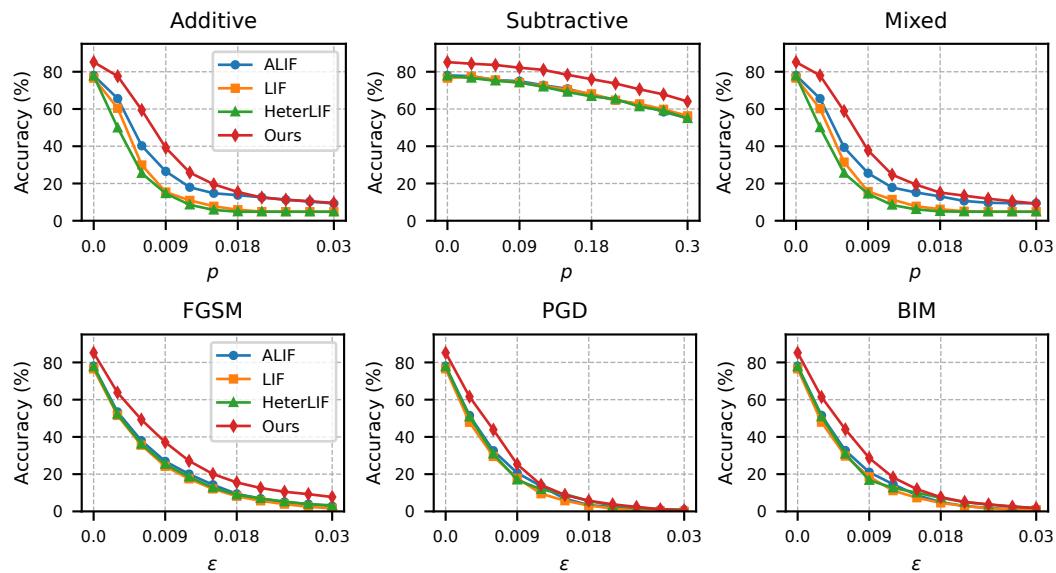
1192 Both BIM and PGD attacks are iterative attacks. Different from PGD attacks, BIM updates the
 1193 adversarial samples starting from the original image.

1195 A.3 ABLATION STUDY

1197 A.3.1 PERFORMANCE UNDER DIFFERENT PERTURBATION STRENGTH



1218 Figure 6: Performance of the model on TIDIGITS using a recurrent network under perturbations of
 1219 different distribution probabilities p or attack strengths ϵ .



1240 Figure 7: Performance of the model on SHD using a feedforward network under perturbations of
 1241 different distribution probabilities p or attack strengths ϵ .

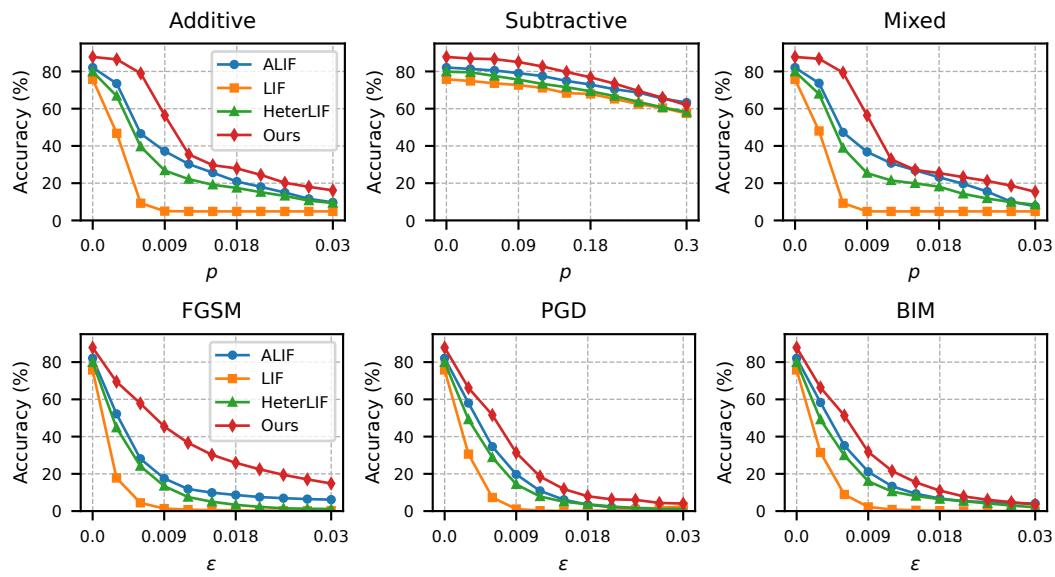


Figure 8: Performance of the model on SHD using a recurrent network under perturbations of different distribution probabilities p or attack strengths ϵ .

We systematically evaluate the robustness of multiple spiking neuron models on TIDIGITS and SHD datasets using both feedforward and recurrent networks by quantifying the performance loss under gradually increasing parameter perturbations (p or ϵ).

As illustrated in Fig. 6-Fig. 8, our neuron model outperforms others in terms of accuracy under increasing perturbation intensities. It consistently maintains the highest accuracy and exhibits the lowest degradation across within a reasonable perturbation range. For example, under an additive noise perturbation of $p = 0.004$ (Poisson rate of 1 Hz), the performance loss on the SHD dataset remains within 15% for all network architectures. These results demonstrate that our neuron model is able to filter out interfering information while maintaining excellent effective information transfer efficiency, highlighting the effectiveness of the proposed bio-inspired gating mechanism in enhancing the model’s robustness to a variety of perturbation patterns.

A.3.2 EFFICIENCY UNDER PARAMETER REDUCTION

Just as LSTM/GRU enhance MLPs by introducing complex, task-dependent structures, our DGN neuron endows SNNs with more expressive computational capabilities than traditional LIF units through the incorporation of dynamic conductance mechanisms. The observed performance improvements stem not from an increase in the number of parameters, but rather from the inherent efficiency of the neuron design. To clarify this distinction, we introduce a simplified variant, S-DGN, which reduces the parameter count while preserving the core mechanisms.

In S-DGN, all synapses connecting to the same neuron share a *single* equilibrium potential E , in contrast to the original DGN where each synapse maintains its own. This modification substantially reduces the number of learnable parameters, thereby constraining expressivity while preserving the essential computational mechanism. The resulting dynamics of S-DGN are formulated as follows:

$$\frac{dV}{dt} = -V \left(g_l + \sum_{i=1}^N C_i D_i \right) + E \sum_{i=1}^N C_i D_i \quad (69)$$

We evaluate its effectiveness on the SHD dataset. The evaluation considers three critical factors: classification accuracy, parameter count, and overall robustness against noise. Tab. 6 summarizes the comparative results across different neuronal models, including our proposed DGN and its simplified variant, s-DGN.

1296 Table 6: Performance comparison of different neuronal models on the SHD dataset. We report the
 1297 parameter count (in K), clean accuracy (%), and overall robustness (%). Highlighted rows corre-
 1298 spond to our proposed models, **s-DGN** and **DGN**, which consistently achieve superior accuracy and
 1299 robustness while demonstrating the impact of parameter reduction.

1301 FF Models	1302 Parameters (K)	1303 Clean Accuracy (%)	1304 Overall Robustness (%)
1302 LIF	1303 92.16	1304 77.30	1305 44.17 ± 9.96
1303 HeterLIF	1304 92.31	1305 77.77	1306 43.31 ± 12.64
1304 ALIF	1305 92.16	1306 78.02	1307 48.53 ± 6.24
1305 DLIF (250 step) (Ding et al., 2024a)	1306 92.66	1307 79.96	1308 49.93 ± 5.91
1306 s-DGN (ours)	1307 92.31	1308 84.30	1309 58.28 ± 2.33
1307 DGN (ours)	1308 184.32	1309 85.18	1310 61.54 ± 1.95
1311 Rec Models	1312 Parameters (K)	1313 Clean Accuracy (%)	1314 Overall Robustness (%)
1312 LIF	1313 108.54	1314 75.77	1315 25.96 ± 16.67
1313 HeterLIF	1314 108.69	1315 79.85	1316 46.60 ± 6.58
1314 ALIF	1315 108.54	1316 82.08	1317 54.28 ± 6.11
1315 DLIF (250 step) (Ding et al., 2024a)	1316 109.04	1317 82.70	1318 58.87 ± 4.64
1316 s-DGN (ours)	1317 108.82	1318 85.65	1319 64.48 ± 4.82
1317 DGN (ours)	1318 217.09	1319 87.78	1320 70.36 ± 6.60

1316 As demonstrated in Tab. 6, s-DGN achieves competitive accuracy and noise robustness while main-
 1317 taining LIF-level parameter efficiency. We demonstrate that stable performance improvements per-
 1318 sist without increasing parameter counts, confirming that the observed benefits do not stem solely
 1319 from parameter scaling but rather from the intrinsic advantages of the proposed neuronal mecha-
 1320 nism.

1321 However, s-DGN consistently lags behind the full DGN model due to the equilibrium synaptic
 1322 potential constraint. While s-DGN offers a parameter-efficient alternative, the full DGN remains
 1323 necessary to achieve maximum robustness. Specifically, s-DGN’s reduced parameter count facil-
 1324 itates deployment on memory-constrained devices, rendering it well-suited for edge computing sce-
 1325 narios—including IoT terminals (e.g., smart sensors, edge gateways), portable AI devices (e.g.,
 1326 wearable health monitors, small UAV flight control systems), and low-power embedded systems
 1327 with limited computational resources and video memory. In contrast, the full DGN implements
 1328 the complete dynamic conductance mechanism, fully leveraging its gating effect to exhibit super-
 1329 ior performance in processing dynamic temporal information. It is thus better tailored to scenarios
 1330 demanding high performance and abundant hardware resources, such as real-time high-resolution
 1331 video analysis (e.g., intelligent security early warning, autonomous driving environmental percep-
 1332 tion), complex physiological signal decoding (e.g., high-precision brain-computer interface control,
 1333 real-time multi-parameter monitoring of critically ill patients), and large-scale dynamic data predic-
 1334 tion (e.g., financial high-frequency trading analysis, smart grid dynamic load dispatching).

1335 The full DGN model proposes a general neuronal model to implement this dynamic conductance
 1336 gating mechanism. Like s-DGN, indicators such as parameter count, energy efficiency, and inference
 1337 latency can be mitigated through hyperparameter adjustment or other optimization methods (e.g.,
 1338 model compression, hardware-aware design).

1340 A.4 EFFICIENCY ANALYSIS

1341 A.4.1 EVALUATION OF ENERGY EFFICIENCY

1342 Energy efficiency and hardware deployment are indeed important future directions. We provide a
 1343 complete analysis for transparency and practical reference as Tab. 7 and Tab. 8. For the empirical
 1344 estimate, we evaluate a two-layer network (128–128 hidden units, i.e., $m = n = 128$) on the
 1345 SHD dataset. We measure the layer-wise firing rates of the LIF and DGN neurons over 32 epochs,
 1346 obtaining: LIF: [4.43%, 0.54%], DGN: [7.07%, 1.19%], s-DGN: [6.38%, 1.41%].

1347 To obtain the total energy cost, we plug these firing rates into the above formulas and adopt the
 1348 45nm CMOS process estimates from Horowitz (2014), where the energy cost of an AC and a MAC

operation are $E_{AC} = 0.9$ pJ and $E_{MAC} = 4.6$ pJ, respectively. This yields the empirical energy values reported in the last column of Table A1. Although DGN and s-DGN incur slightly higher energy than LIF due to the additional gating-related operations as expected, their energy consumption remains orders of magnitude lower than that of an LSTM, thus preserving the core energy-efficiency advantage of spiking neural networks.

Table 7: Comparison of neuron dynamics and per-step energy cost of LIF, LSTM, DGN and s-DGN models. The m and n denote the numbers of input and output neurons. Fr_{in} and Fr_{out} represent the firing rate of input and output neurons. E_{AC} and E_{MAC} are the energy cost of AC and MAC operations, respectively.

Neuron Model	Dynamics	Step Cost
LIF	$V_l^t = \rho^m \cdot V^{t-1} + W_l^{m,n} z_l^{t-1}$ $+ W_{l,rec}^{n,n} z_{l-1}^t - \vartheta z_l^{t-1}$	$nE_{MAC} + (mnFr_{in} + nnFr_{out} + Fr_{out})nE_{AC}$
DGN	$\rho_l^t = \varphi(1 - g_l - C_l^{m,n} z_{l-1}^t - C_{l,rec}^{n,n} z_l^{t-1})$ $V_l^t = \rho_l^t \cdot V_l^{t-1} + W_l^{m,n} z_l^{t-1}$ $+ W_{l,rec}^{n,n} z_l^{t-1} - \vartheta z_l^{t-1}$	$mnFr_{in}E_{AC} + nnFr_{out}E_{AC}$ $nE_{MAC} + (mnFr_{in} + nnFr_{out} + nFr_{out})E_{AC}$
s-DGN	$\rho_l^t = \varphi(1 - g_l - C_l^{m,n} z_{l-1}^t - C_{l,rec}^{n,n} z_l^{t-1})$ $V_l^t = \rho_l^t \cdot V_l^{t-1} + (E_l C_l^{m,n}) z_{l-1}^t$ $+ (E_{l,rec} C_{l,rec}^{n,n}) z_l^{t-1} - \vartheta z_l^{t-1}$	$mnFr_{in}E_{AC} + nnFr_{out}E_{AC}$ $nE_{MAC} + (mnFr_{in} + nnFr_{out} + nFr_{out})E_{AC}$
LSTM	$f_t = \sigma_g(W_f x_t + U_f h_{t-1} + b_f)$ $i_t = \sigma_g(W_i x_t + U_i h_{t-1} + b_i)$ $o_t = \sigma_g(W_o x_t + U_o h_{t-1} + b_o)$ $\bar{c}_t = \sigma_c(W_c x_t + U_c h_{t-1} + b_c)$ $c_t = f_t \odot c_{t-1} + i_t \odot \bar{c}_t$ $h_t = o_t \odot \sigma_h(c_t)$	$n(m + n)E_{MAC}$ $n(m + n)E_{MAC}$ $n(m + n)E_{MAC}$ $n(m + n)E_{MAC}$ $2nE_{MAC}$ nE_{MAC}

Table 8: Total theoretical energy cost and empirical energy measurements for LIF, LSTM, DGN and s-DGN models.

Neuron Model	Total Cost	Empirical Cost (nJ)
LIF	$(mnFr_{in} + nnFr_{out} + nFr_{out})E_{AC}$ $+ nE_{MAC}$	1.32
DGN	$(2mnFr_{in} + 2nnFr_{out} + nFr_{out})E_{AC}$ $+ nE_{MAC}$	3.03
s-DGN	$(2mnFr_{in} + 2nnFr_{out} + nFr_{out})E_{AC}$ $+ nE_{MAC}$	2.89
LSTM	$(4mn + 4nn + 3n)E_{MAC}$	604.7

A.4.2 TRAINING AND INFERENCE TIME

We also analyzed training and inference time in Tab. 9. The results, averaged over 250 training steps on the SHD dataset, show that runtime differences between models are minimal, while our approach provides superior robustness and computational capability in SNNs—our core contributions that are demonstrated in the main-text results.

A.4.3 DISCUSSION ON NEUROMORPHIC IMAGE DATASETS

To further evaluate the generalization ability of our proposed neuron, we extend our experiments to the neuromorphic **DVS-Gesture** dataset. This dataset features rich temporal dynamics, making it a suitable benchmark to validate whether the advantages of our design also hold beyond speech tasks.

Following prior work (Fang et al., 2021), we adopt the same network architecture to ensure fair comparison and avoid confounding factors from architectural modifications. Since our focus lies in

Table 9: Training and Inference Time on the SHD dataset

Architecture	Neuron	Train Time(s)	Test Time(s)
FF	LIF	15.61 ± 1.49	5.17 ± 0.69
	HeterLIF	18.99 ± 1.80	5.45 ± 0.68
	ALIF	21.56 ± 2.01	5.80 ± 0.36
	DGN(Ours)	22.58 ± 1.48	5.93 ± 1.45
Rec	LIF	16.88 ± 3.39	5.25 ± 0.95
	HeterLIF	18.75 ± 3.17	5.29 ± 0.41
	ALIF	22.45 ± 4.36	5.58 ± 0.98
	DGN(Ours)	28.59 ± 5.00	6.58 ± 0.84

analyzing the behavior of neurons themselves, we deliberately keep the network simple and consistent with the main text. We report preliminary reproduction results, with identical noise settings as defined in the main experiments.

Table 10: Results on the DVS-Gesture dataset. We report clean accuracy (%) and robustness under various noise and adversarial perturbations. Our proposed DGN achieves the highest accuracy and robustness across most settings.

Neuron	Clean Acc.	Additive	Subtractive	Mixed	FGSM	PGD	BIM
LIF	93.06	89.58	92.01	89.24	89.24	88.54	88.89
HeterLIF	94.79	91.67	92.36	90.97	86.81	86.46	85.42
ALIF	93.40	90.97	89.58	91.32	87.85	88.89	88.19
DGN (ours)	95.14	91.67	92.36	92.36	92.01	89.93	89.24

As shown in Table 10, our neuron consistently achieves superior accuracy and robustness, demonstrating that the proposed mechanism generalizes well beyond speech datasets and retains its advantage on image-based neuromorphic tasks.

A.5 MORE EXPERIMENTAL RESULTS

Tab. 11-16, present the experimental results of all reproduced models (with clean accuracies shown in Tab. 5) under three types of noise and three types of adversarial attacks. In each table, the first row indicates the strength of the noise or attack. For additive and mixed noise, we vary the strength from 0 to 0.03; for subtractive noise, the range is 0 to 0.3. For all adversarial attack methods, the perturbation strength ranges from 0 to 0.003.

1458

1459

1460

1461 Table 11: Additive Noise full experiment data through different p .

1462

1463

1464

1465

Net	Method	0.003	0.006	0.009	0.012	0.015	0.018	0.021	0.024	0.027	0.03
Datasets: Ti46alpha											
FF	LIF	88.72	65.02	33.59	14.83	8.74	6.43	5.34	4.72	4.45	4.19
	HeterLIF	78.7	51.22	28.94	17.49	12.2	9.65	9	7.99	7.41	7.28
	ALIF	88.35	61.62	25.67	12.49	8.34	6.73	5.85	5.29	5.15	4.81
	DGN	92.7	87.21	77.07	63.77	52.02	40.65	31.11	24.62	19.06	17.02
Rec	RNN	18.8	7.53	5.2	4.4	4.24	4.54	4.56	4.49	4.84	4.28
	LSTM	88.65	64.84	43.16	30.07	21.63	16.08	12.46	10.79	10.44	9.52
	LIF	80.63	62.34	38.98	22.46	14.65	11.21	8.8	7.69	7.19	7.88
	HeterLIF	77.87	61.49	44.88	30.53	21.62	17.07	14.16	12.58	11.19	11.22
	ALIF	80.51	64.8	39.98	19.54	9.97	6.83	5.13	4.39	4.24	4.07
	DGN	91.86	81.29	64.58	44.13	27.68	17.36	10.3	7.62	5.81	4.95
Datasets: TIDIGITS											
FF	LIF	84.9	46.83	31.73	28.49	25.07	22.83	21.81	19.91	18.52	17.22
	HeterLIF	91.43	77.49	63.19	52.38	43.27	35.64	30.1	26.15	23.36	21.06
	ALIF	88.81	63.29	48.04	40.67	34.33	30.59	27.84	25	22.65	21.84
	DGN	97.47	95.34	91.36	86.65	78.67	71.77	67.12	62.77	56.8	52.46
Rec	RNN	35.5	23.64	19.37	17.56	16.33	16.43	16.97	19	17.74	15.82
	LSTM	89.49	65.12	47.8	29.47	19.83	16.48	15.16	13.35	11.95	12.65
	LIF	95.06	73.23	32.6	19.46	16.42	13.73	12.77	11.6	10.58	9.88
	HeterLIF	90.71	78.97	64.95	52.78	44.2	36.82	30.73	26.51	23.4	20.9
	ALIF	93.99	84.01	54.44	20.96	10.76	9.48	9.43	9.33	9.3	9.26
	DGN	97.56	94.84	89.12	81.06	70.38	58.59	48.28	37.74	30.34	24.71
Datasets: SHD											
FF	LIF	60.39	29.93	15.42	10.93	7.77	5.91	4.89	4.85	4.85	4.85
	HeterLIF	49.87	25.49	14.63	8.55	5.8	4.85	4.85	4.85	4.85	4.85
	ALIF	65.57	40.25	26.51	17.97	14.74	13.72	12.57	11.27	10.32	9.26
	DGN	77.6	59.46	39.18	25.86	19.55	15.43	12.46	11.29	10.43	9.56
Rec	RNN	39.26	27.47	25.27	24.48	24.15	22.17	19.92	16.3	11.38	7.75
	LSTM	56.09	41.61	32.2	29.56	28.82	27.63	26.7	25.23	23.36	21.24
	LIF	46.8	9.24	4.99	4.85	4.85	4.85	4.85	4.85	4.85	4.85
	HeterLIF	66.8	39.57	26.77	22.17	19.13	17.43	15.17	13.16	10.63	9.35
	ALIF	73.48	46.59	37.18	30.24	25.64	20.87	18.03	14.98	11.6	9.69
	DGN	86.49	78.97	56.41	35.46	29.67	27.92	24.44	20.22	18.04	16.14
Datasets: SSC											
FF	LIF	34.37	21.64	15.66	12.76	11	9.94	8.91	8.58	7.58	7.18
	HeterLIF	41.72	26.96	19.45	15.43	12.95	10.77	9.1	7.89	7.11	6.34
	ALIF	37.51	25.65	19.72	15.84	13.71	11.92	11.14	10.37	10.3	9.84
	DGN	49.62	31.74	19.47	13.73	11.15	9.73	8.67	7.87	7.26	6.68
Rec	RNN	57.13	29.15	19.29	15.68	14.39	13.74	13.18	12.34	11.69	11.03
	LSTM	60.01	36.53	23.2	18.26	16.56	15.65	14.71	14.23	13.62	13.15
	LIF	39.38	26.27	20.09	17.45	15.9	14.46	13.38	12.13	11.67	10.81
	HeterLIF	45.27	25.91	18.75	16.31	14.59	12.50	10.36	8.33	7.92	7.15
	ALIF	41.36	26.23	17.98	14.08	12.09	11.06	10.36	9.73	9.27	9.08
	DGN	45.58	27.62	18.41	16.55	15.83	14.96	14.92	14.34	13.59	12.19

1509

1510

1511

1512

1513

1514

1515

Table 12: Subtractive Noise full experiment data through different p .

1516

1517

1518

1519

Net	Method	0.03	0.06	0.09	0.12	0.15	0.18	0.21	0.24	0.27	0.3
Datasets: Ti46Alpha											
FF	LIF	93.4	92.73	92.11	91.69	90.94	90.27	89.06	88.13	87.23	86.07
	HeterLIF	93	92.16	91.73	91.36	90.42	90.13	88.98	88.81	87.41	85.91
	ALIF	93.42	92.69	92.31	91.87	90.71	90.19	89.12	88.28	87.17	85.95
	DGN	95.23	94.81	94.59	94.08	93.1	92.81	91.26	90.45	88.5	87.18
Rec	RNN	90.94	90.41	89.13	88.28	87.01	85.59	83.32	80.91	78.01	74.01
	LSTM	95.5	95.04	94.29	93.8	92.51	90.92	88.14	84.94	80.6	75.09
	LIF	90.4	89.19	87.6	87.37	84.91	83.64	81.09	78.26	74.84	71.25
	HeterLIF	90.21	89.44	87.94	86.83	84.49	82.21	79.51	76.48	72.93	68.6
	ALIF	88.71	87.34	86.03	84.99	82.81	80.36	76.5	74.41	69.89	65.78
	DGN	95.74	95.31	94.48	94.72	93.79	93.38	92.43	91.67	90.72	89.18
Datasets: TIDIGITS											
FF	LIF	97.07	96.47	96.31	96.29	96.02	95.61	95.39	95.12	95.1	93.7
	HeterLIF	96.37	95.78	95.39	95.23	94.48	93.83	92.93	92.58	90.56	89.37
	ALIF	96.46	96.25	96.22	96.41	95.61	95.1	94.74	95	94.91	93.17
	DGN	98.27	98.38	98.31	98.03	97.72	96.98	96.98	95.74	94.63	93.7
Rec	RNN	96.95	96.72	96.17	95.66	95.16	93.87	92.81	92.12	90.14	86.76
	LSTM	97.97	97.77	97.19	96.42	95.74	94.57	91.73	89.07	84.82	79.25
	LIF	97.65	97.34	97.11	96.67	96.12	94.93	94.57	93.21	91.83	89.6
	HeterLIF	95.69	94.8	94.17	93.33	92.5	91.12	89.71	87.22	85.37	82.59
	ALIF	96.89	96.43	95.69	95.34	94.11	94.07	92.67	91.14	89.19	86.19
	DGN	98.98	98.93	98.77	98.63	98.42	98.48	97.58	97.6	97.62	96.7
Datasets: SHD											
FF	LIF	77.42	75.6	74.12	72.34	70.34	68.13	64.75	62.71	59.84	56.32
	HeterLIF	76.64	75.11	74.21	71.89	69.1	66.78	65.37	61.25	59.11	54.91
	ALIF	77.7	75.56	74.94	72.75	70.85	67.64	64.67	62.57	58.43	55.08
	DGN	84.3	83.65	82.17	81.02	78.35	76.03	73.69	70.57	67.83	64.05
Rec	RNN	75.88	74.41	72.5	70.83	67.87	66.71	62.92	58.96	55.77	52.29
	LSTM	86.04	85.34	84.08	81.98	80.68	77.49	75.37	72.45	69.13	64.58
	LIF	74.88	73.64	72.66	71.17	68.35	67.92	65.24	62.45	60.41	57.44
	HeterLIF	79.53	77.59	75.61	73.3	71.55	69.34	66.79	63.61	60.7	58.19
	ALIF	81.36	80.52	79.08	77.52	74.91	72.94	70.44	68.67	65.4	63.32
	DGN	86.9	86.61	85.04	82.67	79.7	76.84	73.45	69.53	65.88	61.91
Datasets: SSC											
FF	LIF	46.98	46.68	45.94	45.39	44.3	42.94	41.83	40.16	38.57	36.46
	HeterLIF	55.3	54.59	53.81	53.3	52.15	50.5	49.45	47.85	46.02	43.76
	ALIF	48.52	47.91	47.12	46.33	44.74	43.86	42.72	40.91	39.21	37.03
	DGN	58.51	58.32	57.87	57.28	56.21	54.81	53.37	51.15	49.27	47.06
Rec	RNN	72.6	72.25	71.63	71.21	70.31	69.24	68.22	66.75	65.03	63.29
	LSTM	75.61	75.47	74.7	74.12	73.4	72.25	71.53	70.06	68.76	67.5
	LIF	52.73	52.2	51.96	51.42	50.98	50.38	49.71	48.24	46.93	45.72
	HeterLIF	57.35	56.74	56.38	55.76	54.88	53.81	53.05	52.04	50.69	49.32
	ALIF	55.1	54.91	54.58	53.54	52.64	51.77	49.95	48.7	47	45.55
	DGN	66.32	66.25	65.47	64.33	64.14	62.98	61.71	60.15	58.99	57.12

1563

1564

1565

1566

1567

1568

1569

Table 13: Mixed Noise full experiment data through different p .

1570

1571

1572

1573

Net	Method	0.003	0.006	0.009	0.012	0.015	0.018	0.021	0.024	0.026	0.03
Datasets: Ti46Alpha											
FF	LIF	88.17	60.72	25.61	10.46	6.78	5.38	4.9	4.25	4.12	4
	HeterLIF	76.49	45.91	22.95	13.8	9.58	8.11	7.39	6.96	6.11	6.08
	ALIF	87.62	56.23	19.87	9.65	7.22	5.82	5.28	4.73	4.57	4.52
	DGN	92.69	85.66	73.33	55.9	40.52	28.24	18.92	12.75	9.81	7.46
Rec	RNN	17.8	6.93	4.71	4.42	4.18	4.09	4.14	4.14	4.14	4.14
	LSTM	87.97	62.97	40.86	26.71	16.95	11.29	9.16	7.54	6.57	6.19
	LIF	79.03	57.59	32.31	18.7	12.19	8.87	7.32	6.86	6.51	6.31
	HeterLIF	75.95	55.96	36.95	25.09	16.94	13.34	11.31	10.64	9.05	8.06
	ALIF	79.51	60.85	34.29	18.02	8.64	6.38	4.86	4.39	4.49	4.08
	DGN	90.89	78.12	56.54	33.76	17.88	9.62	6.6	5	4.32	4.17
Datasets: TIDIGITS											
FF	LIF	82.54	44.2	30.1	25.91	22.58	20.23	18.96	17.09	15.56	14.34
	HeterLIF	89.66	72.78	57.39	44.48	34.91	30.04	26.35	23.49	21.06	19.67
	ALIF	88.34	60.58	44.77	34.33	28.67	26.16	23.13	19.52	18.02	16.37
	DGN	97.64	95.43	91.74	82.88	74.95	66.05	57.66	52.86	45.13	40.3
Rec	RNN	34.54	21.66	17.32	15.18	15.03	15.93	15.05	14.93	14.48	13.73
	LSTM	90.07	64.77	45.03	26.72	17.92	15.5	13.65	12.42	11.84	11.45
	LIF	93.88	67.68	30.1	16.31	13.04	12.04	11.72	10.48	9.97	9.73
	HeterLIF	88.5	73.05	58.73	44.38	33.68	26.08	21.93	18.95	16.69	14.93
	ALIF	91.64	79.25	48.57	15.86	10.33	9.45	9.49	9.26	9.35	9.22
	DGN	97.92	93.86	87.12	75.09	59.28	44.41	30.8	24.58	19.04	17.27
Datasets: SHD											
FF	LIF	60.18	31.44	15.67	11.4	7.77	6.19	5.09	4.85	4.85	4.85
	HeterLIF	50.02	25.58	14.41	8.44	6.1	5.02	4.85	4.85	4.85	4.85
	ALIF	65.59	39.4	25.52	17.84	15.18	13.08	10.63	9.63	9.46	9.41
	DGN	78.01	58.87	37.77	24.73	19.35	15.13	13.48	11.83	10.49	9.15
Rec	RNN	37.98	28.06	24.86	23.49	21.56	19.63	17.38	15.86	14.05	11.01
	LSTM	56.03	39.23	30.56	26.44	25.57	24.62	23.05	20.5	18.33	17.08
	LIF	48.04	9.25	4.85	4.85	4.85	4.85	4.85	4.85	4.85	4.85
	HeterLIF	67.89	38.87	25.4	21.47	19.89	18.11	14.28	11.77	9.8	8.48
	ALIF	73.68	47.28	36.81	30.72	26.93	23.18	19.69	15.51	10.02	7.63
	DGN	86.81	79.35	56.42	32.83	27.13	25.41	23.26	21.2	18.65	15.37
Datasets: SSC											
FF	LIF	34.67	21.25	15	11.69	10.13	8.97	8.17	7.33	6.41	5.8
	HeterLIF	42.05	26.65	18.36	14.3	11.66	9.51	7.88	6.66	5.73	5.09
	ALIF	37.74	25.56	19.03	14.52	12.6	10.61	9.53	8.91	8.35	7.93
	DGN	50	31.3	18.1	12.45	10.09	8.72	7.88	6.86	6.06	5.38
Rec	RNN	57.69	29.66	18.81	14.85	13.33	12.64	11.61	10.38	9.67	8.79
	LSTM	60.16	35.65	21.35	15.11	12.82	11.6	10.46	9.29	8.78	8.43
	LIF	39.33	25.98	19.23	16.5	14.78	13.32	12.03	10.66	9.74	8.73
	HeterLIF	45.13	25.09	17.54	14.53	12.31	9.95	7.31	5.66	5.23	5.17
	ALIF	41.87	26.09	17.71	13.69	11.59	10.39	9.55	8.58	8.26	7.66
	DGN	46.55	27.27	17.20	14.94	13.61	12.54	11.57	11.28	9.84	7.79

1617

1618

1619

1620

1621

1622

1623

Table 14: FGSM attack full experiment data through different ε .

1624

1625

1626

1627

Net	Method	0.003	0.006	0.009	0.012	0.015	0.018	0.021	0.024	0.027	0.03
Datasets: Ti46Alpha											
FF	LIF	58.31	19.33	2.27	0.17	0.08	0.11	0.14	0.17	0.18	0.2
	HeterLIF	33.45	4.92	0.38	0.14	0.06	0.05	0.05	0.02	0.02	0.03
	ALIF	58.73	19.34	3.84	0.39	0.11	0.09	0.09	0.09	0.09	0.08
	DGN	74.74	50.81	37.85	30.4	24.96	21.07	18.29	16.34	14.66	13.56
Rec	RNN	0.59	0.41	0.39	0.38	0.35	0.33	0.33	0.33	0.33	0.33
	LSTM	50.52	12.16	6.84	4.74	3.44	2.93	2.67	2.44	2.16	2.1
	LIF	29.88	3.85	0.61	0.39	0.21	0.17	0.12	0.17	0.17	0.09
	HeterLIF	25.25	2.63	0.36	0.12	0.08	0.08	0.08	0.11	0.11	0.11
	ALIF	24.35	2.42	0.44	0.18	0.14	0.12	0.14	0.11	0.14	0.15
	DGN	52.57	21.17	10.11	6.41	5.22	4.61	4.2	4.15	3.89	3.52
Datasets: TIDIGITS											
FF	LIF	39.53	3.48	0.54	0.27	0.08	0.08	0.08	0.04	0.04	0.04
	HeterLIF	52.48	12.97	3.17	1.46	0.86	0.59	0.35	0.23	0.16	0.12
	ALIF	42.5	3.22	0.31	0.08	0.04	0.04	0.04	0.04	0.04	0.04
	DGN	90.35	71.52	52.25	40.84	35.49	31.92	29.31	27.39	24.71	23.05
Rec	RNN	9.89	2.59	0.59	0.16	0.04	0.04	0.04	0.04	0.04	0.04
	LSTM	64.97	22.48	9.57	5.3	4.48	4.25	3.66	2.32	2.51	2.32
	LIF	26.55	2.45	1.33	1.33	1.25	1.08	1.01	0.93	0.97	0.97
	HeterLIF	8.76	1.62	2.67	2.91	2.08	1.54	1.34	1.19	1.03	0.95
	ALIF	25.04	2.04	0.23	0.04	0.04	0.04	0.04	0.08	0.08	0.08
	DGN	89.4	61.91	29.62	11.48	4.18	3.08	3.28	3.55	4.2	4.51
Datasets: SHD											
FF	LIF	51.55	35.57	24.22	17.51	12.09	8.14	5.67	3.92	2.49	1.65
	HeterLIF	52.23	36.2	25.35	18.55	12.76	8.94	6.98	5.2	3.9	3.25
	ALIF	53.31	38	26.89	20.06	14.32	9.42	6.86	5.07	3.92	2.86
	DGN	63.81	49.29	37.15	27.12	20.08	15.55	12.56	10.55	9.27	7.73
Rec	RNN	17.35	6.61	4.03	3.38	2.84	2.53	2.1	1.99	1.91	1.86
	LSTM	39.27	19.19	8.38	3.81	2.04	1.56	1.52	1.52	1.34	1.12
	LIF	17.78	4.45	1.35	0.8	0.49	0.39	0.3	0.26	0.22	0.26
	HeterLIF	44.76	24.15	13.45	7.53	5.03	3.37	2.27	1.48	1.27	1.14
	ALIF	52.2	28.12	17.55	11.84	9.89	8.65	7.54	6.93	6.45	6.15
	DGN	69.45	57.82	45.46	36.65	30.25	25.9	22.45	19.47	17.03	14.82
Datasets: SSC											
FF	LIF	14.77	4.37	1.44	0.54	0.18	0.05	0.03	0.01	0	0
	HeterLIF	7.87	0.54	0.03	0.01	0.01	0.01	0	0	0	0
	ALIF	12.61	2.6	0.54	0.1	0.01	0	0	0	0	0
	DGN	29.44	12.5	5.58	2.77	1.58	0.93	0.59	0.42	0.33	0.24
Rec	RNN	20.59	4.96	2.18	1.31	0.73	0.46	0.26	0.19	0.17	0.14
	LSTM	29.41	11.2	7.25	5.9	4.9	4.19	3.75	3.24	2.83	2.55
	LIF	12.83	2.87	0.86	0.26	0.07	0.04	0.02	0.02	0.01	0.01
	HeterLIF	15.53	2.14	0.20	0.04	0	0	0	0	0	0
	ALIF	17.1	4.64	1.39	0.49	0.21	0.13	0.05	0.02	0.03	0.01
	DGN	30.99	12.63	6.49	3.99	2.77	2.05	1.60	1.26	0.94	0.69

1671

1672

1673

1674

1675

1676

1677 Table 15: PGD attack full experiment data through different ε .

1678

1679

1680

1681

Net	Method	0.003	0.006	0.009	0.012	0.015	0.018	0.021	0.024	0.027	0.03
Datasets: Ti46Alpha											
FF	LIF	53.51	10.04	0.11	0	0	0	0	0	0	0
	HeterLIF	20.62	1.38	0.05	0.02	0	0	0	0	0	0
	ALIF	11.73	0.53	0.03	0	0	0	0	0	0	0
	DGN	68.54	31.97	20.58	15.52	11.44	9.48	8.36	7.82	6.95	6.64
Rec	RNN	0.02	0	0	0	0	0	0	0	0	0
	LSTM	41.94	3.09	0.95	1.05	1.28	0.91	0.51	0.26	0.12	0.03
	LIF	18.75	1.09	0.56	0.29	0.09	0.03	0.02	0	0.03	0.06
	HeterLIF	20.07	4.48	1.78	0.87	0.39	0.3	0.51	0.77	0.96	1.17
	ALIF	16.97	1.9	0.42	0.11	0.03	0.08	0.02	0	0.03	0.06
	DGN	39.55	10.06	3.02	1.21	0.43	0.54	0.41	0.3	0.3	0.3
Datasets: TIDIGITS											
FF	LIF	15.39	0.54	0	0	0	0	0	0	0	0
	HeterLIF	43.94	5.64	0.7	0.08	0	0	0	0	0	0
	ALIF	19.8	0.33	0	0	0	0	0	0	0	0
	DGN	86.76	45.81	22.49	14.75	12.72	11.76	11.15	10.58	10.47	9.41
Rec	RNN	0	0	0	0	0	0	0	0	0	0
	LSTM	60.66	3.71	0.9	0.64	0.12	1.12	0.37	0.16	0	0
	LIF	61.79	10.74	1.07	0.16	0	0	0	0	0	0
	HeterLIF	36.62	9.06	2.57	0.44	0.16	0.04	0.08	0	0.12	0
	ALIF	62.82	10.88	1.07	0.12	0.35	0.04	0	0	0	0
	DGN	87.52	44.74	6.84	0.98	0.27	0.08	0.04	0.04	0.04	0
Datasets: SHD											
FF	LIF	47.87	29.53	17.78	9.51	5.74	3.18	1.5	0.45	0.17	0
	HeterLIF	50.78	30.91	16.92	11.83	9.25	5.65	3.14	2.12	1.15	0.78
	ALIF	51.51	32.58	20.64	13.58	6.79	3.42	2.27	1.47	0.97	0.84
	DGN	61.59	43.86	25.3	14.22	8.81	5.72	3.79	2.4	1.14	0.63
Rec	RNN	11.93	3.52	2.73	2.08	2.17	1.38	0.3	0.22	0.04	0
	LSTM	32.01	9.54	2.64	1.36	0.61	0.22	0.26	0.17	0.04	0
	LIF	30.59	7.29	1.12	0.22	0.09	0.22	0.43	0.79	1.78	2.45
	HeterLIF	49.12	28.76	14.37	7.83	5.03	3.67	2.49	1.6	1.07	1.17
	ALIF	58.01	34.6	19.72	10.85	6.1	3.44	2.1	1.63	1.5	1.46
	DGN	66.13	51.59	31.34	18.56	11.81	7.97	6.32	6.04	4.37	4.05
Datasets: SSC											
FF	LIF	10.67	1.35	0.13	0	0	0	0	0	0	0
	HeterLIF	3.45	0.03	0	0	0	0	0	0	0	0
	ALIF	8.58	0.7	0.04	0	0	0	0	0	0	0
	DGN	23.64	5.23	1.6	0.45	0.05	0.01	0	0	0	0
Rec	RNN	16.87	4.19	1.68	0.38	0.38	0.07	0	0	0	0
	LSTM	29.41	11.2	7.25	5.9	4.9	4.19	3.75	3.24	2.83	2.55
	LIF	8.35	0.88	0.14	0.02	0	0	0	0	0	0
	HeterLIF	10.26	0.53	0.12	0.02	0	0	0	0	0	0
	ALIF	12.89	2.14	0.6	0.08	0.03	0	0	0	0	0
	DGN	20.55	5.65	2.22	0.74	0.21	0.03	0.02	0.01	0.01	0.01

1725

1726

1727

1728

1729

1730

1731

Table 16: BIM attack full experiment data through different ε .

1732

1733

1734

Net	Method	0.003	0.006	0.009	0.012	0.015	0.018	0.021	0.024	0.027	0.03
Datasets: Ti46Alpha											
FF	LIF	53.16	10.18	0	0	0	0	0	0	0	0
	HeterLIF	22.03	1.52	0.12	0	0	0	0	0	0	0
	ALIF	55.25	11.89	0.61	0.02	0	0	0	0	0	0
	DGN	68.35	13.98	0.23	0.02	0	0	0	0	0	0
Rec	RNN	0.02	0.02	0	0	0	0	0	0	0	0
	LSTM	42.92	3.78	0.86	0.29	0.18	0.24	0.08	0.03	0.08	0.08
	LIF	17.31	1.31	0.76	0.33	0.12	0.03	0.03	0.03	0.02	0.02
	HeterLIF	19.78	4.86	1.8	0.97	0.62	0.49	0.29	0.11	0.09	0.08
	ALIF	16.48	1.37	0.5	0.15	0.05	0.12	0.17	0.05	0.03	0
	DGN	39.79	10.54	3.24	1.33	0.89	0.51	0.45	0.32	0.32	0.33
Datasets: TIDIGITS											
FF	LIF	15.95	0.41	0	0	0	0	0	0	0	0
	HeterLIF	43.68	5.64	1.84	0.16	0.04	0	0	0	0	0
	ALIF	19.42	0.25	0	0	0	0	0	0	0	0
	DGN	86.88	45.93	23.26	15.39	13.29	12.27	12	11.84	11.65	11.73
Rec	RNN	0	0	0	0	0	0	0	0	0	0
	LSTM	61.01	6.06	1.45	1.29	0.59	0.66	0.43	0.27	0.27	0.27
	LIF	60.7	11.72	1.62	0.16	0.08	0.08	0.04	0	0	0
	HeterLIF	35.74	9.23	1.88	0.2	0.04	0	0.08	0.04	0	0
	ALIF	63.18	12.2	0.72	0.08	0.41	0.08	0.08	0.08	0	0
	DGN	87.68	46.45	9.65	2.15	0.51	0.16	0.08	0.08	0.08	0.08
Datasets: SHD											
FF	LIF	47.92	29.75	18.59	11.15	7.34	4.57	2.88	1.65	1.04	0.86
	HeterLIF	50.89	30.87	16.72	12.65	10.01	7.28	4.98	3.66	2.66	1.73
	ALIF	51.57	32.67	21.03	14.62	8.68	4.98	2.88	1.88	1.1	0.8
	DGN	61.44	44.05	28.66	18.23	11.93	7.65	5.09	3.77	2.54	1.8
Rec	RNN	13.94	3.93	2.34	1.27	0.99	0.86	0.6	0.45	0.22	0.17
	LSTM	33.37	13.49	5.56	2.12	0.63	0.09	0	0	0	0
	LIF	31.45	8.9	2.24	0.84	0.44	0.23	0.09	0.09	0.04	0
	HeterLIF	49.1	29.85	16.03	10.46	8.06	6.43	5.32	4.14	2.99	2.03
	ALIF	58.31	35.19	21.12	13.31	9.31	6.75	5.32	4.79	4.31	4.09
	DGN	66.34	51.3	31.8	21.54	115.4	11	7.89	6.07	4.8	3.55
Datasets: SSC											
FF	LIF	10.71	1.48	0.18	0.01	0	0	0	0	0	0
	HeterLIF	3.59	0	0	0	0	0	0	0	0	0
	ALIF	8.56	0.84	0.04	0	0	0	0	0	0	0
	DGN	23.72	5.89	1.9	0.62	0.13	0.03	0.01	0	0	0
Rec	RNN	17.23	4.65	1.81	0.51	0.15	0.02	0.01	0.01	0.01	0
	LSTM	18.78	4.08	1.41	0.46	0.2	0.13	0.09	0.06	0.04	0.04
	LIF	8.14	0.93	0.23	0.06	0.01	0	0	0	0	0
	HeterLIF	10.31	0.59	0.09	0.01	0	0	0	0	0	0
	ALIF	12.92	2.26	0.62	0.15	0.02	0	0	0	0	0
	DGN	21.12	5.93	2.36	0.96	0.38	0.17	0.07	0.06	0.05	0.03

1779

1780

1781