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ABSTRACT

While spiking neural networks (SNNs) provide a biologically inspired and energy-
efficient computational framework, their robustness and the dynamic advantages
inherent to biological neurons remain significantly underutilized owing to over-
simplified neuron models. In particular, conventional leaky integrate-and-fire
(LIF) neurons often omit the dynamic conductance mechanisms inherent in bi-
ological neurons, thereby limiting their capacity to cope with noise and tempo-
ral variability. In this work, we revisit dynamic conductance from a functional
perspective and uncover its intrinsic role as a bio-inspired gating mechanism
that modulates information flow. Building on this insight, we introduce the Dy-
namic Gated Neuron (DGN), a novel spiking unit in which membrane conduc-
tance evolves in response to neuronal activity, enabling selective input filtering
and adaptive noise suppression. We provide a theoretical analysis showing that
DGN possess enhanced stochastic stability compared to standard LIF models, with
dynamic conductance intriguingly acting as a disturbance rejection mechanism.
DGN-based SNNs demonstrate superior performance across extensive evaluations
on anti-noise tasks and temporal-related benchmarks such as TIDIGITS and SHD,
consistently exhibiting excellent robustness. To the best of our knowledge, for the
first time, our results establish bio-inspired dynamic gating as a key mechanism
for robust spike-based computation, providing not only theoretical guarantees but
also strong empirical validations. This work thus paves the way for more resilient,
efficient, and biologically inspired spiking neural networks.

1 INTRODUCTION

Spiking Neural Networks (SNNs) offer a biologically inspired alternative to traditional neural archi-
tectures by leveraging discrete, event-driven spikes for computation. Their energy efficiency, tem-
poral expressiveness, and robustness to noise make them increasingly attractive for neuromorphic
applications (Maass, 1997; Pfeiffer & Pfeil, 2018; Roy et al., 2019; He et al., 2020; Cheng et al.,
2020). As third-generation networks, SNNs aim to bridge the gap between artificial computation
and biological realism (Pei et al., 2019). However, despite their biological motivations, most exist-
ing SNN models—commonly referred to as Gateless SNNs—lack internal gating mechanisms for
modulating neuronal dynamics (Bellec et al., 2018; Fang et al., 2021; Zhang et al., 2024a). Recent
efforts, such as the Gated LIF (GLIF) model (Yao et al., 2022), introduce static, channel-wise gates
but remain biologically implausible. As a result, the field still lacks a biologically grounded dy-
namic gating mechanism for spiking neurons—a fundamental obstacle to developing more adaptive
and robust SNNs.

Protein phosphorylation and gene expression have demonstrated that ion channel conductance in
biological neurons are not static; they can be dynamically modulated in response to sustained neural
activity (Kaczmarek, 1987; Chad & Eckert, 1986; Morgan & Curran, 1991; Sheng & Greenberg,
1990). For instance, depolarization can trigger the expression of immediate early genes such as
fos and ras, leading to changes in potassium conductance (Smeyne et al., 1992), while prolonged
depolarization has been observed to reduce calcium currents (Sharp et al., 1993). Intracellular cal-
cium often mediates these processes, serving as a second messenger that links neuronal activity to
conductance modulation (Kaczmarek & Levitan, 1987). These findings have inspired computational
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models that incorporate dynamic regulation of membrane conductance. Beyond their role in home-
ostatic adaptation, such conductance modulations can be viewed as intrinsic gating mechanisms,
wherein membrane properties dynamically shape neuronal responsiveness based on prior activity.
This biologically grounded form of gating operates independently of synaptic transmission and plays
a central role in regulating neural computation.

Building on a series of biologically grounded studies on conductance-based neurons—including the
influential work by Gütig (Gütig & Sompolinsky, 2009), which formulated their dynamic equations
and revealed their time-warp–invariant property—we revisit this class of models to bridge the gap
between biologically inspired dynamics and their underexplored integration into spiking neural net-
work frameworks. We reintroduced the dynamic conductance mechanism into the LIF neuron model
and proposed the Dynamic Gated Neuron (DGN) model. In DGN model, membrane conductance are
dynamically modulated as a function of incoming activity.This process implements a bio-inspired
gating mechanism that adaptively modulates the persistence of internal states based on input dynam-
ics, allowing spiking neurons to control the retention and decay of past information—functionally
analogous to gating operations in recurrent architectures such as the forget gate in LSTMs (Hochre-
iter & Schmidhuber, 1997). While models like LSTMs and GRUs (Cho et al., 2014) have achieved
remarkable performance through engineered gating schemes, their designs are largely disconnected
from biological mechanisms. By grounding gating dynamics in neurophysiological principles, our
approach bridges this gap, offering a unifying theoretical framework that links spiking neural mod-
els with artificial gated recurrent units. This biologically inspired perspective not only enhances the
interpretability of gating functions in artificial systems, but also promotes the development of more
robust and adaptive architectures informed by the dynamics of real neural circuits.

Unlike traditional LIF neurons, which simplify neural dynamics by using fixed decay rates and static
conductance parameters, our model introduces input-dependent modulation of membrane conduc-
tance. This enables neurons to selectively retain relevant information while suppressing irrelevant
or noisy inputs, thereby implementing a bio-inspired gating mechanism. We evaluate the proposed
model within multi-layer spiking neural networks and it achieves strong classification performance
while demonstrating stronger resistance to noise and perturbation. Our contributions are summa-
rized as follows:

• DGN: We propose the Dynamic Gated Neuron (DGN) model, a generalized spiking neuron
model with a fully derived membrane potential formulation. Central to DGN is a dynamic
conductance mechanism that functions as a bio-inspired gating mechanism, enabling adap-
tive control over information flow and memory retention within the neuron. DGN under-
scores the critical role of dynamic conductance, a biological mechanism, in the modeling
of neuronal dynamics.

• Bridging Biologically Inspired Dynamics and Artificial Gating Mechanisms: We iden-
tify functional parallels between dynamic conductance modulation in our model and gating
mechanisms in LSTM networks, offering a biologically grounded perspective that helps
bridge the gap between brain-inspired computation and artificial neural networks.

• Robustness Analysis and Accuracy Results: We present a complete theoretical analysis
of the anti-perturbation properties arising from dynamic conductance mechanisms. In ad-
dition, we conduct anti-noise experiments on benchmark datasets using the DGN model,
which consistently demonstrates strong performance across both audio and neuromorphic
tasks. Notably, our model achieves state-of-the-art top-1 accuracy of 99.10% on the TIDIG-
ITS dataset using a small network.

2 RELATED WORK

2.1 BIOLOGICAL AND COMPUTATIONAL PARAMETRIC NEURON MODELS

The Hodgkin-Huxley (HH) model (Hodgkin & Huxley, 1952) introduced a biophysically detailed,
conductance-based description of neuronal dynamics, capturing action potential generation via
voltage-gated ion channels. Despite its accuracy, the computational cost of solving HH equations
limited its adoption in spiking neural networks (SNNs), which typically rely on oversimplified mod-
els such as LIF (Koch & Segev, 1998) and SRM (Gerstner et al., 2014). Izhikevich’s comparative
analysis (Izhikevich, 2004) further highlighted the trade-offs between biological plausibility and
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computational efficiency in neuronal modeling. While conductance-based models offer richer dy-
namic properties, their integration into SNNs remains rare. In contrast, our work leverages dynamic
conductance not merely for biophysical fidelity, but as a functional gating mechanism, bridging
biological modeling with modern computational frameworks. To enhance the temporal modeling
capacity of spiking neurons, recent studies have extended the classical LIF framework by incor-
porating more flexible parameterizations, leading to the emergence of Computational Parametric
Spiking Neurons (Yao et al., 2022). Representative models include the Adaptive LIF (ALIF) neuron
(Bellec et al., 2018), which introduces activity-dependent threshold adaptation; GLIF (Yao et al.,
2022), which embeds gating mechanisms to modulate membrane potential dynamics; Heteroge-
neous LIF (Perez-Nieves et al., 2021), which enables learnable membrane time constants; and FS-
neuron (Stöckl & Maass, 2021), which treats all membrane-related parameters as trainable. A recent
model introduces a double-threshold mechanism to enable both positive and negative spike genera-
tion (Zhou et al., 2024). HetSyn (Deng et al., 2025) shifts temporal integration from the membrane
potential to the synaptic current. While these models improve expressiveness through structural
extensions or trainability, our approach is more biologically grounded: it incorporates dynamic con-
ductance as a functional gating mechanism, enabling adaptive regulation of information flow and
memory retention with competitive performance across tasks.

2.2 ROBUSTNESS ON SNNS

To enhance the robustness of SNNs against noise and adversarial perturbations, prior works can be
broadly categorized into three types: structural modeling, training-based strategies, and biologically-
inspired mechanisms. Structural approaches focus on neuron-level properties; for instance, adjust-
ing firing thresholds and temporal windows significantly affects adversarial robustness (El-Allami
et al., 2021), and precise spike timing has been shown to stabilize temporal representations (Ding
et al., 2023). Other works have investigated the role of membrane potential leakage in LIF neurons,
demonstrating that proper tuning can suppress high-frequency perturbations (Sharmin et al., 2020;
Chowdhury et al., 2021). Recent methods further propose learnable and heterogeneous leak factors
to adaptively regulate information retention across time steps (Fang et al., 2021; Perez-Nieves et al.,
2021; Ding et al., 2024a). Training-based methods improve robustness by injecting adversarial ex-
amples during learning (Kundu et al., 2021) or applying Lipschitz regularization to limit gradient
sensitivity (Ding et al., 2022), but they typically rely on static input encoding and overlook temporal
dynamics. Biologically inspired strategies mimic mechanisms observed in neural systems, such as
introducing stochastic gating to emulate biological randomness (Ding et al., 2024b), or leveraging
frequency-based encoding to simulate selective attention by filtering high-frequency components at
different time steps (Xu et al., 2024). Together, these efforts highlight the importance of combining
robust training objectives with biologically-aligned temporal regulation to improve SNN robustness.
Building on these insights, our DGN model proposes a novel robustness-enhancing framework that
more closely aligns with biological neural dynamics, which is our dynamic conductance scheme.

3 METHODOLOGY

3.1 DYNAMIC GATED NEURON MODEL

Extensive research on neuronal conductance mechanisms has established diverse conductance-based
models (FitzHugh, 1961; Morris & Lecar, 1981; Hille, 2001; Wilson & Cowan, 1972; Gütig &
Sompolinsky, 2009), enhancing biological plausibility beyond traditional LIF frameworks. The
neuronal dynamics of a basic conductance-based neuron can be described by the following formula:

dV

dt
= −glV +

N∑
i

gi(Ei − V ) (1)

dgi
dt

= − 1

τs
gi + Ci

∑
j

δ(t− tji ) (2)

where gl is the leak conductance. gi represents the conductance of i-th synapse. N signifies the
number of presynaptic afferent. tji indicating the arrival time of the j-th presynaptic spike of the i-th
afferent neuron before time t. τs is the synaptic time constant. Ci represents learning weights of
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Figure 1: Schematic of the neuron models. (a) a standard LIF model (ρm = e−gl∆t). (b) the as-
proposed DGN model described in Eq. 5-8 (ρs = e−

∆t
τs ).

conductance. Ei represents the equilibrium potential of the i-th synapse. Ei has excitatory synaptic
values and inhibitory synaptic values.

Further analysis of conductance-based neuron models revealed that membrane conductance (gl +∑
giEi) exhibits activity-dependent plasticity modulated by presynaptic spiking patterns. This

synaptic-driven mechanisms precisely regulate the decay rate of membrane potential, thereby mod-
ulating neuronal memory efficiency and temporal integration properties. Inspired by this, we present
a Dynamic Gated Neuron (DGN) model that implements a biologically grounded gating structure
to reconcile neuronal biophysics with computational efficiency. This framework introduces dy-
namic conductance as a fundamental gating mechanism, emulating biological neurons’ adaptive
signal integration while preserving critical information retention properties. The model’s mathemat-
ical formulation controls membrane potential dynamics through two interacting gating components:
input-dependent synaptic conductance and intrinsic leak conductance. The temporal evolution of
membrane potential V obeys the differential equation:

τs
dDi

dt
= −Di + zti (3)

dV

dt
= −(gl +

N∑
i

CiDi)V +

N∑
i

WiDi (4)

where zti is the input spike of the i-th synapse in time t. Di is the exponentially decaying synaptic
current to soma of the i-th synapse. Wi is learning weights of input current. Detailed derivations
of these neuronal dynamics are provided in Appendix A.1.1. For practical implementation of SNNs
based on connected spiking neurons, coupled with spike firing and spike resetting processes, the
dynamics of the DGN model are typically rendered in a discrete iterative format:

Dt
i = e−

∆t
τs Dt−1

i + zti (5)

ρt = φ(1− gl ·∆t−∆t

N∑
i

CiD
t
i) (6)

V t = ρt · V t−1 +∆t

N∑
i

WiD
t
i − ϑzt−1 (7)

zt = Θ(V t − ϑ) (8)

where ∆t represents the time interval between time steps in discrete form. φ represents numerical
truncation function, such as the Sigmoid function. Θ represents Heaviside step function. An output
spike zt will be generated once the membrane potential V t reaches the neuronal firing threshold ϑ
as per Eq. 8. The membrane potential at the next time step will be soft reset as Eq. 7.

This study compares the biologically inspired DGN with the LIF model to elucidate their structural
distinctions (Fig. 1(a-b)). Unlike the LIF model’s fixed leakage conductance (gl) and linear synap-
tic superposition, the DGN introduces dynamic conductance factors Ci to establish a dual-pathway
regulatory architecture. It preserves the current injection pathway (WiDi) while adding a dynamic
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Figure 2: Schematic diagram of the model structure of LSTM and DGN. f : decay function. ⊕: reset
processing.

conductance term (CiDi), forming a gated mechanism governed by gl +
∑

CiDi. This configu-
ration can adaptively regulate the membrane potential decay rate in real time, thereby overcoming
the limitations of LIF in simulating synaptic plasticity and increasing the efficiency of information
transfer. This gated mechanism highlights DGN’s advantages in balancing biophysical accuracy
and computational performance. Appendix A.3.2 demonstrates that the gating mechanism sustains
excellent performance even with fewer parameters.

3.2 GATING STRUCTURE ANALYSIS IN CONDUCTANCE DYNAMIC SYSTEMS

The proposed Dynamic Gated Neural (DGN) model demonstrates fundamental topological homol-
ogy with Long Short-Term Memory (LSTM) networks in both structural architecture and core infor-
mation processing mechanisms, as illustrated in Fig. 2. Specifically, the self-adapting decay coeffi-
cient mathematically emulates the memory filtration function of LSTM’s forget gate (f t) (Hochreiter
& Schmidhuber, 1997). The mechanism of accumulating currents through dynamic presynaptic in-
tegration is computationally similar to the input gating operation (It) (Gerstner et al., 2014). DGN’s
spike reset mechanism exhibits mathematical congruence with LSTM’s cell state update equations,
both employing nonlinear gating variables to control state transitions. This homology underscores
a profound insight: the gating mechanism is a universal computational principle for regulating in-
formation flow across both artificial and biological neural systems. The LSTM model was designed
with a gating mechanism to address the vanishing gradient problem in vanilla RNNs ( (Bengio et al.,
1994)), while the gating mechanism of our DGN, inspired by dynamic conductance behavior in
biological systems ( (Kaczmarek, 1987; Chad & Eckert, 1986)), thereby provides a more biologi-
cally grounded instantiation of this computational paradigm. DGN not only validates crucial role
of gating in spatiotemporal information processing but also serves as a crucial step toward closing
the long-standing gap between brain-inspired computation and artificial neural networks, providing
a biologically grounded perspective on the functional origins of gating itself.

3.3 STABILITY OF CONDUCTANCE DYNAMIC SYSTEMS

This section establishes the theoretical framework for analyzing noise robustness in DGN model
through stochastic differential equation (SDE) approaches (Mao, 2007). By linearizing the nonlinear
conductance dynamics under small perturbation assumptions, we derive closed-form expressions for
steady-state voltage variances in both DGN and classical LIF model. Comparative analysis of these
variance solutions reveals the superior noise suppression capability of the DGN architecture.

In order to compare fairly with other models, we directly analyze the case of adding perturbations
to the presynaptic input current (Di in Eq. 3). The investigation begins with stochastic input pertur-
bations modeled as Gaussian white noise superposed on deterministic signals:

Îi(t) = µi + σiξ(t), ⟨ξ(t)ξ(t′)⟩ = δ(t− t′) (9)

where µi denotes deterministic input components and σi quantifies noise intensity. The perturbed
dynamic conductance Ĝ(t) = G0 +

∑
Ciσiξ(t) induces voltage dynamics, where G0 = gl +∑

Ciµi. The membrane potential control formula is:
dV

dt
= −Ĝ(t)V +

∑
WiÎi(t) = −G0V +

∑
Wiµi︸ ︷︷ ︸

Deterministic term

+(−
∑

Ciσiξ(t)V +
∑

Wiσiξ(t))︸ ︷︷ ︸
Perturbation term

(10)
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Linear noise approximation (Van Kampen, 1992) is applied by decomposing V = Vsteady + δV (t)
with |δV | ≪ Vsteady, where Vsteady is the steady-state solution of the deterministic term. Performing
Taylor expansion on nonlinear terms Ciσiξ(t)V and retaining only first-order contributions while
discarding higher-order small terms (δV · ξ(t)). The nonlinear perturbation term is linearized as:

Ciσiξ(t)V ≈ Ciσiξ(t)Vsteady (11)

After truncating higher-order terms, the original SDE reduces to a linear SDE:

dV

dt
= −G0V +

∑
Wiµi +

∑
σi (Wi − CiVsteady) ξ(t) (12)

Using Itô calculus (Itô, 1944) the steady-state variance for DGN resolves to:

⟨V 2⟩DGN =

[∑N
i=1 σi

(
Wi −

Ci
∑N

j=1 Wjµj

G0

)]2
2G0

(13)

For classical LIF neurons with constant leak gl, the corresponding variance reduces to:

⟨V 2⟩LIF =
(
∑N

i=1 Wiσi)
2

2gl
(14)

The derivation process of the above formula is detailed in A.1.3. Critical examination of Eq. 13 ver-
sus Eq. 14 demonstrates two synergistic noise suppression mechanisms in DGN. The denominator
G0 implements input-dependent leakage scaling, where intensified inputs µi amplify effective con-
ductance to suppress voltage fluctuations. The numerator contains a compensatory term Ci

∑
Wjµj

G0

that introduces negative feedback proportional to synaptic weights Wi and coupling coefficients Ci.
When Wi and Ci are positively correlated, this feedback cancels synaptic noise propagation through
Wi, achieving partial noise rejection. In contrast, the LIF model’s fixed leakage gl and absence of
compensatory terms result in static noise scaling that cannot adapt to input statistics.

These analytical results quantitatively demonstrate that DGN neurons outperform LIF models in
noise resilience through dynamic conductance modulation. The dual mechanism—adaptive leakage
scaling and synaptic noise compensation—enables effective voltage stabilization during concurrent
signal and noise processing. This theoretical framework provides fundamental insights into how
conductance dynamics enhance neural computation robustness under stochastic perturbations.

4 EXPERIMENTS

4.1 COMPARISON WITH THE STATE-OF-THE-ART

Speech recognition tasks involve time-correlated contexts, making SNNs ideal due to their self-
recurrent connections. To evaluate the efficiency of our DGN model, we conduct assessments on
two categories of speech-related datasets: conventional audio classification benchmarks (Ti46Alpha
(Mark Liberman et al., 1993) and TIDIGITS (R. Gary Leonard, 1993)) and neuromorphic speech
datasets (SHD and SSC) (Cramer et al., 2020), generated through event-based encoding via
CochleaAMS1b sensor processing. Details of the network architecture and training protocols are
provided in Appendix A.2.2. Our experiments focus on both feedforward and recurrent SNNs with
DGN model across all four datasets.

As shown in Tab. 1, the feedforward DGN network with a single 100-node hidden layer attains
98.59% classification accuracy on the TIDIGITS dataset, surpassing comparably structured multi-
layer spiking neuron networks. Notably, the dual-layer recurrent DGN achieves 75.63% accuracy
on the SSC dataset, outperforming LSTM despite using fewer parameters, while both DGN and
LSTM surpass other neurons lacking gating mechanisms. Our proposed DGN show excellent per-
formance in both feedforward and recurrent networks, and their accuracy is comparable to or even
better than several current SOTA methods in the field of SNNs, despite using fewer neurons and a
simpler network structure. These results show that the introduced gating mechanism effectively im-
proves the expressive power of a single neuron. The effectiveness of this mechanism in enhancing
the efficiency of neuronal information transmission to process complex time series data has been
effectively demonstrated.
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Table 1: Comparison of model performance on Ti46Alpha, TIDIGITS, SHD, and SSC datasets.
Rec=N/Y represents feedforward networks (N) and recurrent networks (Y), respectively. * indicates
results we reproduced using public code, while bold entries indicate the best performance.

Datasets Method Rec Hidden Layers Accuracy(%)
Ti

46
A

lp
ha

LIF + HM2-BPNeurIPS (Jin et al., 2018) N 800-800 90.98
DGN(Ours) N 100 95.69

RNN* Y 100 91.89
LSTM* Y 100 96.05
LIF + SrSc-SNNs-BIPNeural Comput. (Zhang & Li, 2021) Y 400-400-400 95.90
LIF + SrSc-SNNs-BIPFront. Neurosci. (Zhang et al., 2024b) Y 800 96.44
DGN(Ours) Y 100 96.31

T
ID

IG
IT

S

LIF + BAE-MPDALFront. Neurosci. (Pan et al., 2020) N 620-11 97.40
LIF + Multilayer FE-LearnTNNLS (Luo et al., 2022) N 100-100 98.10
LIF + BPTEIJCNN (Lin et al., 2023) N 400-11 98.10
DGN(Ours) N 100 98.59

RNN* Y 100 97.09
LSTM* Y 100 97.88
DGN(Ours) Y 100 99.10

SH
D

LIF + data augTNNLS (Cramer et al., 2020) N 128 49.70
TC-LIFAAAI, 2024 (Zhang et al., 2024a) N 128-128 83.08
DGN(Ours) N 128 85.18

RNN* Y 100 76.53
LSTMTNNLS (Cramer et al., 2020) Y 128 89.20
LIF + data augTNNLS (Cramer et al., 2020) Y 1024 84.50
Heterogeneous LIFNat. Commun. (Perez-Nieves et al., 2021) Y 128 83.50
ALIFTNNLS (Yin et al., 2020) Y 128-128 84.40
TC-LIFAAAI (Zhang et al., 2024a) Y 128-128 88.91
DGN(Ours) Y 128 87.78
DGN(Ours) Y 128-128 88.98

SS
C

LIFTNNLS (Cramer et al., 2020) N 128-128 38.50
TC-LIFAAAI (Zhang et al., 2024a) N 128-128 63.46
DGN(Ours) N 128-128 67.54

RNN* Y 128-128 72.91
LSTMTNNLS (Cramer et al., 2020) Y 128-128 73.10
LIFTNNLS (Cramer et al., 2020) Y 128-128 52.00
Heterogeneous LIFNat. Commun. (Perez-Nieves et al., 2021) Y 128 60.80
ALIF + GaussinGradient Nat. Mach. Intell. (Yin et al., 2021) Y 128 74.20
TC-LIFAAAI (Zhang et al., 2024a) Y 128 61.09
DGN(Ours) Y 128 66.18
DGN(Ours) Y 128-128 75.63

4.2 OVERALL PERFORMANCE FOR VARIOUS PERTURBATION

To evaluate the robustness of the proposed DGN model, we implement a rigorous framework where
all models are trained on pristine datasets without artificial corruption or noise. Traditional robust-
ness evaluations typically use hybrid datasets containing noisy samples in both training and testing
sets, which can lead to noise pattern memorization (Bishop, 1995; Simard et al., 2003). Traditional
method introduces significant dataset construction overheads and may yield misleading assessments
of noise immunity due to varying pattern learning capacities among models (Tsipras et al., 2018;
Thams et al., 2022; Zhang et al., 2021). In contrast, we adopt a more challenging approach that
evaluates models using previously unseen noise patterns, thereby providing a more realistic assess-
ment of their performance under suboptimal conditions.

We considered three types of noise commonly encountered in SNNs: additive noise, subtractive
noise, and mixed noise. We also evaluated model robustness under three gradient-based adversarial
attacks: FGSM (Goodfellow et al., 2014), PGD (Madry et al., 2018), and BIM (Kurakin et al., 2018).
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Figure 3: Noise sample visualization on SHD dataset. Each row corresponds to one SHD sample,
and each column represents a noise type: Original, Additive, Subtractive, Mixed, FGSM, PGD, and
BIM. The horizontal axis indicates time, and the vertical axis represents input channel indices.

Table 2: Accuracy (%) of the proposed DGN under different noise conditions and adversarial attacks
on TIDIGITS and SHD. Bold entries indicate the best performance. HeterLIF denotes the hetero-
geneous LIF model proposed by Perez-Nieves et al. (2021).

Model Clean Noise Attacks
Additive Subtractive Mixed FGSM PGD BIM

TIDIGITS

FF

LIF 97.02 46.83 93.70 44.20 39.53 15.39 15.95
HeterLIF (Perez-Nieves et al., 2021) 96.52 77.49 89.37 72.78 52.48 43.94 43.68
ALIF (Bellec et al., 2018) 96.99 63.29 93.17 60.58 42.50 19.80 19.42
DGN(Ours) 98.59 95.34 93.70 78.12 90.35 86.76 86.88

R
ec

RNN 97.09 23.64 86.76 21.66 9.89 0.00 0.00
LSTM 97.88 65.12 79.25 64.77 64.97 60.66 61.01
LIF 97.80 73.23 89.60 67.68 26.55 61.79 60.70
HeterLIF (Perez-Nieves et al., 2021) 96.29 78.97 82.59 73.05 8.76 36.62 35.74
ALIF (Bellec et al., 2018) 97.54 84.01 86.19 79.25 25.04 62.82 63.18
DGN(Ours) 99.10 94.84 96.70 93.86 89.40 87.52 87.68

SHD

FF

LIF 77.30 29.93 56.32 31.44 51.55 47.87 47.92
HeterLIF (Perez-Nieves et al., 2021) 77.77 25.49 54.91 25.58 52.23 50.78 50.89
ALIF (Bellec et al., 2018) 78.02 40.25 55.08 39.50 53.31 51.51 51.57
DGN(Ours) 85.18 59.46 64.05 58.87 63.81 61.59 61.44

R
ec

RNN 78.24 27.47 52.29 28.06 17.35 11.93 13.94
LSTM 86.89 41.61 64.58 39.23 39.27 32.01 33.37
LIF 75.77 9.24 57.44 9.25 17.78 30.59 31.45
HeterLIF (Perez-Nieves et al., 2021) 79.85 39.57 58.19 38.87 44.76 49.12 49.10
ALIF (Bellec et al., 2018) 82.08 46.59 63.32 47.28 52.2 58.01 58.31
DGN(Ours) 87.78 78.97 61.91 79.35 69.45 66.13 66.34

We conducted anti-noise experiments on the TIDIGITS dataset and the SHD dataset to compare
other models with our DGN model. Examples of how different noise types affect the input signals
are shown in Fig. 3. The experimental setup is in Appendix A.2.4 and the extended experimental
data is in Appendix A.5.

In Tab. 2, we select sampling points of different strengths for different perturbation. Noise genera-
tion probability p = 0.006 for additive noise, and p = 0.3 for subtractive noise. The perturbation
ϵ = 0.003 for all attacks, and iterative step k = 4, step size α = 0.01 for PGD, BIM. All results
were reproduced using publicly available code to ensure a fair comparison under identical condi-
tions. Accuracies under the clean condition can be found in Appendix A.2.3.
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As shown in Tab. 2, the DGN-based feedforward network keeps 95.34% accuracy under additive
noise on the TIDIGITS dataset, surpassing the conventional LIF model by 48.51%, demonstrating
that its adaptive dynamic conductance learning mechanism effectively isolates noise from salient
features. The robustness of gated architectures is further evidenced by comparative analyses: un-
der PGD attacks on SHD, LSTM outperforms vanilla RNN by 20.08%, while the recurrent DGN
surpasses recurrent LIF by 35.54%, validating the robustness from gated mechanisms. Across all
noise conditions and adversarial attacks, the DGN model exhibits superior resistance compared to
classical SNN neurons and ANNs (RNN and LSTM), maintaining the highest baseline accuracy and
minimal performance degradation. These results underscore that the biologically inspired gating
structure, driven by dynamic conductance modulation, fundamentally enhances robustness.

4.3 ABLATION STUDY

Performance under Different Perturbation Strength. We systematically assess the robustness
of spiking neuron models by measuring their classification accuracy under escalating perturbation
intensities (p or ε). As shown in Fig. 4, the proposed gated neuron model maintains higher classifi-
cation accuracy with only marginal degradation when subjected to intensified noise disturbances and
diverse adversarial attacks. This performance advantage is attributed to the gating mechanism’s abil-
ity to dynamically adjust the neuron information transmission mode, thereby improving the model’s
adaptability to perturbations. Extended experiments based on other datasets (Appendix A.3) further
and consisently demonstrate the robustness of DGN.
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Figure 4: Performance of the model on TIDIGITS using a feedforward network under perturbations
of different distribution probabilities p or attack strengths ε.

5 CONCLUSION

In this work, we address the lack of bio-inspired gating mechanisms in traditional spiking neural
networks (SNNs) by revisiting the biophysical principle of dynamic conductance. Inspired by the
temporal behavior of biological ion channels, we propose a novel neuron model that implements
a biologically inspired gating structure. This mechanism significantly enhances the spatiotemporal
expressiveness and information selectivity of the neuron, leading to substantial performance im-
provements in speech recognition. Moreover, our model demonstrates superior robustness under
various noise perturbations and adversarial attacks. This work introduces a new modeling paradigm
for SNNs, offering insights into both robust computation and biologically grounded design. Fu-
ture directions include integrating our approach with other advances in the SNNs community, and
exploring richer conductance-based gating models with enhanced spatiotemporal properties.
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A APPENDIX

A.1 METHODOLOGY

A.1.1 DYNAMIC GATED NEURON

For reading convenience, Eq. 2 is repeated here:
dgi
dt

= − gi
τs

+ Ci

∑
tji<t

δ(t− tji ) (15)

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

where tji indicating the arrival time of the jth presynaptic spike of the ith afferent neuron before time
t. δ(x) represents Dirac delta function (Dirac, 1981), so

∑
tji<t δ(t− tji ) is equivalent expression of

zi(t). Then we solve Eq. 15 using the general solution method for first-order linear nonhomogeneous
differential equations:

gi(T ) = e−
∫ T
0

1
τs

dt(c+

∫ T

0

e
∫ t
0

1
τs

dkCi

∑
tji<t

δ(t− tji )dt)

= e−
T
τs (c+ Ci

∫ T

0

∑
tji<t

e
t
τs δ(t− tji )dt)

(16)

where c ∈ R is an arbitrary constant determined by the initial condition. We set f(t, tji ) = e
t
τs δ(t−

tji ), ∆t = T/n, d =
⌈

tji
∆t

⌉
(ceiling function). Then:∫ T

0

∑
tji<t

e
t
τs δ(t− tji )dt =

∫ T

0

∑
tji<t

f(t, tji )dt

= lim
n→∞

n∑
k=0

∑
tji<k·∆t

f(k ·∆t, tji )∆t

= lim
n→∞

∑
tji<T

n∑
k=d

f(k ·∆t, tji )∆t

=
∑
tji<T

lim
n→∞

n∑
k=d

f(k ·∆t, tji )∆t

=
∑
tji<T

∫ T

tji

f(t, tji )dt

(17)

According to the properties of the Dirac delta function, we can get
∫ T

tji
f(t, tji )dt = f(tji , t

j
i ) = e

t
j
i

τs .
When T = 0, we set the conductance gi(T ) of the i-th synapse to 0. Substituting this into Eq. 16
yields c = 0. So, we finally get:

gi(T ) = Ci · e−
T
τs

∑
tji<T

e
t
j
i

τs

= Ci

∑
tji<T

e−
T−t

j
i

τs

(18)

Then, we set Dt
i =

∑
tji<t e

−
t−t

j
i

τs , yielding Eq. 3. Considering the discrete case in Eq. 5, we get:

gi(t) = Ci

∑
j

e−
t−t

j
i

τs = CiDt
i (19)

Substituting the above formula into Eq. 1, we can get:

dV

dt
= −V (gl +

N∑
i

CiDi) +

N∑
i

EiCiDi (20)

In neurobiological computational modeling, classical theoretical frameworks typically posit synap-
tic equilibrium potential Ei as a binary-state parameter (Gütig & Sompolinsky, 2009). However,
our network construction process transcend this limitation by permitting heterogeneous equilib-
rium potential parameters across individual synaptic units. So we set Ei as a learnable parameter.
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The mathematical formalization method establishes the synaptic connection weight Ci · Ei as a
learnable parameter Wi through a multiplicative relationship, because Ci and Ei are trainable pa-
rameters. This parameterization methodology preserves biophysical interpretability while enabling
multidimensional regulatory mechanisms for synaptic efficacy. Crucially, such an approach not only
transcends the theoretical constraints of conventional bistable equilibrium potentials but also sub-
stantially augments the modeling capacity for network dynamics characteristics through the incorpo-
ration of continuous-spectrum Ei values. So by slightly rearranging Eq. 20, we can get Eq. 5-Eq. 8.

A.1.2 RECURRENT DGN

Our recurrent DGN follows a standard RSNN design in which each neuron receives an additional
recurrent pathway driven by spike activity from the previous time step. Practically, this is imple-
mented through an extra decaying synaptic current to the soma, without explicit self-connections.
This approach is widely adopted in recurrent SNNs and extends naturally from our feedforward
formulation.

The resulting update equations are:

Dt
i = e−

∆t
τs Dt−1

i + zti (21)

Dt
i,rec = e−

∆t
τs Dt−1

i,rec + zt−1 (22)

ρt = φ
(
1− gl∆t−∆t

N∑
i=1

CiD
t
i −∆t

N∑
i=1

Ci,recD
t
i,rec

)
(23)

V t = ρtV t−1 +∆t

N∑
i=1

WiD
t
i +∆t

N∑
i=1

Wi,recD
t
i,rec − ϑzt−1 (24)

zt = Θ(V t − ϑ) (25)

The recurrent model is also trained using standard backpropagation through time (BPTT). In prac-
tice, we observe that the introduced recurrent pathway further enhances the computational capability
and robustness of the neurons, which demonstrates that our dynamic gating mechanism generalizes
well beyond purely feedforward architectures and consistently improves performance on challeng-
ing temporal tasks (as also reflected in Tab 1).And the overall robustness is also better, as shown in
follow:

Table 3: Overall Robustness on the SHD dataset from Tab.2

Datasets Architecture Overall Robustness(%)

TIDIGITS FF 88.56 ± 5.64
Rec 91.67 ± 3.62

SHD FF 61.54 ± 1.95
Rec 70.36 ± 6.60

We note that the recurrent DGN does not fundamentally change the underlying neuron dynamics;
rather, it provides the network with additional temporal context through recurrent synaptic currents.
This recurrent integration might be one of the key reasons that lead to better performance.

In terms of training behavior, both feedforward and recurrent DGNs converge reliably under the
same optimization settings. The recurrent architecture is not inherently easier to train, but its recur-
rent pathway allows DGN neurons to leverage their dynamic conductance mechanism more effec-
tively, resulting in stronger temporal credit assignment and improved performance.
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A.1.3 DERIVATION OF SDE VARIANCE

The perturbation satisfies:

E(ξ(t)) = 0, ξ(t)dt = dWt,E[dWt] = 0 (26)

where Wt is the Brownian motion used to describe random behavior. We have a linear SDE of a
DGN:

dV

dt
= −G0V +

∑
Wiµi +

∑
σi (Wi − CiVsteady) ξ(t) (27)

We take the expectation on both sides of dynamic equation Eq. 27. Then we get:

d

dt
E[V ] = −G0E[V ] +

∑
Wiµi +

∑
σi (Wi − CiVsteady)E[ξ(t)] (28)

= −G0E[V ] +
∑

Wiµi (29)

In steady state:

E[V ] =

∑
Wiµi

G0
(30)

Applying Itô calculus (Itô, 1944) to V 2, we can get the calculation formula:

d(V 2) = 2V dV + (dV )2 (31)

Substituting Eq. 27 into the above equation, we get

d(V 2) = −2G0V
2dt+ (

∑
2Wiµi)V dt+

[∑
σi(Wi − CiVsteady)

]2
dt (32)

+2
[∑

σi(Wi − CiVsteady)
]
V ξ(t)dt (33)

Taking the expectation on both sides, we get:

dE[V 2]

dt
= −2G0E[V 2] + (

∑
2Wiµi)E[V ] +

[∑
σi(Wi − CiVsteady)

]2
(34)

+2
[∑

σi(Wi − CiVsteady)
]
V E[ξ(t)] (35)

Substituting Eq. 30 into the above equation, we can get the following when taking steady state:

⟨V 2⟩ = E[V 2]− (E[V ])2 =

[∑N
i=1 σi

(
Wi −

Ci
∑N

j=1 Wjµj

G0

)]2
2G0

(36)

Similarly, the steady-state variance of LIF neurons can be obtained.

A.1.4 TRAINING DGN-SNNS WITH BPTT

The network outputs at each timestep t are given by ot = WLz
t
L. Classification is based on the

average of these outputs across all timesteps, computed as ypred = 1
T

∑T
t=1 ot. The loss function L

is defined over averaged outputs and is typically formulated as E = ℓ(ypred, y), where y represents
the true labels and ℓ could be the cross-entropy function, as noted in various studies (Zheng et al.,
2021; Meng et al., 2023; Fang et al., 2023; Wang et al., 2023)

BPTT unfolds the iterations described in Eq. 7, and propagates gradients back along the computa-
tional graphs across both temporal and spatial dimensions, as illustrated in Fig. 5. Subsequently, the
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Figure 5: DGN unfolds over three time steps

weight update for single layer is determined among all timesteps T :

dE

dWi
=

T∑
t

dE

dzt
dzt

dWi
(37)

dE

dCi
=

T∑
t

dE

dzt
dzt

dCi
(38)

dE

dzt
=

∂E

∂zt
+

T∑
k=t+1

[

k∏
j=t+1

(−ϑΨj)
∂E

∂zk
] (39)

dzt

dWi
= Ψt{Dt

i+

t−1∑
k=1

[

t∏
j=k+1

(ρj − ϑΨj−1)Dk
i ]} (40)

dzt

dCi
= Ψt{−f ′V t−1Dt

i+

t−1∑
k=1

[

t∏
j=k+1

(ρj − ϑΨj−1)(−f ′V k−1Dk
i )]} (41)

where:

• Ψt: surrogate gradient

• F ′: derivative of the truncated function ϕ in Eq. 6

• f ′: the value of F ′ at 1− (gl +
∑N

i CiD
t
i), i.e. f ′ = F ′(1− (gl +

∑N
i CiD

t
i))

In the process of gradient propagation using BPTT, it is also necessary to manually set surrogate
function to calculate surrogate gradient Ψt, which are used as dzt/dV t, that is:

Ψt =
dzt

dV t
(42)
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The detailed derivation process of Eq. 37 ∼ Eq. 41 is as follows. The gradient of the loss function
E with respect to the trainable weights Ci and Wi of synapse i is:

dE

dWi
=

T∑
t

dE

dzt
dzt

dWi
(43)

dE

dCi
=

T∑
t

dE

dzt
dzt

dCi
(44)

Combining the calculation graph, we can obtain

dE

dzt
=

∂E

∂zt
+

dE

dzt+1

dzt+1

dzt
(45)

Then:
dzt+1

dzt
=

dzt+1

dV t+1

∂V t+1

∂zt
(46)

According to Eq. 8 and Eq. 42, we obtain respectively:

∂V t+1

∂zt
= −ϑ (47)

dzt+1

dV t+1
= Ψt+1 (48)

By combining the above formula and substituting Eq. 46 into Eq. 45, we obtain:

dE

dzt
=

∂E

∂zt
− ϑΨt+1 dE

dzt+1
(49)

To carry out the analysis, for any time 1 ≤ t ≤ T , we expand the recursion:

dE

dzt
=

∂E

∂zt
+

T∑
k=t+1

[

k∏
j=t+1

(−ϑΨj)
∂E

∂zk
] (50)

Combined with the calculation graph, we get:

dzt
dWi

=
dzt

dV t

dV t

dWi
(51)

dzt
dCi

=
dzt

dV t

dV t

dCi
(52)

According to the calculation diagram of DGN over time, combined with Eq. 7, we can get:

dV t

dWi
=

∂V t

∂Wi
+

∂V t

∂V t−1

dV t−1

dWi
+

∂V t

∂zt−1

dzt−1

dWi
(53)

dVt

dCi
=

∂V t

∂ρt
dρt

dCi
+

∂V t

∂V t−1

dV t−1

dCi
+

∂V t

∂zt−1

dzt−1

dCi
(54)

Substitute Eq. 51 into Eq. 53, Eq. 52 into Eq. 54, and arrange them to get:

dV t

dWi
=

∂V t

∂Wi
+

∂V t

∂Vt−1

dV t−1

dWi
+

∂V t

∂zt−1

dzt−1

dV t−1

dV t−1

dWi

=
∂V t

∂Wi
+ (

∂V t

∂Vt−1
+

∂V t

∂zt−1

dzt−1

dV t−1
)
dV t−1

dWi

(55)
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dV t

dCi
=

∂V t

∂ρt
dρt

dCi
+

∂V t

∂V t−1

dV t−1

dCi
+

∂V t

∂zt−1

dzt−1

dV t−1

dV t−1

dCi

=
∂V t

∂ρt
dρt

dCi
+ (

∂V t

∂V t−1
+

∂V t

∂zt−1

dzt−1

dV t−1
)
dV t−1

dCi

(56)

According to the Eq. 5∼8, we get:

∂V t

∂Wi
= Dt

i (57)

∂V t

∂Vt−1
= ρt (58)

∂V t

∂zt−1
= −ϑ (59)

dzt

dV t
= Ψt (60)

dzt−1

dV t−1
= Ψt−1 (61)

∂V t

∂ρt
= V t−1 (62)

dρt

dCi
= −F ′(1−(gl +

N∑
i

CiD
t
i))D

t
i (63)

Substitute the above formula into Eq. 55, Eq. 56 and sort it out to get:

dV t

dWi
= (ρt − ϑΨt−1)

dV t−1

dWi
+Dt

i (64)

dV t

dCi
= (ρt − ϑΨt−1)

dV t−1

dCi
− f ′V t−1Dt

i (65)

Expand the recursive calculation of equations Eq. 64 and Eq. 65, and we get Eq. 37 - Eq. 41

A.1.5 PSEUDOCODE FOR DGN COMPUTATION

We have now included pseudocode detailing the core computational steps of DGN—membrane
update, dynamic conductance computation, and spiking—which aligns with Eq.5–Eq.8 and is com-
patible with mainstream deep-learning frameworks.

Algorithm 1 Hidden Layer States Update

Input: Input spike sequence: zt, Hidden layer states: hi, hv, hz

Output: Updated hidden layer states: pre i, v, z
1: pre i← ρs · hi + zt ▷ Calculate presynaptic current
2: g ← pre i⊗ C ▷ Multiply by weight matrix to get dynamic conductance
3: post i← prei ⊗W ▷ Multiply by weight matrix to get somatic input current
4: v ← ϕ (1− dt · gl − dt · g) · hv + post i− ϑ · hz ▷ Neuronal potential decay, update membrane

potential
5: z ← Θ(v − ϑ) ▷ Calculate spike emission
6: return pre i, v, z

A.2 EXPERIMENTS

A.2.1 DATASETS

TI46Alpha: TI46Alpha is the full alphabets subset of the TI46 Speech corpus (Mark Liberman
et al., 1993) and contains spoken English alphabets from 16 speakers. There are 4,142 and 6,628
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spoken English examples in 26 classes for training and testing, respectively. The threshold encoding
mechanism (Gütig & Sompolinsky, 2009) is used to encode the audio information into spike pattern.
First, a spectrogram is computed with consecutive Fourier transforms (legacy function) from the
original sound wave. Then the spectrogram is filtered by a filter bank of 16 triangular filters to
obtain a mel-scale spectrogram. Next, for each mel-scale spectrogram bin corresponding to a filter,
30 neurons are used to encode its energy changes as spikes. Thus, a total of 480 neurons are used
to encode an audio sample (more details, see (Gütig & Sompolinsky, 2009)). In order to increase
the generalization ability of the model, we added 20 empty channels, each original audio has been
converted into spike trains over 500 input channels.

TIDIGITS: TIDIGITS is a widely used speech recognition dataset that contains the utterances of
11 words from the digits “zero” to “nine” and “oh.” It contains a training set of 2464 samples and a
test set of 2486 samples. The same preprocessing used for TI46Alpha is adopted.

SHD: The Spiking Heidelberg Digits dataset is a spike based sequence classification benchmark,
consisting of spoken digits from 0 to 9 in both English and German (20 classes). The dataset con-
tains recordings from twelve different speakers, with two of them only appearing in the test set.
Each original waveform has been converted into spike trains over 700 input channels. The train
set contains 8,332 examples, and the test set consists of 2,088 examples (no validation set). In our
experiments, we reduce the time resolution to speed up the simulation. Therefore, the preprocessed
samples only have about 250 time steps. We determine that a channel has a spike at a certain time
step of the preprocessed sample if there’s at least one spike among the corresponding several time
steps of the original sample.

SSC: The Spiking Speech Command dataset, another spike-based sequence classification bench-
mark, is derived from the Google Speech Commands version 2 dataset and contains 35 classes from
a large number of speakers. The original waveforms have been converted to spike trains over 700
input channels. The dataset is divided into train, validation, and test splits, with 75,466, 9,981, and
20,382 examples, respectively. The same preprocessing used for SHD is adopted.

A.2.2 TRAINING SETUP

Table 4: Network parameters for different datasets.

Dataset Network τm τs ϑ (c, w)

Ti46Alpha feedforward 10.00 2.0 1.00 (0.01 ± 0.005, 0.01 ± 0.005)
recurrent 15.00 1.50 1.00 (0.01 ± 0.005, 0.01 ± 0.005)

TIDIGITS feedforward 100.00 1.0 1.00 (0.01 ± 0.005, 0.001 ± 0.0005)
recurrent 10.00 2.50 1.00 (0.01 ± 0.005, 0.01 ± 0.005)

SHD feedforward 1.00 0.02 1.00 (0.01 ± 0.005, 0.01 ± 0.005)
recurrent 1.00 0.02 1.00 (0.001 ± 0.0005, 0.001 ± 0.0005)

SSC feedforward 1.00 0.02 1.00 (0.01 ± 0.005, 0.01 ± 0.005)
recurrent 1.00 0.02 1.00 (0.01 ± 0.005, 0.01 ± 0.005)

We train the Ti46Alpha and TIDIGITS datasets for 64 epochs utilizing the Adam optimizer. Their
learning rate are set to 0.001 for both feedforward and recurrent networks. For SHD and SSC
datasets, we train the models for 128 epochs using the Adam optimizer. Their learning rate are
set to 0.001 as well. Unlike standard binary spike trains, the SHD dataset have been temporally
preprocessed to aggregate spikes within 4ms-windows (Zhang et al., 2024a; Yin et al., 2021; Cramer
et al., 2020), resulting in integer spike counts per time step. We train all of the datasets on Nvidia
GeForce RTX 4060 GPUs with 8GB memory for feedforward network and Nvidia GeForce RTX
4090 GPUs with 24GB memory for recurrent network.

We summarize the specific hyperparameter settings for all neuron models (including our proposed
DGN and the reproduced baselines) in Tab. 4. These settings include the membrane time constant
(τm), synaptic time constant (τs), and spike threshold (ϑ). In addition, (c, w) denote the initial values
of the trainable parameters (C, W ), where c is used only in the DGN model.
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To eliminate confounding factors and clearly attribute performance improvements to the dynamic
conductance gating mechanism itself, we evaluated models using relatively simple feedforward and
recurrent architectures, and correspondingly selected baseline SNN models with comparable struc-
tural complexity. Additionally, to avoid the confounding effects of complex components—advanced
spiking Transformer architectures introduce structural elements such as multi-head attention and
normalization modules, which may overshadow or obscure the independent contribution of dynamic
conductance gating and reduce the interpretability of mechanistic analysis—we did not include such
architectures in this study. Meanwhile, we fully acknowledge that integrating dynamic conductance
with spiking Transformers constitutes a promising research direction.

A.2.3 ACCURACIES UNDER THE CLEAN CONDITION

We reproduce the results on the datasets following the referenced paper, as shown in Tab. 5. To
ensure fairness in the subsequent experiments involving noise and adversarial attacks, we adopt the
same hyperparameter settings across all runs to obtain the base models. The discrepancy between
our reproduced accuracies and those reported in the original paper may partly stem from differ-
ences in experimental platforms. Nevertheless, conducting all evaluations under identical conditions
makes our comparisons more consistent and meaningful.

For the TI46Alpha and TIDIGITS datasets, we use a single hidden layer with 100 neurons, while
for the SHD and SSC datasets, we use a single hidden layer with 128 neurons.

We conducted three runs of the DGN model using the same initialization but different random seeds.
As shown in Tab. 5, the first row reports the best result among the three runs, while the second row
presents the mean and standard deviation. The best-performing model was then used for the noise
robustness experiments.

Table 5: Accuracy of each method we reproduced on different datasets without noise or attacks.

Method Ti46alpha Tidigits SHD SSC

FF

LIF 94.00 97.02 77.30 47.72
HeterLIF 93.50 96.52 76.76 55.59

ALIF 93.85 96.99 78.02 49.17

DGN(Ours)
95.69 98.91 85.18 58.77

(95.60 ± 0.08) (98.24 ± 0.34) (84.6 ± 0.42) (58.34 ± 0.06)

Rec

RNN 91.89 97.09 78.24 72.91
LSTM 96.05 97.88 86.89 75.95

LIF 90.89 97.80 75.77 53.16
HeterLIF 91.31 96.29 79.85 57.47

ALIF 90.28 97.54 82.08 55.96

DGN(Ours)
96.31 99.10 87.78 66.18

(95.74 ± 0.35) (98.67 ± 0.26) (86.33 ± 0.58) (65.72 ± 0.27)

A.2.4 NOISE SETUP

Additive
Each element of the input tensor is independently perturbed by adding a random binary value sam-
pled from a Bernoulli distribution with probability p. This operation is mathematically equivalent to
injecting Poisson noise with a rate of p/∆t (Hz) into the dataset. The resulting noise tensor has the
same shape as the input tensor, and the perturbed values are truncated to ensure non-negativity.

Subtractive
Each non-zero element in the input tensor is independently perturbed by subtracting a random binary
value sampled from a Bernoulli distribution with probability p. The perturbation only occurs where
the original data is greater than zero. After the subtraction, the resulting values are clamped from
below to ensure no negative values remain.
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Algorithm 2 Additive Noise

Input: Data tensor data; Probability p
Output: Perturbed data with Bernoulli noise

1: noise← Bernoulli(p) samples with same shape as data
2: perturbed data← data+ noise
3: perturbed data← max(perturbed data, 0)
4: return perturbed data

Algorithm 3 Subtractive Noise

Input: Data tensor data; Probability p
Output: Perturbed data with Bernoulli noise

1: noise← Bernoulli(p) samples with same shape as data
2: mask ← (data > 0)
3: perturbed data← data− noise×mask
4: perturbed data← max(perturbed data, 0)
5: return perturbed data

Mixed
This approach combines both additive and subtractive Bernoulli noise. For non-zero elements, noise
is subtracted with a higher probability scaled by a factor (default 10×). For zero elements, noise is
added with the original probability p. All perturbations are performed independently, and the result
is clamped to ensure no negative values remain. Since the input non-zero valid data is very sparse,
only when the probability of subtractive noise is high can the interference effect be equal to (or even
lower than) that of additive noise. Therefore, when constructing mixed noise, the probability of
subtractive noise is magnified by 10 times.

Algorithm 4 Mixed Noise

Input: Data tensor data; Probability p; Deletion scale factor γ (default: 10)
Output: Perturbed data with mixed Bernoulli noise

1: delete mask ← (data > 0)
2: delete p← min(p× γ, 1)
3: delete noise← Bernoulli(delete p)
4: add mask ← (data == 0)
5: add noise← Bernoulli(p)
6: perturbed data← data− delete mask × delete noise+ add mask × add noise
7: perturbed data← max(perturbed data, 0)
8: return perturbed data

Given a classification model f with dataset (x, ytrue), where x is the clean image and ytrue is the
corresponding correct label. The formulations of the attacks we used in this study are described as
follows:

FGSM
FGSM aims to perturb the original data x along the sign direction of the gradient on the loss function
with one step to increase the perturbed linear output, thereby misleading the network, and it can be
formalized as follows:

x̂ = x+ ϵ · sign(∇xL(f(x), ytrue)), (66)
where sign(·) is an odd mathematical function that extracts the sign of a real number.

PGD
PGD attack is the iterative variant of FGSM. It first starts from a random perturbation in the Lp-norm
constraint around the original sample x, then takes a gradient iteration step in the sign direction to
achieve the greatest loss output, it can be formalized as follows:

x̂0 = x+ U(−ϵ,+ϵ), (67)

x̂k+1 = Clipx,ϵ
{
x̂k + α · sign(∇x̂kL(f(x̂k), ytrue))

}
, (68)

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

where k is the iterative step, α is step size for each attack iteration, ϵ controls the perturbation level.
U(·) is a uniform function, Clipx,ϵ{·} is the function which performs per-pixel clipping of the image
x̂, so the result will be in L∞-norm ϵ-neighborhood of the original image x.

BIM
Both BIM and PGD attacks are iterative attacks. Different from PGD attacks, BIM updates the
adversarial samples starting from the original image.

A.3 ABLATION STUDY

A.3.1 PERFORMANCE UNDER DIFFERENT PERTURBATION STRENGTH

0.0 0.009 0.018 0.03
p

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Additive

0.0 0.09 0.18 0.3
p

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Subtractive

ALIF
LIF
HeterLIF
Ours

0.0 0.009 0.018 0.03
p

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

Mixed

0.0 0.009 0.018 0.03
ε

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

FGSM

0.0 0.009 0.018 0.03
ε

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

PGD
ALIF
LIF
HeterLIF
Ours

0.0 0.009 0.018 0.03
ε

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

BIM

Figure 6: Performance of the model on TIDIGITS using a recurrent network under perturbations of
different distribution probabilities p or attack strengths ε.
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Figure 7: Performance of the model on SHD using a feedforward network under perturbations of
different distribution probabilities p or attack strengths ε.
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Figure 8: Performance of the model on SHD using a recurrent network under perturbations of dif-
ferent distribution probabilities p or attack strengths ε.

We systematically evaluate the robustness of multiple spiking neuron models on TIDIGITS and SHD
datasets using both feedforward and recurrent networks by quantifying the performance loss under
gradually increasing parameter perturbations(p or ε).

As illustrated in Fig. 6-Fig. 8, our neuron model outperforms others in terms of accuracy under
increasing perturbation intensities. It consistently maintains the highest accuracy and exhibits the
lowest degradation across within a reasonable perturbation range. For example, under an additive
noise perturbation of p = 0.004 (Poisson rate of 1 Hz), the performance loss on the SHD dataset
remains within 15% for all network architectures. These results demonstrate that our neuron model
is able to filter out interfering information while maintaining excellent effective information transfer
efficiency, highlighting the effectiveness of the proposed bio-inspired gating mechanism in enhanc-
ing the model’s robustness to a variety of perturbation patterns.

A.3.2 EFFICIENCY UNDER PARAMETER REDUCTION

Just as LSTM/GRU enhance MLPs by introducing complex, task-dependent structures, our DGN
neuron endows SNNs with more expressive computational capabilities than traditional LIF units
through the incorporation of dynamic conductance mechanisms. The observed performance im-
provements stem not from an increase in the number of parameters, but rather from the inherent
efficiency of the neuron design. To clarify this distinction, we introduce a simplified variant, S-
DGN, which reduces the parameter count while preserving the core mechanisms.

In S-DGN, all synapses connecting to the same neuron share a single equilibrium potential E, in
contrast to the original DGN where each synapse maintains its own. This modification substantially
reduces the number of learnable parameters, thereby constraining expressivity while preserving the
essential computational mechanism. The resulting dynamics of S-DGN are formulated as follows:

dV

dt
= −V

(
gl +

N∑
i=1

CiDi

)
+ E

N∑
i=1

CiDi (69)

We evaluate its effectiveness on the SHD dataset. The evaluation considers three critical factors:
classification accuracy, parameter count, and overall robustness against noise. Tab. 6 summarizes the
comparative results across different neuronal models, including our proposed DGN and its simplified
variant, s-DGN.
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Table 6: Performance comparison of different neuronal models on the SHD dataset. We report the
parameter count (in K), clean accuracy (%), and overall robustness (%). Highlighted rows corre-
spond to our proposed models, s-DGN and DGN, which consistently achieve superior accuracy and
robustness while demonstrating the impact of parameter reduction.

FF Models Parameters (K) Clean Accuracy (%) Overall Robustness (%)
LIF 92.16 77.30 44.17 ± 9.96
HeterLIF 92.31 77.77 43.31 ± 12.64
ALIF 92.16 78.02 48.53 ± 6.24
DLIF (250 step) (Ding et al., 2024a) 92.66 79.96 49.93 ± 5.91
s-DGN (ours) 92.31 84.30 58.28 ± 2.33
DGN (ours) 184.32 85.18 61.54 ± 1.95

Rec Models Parameters (K) Clean Accuracy (%) Overall Robustness (%)
LIF 108.54 75.77 25.96 ± 16.67
HeterLIF 108.69 79.85 46.60 ± 6.58
ALIF 108.54 82.08 54.28 ± 6.11
DLIF (250 step) (Ding et al., 2024a) 109.04 82.70 58.87 ± 4.64
s-DGN (ours) 108.82 85.65 64.48 ± 4.82
DGN (ours) 217.09 87.78 70.36 ± 6.60

As demonstrated in Tab. 6, s-DGN achieves competitive accuracy and noise robustness while main-
taining LIF-level parameter efficiency. We demonstrate that stable performance improvements per-
sist without increasing parameter counts, confirming that the observed benefits do not stem solely
from parameter scaling but rather from the intrinsic advantages of the proposed neuronal mecha-
nism.

However, s-DGN consistently lags behind the full DGN model due to the equilibrium synaptic
potential constraint. While s-DGN offers a parameter-efficient alternative, the full DGN remains
necessary to achieve maximum robustness. Specifically, s-DGN’s reduced parameter count facili-
tates deployment on memory-constrained devices, rendering it well-suited for edge computing sce-
narios—including IoT terminals (e.g., smart sensors, edge gateways), portable AI devices (e.g.,
wearable health monitors, small UAV flight control systems), and low-power embedded systems
with limited computational resources and video memory. In contrast, the full DGN implements
the complete dynamic conductance mechanism, fully leveraging its gating effect to exhibit supe-
rior performance in processing dynamic temporal information. It is thus better tailored to scenarios
demanding high performance and abundant hardware resources, such as real-time high-resolution
video analysis (e.g., intelligent security early warning, autonomous driving environmental percep-
tion), complex physiological signal decoding (e.g., high-precision brain-computer interface control,
real-time multi-parameter monitoring of critically ill patients), and large-scale dynamic data predic-
tion (e.g., financial high-frequency trading analysis, smart grid dynamic load dispatching).

The full DGN model proposes a general neuronal model to implement this dynamic conductance
gating mechanism. Like s-DGN, indicators such as parameter count, energy efficiency, and inference
latency can be mitigated through hyperparameter adjustment or other optimization methods (e.g.,
model compression, hardware-aware design).

A.4 EFFICIENCY ANALYSIS

A.4.1 EVALUATION OF ENERGY EFFICIENCY

Energy efficiency and hardware deployment are indeed important future directions. We provide a
complete analysis for transparency and practical reference as Tab. 7 and Tab. 8. For the empiri-
cal estimate, we evaluate a two-layer network (128–128 hidden units, i.e., m = n = 128) on the
SHD dataset. We measure the layer-wise firing rates of the LIF and DGN neurons over 32 epochs,
obtaining: LIF: [4.43%, 0.54%], DGN: [7.07%, 1.19%], s-DGN: [6.38%, 1.41%].

To obtain the total energy cost, we plug these firing rates into the above formulas and adopt the
45nm CMOS process estimates from Horowitz (2014), where the energy cost of an AC and a MAC
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operation are EAC = 0.9 pJ and EMAC = 4.6 pJ, respectively. This yields the empirical energy val-
ues reported in the last column of Table A1. Although DGN and s-DGN incur slightly higher energy
than LIF due to the additional gating-related operations as expected, their energy consumption re-
mains orders of magnitude lower than that of an LSTM, thus preserving the core energy-efficiency
advantage of spiking neural networks.

Table 7: Comparison of neuron dynamics and per-step energy cost of LIF, LSTM, DGN and s-DGN
models. The m and n denote the numbers of input and output neurons. Frin and Frout represent
the firing rate of input and output neurons. EAC and EMAC are the energy cost of AC and MAC
operations, respectively.

Neuron Model Dynamics Step Cost

LIF
V t
l = ρm · V t−1 +Wm,n

l zt−1
l

+Wn,n
l,recz

t
l−1 − ϑzt−1

l

nEMAC + (mnFrin + nnFrout + Frout)nEAC

DGN

ρtl = φ(1− gl − Cm,n
l ztl−1 − Cn,n

l,recz
t−1
l )

V t
l = ρtl · V t−1

l +Wm,n
l ztl−1

+Wn,n
l,recz

t−1
l − ϑzt−1

mnFrinEAC + nnFroutEAC

nEMAC + (mnFrin + nnFrout + nFrout)EAC

s-DGN

ρtl = φ(1− gl − Cm,n
l ztl−1 − Cn,n

l,recz
t−1
l )

V t
l = ρtl · V t−1

l + (ElC
m,n
l )ztl−1

+ (El,recC
n,n
l,rec)z

t−1
l − ϑzt−1

mnFrinEAC + nnFroutEAC

nEMAC + (mnFrin + nnFrout + nFrout)EAC

LSTM

ft = σg(Wfxt + Ufht−1 + bf )

it = σg(Wixt + Uiht−1 + bi)

ot = σg(Woxt + Uoht−1 + bo)

c̄t = σc(Wcxt + Ucht−1 + bc)

ct = ft ⊙ ct−1 + it ⊙ c̄t

ht = ot ⊙ σh(ct)

n(m+ n)EMAC

n(m+ n)EMAC

n(m+ n)EMAC

n(m+ n)EMAC

2nEMAC

nEMAC

Table 8: Total theoretical energy cost and empirical energy measurements for LIF, LSTM, DGN and
s-DGN models.

Neuron Model Total Cost Empirical Cost (nJ)

LIF
(mnFrin + nnFrout + nFrout)EAC

+ nEMAC
1.32

DGN
(2mnFrin + 2nnFrout + nFrout)EAC

+ nEMAC
3.03

s-DGN
(2mnFrin + 2nnFrout + nFrout)EAC

+ nEMAC
2.89

LSTM (4mn+ 4nn+ 3n)EMAC 604.7

A.4.2 TRAINING AND INFERENCE TIME

We also analyzed training and inference time in Tab. 9. The results, averaged over 250 training steps
on the SHD dataset, show that runtime differences between models are minimal, while our approach
provides superior robustness and computational capability in SNNs—our core contributions that are
demonstrated in the main-text results.

A.4.3 DISCUSSION ON NEUROMORPHIC IMAGE DATASETS

To further evaluate the generalization ability of our proposed neuron, we extend our experiments to
the neuromorphic DVS-Gesture dataset. This dataset features rich temporal dynamics, making it a
suitable benchmark to validate whether the advantages of our design also hold beyond speech tasks.

Following prior work (Fang et al., 2021), we adopt the same network architecture to ensure fair
comparison and avoid confounding factors from architectural modifications. Since our focus lies in
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Table 9: Training and Inference Time on the SHD dataset

Arcitecture Neuron Train Time(s) Test Time(s)

FF

LIF 15.61 ± 1.49 5.17 ± 0.69
HeterLIF 18.99 ± 1.80 5.45 ± 0.68

ALIF 21.56 ± 2.01 5.80 ± 0.36
DGN(Ours) 22.58 ± 1.48 5.93 ± 1.45

Rec

LIF 16.88 ± 3.39 5.25 ± 0.95
HeterLIF 18.75 ± 3.17 5.29 ± 0.41

ALIF 22.45 ± 4.36 5.58 ± 0.98
DGN(Ours) 28.59 ± 5.00 6.58 ± 0.84

analyzing the behavior of neurons themselves, we deliberately keep the network simple and consis-
tent with the main text. We report preliminary reproduction results, with identical noise settings as
defined in the main experiments.

Table 10: Results on the DVS-Gesture dataset. We report clean accuracy (%) and robustness under
various noise and adversarial perturbations. Our proposed DGN achieves the highest accuracy and
robustness across most settings.

Neuron Clean Acc. Additive Subtractive Mixed FGSM PGD BIM
LIF 93.06 89.58 92.01 89.24 89.24 88.54 88.89
HeterLIF 94.79 91.67 92.36 90.97 86.81 86.46 85.42
ALIF 93.40 90.97 89.58 91.32 87.85 88.89 88.19
DGN (ours) 95.14 91.67 92.36 92.36 92.01 89.93 89.24

As shown in Table 10, our neuron consistently achieves superior accuracy and robustness, demon-
strating that the proposed mechanism generalizes well beyond speech datasets and retains its advan-
tage on image-based neuromorphic tasks.

A.5 MORE EXPERIMENTAL RESULTS

Tab. 11-16, present the experimental results of all reproduced models (with clean accuracies shown
in Tab. 5) under three types of noise and three types of adversarial attacks. In each table, the first
row indicates the strength of the noise or attack. For additive and mixed noise, we vary the strength
from 0 to 0.03; for subtractive noise, the range is 0 to 0.3. For all adversarial attack methods, the
perturbation strength ranges from 0 to 0.003.
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Table 11: Additive Noise full experiment data through different p.

Net Method 0.003 0.006 0.009 0.012 0.015 0.018 0.021 0.024 0.027 0.03

Datasets: Ti46alpha

FF

LIF 88.72 65.02 33.59 14.83 8.74 6.43 5.34 4.72 4.45 4.19
HeterLIF 78.7 51.22 28.94 17.49 12.2 9,65 9 7.99 7.41 7.28

ALIF 88.35 61.62 25.67 12.49 8.34 6.73 5.85 5.29 5.15 4.81
DGN 92.7 87.21 77.07 63.77 52.02 40.65 31.11 24.62 19.06 17.02

R
ec

RNN 18.8 7.53 5.2 4.4 4.24 4.54 4.56 4.49 4.84 4.28
LSTM 88.65 64.84 43.16 30.07 21.63 16.08 12.46 10.79 10.44 9.52

LIF 80.63 62.34 38.98 22.46 14.65 11.21 8.8 7.69 7.19 7.88
HeterLIF 77.87 61.49 44.88 30.53 21.62 17.07 14.16 12.58 11.19 11.22

ALIF 80.51 64.8 39.98 19.54 9.97 6.83 5.13 4.39 4.24 4.07
DGN 91.86 81.29 64.58 44.13 27.68 17.36 10.3 7.62 5.81 4.95

Datasets: TIDIGITS

FF

LIF 84.9 46.83 31.73 28.49 25.07 22.83 21.81 19.91 18.52 17.22
HeterLIF 91.43 77.49 63.19 52.38 43.27 35.64 30.1 26.15 23.36 21.06

ALIF 88.81 63.29 48.04 40.67 34.33 30.59 27.84 25 22.65 21.84
DGN 97.47 95.34 91.36 86.65 78.67 71.77 67.12 62.77 56.8 52.46

R
ec

RNN 35.5 23.64 19.37 17.56 16.33 16.43 16.97 19 17.74 15.82
LSTM 89.49 65.12 47.8 29.47 19.83 16.48 15.16 13.35 11.95 12.65

LIF 95.06 73.23 32.6 19.46 16.42 13.73 12.77 11.6 10.58 9.88
HeterLIF 90.71 78.97 64.95 52.78 44.2 36.82 30.73 26.51 23.4 20.9

ALIF 93.99 84.01 54.44 20.96 10.76 9.48 9.43 9.33 9.3 9.26
DGN 97.56 94.84 89.12 81.06 70.38 58.59 48.28 37.74 30.34 24.71

Datasets: SHD

FF

LIF 60.39 29.93 15.42 10.93 7.77 5.91 4.89 4.85 4.85 4.85
HeterLIF 49.87 25.49 14.63 8.55 5.8 4.85 4.85 4.85 4.85 4.85

ALIF 65.57 40.25 26.51 17.97 14.74 13.72 12.57 11.27 10.32 9.26
DGN 77.6 59.46 39.18 25.86 19.55 15.43 12.46 11.29 10.43 9.56

R
ec

RNN 39.26 27.47 25.27 24.48 24.15 22.17 19.92 16.3 11.38 7.75
LSTM 56.09 41.61 32.2 29.56 28.82 27.63 26.7 25.23 23.36 21.24

LIF 46.8 9.24 4.99 4.85 4.85 4.85 4.85 4.85 4.85 4.85
HeterLIF 66.8 39.57 26.77 22.17 19.13 17.43 15.17 13.16 10.63 9.35

ALIF 73.48 46.59 37.18 30.24 25.64 20.87 18.03 14.98 11.6 9.69
DGN 86.49 78.97 56.41 35.46 29.67 27.92 24.44 20.22 18.04 16.14

Datasets: SSC

FF

LIF 34.37 21.64 15.66 12.76 11 9.94 8.91 8.58 7.58 7.18
HeterLIF 41.72 26.96 19.45 15.43 12.95 10.77 9.1 7.89 7.11 6.34

ALIF 37.51 25.65 19.72 15.84 13.71 11.92 11.14 10.37 10.3 9.84
DGN 49.62 31.74 19.47 13.73 11.15 9.73 8.67 7.87 7.26 6.68

R
ec

RNN 57.13 29.15 19.29 15.68 14.39 13.74 13.18 12.34 11.69 11.03
LSTM 60.01 36.53 23.2 18.26 16.56 15.65 14.71 14.23 13.62 13.15

LIF 39.38 26.27 20.09 17.45 15.9 14.46 13.38 12.13 11.67 10.81
HeterLIF 45.27 25.91 18.75 16.31 14.59 12.50 10.36 8.33 7.92 7.15

ALIF 41.36 26.23 17.98 14.08 12.09 11.06 10.36 9.73 9.27 9.08
DGN 45.58 27.62 18.41 16.55 15.83 14.96 14.92 14.34 13.59 12.19
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Table 12: Subtractive Noise full experiment data through different p.

Net Method 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.3

Datasets: Ti46Alpha

FF

LIF 93.4 92.73 92.11 91.69 90.94 90.27 89.06 88.13 87.23 86.07
HeterLIF 93 92.16 91.73 91.36 90.42 90.13 88.98 88.81 87.41 85.91
ALIF 93.42 92.69 92.31 91.87 90.71 90.19 89.12 88.28 87.17 85.95
DGN 95.23 94.81 94.59 94.08 93.1 92.81 91.26 90.45 88.5 87.18

R
ec

RNN 90.94 90.41 89.13 88.28 87.01 85.59 83.32 80.91 78.01 74.01
LSTM 95.5 95.04 94.29 93.8 92.51 90.92 88.14 84.94 80.6 75.09
LIF 90.4 89.19 87.6 87.37 84.91 83.64 81.09 78.26 74.84 71.25
HeterLIF 90.21 89.44 87.94 86.83 84.49 82.21 79.51 76.48 72.93 68.6
ALIF 88.71 87.34 86.03 84.99 82.81 80.36 76.5 74.41 69.89 65.78
DGN 95.74 95.31 94.48 94.72 93.79 93.38 92.43 91.67 90.72 89.18

Datasets: TIDIGITS

FF

LIF 97.07 96.47 96.31 96.29 96.02 95.61 95.39 95.12 95.1 93.7
HeterLIF 96.37 95.78 95.39 95.23 94.48 93.83 92.93 92.58 90.56 89.37
ALIF 96.46 96.25 96.22 96.41 95.61 95.1 94.74 95 94.91 93.17
DGN 98.27 98.38 98.31 98.03 97.72 96.98 96.98 95.74 94.63 93.7

R
ec

RNN 96.95 96.72 96.17 95.66 95.16 93.87 92.81 92.12 90.14 86.76
LSTM 97.97 97.77 97.19 96.42 95.74 94.57 91.73 89.07 84.82 79.25
LIF 97.65 97.34 97.11 96.67 96.12 94.93 94.57 93.21 91.83 89.6
HeterLIF 95.69 94.8 94.17 93.33 92.5 91.12 89.71 87.22 85.37 82.59
ALIF 96.89 96.43 95.69 95.34 94.11 94.07 92.67 91.14 89.19 86.19
DGN 98.98 98.93 98.77 98.63 98.42 98.48 97.58 97.6 97.62 96.7

Datasets: SHD

FF

LIF 77.42 75.6 74.12 72.34 70.34 68.13 64.75 62.71 59.84 56.32
HeterLIF 76.64 75.11 74.21 71.89 69.1 66.78 65.37 61.25 59.11 54.91
ALIF 77.7 75.56 74.94 72.75 70.85 67.64 64.67 62.57 58.43 55.08
DGN 84.3 83.65 82.17 81.02 78.35 76.03 73.69 70.57 67.83 64.05

R
ec

RNN 75.88 74.41 72.5 70.83 67.87 66.71 62.92 58.96 55.77 52.29
LSTM 86.04 85.34 84.08 81.98 80.68 77.49 75.37 72.45 69.13 64.58
LIF 74.88 73.64 72.66 71.17 68.35 67.92 65.24 62.45 60.41 57.44
HeterLIF 79.53 77.59 75.61 73.3 71.55 69.34 66.79 63.61 60.7 58.19
ALIF 81.36 80.52 79.08 77.52 74.91 72.94 70.44 68.67 65.4 63.32
DGN 86.9 86.61 85.04 82.67 79.7 76.84 73.45 69.53 65.88 61.91

Datasets: SSC

FF

LIF 46.98 46.68 45.94 45.39 44.3 42.94 41.83 40.16 38.57 36.46
HeterLIF 55.3 54.59 53.81 53.3 52.15 50.5 49.45 47.85 46.02 43.76
ALIF 48.52 47.91 47.12 46.33 44.74 43.86 42.72 40.91 39.21 37.03
DGN 58.51 58.32 57.87 57.28 56.21 54.81 53.37 51.15 49.27 47.06

R
ec

RNN 72.6 72.25 71.63 71.21 70.31 69.24 68.22 66.75 65.03 63.29
LSTM 75.61 75.47 74.7 74.12 73.4 72.25 71.53 70.06 68.76 67.5
LIF 52.73 52.2 51.96 51.42 50.98 50.38 49.71 48.24 46.93 45.72
HeterLIF 57.35 56.74 56.38 55.76 54.88 53.81 53.05 52.04 50.69 49.32
ALIF 55.1 54.91 54.58 53.54 52.64 51.77 49.95 48.7 47 45.55
DGN 66.32 66.25 65.47 64.33 64.14 62.98 61.71 60.15 58.99 57.12
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Table 13: Mixed Noise full experiment data through different p.

Net Method 0.003 0.006 0.009 0.012 0.015 0.018 0.021 0.024 0.026 0.03

Datasets: Ti46Alpha

FF

LIF 88.17 60.72 25.61 10.46 6.78 5.38 4.9 4.25 4.12 4
HeterLIF 76.49 45.91 22.95 13.8 9.58 8.11 7.39 6.96 6.11 6.08
ALIF 87.62 56.23 19.87 9.65 7.22 5.82 5.28 4.73 4.57 4.52
DGN 92.69 85.66 73.33 55.9 40.52 28.24 18.92 12.75 9.81 7.46

R
ec

RNN 17.8 6.93 4.71 4.42 4.18 4.09 4.14 4.14 4.14 4.14
LSTM 87.97 62.97 40.86 26.71 16.95 11.29 9.16 7.54 6.57 6.19
LIF 79.03 57.59 32.31 18.7 12.19 8.87 7.32 6.86 6.51 6.31
HeterLIF 75.95 55.96 36.95 25.09 16.94 13.34 11.31 10.64 9.05 8.06
ALIF 79.51 60.85 34.29 18.02 8.64 6.38 4.86 4.39 4.49 4.08
DGN 90.89 78.12 56.54 33.76 17.88 9.62 6.6 5 4.32 4.17

Datasets: TIDIGITS

FF

LIF 82.54 44.2 30.1 25.91 22.58 20.23 18.96 17.09 15.56 14.34
HeterLIF 89.66 72.78 57.39 44.48 34.91 30.04 26.35 23.49 21.06 19.67
ALIF 88.34 60.58 44.77 34.33 28.67 26.16 23.13 19.52 18.02 16.37
DGN 97.64 95.43 91.74 82.88 74.95 66.05 57.66 52.86 45.13 40.3

R
ec

RNN 34.54 21.66 17.32 15.18 15.03 15.93 15.05 14.93 14.48 13.73
LSTM 90.07 64.77 45.03 26.72 17.92 15.5 13.65 12.42 11.84 11.45
LIF 93.88 67.68 30.1 16.31 13.04 12.04 11.72 10.48 9.97 9.73
HeterLIF 88.5 73.05 58.73 44.38 33.68 26.08 21.93 18.95 16.69 14.93
ALIF 91.64 79.25 48.57 15.86 10.33 9.45 9.49 9.26 9.35 9.22
DGN 97.92 93.86 87.12 75.09 59.28 44.41 30.8 24.58 19.04 17.27

Datasets: SHD

FF

LIF 60.18 31.44 15.67 11.4 7.77 6.19 5.09 4.85 4.85 4.85
HeterLIF 50.02 25.58 14.41 8.44 6.1 5.02 4.85 4.85 4.85 4.85
ALIF 65.59 39.4 25.52 17.84 15.18 13.08 10.63 9.63 9.46 9.41
DGN 78.01 58.87 37.77 24.73 19.35 15.13 13.48 11.83 10.49 9.15

R
ec

RNN 37.98 28.06 24.86 23.49 21.56 19.63 17.38 15.86 14.05 11.01
LSTM 56.03 39.23 30.56 26.44 25.57 24.62 23.05 20.5 18.33 17.08
LIF 48.04 9.25 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85
HeterLIF 67.89 38.87 25.4 21.47 19.89 18.11 14.28 11.77 9.8 8.48
ALIF 73.68 47.28 36.81 30.72 26.93 23.18 19.69 15.51 10.02 7.63
DGN 86.81 79.35 56.42 32.83 27.13 25.41 23.26 21.2 18.65 15.37

Datasets: SSC

FF

LIF 34.67 21.25 15 11.69 10.13 8.97 8.17 7.33 6.41 5.8
HeterLIF 42.05 26.65 18.36 14.3 11.66 9.51 7.88 6.66 5.73 5.09
ALIF 37.74 25.56 19.03 14.52 12.6 10.61 9.53 8.91 8.35 7.93
DGN 50 31.3 18.1 12.45 10.09 8.72 7.88 6.86 6.06 5.38

R
ec

RNN 57.69 29.66 18.81 14.85 13.33 12.64 11.61 10.38 9.67 8.79
LSTM 60.16 35.65 21.35 15.11 12.82 11.6 10.46 9.29 8.78 8.43
LIF 39.33 25.98 19.23 16.5 14.78 13.32 12.03 10.66 9.74 8.73
HeterLIF 45.13 25.09 17.54 14.53 12.31 9.95 7.31 5.66 5.23 5.17
ALIF 41.87 26.09 17.71 13.69 11.59 10.39 9.55 8.58 8.26 7.66
DGN 46.55 27.27 17.20 14.94 13.61 12.54 11.57 11.28 9.84 7.79
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Table 14: FGSM attack full experiment data through different ε.

Net Method 0.003 0.006 0.009 0.012 0.015 0.018 0.021 0.024 0.027 0.03

Datasets: Ti46Alpha

FF

LIF 58.31 19.33 2.27 0.17 0.08 0.11 0.14 0.17 0.18 0.2
HeterLIF 33.45 4.92 0.38 0.14 0.06 0.05 0.05 0.02 0.02 0.03
ALIF 58.73 19.34 3.84 0.39 0.11 0.09 0.09 0.09 0.09 0.08
DGN 74.74 50.81 37.85 30.4 24.96 21.07 18.29 16.34 14.66 13.56

R
ec

RNN 0.59 0.41 0.39 0.38 0.35 0.33 0.33 0.33 0.33 0.33
LSTM 50.52 12.16 6.84 4.74 3.44 2.93 2.67 2.44 2.16 2.1
LIF 29.88 3.85 0.61 0.39 0.21 0.17 0.12 0.17 0.17 0.09
HeterLIF 25.25 2.63 0.36 0.12 0.08 0.08 0.08 0.11 0.11 0.11
ALIF 24.35 2.42 0.44 0.18 0.14 0.12 0.14 0.11 0.14 0.15
DGN 52.57 21.17 10.11 6.41 5.22 4.61 4.2 4.15 3.89 3.52

Datasets: TIDIGITS

FF

LIF 39.53 3.48 0.54 0.27 0.08 0.08 0.08 0.04 0.04 0.04
HeterLIF 52.48 12.97 3.17 1.46 0.86 0.59 0.35 0.23 0.16 0.12
ALIF 42.5 3.22 0.31 0.08 0.04 0.04 0.04 0.04 0.04 0.04
DGN 90.35 71.52 52.25 40.84 35.49 31.92 29.31 27.39 24.71 23.05

R
ec

RNN 9.89 2.59 0.59 0.16 0.04 0.04 0.04 0.04 0.04 0.04
LSTM 64.97 22.48 9.57 5.3 4.48 4.25 3.66 2.32 2.51 2.32
LIF 26.55 2.45 1.33 1.33 1.25 1.08 1.01 0.93 0.97 0.97
HeterLIF 8.76 1.62 2.67 2.91 2.08 1.54 1.34 1.19 1.03 0.95
ALIF 25.04 2.04 0.23 0.04 0.04 0.04 0.04 0.08 0.08 0.08
DGN 89.4 61.91 29.62 11.48 4.18 3.08 3.28 3.55 4.2 4.51

Datasets: SHD

FF

LIF 51.55 35.57 24.22 17.51 12.09 8.14 5.67 3.92 2.49 1.65
HeterLIF 52.23 36.2 25.35 18.55 12.76 8.94 6.98 5.2 3.9 3.25
ALIF 53.31 38 26.89 20.06 14.32 9.42 6.86 5.07 3.92 2.86
DGN 63.81 49.29 37.15 27.12 20.08 15.55 12.56 10.55 9.27 7.73

R
ec

RNN 17.35 6.61 4.03 3.38 2.84 2.53 2.1 1.99 1.91 1.86
LSTM 39.27 19.19 8.38 3.81 2.04 1.56 1.52 1.52 1.34 1.12
LIF 17.78 4.45 1.35 0.8 0.49 0.39 0.3 0.26 0.22 0.26
HeterLIF 44.76 24.15 13.45 7.53 5.03 3.37 2.27 1.48 1.27 1.14
ALIF 52.2 28.12 17.55 11.84 9.89 8.65 7.54 6.93 6.45 6.15
DGN 69.45 57.82 45.46 36.65 30.25 25.9 22.45 19.47 17.03 14.82

Datasets: SSC

FF

LIF 14.77 4.37 1.44 0.54 0.18 0.05 0.03 0.01 0 0
HeterLIF 7.87 0.54 0.03 0.01 0.01 0.01 0 0 0 0
ALIF 12.61 2.6 0.54 0.1 0.01 0 0 0 0 0
DGN 29.44 12.5 5.58 2.77 1.58 0.93 0.59 0.42 0.33 0.24

R
ec

RNN 20.59 4.96 2.18 1.31 0.73 0.46 0.26 0.19 0.17 0.14
LSTM 29.41 11.2 7.25 5.9 4.9 4.19 3.75 3.24 2.83 2.55
LIF 12.83 2.87 0.86 0.26 0.07 0.04 0.02 0.02 0.01 0.01
HeterLIF 15.53 2.14 0.20 0.04 0 0 0 0 0 0
ALIF 17.1 4.64 1.39 0.49 0.21 0.13 0.05 0.02 0.03 0.01
DGN 30.99 12.63 6.49 3.99 2.77 2.05 1.60 1.26 0.94 0.69
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Table 15: PGD attack full experiment data through different ε.

Net Method 0.003 0.006 0.009 0.012 0.015 0.018 0.021 0.024 0.027 0.03

Datasets: Ti46Alpha

FF

LIF 53.51 10.04 0.11 0 0 0 0 0 0 0
HeterLIF 20.62 1.38 0.05 0.02 0 0 0 0 0 0

ALIF 11.73 0.53 0.03 0 0 0 0 0 0 0
DGN 68.54 31.97 20.58 15.52 11.44 9.48 8.36 7.82 6.95 6.64

R
ec

RNN 0.02 0 0 0 0 0 0 0 0 0
LSTM 41.94 3.09 0.95 1.05 1.28 0.91 0.51 0.26 0.12 0.03

LIF 18.75 1.09 0.56 0.29 0.09 0.03 0.02 0 0.03 0.06
HeterLIF 20.07 4.48 1.78 0.87 0.39 0.3 0.51 0.77 0.96 1.17

ALIF 16.97 1.9 0.42 0.11 0.03 0.08 0.02 0 0.03 0.06
DGN 39.55 10.06 3.02 1.21 0.43 0.54 0.41 0.3 0.3 0.3

Datasets: TIDIGITS

FF

LIF 15.39 0.54 0 0 0 0 0 0 0 0
HeterLIF 43.94 5.64 0.7 0.08 0 0 0 0 0 0

ALIF 19.8 0.33 0 0 0 0 0 0 0 0
DGN 86.76 45.81 22.49 14.75 12.72 11.76 11.15 10.58 10.47 9.41

R
ec

RNN 0 0 0 0 0 0 0 0 0 0
LSTM 60.66 3.71 0.9 0.64 0.12 1.12 0.37 0.16 0 0

LIF 61.79 10.74 1.07 0.16 0 0 0 0 0 0
HeterLIF 36.62 9.06 2.57 0.44 0.16 0.04 0.08 0 0.12 0

ALIF 62.82 10.88 1.07 0.12 0.35 0.04 0 0 0 0
DGN 87.52 44.74 6.84 0.98 0.27 0.08 0.04 0.04 0.04 0

Datasets: SHD

FF

LIF 47.87 29.53 17.78 9.51 5.74 3.18 1.5 0.45 0.17 0
HeterLIF 50.78 30.91 16.92 11.83 9.25 5.65 3.14 2.12 1.15 0.78

ALIF 51.51 32.58 20.64 13.58 6.79 3.42 2.27 1.47 0.97 0.84
DGN 61.59 43.86 25.3 14.22 8.81 5.72 3.79 2.4 1.14 0.63

R
ec

RNN 11.93 3.52 2.73 2.08 2.17 1.38 0.3 0.22 0.04 0
LSTM 32.01 9.54 2.64 1.36 0.61 0.22 0.26 0.17 0.04 0

LIF 30.59 7.29 1.12 0.22 0.09 0.22 0.43 0.79 1.78 2.45
HeterLIF 49.12 28.76 14.37 7.83 5.03 3.67 2.49 1.6 1.07 1.17

ALIF 58.01 34.6 19.72 10.85 6.1 3.44 2.1 1.63 1.5 1.46
DGN 66.13 51.59 31.34 18.56 11.81 7.97 6.32 6.04 4.37 4.05

Datasets: SSC

FF

LIF 10.67 1.35 0.13 0 0 0 0 0 0 0
HeterLIF 3.45 0.03 0 0 0 0 0 0 0 0

ALIF 8.58 0.7 0.04 0 0 0 0 0 0 0
DGN 23.64 5.23 1.6 0.45 0.05 0.01 0 0 0 0

R
ec

RNN 16.87 4.19 1.68 0.38 0.38 0.07 0 0 0 0
LSTM 29.41 11.2 7.25 5.9 4.9 4.19 3.75 3.24 2.83 2.55

LIF 8.35 0.88 0.14 0.02 0 0 0 0 0 0
HeterLIF 10.26 0.53 0.12 0.02 0 0 0 0 0 0

ALIF 12.89 2.14 0.6 0.08 0.03 0 0 0 0 0
DGN 20.55 5.65 2.22 0.74 0.21 0.03 0.02 0.01 0.01 0.01
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Table 16: BIM attack full experiment data through different ε.

Net Method 0.003 0.006 0.009 0.012 0.015 0.018 0.021 0.024 0.027 0.03

Datasets: Ti46Alpha

FF

LIF 53.16 10.18 0 0 0 0 0 0 0 0
HeterLIF 22.03 1.52 0.12 0 0 0 0 0 0 0
ALIF 55.25 11.89 0.61 0.02 0 0 0 0 0 0
DGN 68.35 13.98 0.23 0.02 0 0 0 0 0 0

R
ec

RNN 0.02 0.02 0 0 0 0 0 0 0 0
LSTM 42.92 3.78 0.86 0.29 0.18 0.24 0.08 0.03 0.08 0.08
LIF 17.31 1.31 0.76 0.33 0.12 0.03 0.03 0.03 0.02 0.02
HeterLIF 19.78 4.86 1.8 0.97 0.62 0.49 0.29 0.11 0.09 0.08
ALIF 16.48 1.37 0.5 0.15 0.05 0.12 0.17 0.05 0.03 0
DGN 39.79 10.54 3.24 1.33 0.89 0.51 0.45 0.32 0.32 0.33

Datasets: TIDIGITS

FF

LIF 15.95 0.41 0 0 0 0 0 0 0 0
HeterLIF 43.68 5.64 1.84 0.16 0.04 0 0 0 0 0
ALIF 19.42 0.25 0 0 0 0 0 0 0 0
DGN 86.88 45.93 23.26 15.39 13.29 12.27 12 11.84 11.65 11.73

R
ec

RNN 0 0 0 0 0 0 0 0 0 0
LSTM 61.01 6.06 1.45 1.29 0.59 0.66 0.43 0.27 0.27 0.27
LIF 60.7 11.72 1.62 0.16 0.08 0.08 0.04 0 0 0
HeterLIF 35.74 9.23 1.88 0.2 0.04 0 0.08 0.04 0 0
ALIF 63.18 12.2 0.72 0.08 0.41 0.08 0.08 0.08 0 0
DGN 87.68 46.45 9.65 2.15 0.51 0.16 0.08 0.08 0.08 0.08

Datasets: SHD

FF

LIF 47.92 29.75 18.59 11.15 7.34 4.57 2.88 1.65 1.04 0.86
HeterLIF 50.89 30.87 16.72 12.65 10.01 7.28 4.98 3.66 2.66 1.73
ALIF 51.57 32.67 21.03 14.62 8.68 4.98 2.88 1.88 1.1 0.8
DGN 61.44 44.05 28.66 18.23 11.93 7.65 5.09 3.77 2.54 1.8

R
ec

RNN 13.94 3.93 2.34 1.27 0.99 0.86 0.6 0.45 0.22 0.17
LSTM 33.37 13.49 5.56 2.12 0.63 0.09 0 0 0 0
LIF 31.45 8.9 2.24 0.84 0.44 0.23 0.09 0.09 0.04 0
HeterLIF 49.1 29.85 16.03 10.46 8.06 6.43 5.32 4.14 2.99 2.03
ALIF 58.31 35.19 21.12 13.31 9.31 6.75 5.32 4.79 4.31 4.09
DGN 66.34 51.3 31.8 21.54 115.4 11 7.89 6.07 4.8 3.55

Datasets: SSC

FF

LIF 10.71 1.48 0.18 0.01 0 0 0 0 0 0
HeterLIF 3.59 0 0 0 0 0 0 0 0 0
ALIF 8.56 0.84 0.04 0 0 0 0 0 0 0
DGN 23.72 5.89 1.9 0.62 0.13 0.03 0.01 0 0 0

R
ec

RNN 17.23 4.65 1.81 0.51 0.15 0.02 0.01 0.01 0.01 0
LSTM 18.78 4.08 1.41 0.46 0.2 0.13 0.09 0.06 0.04 0.04
LIF 8.14 0.93 0.23 0.06 0.01 0 0 0 0 0
HeterLIF 10.31 0.59 0.09 0.01 0 0 0 0 0 0
ALIF 12.92 2.26 0.62 0.15 0.02 0 0 0 0 0
DGN 21.12 5.93 2.36 0.96 0.38 0.17 0.07 0.06 0.05 0.03
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