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Abstract001

Optimizing the presentation of search and rec-002
ommendation results is crucial to enhancing003
user experience and engagement. Whole Page004
Optimization (WPO) plays a pivotal role in this005
process, as it directly influences how informa-006
tion is surfaced to users. While Pre-trained007
Large Language Models (LLMs) have demon-008
strated remarkable capabilities in generating009
coherent and contextually relevant content, fine-010
tuning these models for complex tasks like011
WPO presents challenges. Specifically, the012
need for extensive human-annotated data to mit-013
igate issues such as hallucinations and model014
instability can be prohibitively expensive, espe-015
cially in large-scale systems that interact with016
millions of items daily. In this work, we address017
the challenge of fine-tuning LLMs for WPO by018
using user feedback as the supervision. Unlike019
manually labeled datasets, user feedback is in-020
herently noisy and less precise. To overcome021
this, we propose a reward-based fine-tuning022
approach, PageLLM, which employs a mixed-023
grained reward mechanism that combines page-024
level and item-level rewards. The page-level025
reward evaluates the overall quality and coher-026
ence, while the item-level reward focuses on027
the accuracy and relevance of key recommenda-028
tions. This dual-reward structure ensures that029
both the holistic presentation and the critical030
individual components are optimized. We val-031
idate PageLLM on both public and industrial032
datasets. PageLLM outperforms baselines and033
achieves a 0.44% GMV increase in an online034
A/B test with over 10 million users, demonstrat-035
ing its real-world impact. The codes and data036
are available at this link.037

1 Introduction038

In the digital age, the presentation of search and rec-039

ommendation results plays a pivotal role in shaping040

user experience and engagement (Wu et al., 2022;041

Bai et al., 2023). With the explosive growth of on-042

line information, Whole Page Optimization (WPO)043

Figure 1: Which is better? Different ranking strategies
lead to varying outcomes in diversity, interest alignment,
redundancy, and ranking quality.

has emerged as a critical task, aiming to surface the 044

most relevant and diverse content in a cohesive and 045

user-friendly manner (Wang et al., 2016; Ding et al., 046

2019). Recent advancements in Pre-trained Large 047

Language Models (LLMs) have demonstrated re- 048

markable capabilities in generating coherent and 049

contextually relevant content (Zhao et al., 2023), 050

offering a promising solution for addressing the 051

challenges of WPO. However, applying these mod- 052

els to web-scale WPO tasks introduces significant 053

complexities, particularly in balancing relevance, 054

diversity, and the rank of items. 055

This research focuses on solving the web-scale 056

WPO problem by leveraging the power of pre- 057

trained LLMs to generate comprehensive and user- 058

centric page presentations. Our goal is to optimize 059

page layouts by considering multiple factors, in- 060

cluding ranking (to ensure the most relevant items 061

are prioritized), relevance (to align content with 062

user intent), and diversity (to provide a rich and 063

varied set of information). By achieving this, we 064

aim to create a seamless and efficient user experi- 065

ence in search and recommendation scenarios, as 066

illustrated in Figure 1. 067

Despite the potential of LLMs, applying them 068
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to WPO presents several challenges. First, fine-069

tuning these models for complex tasks typically070

requires extensive human-annotated data, which is071

costly and impractical for large-scale systems that072

interact with millions of items daily (Hadi et al.,073

2023). The lack of sufficient annotated data of-074

ten leads to issues such as model hallucinations075

(generating factually inconsistent content) and in-076

stability (Zhang et al., 2023b). Additionally, user077

feedback, while abundant, is inherently noisy and078

less precise than manually labeled data, making079

traditional supervised fine-tuning methods difficult080

to apply directly.081

Second, existing approaches often fail to account082

for the critical role of key items in determining083

overall page quality. For instance, in e-commerce,084

product images, and pricing information are piv-085

otal in influencing user decisions. However, current086

page-level evaluation methods primarily focus on087

syntactic and semantic coherence, neglecting the088

impact of these key elements on user satisfaction.089

This oversight can result in suboptimal page pre-090

sentations that fail to meet user expectations.091

Our unique perspective is to leverage user feed-092

back for RLHF fine-tuning and a mixed-grained093

reward mechanism to fine-tune pre-trained LLMs,094

optimizing both overall page coherence and key095

item effectiveness for web-scale WPO.096

To address these challenges, we propose a097

reward-based fine-tuning framework that leverages098

user feedback to optimize pre-trained LLMs. Un-099

like traditional supervised methods, our approach100

constructs a golden item list for each user based on101

feedback (e.g., review scores), considering factors102

such as ranking, diversity, and redundancy. We103

then generate non-preferred lists that are inferior104

to the golden list in these aspects. Using these list105

pairs, we train a reward model and optimize the106

LLM through Reinforcement Learning from Hu-107

man Feedback (RLHF). This method allows us to108

effectively utilize noisy user feedback, making the109

model more aligned with real-world user needs.110

Furthermore, we introduce a mixed-grained re-111

ward mechanism that combines page-level and112

item-level (Xu et al., 2024a) rewards. The page-113

level reward evaluates the overall coherence and114

quality of the page, ensuring a smooth and logically115

consistent presentation. On the other hand, the116

item-level reward focuses on the accuracy and rele-117

vance of key recommendations, ensuring that crit-118

ical elements are appropriately emphasized. This119

dual-reward structure enables a more nuanced opti-120

mization of WPO, balancing holistic page quality 121

with the individual recommendation effectiveness. 122

We evaluated PageLLM on public and industrial 123

datasets. In Amazon Review data sets, it surpasses 124

baselines in key recommendation metrics and per- 125

forms better in ranked, diversity, and redundancy 126

metrics. In an industrial A/B test with more than 10 127

million users, it improves GMV by 0.44% and im- 128

proves user engagement, proving its effectiveness 129

in large-scale applications. 130

In summary, our main contributions are: 131

Reward-based fine-tuning framework. We use 132

user feedback to optimize pre-trained LLMs for 133

WPO, addressing limitations of traditional super- 134

vised methods. Mixed-grained reward mecha- 135

nism. We combine page-level and item-level re- 136

wards to enable more comprehensive and accu- 137

rate page optimization. Extensive evaluation and 138

practical impact. We demonstrate improvements 139

in user engagement and satisfaction through A/B 140

tests, providing a scalable and user-centric solution 141

for WPO. 142

2 Related Work 143

Large Language Models (LLMs) have shown 144

strong capabilities in NLP (Brown et al., 2020; 145

Devlin et al., 2019) and have been applied in do- 146

mains such as healthcare (Li et al., 2024; Wang 147

et al., 2024a), education (Wang et al., 2022), cre- 148

ative writing (Franceschelli and Musolesi, 2024), 149

and finance (Li et al., 2023a). 150

In recommender systems (Bai et al., 2024b,a; 151

Cai et al., 2024; He et al., 2024), the integra- 152

tion of generative LLMs has enabled new mod- 153

eling strategies. LlamaRec (Yue et al., 2023) 154

and RecMind (Wang et al., 2024c) adopt sequen- 155

tial decision-making and self-inspiring algorithms 156

for personalization. RecRec (Verma et al., 2023) 157

and P5 (Geng et al., 2022) propose optimization- 158

based and unified frameworks for diverse recom- 159

mendation tasks. DOKE (Yao et al., 2023) incor- 160

porates domain-specific knowledge, while RLM- 161

Rec (Ren et al., 2024) enhances graph-based mod- 162

eling. RARS (Di Palma, 2023) combines retrieval 163

and generative modules for sparse scenarios. 164

Prompt engineering techniques such as re- 165

prompting and instruction tuning have improved 166

LLM-based recommendations. ProLLM4Rec (Xu 167

et al., 2024b) emphasizes model selection and 168

prompt tuning. M6-REC (Cui et al., 2022) and 169

PBNR (Li et al., 2023b) use personalized prompts 170
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to boost engagement and relevance.171

Fine-tuning LLMs for recommendation has also172

gained traction. TALLRec (Bao et al., 2023) intro-173

duces dual-stage tuning for task-specific alignment.174

Flan-T5 (Kang et al., 2023) and InstructRec (Zhang175

et al., 2023a) demonstrate instruction-tuned effec-176

tiveness. RecLLM (Friedman et al., 2023) lever-177

ages conversational data, while DEALRec (Lin178

et al., 2024) applies pruning to improve efficiency.179

Further integration with user-item interaction mod-180

eling is explored in (Wang et al., 2024b). Recent181

advancements include Generative Recommenders182

(GRs) (Zhai et al., 2024), which reformulate rec-183

ommendation tasks as sequential transduction prob-184

lems using architectures like HSTU for large-scale,185

high-cardinality data.186

Our work is also inspired by layout optimiza-187

tion for heterogeneous data (Gong et al., 2013)188

and multimedia-aware recommendation (Yi et al.,189

2022), both of which align with the WPO setting.190

3 Problem Definition191

Whole Page Optimization (WPO) in e-commerce192

search and recommendation aims to generate a193

ranked list of products that maximizes user sat-194

isfaction by optimizing presentation factors such195

as relevance, diversity, and redundancy.196

We formulate WPO as a sequence generation197

task, where a pre-trained language model fθ, pa-198

rameterized by θ, generates an optimal product list199

π′ = fθ(q) for a given user query q, which encodes200

the user’s historical item interactions. To align out-201

puts with user preferences, we incorporate multi-202

grained supervision at both the sentence and token203

levels. Let q be a query and I = {i1, i2, . . . , iN}204

the set of available products. A product list is an205

ordered sequence π = [iπ1 , iπ2 , . . . , iπK ], where206

K is the number of displayed items and iπk
∈ I.207

The generation objective is:208

π′ = fθ(q) (1)209

The datasetD contains tuples (q, π, y,F), where210

y ∈ {0, 1} is a coarse-grained feedback for the list211

π, and F is a set of fine-grained feedback signals212

representing beneficial positional adjustments.213

4 Dataset Generation214

We construct a multi-granular dataset based on215

the Amazon Review corpus, designed to support216

both coarse-grained (page-level) and fine-grained217

(token-level) supervision signals for training. Each218

data instance includes a user query, a ground- 219

truth ranked item list, and auxiliary feedback sig- 220

nals derived from user interactions. To facilitate 221

reward modeling, we generate several types of 222

paired item lists that reflect distinct optimization 223

aspects—overall preference, ranking consistency, 224

diversity, and redundancy. These pairs enable the 225

construction of a unified reward function for rein- 226

forcement learning. Full details of dataset construc- 227

tion and supervision signal generation are provided 228

in Appendix A. 229

5 PageLLM 230

Our framework (Figure 2) has three components: 231

(1) supervised fine-tuning, (2) multi-grained reward 232

modeling, and (3) policy optimization. These com- 233

ponents work together to fine-tune a pre-trained 234

LLM for WPO in recommender systems. 235

5.1 Supervised Fine-Tuning 236

To adapt the LLM for the recommendation task, we 237

first perform supervised fine-tuning using a combi- 238

nation of user/item tokenization, meta-information 239

pre-training, and ground truth fine-tuning. 240

5.1.1 User/Item Token 241

To enable the LLM to understand specific users and 242

items, we create unique tokens to represent them 243

(e.g. user_i). These tokens are embedded into 244

latent representation vectors, allowing the model to 245

capture user preferences and item characteristics ef- 246

fectively. They are denoted as eu = Embedding(u) 247

for a user u and ei = Embedding(i) for an item i. 248

5.1.2 Meta Information Pre-training 249

To shift the LLM’s focus toward the WPO task, 250

we pre-train the model using meta-information 251

about users and items. This includes user pro- 252

files, item descriptions, and historical interactions. 253

The prompt used in pre-training is shown in Ap- 254

pendix B. We design two pre-training tasks: 255

(1) rating prediction: The LLM predicts the 256

user’s rating for an item based on review text. The 257

loss function is defined as: 258

Lrating =
1

N

∑
(u,i,r)∈Drating

(r − fθ(u, i))
2 , (2) 259

where r is the ground truth, and fθ(u, i) is the 260

predicted rating. 261

(2) next token prediction: The LLM predicts 262

the next token in the meta information prompts 263
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Figure 2: Overview of PageLLM. The framework incorporates mixed-grained rewards, combining both coarse-
grained (page-level) and fine-grained (token-level) optimization.

of user/item background and interactions. The loss264

function is:265

Lnext = −
T∑
t=1

log p(wt | w<t; θ), (3)266

where wt is the t-th token in the sequence.267

5.1.3 Ground Truth Fine-tuning268

Then, the focus is shifted to recommendations. The269

LLM will predict a list of items. Here, we employ270

the ground truth dataset for Fine-tuning. After pre-271

training, we fine-tune the LLM using a ground truth272

dataset of user-item interactions. The prompt used273

in fine-tuning is also shown in Appendix B. The274

model is trained to generate a ranked list of items275

π = [iπ1 , iπ2 , . . . , iπK ] for a given user u. The loss276

function is:277

Lrank = −
∑

(u,π)∈Drank

log p(π | u; θ), (4)278

where π is the ground truth ranking.279

5.2 Multi-grained Reward Function280

To further optimize the LLM, we design a multi-281

grained reward function that provides both coarse-282

grained (page-level) and fine-grained (token-level)283

feedback. We use the preference pairs for RLHF284

training in Section 4. The training objective is to285

maximize L = R(yp)−R(yl).286

5.2.1 Coarse-Grained Reward287

The coarse-grained reward evaluates the overall288

quality of the generated sequence π′:289

Rc(π
′) = g(π′, u) (5)290

Here, g(π′, q) measures the alignment between291

the generated sequence π′ with the user u.292

5.2.2 Fine-Grained Reward 293

The fine-grained reward provides token-level super- 294

vision, which enables the model to learn from gran- 295

ular feedback and monitor the tiny differences. The 296

generation process is formulated as a Markov Deci- 297

sion Process (MDP) with the tuple ⟨S,A,R, P, γ⟩: 298

• S: State space, with the initial state s1 repre- 299

senting the input query q. 300

• A: Action space, where each action at corre- 301

sponds to a token generated at time step t. 302

• R: Reward function, assigning a reward rt = 303

rϕ(st, at) to each token at in state st. 304

• P : State transition, defining the transition 305

from st to st+1 after generating the token at. 306

• γ: Discount factor, typically set to γ = 1 for 307

this task. 308

The reward for the entire sequence π′ = 309

{a1, a2, . . . , aT } is computed as the average of the 310

token-level rewards: 311

R(π′) =
1

T

T∑
t=1

rt (6) 312

where T is the length of the sequence. 313

To train the token-level reward model, we utilize 314

a loss function inspired by the Bradley-Terry model 315

for preference modeling. Given two sequences πi 316

and πj generated for the same query q, the prefer- 317

ence probability is defined as: 318

p(πi ≻ πj) = σ(R(πi)−R(πj)) (7) 319

where σ is the sigmoid function. The loss function 320

is then defined as the negative log-likelihood of the 321

observed preferences: 322

L = −E(πi,πj)∼D

log σ
 1

Ti

Ti∑
t=1

r
(i)
t − 1

Tj

Tj∑
t=1

r
(j)
t


(8) 323
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Here:324

• D: Dataset of sequence pairs with preference325

annotations.326

• Ti, Tj : Lengths of the sequences πi and πj ,327

respectively.328

• r
(i)
t , r

(j)
t : Token-level rewards for the t-th to-329

ken in πi and πj .330

This fine-grained reward framework provides331

precise token-level feedback, improving the align-332

ment of generated sequences with user preferences.333

5.3 RL from User Feedback334

To further refine the model, we employ Reinforce-335

ment Learning from Human Feedback (RLHF).336

The objective is to maximize the expected cumula-337

tive reward:338

J(θ) = Eπ′ ∼ fθ(u)
[
R(π′)

]
, (9)339

where R(π′) is the multi-grained reward function.340

We use the Proximal Policy Optimization (PPO)341

algorithm to update the model parameters:342

θ ← θ + η∇θJ(θ), (10)343

where η is the learning rate. The policy gradient is344

computed as:345

∇θJ(θ) = Eπ′∼fθ(u)

[
∇θ log fθ(π

′ | q) ·R(π′)
]
.

(11)346

5.4 Deployment347

In the deployment phase, the fine-tuned LLM is in-348

tegrated into the e-commerce platform to generate349

real-time recommendations. Given a user u, the350

model generates a ranked list of items π′ as:351

π′ = argmaxπ fθ(π | u). (12)352

To ensure scalability and efficiency, we deploy353

the model using a distributed inference framework,354

which partitions the computation across multiple355

GPUs. The inference latency is optimized by356

caching frequently accessed user/item embeddings357

and pre-computing meta-information.358

6 Experiments359

We evaluate PageLLM to answer the following360

research questions through a series of main and361

supplementary experiments:362

• RQ1: What is the impact of PageLLM on the363

performance of whole-page optimization?364

• RQ2: Does RLHF negatively affect recom-365

mendation quality?366

• RQ3: Can the overall quality of the recom- 367

mendations be positively evaluated using a 368

comprehensive metric? 369

• RQ4: How do different LLMs influence the 370

overall outcomes? 371

• RQ5: Can PageLLM perform well in indus- 372

trial applications? 373

We also conduct cold-start studies (Appendix F), 374

ablation studies (Appendix G), and the case study 375

(Appendix H) to provide deeper insights. 376

6.1 Experiment Setup 377

We evaluate our method on seven categories of 378

the Amazon Review dataset (McAuley and Yang, 379

2016). The parameters and the implementation of 380

supervised fine-tuning and PPO RLHF are detailed 381

in Appendix D. We implement our method using 382

GPT-2 as the backbone model and run all experi- 383

ments on the GPU server. 384

6.2 Main Results (RQ1) 385

Table 1 presents a comparative analysis of Pag- 386

eLLM with and without the reward mechanism on 387

multiple datasets. It indicate that incorporating 388

reinforcement learning with user feedback signif- 389

icantly improves the performance of recommen- 390

dations. The metrics used in the experiments are 391

detailed in Appendix C. 392

First, in terms of recommendation accuracy, Pag- 393

eLLM outperforms the baseline model across all 394

datasets. Metrics such as Recall@20, Recall@40, 395

and NDCG@100 show noticeable improvements, 396

demonstrating that the reward mechanism effec- 397

tively refines recommendation relevance. The 398

most substantial gains in NDCG@100 are observed 399

in the AM-Luxury, AM-Sports, and AM-Beauty 400

datasets, with increases of 46.8%, 46.7%, and 401

40.8%, respectively. These findings highlight that 402

RLHF optimizes the alignment between user pref- 403

erences and recommended items, particularly in 404

domains with more complex preference structures. 405

The ranked metrics (WAS, PWKT, WMRD, and 406

DPA) remain largely stable across datasets. Pag- 407

eLLM achieves slight improvements in WAS and 408

DPA, indicating better ranking alignment and ac- 409

curacy, while PWKT and WMRD exhibit minimal 410

changes, preserving ranking consistency and re- 411

ducing ranking errors. These results suggest that 412

RLHF enhances recommendation quality without 413

disrupting the ranking structure or introducing bias. 414

In addition, both diversity and redundancy are 415

improved. The ILD metric, which measures intra- 416
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Table 1: Performance comparison of PageLLM with and without reward mechanisms across multiple datasets. The
table evaluates recommendation accuracy, ranking quality, diversity, and redundancy.

Dataset Model Recommendation Ranked Diversity Redundancy

Recall@20 ↑ Recall@40 ↑ NDCG@100 ↑ WAS ↑ PWKT ↑ WMRD ↓ DPA ↑ ILD ↑ Entropy ↑

AM-Instruments PageLLM 0.1698 0.2265 0.1919 0.0168 0.0003 0.0004 0.0165 - -
w/o Reward 0.1605 0.2097 0.1315 0.0157 0.0001 0.0007 0.0155 - -

AM-Sports PageLLM 0.0768 0.1283 0.0726 0.0156 0.0001 0.0003 0.0155 0.0418 0.0528
w/o Reward 0.0722 0.1086 0.0495 0.0146 0.0000 0.0004 0.0132 0.0394 0.0498

AM-Luxury PageLLM 0.3087 0.3445 0.3323 0.0160 0.0001 0.0005 0.0157 - -
w/o Reward 0.2910 0.3244 0.2263 0.0149 0.0001 0.0006 0.0137 - -

AM-Beauty PageLLM 0.1590 0.2177 0.1313 0.0156 0.0002 0.0006 0.0154 0.0412 0.0514
w/o Reward 0.1435 0.1995 0.0932 0.0115 0.0001 0.0008 0.0103 0.0371 0.0463

AM-Food PageLLM 0.1441 0.1677 0.1125 0.0165 0.0001 0.0004 0.0154 - -
w/o Reward 0.1398 0.1627 0.1019 0.0156 0.0000 0.0007 0.0146 - -

AM-Scientific PageLLM 0.1484 0.1908 0.1480 0.0157 0.0000 0.0001 0.0157 - -
w/o Reward 0.1468 0.1898 0.1071 0.0147 0.0000 0.0001 0.0145 - -

AM-Toys PageLLM 0.1349 0.1873 0.0971 0.0157 0.0001 0.0005 0.0155 0.0358 0.0482
w/o Reward 0.1178 0.1781 0.0754 0.0147 0.0000 0.0006 0.0139 0.0355 0.0477

list diversity, increases in datasets, indicating a417

broader range of recommended items. Similarly,418

the Entropy metric, reflecting category balance,419

shows notable gains, reducing redundancy and pro-420

moting a more even category distribution. These421

improvements demonstrate that RLHF enhances422

recommendation diversity while maintaining rank-423

ing stability, contributing to more balanced and424

effective recommendations.425

Analyzing performance across different datasets,426

it is evident that the impact of RLHF varies de-427

pending on the domain. The AM-Luxury and AM-428

Instruments datasets show the most substantial im-429

provements, likely due to their nuanced user prefer-430

ences. Meanwhile, datasets such as AM-Food and431

AM-Scientific exhibit smaller but consistent im-432

provements, suggesting that the effect of RLHF is433

more pronounced in domains with inherently com-434

plex recommendation patterns. AM-Toys and AM-435

Sports also demonstrate moderate increases, indi-436

cating that reinforcement learning helps refine rec-437

ommendations even in broader-interest categories.438

Overall, these results confirm that RLHF con-439

tributes positively to recommendation quality, par-440

ticularly in terms of accuracy and relevance, with-441

out significantly affecting ranking stability. Future442

work could explore how RLHF influences diversity443

and redundancy to provide a more holistic evalua-444

tion of whole-page optimization.445

6.3 Recommendation Study (RQ2)446

To investigate whether RLHF negatively impacts447

recommendation performance, we compare Pag-448

eLLM with several baseline models (details in449

Appendix E). The results presented in Table 2450

demonstrate that PageLLM consistently achieves 451

the highest performance across various datasets and 452

metrics, indicating that RLHF does not degrade rec- 453

ommendation quality but rather enhances it. 454

Across most datasets, PageLLM achieves the 455

highest Recall@20, Recall@40, and NDCG@100 456

scores. Notably, in the AM-Instruments dataset, 457

PageLLM attains a NDCG@100 of 0.1919, sig- 458

nificantly outperforming the second-best model 459

(FDSA, 0.1080). Similarly, in the AM-Luxury 460

dataset, PageLLM reaches an NDCG@100 of 461

0.3323, surpassing the best-performing baseline 462

(FDSA, 0.2107) by a substantial margin. These 463

results suggest that RLHF not only maintains but 464

also improves the overall ranking quality of rec- 465

ommended items. This improvement in NDCG 466

can be attributed to the reward mechanism aligning 467

recommendations more closely with user prefer- 468

ences, ensuring that highly relevant items appear 469

in top-ranked positions. 470

Further examining Recall@20 and Recall@40, 471

PageLLM exhibits strong performance improve- 472

ments. In AM-Sports, PageLLM achieves a Re- 473

call@40 of 0.1283, outperforming the best baseline 474

(MD-CVAE, 0.1180). Likewise, in AM-Beauty, 475

PageLLM attains a Recall@20 of 0.1590, surpass- 476

ing the second-best baseline (SASRec, 0.1503). 477

These consistent improvements across different 478

datasets indicate that RLHF effectively optimizes 479

recommendation relevance without introducing ad- 480

verse effects. 481

Analyzing dataset-specific trends, PageLLM 482

demonstrates the most significant advantage in AM- 483

Luxury and AM-Instruments, likely due to the nu- 484

anced and highly personalized nature of user pref- 485
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Table 2: Performance comparison of PageLLM and baseline models on the Amazon Review Dataset. The table
reports Recall@20, Recall@40, and NDCG@100 across multiple domains, evaluating the effectiveness of different
recommendation models.

Dataset Metric Multi-VAE MD-CVAE LightGCN BERT4Rec S3Rec UniSRec FDSA SASRec GRU4Rec RecMind HSTU PageLLM

AM-Instruments
Recall@20 0.1096 0.1398 0.1195 0.1183 0.1352 0.1684 0.1382 0.1483 0.1271 0.1315 0.1149 0.1698
Recall@40 0.1628 0.1743 0.1575 0.1531 0.1767 0.2239 0.1787 0.1935 0.1660 0.1930 0.1428 0.2265
NDCG@100 0.0735 0.1040 0.0985 0.0922 0.0894 0.1075 0.1080 0.0934 0.0998 0.1201 0.1083 0.1919

AM-Sports
Recall@20 0.0659 0.0714 0.0677 0.0521 0.0616 0.0714 0.0681 0.0541 0.0720 0.0614 0.0713 0.0768
Recall@40 0.0975 0.1180 0.0973 0.0701 0.0813 0.1143 0.0866 0.0739 0.1086 0.1044 0.1094 0.1283
NDCG@100 0.0446 0.0514 0.0475 0.0305 0.0438 0.0504 0.0475 0.0361 0.0498 0.0389 0.0238 0.0726

AM-Luxury
Recall@20 0.2306 0.2771 0.2514 0.2076 0.2241 0.3091 0.2759 0.2550 0.2126 0.2215 0.1879 0.3087
Recall@40 0.2724 0.3206 0.3004 0.2404 0.2672 0.3675 0.3176 0.3008 0.2522 0.2898 0.2145 0.3445
NDCG@100 0.1697 0.2064 0.1947 0.1617 0.1542 0.2010 0.2107 0.1965 0.1623 0.2017 0.1773 0.3323

AM-Beauty
Recall@20 0.1295 0.1472 0.1429 0.1126 0.1354 0.1462 0.1447 0.1503 0.0997 0.1445 0.0925 0.1590
Recall@40 0.1720 0.2058 0.1967 0.1677 0.1789 0.1898 0.1875 0.2018 0.1528 0.1863 0.1137 0.2177
NDCG@100 0.0835 0.0871 0.0890 0.0781 0.0867 0.0907 0.0834 0.0929 0.0749 0.0847 0.0633 0.1313

AM-Food
Recall@20 0.1062 0.1170 0.1149 0.1036 0.1157 0.1423 0.1099 0.1171 0.1140 0.0936 0.949 0.1441
Recall@40 0.1317 0.1431 0.1385 0.1284 0.1456 0.1661 0.1317 0.1404 0.1389 0.1107 0.1218 0.1677
NDCG@100 0.0727 0.0863 0.0853 0.0835 0.0926 0.1024 0.0904 0.0942 0.0910 0.0777 0.0672 0.1125

AM-Scientific
Recall@20 0.1069 0.1389 0.1385 0.0871 0.1089 0.1492 0.1188 0.1298 0.0849 0.0924 0.1089 0.1484
Recall@40 0.1483 0.1842 0.1857 0.1160 0.1541 0.1954 0.1547 0.1776 0.1204 0.1246 0.1545 0.1908
NDCG@100 0.0766 0.0872 0.0834 0.0606 0.0715 0.1056 0.0846 0.0864 0.0594 0.0749 0.0977 0.1480

AM-Toys
Recall@20 0.1076 0.1107 0.1096 0.0853 0.1064 0.1110 0.0972 0.0869 0.0657 0.1126 0.0986 0.1349
Recall@40 0.1558 0.1678 0.1558 0.1375 0.1524 0.1457 0.1268 0.1146 0.0917 0.1564 0.1407 0.1873
NDCG@100 0.0781 0.0812 0.0775 0.0532 0.0665 0.0638 0.0662 0.0525 0.0439 0.0584 0.0358 0.0971

erences in these domains. In contrast, for datasets486

such as AM-Toys and AM-Scientific, the perfor-487

mance gap between PageLLM and the baselines488

is narrower, suggesting that in more structured or489

less complex preference spaces, traditional meth-490

ods still perform reasonably well. However, Pag-491

eLLM remains the top performer, reinforcing the492

robustness of RLHF-based optimization.493

Overall, the results indicate that RLHF does not494

negatively impact recommendation performance;495

instead, it enhances the accuracy and quality of496

recommendations across diverse datasets. By497

leveraging reinforcement learning to refine pref-498

erence modeling, PageLLM achieves superior per-499

formance compared to state-of-the-art baselines,500

validating the effectiveness of RLHF in whole-page501

recommendation tasks.502

6.4 LLM Judgement (RQ3)503

To evaluate the overall quality of recommendations,504

we conduct a comparative analysis using Large505

Language Model (LLM) judgment based on the506

win rate metric. The win rate represents the pro-507

portion of cases where PageLLM-generated recom-508

mendations are preferred over the baseline model509

recommendations.510

From Figure 3, it is evident that PageLLM511

achieves a significantly higher win rate compared512

to the baseline, as indicated by the dominant red bar513

in the visualization. The preference for PageLLM514

suggests that its recommendations align better with515

human evaluators’ expectations in terms of rele-516

Figure 3: LLM-based preference judgment between
PageLLM and baseline.

vance, diversity, and overall quality. Although a 517

small fraction of cases favors the baseline (repre- 518

sented by the blue section), the overwhelming pref- 519

erence for PageLLM confirms the effectiveness 520

of reinforcement learning with human feedback 521

(RLHF) in refining recommendation quality. 522

This result aligns with the findings from previous 523

sections, where PageLLM demonstrated superior 524

performance across multiple datasets and evalua- 525

tion metrics. The LLM-based assessment further 526

reinforces the claim that PageLLM enhances rec- 527

ommendation effectiveness, making it a more suit- 528

able model for whole-page optimization. 529

6.5 Base LLM Study (RQ4) 530

In our study, we initially implemented PageLLM 531

using GPT-2 as the backbone model. However, 532

given the rapid advancements in open-sourced 533

LLMs, we want to identify the most suitable LLM 534

backbone that achieves an optimal balance between 535

performance and cost. To this end, we explored 536

Llama 3.2, the latest model in the Llama family, 537

which employs knowledge distillation techniques 538

to deliver competitive performance with fewer pa- 539
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rameters. Specifically, we implemented PageLLM540

using the Llama3.2-1B model and conducted a541

comprehensive comparison of performance and542

cost metrics, including training time and memory543

usage, against the GPT-2 backbone. The detailed544

results are presented in Table 3.545

Table 3: GPT-2 vs. Llama3.2-1B: performance (Recall),
training time, and memory usage (GPU).

Category Metric GPT-2 Llama3.2-1B

Performance
Recall@20 0.1698 0.1757
Recall@40 0.2265 0.2414

Time
Pre-training 3h 22m 57s 73h 24m 46s
Fine-tuning 18 s/epoch 1m 58s/epoch

Memory GPU 8.94 GB (Full) 15.16 GB (LoRA)

From the results, it is evident that the Llama3.2-546

1B backbone, with its larger parameter size, de-547

livers superior performance compared to GPT-2.548

However, this performance gain comes at a signifi-549

cant cost in terms of computational resources. The550

pre-training time for Llama3.2-1B is substantially551

higher. Similarly, fine-tuning Llama3.2-1B takes552

nearly 2 minutes per epoch, whereas GPT-2 com-553

pletes an epoch in just 18 seconds. Moreover, the554

memory requirements for Llama3.2-1B are notably555

higher, even when employing Low-Rank Adapta-556

tion (LoRA) techniques to reduce memory usage.557

In conclusion, while Llama3.2-1B demonstrates558

better performance, GPT-2 offers a more favor-559

able performance-cost trade-off. GPT-2’s signif-560

icantly lower training time and memory require-561

ments make it a more practical choice for scenarios562

where computational resources are constrained.563

6.6 Industrial Dataset Experiment (RQ5)564

In the online experiment, our aim is to evaluate565

how the proposed approach can improve search566

accuracy in the production environment. The on-567

line method utilizes the proposed approach to pro-568

duce embeddings of listings which are appended as569

an additional feature to measure the WPO utility,570

which relieves the deployment requirement of GPU571

serving as it becomes model agnostic and can be572

fitted with traditional CPU serving in the process573

of online inference.574

During the online test, we deploy the proposed575

algorithm globally to a commercial E-Commerce576

search engine as the treatment method and ran-577

domly assign 50% traffic to the treatment group.578

The online test has been running for over 1 week,579

and the total number of unique users is greater than580

10 million. We focus on several key metrics: 581

• GMV refers to the total grand merchandise 582

value. 583

• CTR refers to the average click-through rate 584

of items exposed to both groups. 585

• Avg Purchases refers to the average number 586

of purchases of users in both groups. 587

• Session Failure Rate refers to rate of sessions 588

being abandoned by customers. 589

• Session Purchase Rate refers to the rate of 590

sessions that end up with a customer purchase. 591

Table 4: Online A/B testing results with over 10 million
unique users. We show the percentage of improvement
on different metrics of the treatment group.

GMV CTR Avg Purchases Ses. Failure Ses. Purchase

Treatment ↑ 0.44%∗∗ ↑ 0.14%∗∗ ↑ 1.01%∗∗ ↓ 0.08% ↑ 0.24%∗∗

* ** indicates the statistical significance level of 0.01.

The online A/B testing results are shown in Ta- 592

ble 4. All key metrics have been lifted in the 593

treatment group, except that the Session Failure 594

Rate was improved to be lower than the control 595

group without being statistically significant. In 596

particular, the key metric GMV has been signif- 597

icantly improved by 0.44% globally, while other 598

up-funnel metrics such as average purchases and 599

click-through rate have also been improved in a 600

consistent manner, proving that the gain is trust- 601

worthy and it is not false positive. 602

7 Conclusion 603

Whole Page Optimization (WPO) is essential for 604

improving user experience in search and recom- 605

mendation systems, yet fine-tuning Large Lan- 606

guage Models (LLMs) for this task is challeng- 607

ing due to costly annotations, model instability, 608

and noisy user feedback. To address these issues, 609

we propose PageLLM, a reward-based fine-tuning 610

framework that leverages Reinforcement Learn- 611

ing from Human Feedback (RLHF) and a mixed- 612

grained reward mechanism to optimize both page- 613

level coherence and item-level relevance. By inte- 614

grating real-world user feedback, PageLLM effec- 615

tively enhances recommendation quality without 616

relying on expensive human annotations. Extensive 617

experiments on Amazon Review datasets and an 618

industrial-scale A/B test with over 10 million users 619

demonstrate its superiority over baselines, with a 620

0.44% increase in GMV and significant improve- 621

ments in user engagement. 622
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Limitations623

While our approach demonstrates promising results624

across multiple datasets and settings, several limita-625

tions remain, which we outline here to guide future626

research directions: (1) Our evaluation is primar-627

ily conducted within single-domain settings, and628

the generalizability to cross-domain tasks has not629

been extensively explored. (2) The reward mecha-630

nism may be sensitive to noisy or implicit feedback631

signals, which can affect optimization quality. (3)632

The model assumes relatively stable user prefer-633

ences and does not explicitly adapt to dynamic634

or rapidly changing behaviors. (4) While the pro-635

posed method shows robustness in cold-start simu-636

lations, further validation is needed for long-tail or637

rapidly evolving item pools. (5) Our current imple-638

mentation focuses on textual inputs; incorporating639

multimodal signals such as images or structured640

metadata is a promising direction.641
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A Dataset Generation 895

For the WPO task, our goal is to train an LLM- 896

based recommender system using user-item inter- 897

action data. This data will offer both page-level 898

(coarse-grained) and token-level (fine-grained) su- 899

pervision signals, which are crucial for the subse- 900

quent training and optimization of the model. 901

A.1 Dataset Construction 902

For the WPO task, we construct a dataset using the 903

Amazon Review Dataset, providing both page-level 904

(coarse-grained) and token-level (fine-grained) su- 905

pervision signals. Let U and I denote the sets of 906

users and items, respectively. For each user u ∈ U , 907

we construct an item list Iu as the target output. 908

Product rankings in e-commerce platforms are 909

influenced by multiple factors, such as click- 910

through rate (CTR) and conversion rate. When 911

products have identical scores, their positions in the 912

recommendation list π may be randomized, though 913

minor positional shifts can significantly impact user 914

engagement. 915

By analyzing these variations, we extract fine- 916

grained feedback: 917

F =
{
(i, k, k′) | ∆E(i, k → k′) ̸= 0

}
(13) 918

This dataset structure ensures PageLLM learns 919

both high-level ranking preferences and subtle 920

position-based optimizations. 921

A.2 Ground Truth 922

First, we collect the ground truth item lists, which 923

are considered the optimal solutions. We take into 924

account factors such as relationship, ranking, di- 925

versity, and redundancy when constructing these 926

lists. 927

(1) User-Item Connection Graph: We generate 928

a user-item connection table T , where each entry 929

(u, i, rui) ∈ T , with u ∈ U , i ∈ I, and rui repre- 930

senting the rating score of user u for item i. (2) 931

Item Selection and Clustering: We select items 932

for which rui > 3 to represent a positive relation- 933

ship. Using these scores, we cluster the items in 934

the list Iu for each user u and rank them in de- 935

scending order of the scores. Let I+u denote the set 936

of selected items for user u. (3) Input and Label 937

Set Splitting: We split the item list Iu into an in- 938

put set Iinu and a label set Ioutu based on coarse - 939

grained ranking. We ensure that both the input and 940

label sets contain different levels of rating scores. 941
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(4) Fine-Grained Re-ranking and Redundancy942

Handling: For each user u in the label set Ioutu , we943

re-rank the items within the same score group using944

fine-grained scores si. Let Ui be the set of users945

who have rated item i. Then, si = 1
|Ui|

∑
u∈Ui

rui.946

We also remove redundant items and prioritize di-947

versity over fine-grained scores.948

These ranked item lists are considered the949

ground truth for the WPO task, corresponding to950

the state with the lowest potential energy, which951

represents the best solution.952

The input prompts include the user ID u and his-953

torical interactions (items with their corresponding954

scores), while the output is the item list Iu that955

takes into account relationship, ranking, diversity,956

and redundancy.957

A.3 Paired Preference Data958

A.3.1 Preference Pairs959

Based on the ground truth item list Igtu , we cre-960

ate preference pairs (Igtu , Inpu ) to evaluate the rec-961

ommender quality. The preferred item list Igtu is962

the ground truth one, while the non-preferred item963

list Inpu contains items with rating scores rui < 3.964

These pairs are used only for page-level (coarse-965

grained) supervision.966

A.3.2 Ranked Pairs967

Based on the ground truth item list Igtu , we create968

ranked pairs (Igtu , Iru) to consider the ranking as-969

pect. The preferred item list Igtu is the ground truth970

one, while the non-preferred item list Iru is obtained971

by switching items in Igtu . This non-preferred list972

has a higher potential energy and is less stable. Be-973

sides page-level (coarse-grained) supervision, the974

switched items provide token-level (fine-grained)975

supervision.976

A.3.3 Diversity Pairs977

Based on the ground truth item list Igtu , we create978

diversity pairs (Igtu , Idu) to consider the diversity as-979

pect. The construction of these pairs is the same as980

that of the ranked pairs. These pairs also serve for981

both page-level (coarse-grained) and token-level982

(fine-grained) supervision.983

A.3.4 Redundancy Pairs984

Based on the ground truth item list Igtu , we create985

redundancy pairs (Igtu , Irdu ) to consider the redun-986

dancy aspect. The construction of these pairs is987

the same as that of the ranked pairs. These pairs988

also provide both page-level (coarse-grained) and 989

token-level (fine-grained) supervision. 990

B Language Prompts 991

B.1 Pre-training Prompts 992

Figure 4: Pre-training prompt templates derived from
recommendation data.

To enhance the model’s understanding of rec- 993

ommendation semantics before fine-tuning, we de- 994

sign a set of structured pre-training prompts de- 995

rived from user-item metadata and interaction logs. 996

These prompts are categorized into four types, as 997

illustrated in Figure 4: 998

User/Item Contents: Incorporates basic item at- 999

tributes such as title, brand, category, and descrip- 1000

tion to build item-aware representations. 1001

1st Order User-Item Relationship: Captures ex- 1002

plicit user feedback (e.g., reviews or explanations) 1003

associated with specific items. 1004

2nd Order User-Item Relationship: Reflects co- 1005

occurrence patterns among items with shared at- 1006

tributes (e.g., same brand or category). 1007

User-Item Interaction: Encodes historical interac- 1008

tions as token sequences for behavioral modeling. 1009

These prompts are used for the pre-training ob- 1010

jective to help the LLM develop task-relevant rep- 1011

resentations grounded in user and item semantics. 1012

B.2 Fine-tuning Prompts 1013

Personalized Predictive Prompts & Target: To 1014

enable the LLM to generate user-specific ranked 1015

item lists, we construct predictive prompts that con- 1016

dition on a user’s past interactions. As illustrated 1017

in Figure 5, each input prompt includes a user to- 1018

ken and a sequence of previously interacted items, 1019
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Figure 5: Fine-tuning prompt template for personalized
ranking prediction.

followed by a masked target position. The model1020

is trained to generate the next likely item (or list of1021

items) that the user will interact with. This struc-1022

ture directly supports the learning objective defined1023

in Equation (9), allowing the model to learn from1024

explicit ranking supervision.1025

C Multi-Purpose Metric1026

We propose an evaluation framework that encom-1027

passes recommendation performance, ranking qual-1028

ity, diversity, and redundancy.1029

C.1 Recommendation Metric1030

Recall. Measures the ability of the recommenda-1031

tion system to cover items of interest to the user.1032

Recall@K =
Number of relevant items in top K

Total number of relevant items
(14)1033

NDCG. Evaluates ranking quality, giving higher1034

weight to items appearing earlier in the list.1035

NDCG@K =
DCG@K
IDCG@K

(15)1036

DCG@K =

K∑
i=1

2reli − 1

log2(i+ 1)
(16)1037

C.2 Ranked Metric1038

Weighted Alignment Score (WAS) : Evaluates1039

alignment considering position importance.1040

WAS =
1

N

N∑
i=1

wi ·max

(
0, 1−

|rgen,i − rreal,i|
max_shift

)
(17)1041

Position-Weighted Kendall Tau (PWKT) :1042

Measures ranking consistency with position-based1043

weights.1044

PWKT =

∑
i,j wij · δ(i, j)∑

i,j wij
, wij = wi · wj

(18)

1045

Weighted Mean Rank Difference (WMRD) : 1046

Computes the weighted average of ranking differ- 1047

ences. 1048

WMRD =

∑N
i=1wi · |rgen,i − rreal,i|∑N

i=1wi

(19) 1049

Discounted Positional Accuracy (DPA) : Eval- 1050

uates ranking accuracy with logarithmic penalties. 1051

DPA =

∑N
i=1

wi
1+log2(1+|rgen,i−rreal,i|)∑N

i=1wi

(20) 1052

C.3 Diversity Metric 1053

Intra-List Diversity (ILD) : Measures pairwise 1054

item similarity. 1055

ILD = 1− 1

|L|(|L| − 1)

∑
i ̸=j

sim(i, j) (21) 1056

C.4 Redundancy Metric 1057

Entropy : Evaluates category balance. 1058

H = −
N∑
i=1

pi log pi (22) 1059

D Experimental Setup 1060

D.1 Dataset Preprocessing 1061

We use the Amazon Review dataset (McAuley and 1062

Yang, 2016) and select seven categories: Instru- 1063

ments, Sports, Luxury, Beauty, Food, Scientific, 1064

and Toys. We binarized the user-item interaction 1065

matrix by review scores. If the score is greater than 1066

3, there is a connection between a user and an item. 1067

For each user in the dataset, we randomly select 1068

80% of interactions for training, 10% for valida- 1069

tion, and 10% for testing, with at least one sample 1070

selected in both the validation and test sets. 1071

D.2 Implementation Details 1072

We use GPT-2 as the backbone language model 1073

for PageLLM. The model has a token embedding 1074

dimension of 768 and supports a vocabulary of 1075

50,257 natural language tokens. The maximum 1076

input sequence length is set to 1,024 tokens. 1077

For fine-tuning with reinforcement learning, we 1078

adopt Proximal Policy Optimization (PPO). The 1079

model is optimized using a clipped surrogate ob- 1080

jective with a clip range of 0.2. We set the learning 1081

rate to 1× 10−5, use a batch size of 64, and apply 1082

reward normalization to stabilize training. A KL- 1083

divergence penalty is added to constrain deviation 1084
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from the pre-trained policy. Training is performed1085

for 5 epochs on each dataset.1086

All experiments were conducted on Ubuntu1087

22.04.3 LTS OS, Intel(R) Core(TM) i9-13900KF1088

CPU, with the framework of Python 3.11.5 and Py-1089

Torch 2.0.1. All data are computed on an NVIDIA1090

GeForce RTX 4090 GPU, which features 24,5761091

MiB of memory with CUDA version 12.2.1092

E Baselines1093

We compare with the following baseline models:1094

• Multi-VAE (Liang et al., 2018): A variational1095

autoencoder-based model for collaborative fil-1096

tering with implicit feedback.1097

• MD-CVAE (Zhu and Chen, 2022): A mutu-1098

ally dependent conditional variational autoen-1099

coder designed for personalized recommenda-1100

tion.1101

• LightGCN (He et al., 2020): A simplified and1102

efficient graph convolutional network for rec-1103

ommendation tasks that removes unnecessary1104

components from GCNs.1105

• BERT4Rec (Sun et al., 2019): A sequential1106

recommendation model using the BERT ar-1107

chitecture to capture bidirectional context.1108

• S3Rec (Zhou et al., 2020): A self-supervised1109

learning framework that enhances sequential1110

recommendation via multi-level data augmen-1111

tation.1112

• UniSRec (Hou et al., 2022): A unified user1113

representation model for sequential recom-1114

mendation leveraging contrastive learning1115

techniques.1116

• FDSA (Zhang et al., 2019): A feature dis-1117

tillation and self-attention based sequential1118

recommendation model.1119

• SASRec (Kang and McAuley, 2018): A se-1120

quential recommendation model based on the1121

self-attention mechanism from Transformer.1122

• GRU4Rec (Hidasi et al., 2015): A session-1123

based recommendation model using GRU-1124

based recurrent neural networks.1125

• HSTU (Zhai et al., 2024): Reformulate rec-1126

ommendation tasks as sequential transduction1127

problems using architectures like HSTU for1128

large-scale, high-cardinality data.1129

• RecMind (Wang et al., 2024c): Introduces1130

a self-inspiring LLM agent capable of zero-1131

shot personalized recommendations through1132

external knowledge and tool usage.1133

F Cold-Start Study 1134

Figure 6: Performance comparison under cold-start set-
ting on the AM-Toys dataset.

To assess robustness under limited data, we sim- 1135

ulate a cold-start scenario by reducing the training 1136

data by half on the AM-Toys dataset. Figure 6 1137

compares the performance of PageLLM, Multi- 1138

VAE, and SASRec with and without cold-start con- 1139

straints. 1140

PageLLM shows a relatively small performance 1141

degradation, with Recall@20 and Recall@40 1142

dropping by 6.2% and 5.6%, respectively, and 1143

NDCG@100 by 22.3%. In contrast, Multi-VAE 1144

and SASRec suffer larger relative drops across all 1145

metrics, especially under severe data sparsity. 1146

These results suggest that PageLLM generalizes 1147

better in cold-start scenarios, likely benefiting from 1148

pretraining on interaction patterns and fine-grained 1149

reward signals. This highlights its potential for 1150

real-world applications where new users or items 1151

frequently emerge. 1152

G Ablation Study 1153

To evaluate the effectiveness of our mixed-grained 1154

reward mechanism, we conduct an ablation study 1155

on the AM-Toys dataset by comparing the full Pag- 1156

eLLM model with its variants using only item-level 1157

rewards, only page-level rewards, and no reward 1158

supervision. 1159

As shown in Table 5, removing either re- 1160

ward component leads to performance degradation 1161

across all metrics, indicating that both page-level 1162

and item-level signals contribute complementary 1163

information. In particular, using only item-level 1164

rewards results in a 15.2% drop in NDCG@100, 1165

while page-level only leads to a 17.8% decrease, 1166

highlighting the added value of joint optimization. 1167

Furthermore, the full reward model also outper- 1168

forms its variants in ranking alignment (WAS and 1169

DPA), and improves diversity (ILD) and category 1170

balance (Entropy). These results confirm that the 1171
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Table 5: Ablation study on the AM-Toys dataset to evaluate the impact of mixed-grained reward design. PageLLM
is compared with its variants using only item-level or page-level reward signals.

Dataset Model Recommendation Ranked Diversity Redundancy

Recall@20 ↑ Recall@40 ↑ NDCG@100 ↑ WAS ↑ PWKT ↑ WMRD ↓ DPA ↑ ILD ↑ Entropy ↑

AM-Toys

PageLLM 0.1349 0.1873 0.0971 0.0157 0.0001 0.0005 0.0155 0.0358 0.0482
Item-level 0.1236 0.1790 0.0823 0.0150 0.0001 0.0005 0.0145 0.0355 0.0478
Page-level 0.1258 0.1804 0.0798 0.0150 0.0000 0.0006 0.0141 0.0355 0.0477
w/o Reward 0.1178 0.1781 0.0754 0.0147 0.0000 0.0006 0.0139 0.0355 0.0477

mixed-grained reward mechanism facilitates more1172

holistic and user-aligned page optimization.1173

H Case Study1174

Figure 7: A case study showing PageLLM’s prediction
based on a user’s historical interaction prompt. Pre-
dicted items align with ground-truth in both identity and
semantic similarity.

To better illustrate the reasoning capability of1175

PageLLM in personalized recommendation, we1176

present a representative case in Figure 7. During1177

inference, the model receives a prompt generated1178

from the user’s historical interactions, encoded us-1179

ing a predefined natural language template.1180

In this example, the input prompt lists 20 items1181

previously interacted with by user USER_42. The1182

model is asked to predict the next likely items that1183

the user may be interested in. Among the pre-1184

dicted items, ITEM_167 exactly matches the ground1185

truth, while several other items such as ITEM_3554,1186

ITEM_464, and ITEM_6946 exhibit strong semantic1187

and categorical alignment with the real list—either1188

sharing the same category or brand.1189

This qualitative case highlights PageLLM’s abil-1190

ity to generalize from historical patterns and make1191

predictions that are not only accurate but also rele-1192

vant. The model captures both explicit signals (i.e.,1193

exact matches) and implicit signals (e.g., seman-1194

tic similarity), which aligns with the overall goal1195

of whole-page optimization: surfacing diverse yet1196

relevant content tailored to user preferences.1197
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