
Dataflow-Guided Retrieval Augmentation for Repository-Level
Code Completion

Anonymous ACL submission

Abstract

Recent years have witnessed the deployment of001
code language models (LMs) in various code002
intelligence tasks such as code completion. Yet,003
it is challenging for pre-trained LMs to generate004
correct completions in private repositories. Pre-005
vious studies retrieve cross-file context based006
on import relations or text similarity, which is007
insufficiently relevant to completion targets. In008
this paper, we propose a dataflow-guided re-009
trieval augmentation approach, called DRACO,010
for repository-level code completion. DRACO011
parses a private repository into code entities and012
establishes their relations through an extended013
dataflow analysis, forming a repo-specific con-014
text graph. Whenever triggering code comple-015
tion, DRACO precisely retrieves relevant back-016
ground knowledge from the repo-specific con-017
text graph and generates well-formed prompts018
for querying LMs. Furthermore, we construct019
a large Python dataset, ReccEval, with more020
diverse completion targets. Our experiments021
demonstrate the superior accuracy and appli-022
cable efficiency of DRACO, improving code023
exact match by 3.43% and identifier F1-score024
by 3.27% on average compared to the state-of-025
the-art approach.026

1 Introduction027

Pre-trained language models (LMs) of code (Chen028

et al., 2021; Nijkamp et al., 2023a,b; Allal et al.,029

2023; Li et al., 2023b) have shown remarkable per-030

formance in improving programming productivity031

(Kazemitabaar et al., 2023; Dakhel et al., 2023).032

Instead of using a single code file, well-designed033

programs emphasize separating complicated func-034

tionality into independent modules (Barnett and035

Constantine, 1968). While facilitating collabora-036

tive development and software maintenance, it in-037

troduces the real-world problem of repository-level038

code completion: given an unfinished code file in039

a private repository, complete the following pieces040

of code at the cursor position.041

Despite pre-training on large-scale corpora, code 042

LMs are still blind to unique naming conventions 043

and programming styles in private repositories (Pei 044

et al., 2023; Liu et al., 2023a; Ding et al., 2023). 045

Previous works fine-tune LMs to leverage cross- 046

file context (Ding et al., 2022; Shrivastava et al., 047

2023a,b), which requires additional training data 048

and is difficult to work with larger LMs. Recently, 049

retrieval-augmented generation (RAG) is widely 050

used to aid pre-trained LMs with external knowl- 051

edge and maintain their parameters intact (Lewis 052

et al., 2020; Mallen et al., 2023; Trivedi et al., 053

2023). For repository-level code completion, the 054

retrieval database is the current private repository. 055

The state-of-the-art approach, RepoCoder (Zhang 056

et al., 2023), incorporates a text similarity-based 057

retriever and a code LM. 058

As shown in Figure 1, the CodeGen25 Python 059

model (Nijkamp et al., 2023a) with 7 billion pa- 060

rameters assigns a value to the attribute channel 061

of the object newSignal, which seems rational in 062

the unfinished code but is outside the list of valid 063

attributes. Due to the lack of similar code snip- 064

pets in the repository, the text similarity-based ap- 065

proaches (Zhang et al., 2023) also fail to complete 066

the correct code line. From a programmer’s per- 067

spective, one would explore the data origin of the 068

variable newSignal in Line 7. It comes from the 069

call signal.getSignalByName in Line 5, where 070

the variable type of signal is RecordSignal im- 071

ported from the module RecordSignal (Lines 2 072

and 4). After providing relevant background knowl- 073

edge in the private repository, the model would 074

know that the variable type of newSignal is the 075

class Signal and thus call the correct function. 076

Inspired by this programming behavior in pri- 077

vate repositories, we propose DRACO, a novel 078

dataflow-guided retrieval augmentation approach 079

for repository-level code completion, which steers 080

code LMs with relevant background knowledge 081

rather than similar code snippets. Dataflow analy- 082

1

1 from pyPhases.util.Logger import classLogger
2 from RecordSignal import RecordSignal

3 class NormalizeRecordSignal:
4 def combine(self, signal: RecordSignal, …):

5 newSignal = signal.getSignalByName(

newChannelName)
6 newSignal.typeStr = channelType
7 newSignal.

pyPhasesRecordloader/Signal.py
class Signal:

def setSignalTypeFromTypeStr(self):
if self.typeStr in signalTypeDict:

self.type = signalTypeDict[self.typeStr]

pyPhasesRecordloader/RecordSignal.py
class RecordSignal:

def getSignalByName(self, name) -> Signal:

Unfinished code: NormalizeRecordSignal.py Relevant background knowledge

channel = newChannelName setSignalTypeFromTypeStr()

concatenate

Input Prompt

CodeGen25-
7B-mono

Figure 1: A real-world example of repository-level code completion. The solid line indicates that only the unfinished
code is fed to the code LM. The dashed line indicates that relevant background knowledge from the repository and
the unfinished code are concatenated into a prompt for querying the code LM.

sis is a static program analysis reacting to data de-083

pendency relations between variables in a program.084

In this work, we extend traditional dataflow analy-085

sis by setting type-sensitive dependency relations.086

We follow the standard RAG framework (Lewis087

et al., 2020): (i) Indexing, which parses a private088

repository into code entities and establishes their089

relations through dataflow analysis, forming a repo-090

specific context graph for retrieval. (ii) Retrieval,091

which uses dataflow analysis to obtain fine-grained092

imported information in the unfinished code and093

retrieves relevant code entities from the pre-built094

context graph. (iii) Generation, which organizes095

the relevant background knowledge as natural code096

and concatenates it with the unfinished code to gen-097

erate well-formed prompts for querying code LMs.098

In addition to the existing dataset CrossCodeE-099

val (Ding et al., 2023) for repository-level code100

completion, we construct a new dataset, ReccE-101

val, with diverse completion targets collected from102

Python Package Index (PyPI).1 We conduct exper-103

iments with popular code LMs of various sizes104

from 350M to 16.1B parameters (Nijkamp et al.,105

2023a,b; Allal et al., 2023; Li et al., 2023b). Our ex-106

periments demonstrate that DRACO achieves gen-107

erally superior accuracy across all settings. Further-108

more, DRACO is plug-and-play for various code109

LMs and applicable to real-time code completion.110

Our main contributions are outlined as follows:111

• We design an extended dataflow analysis by112

setting type-sensitive data dependency rela-113

tions, which supports more precise retrieval.114

• We propose DRACO,2 a dataflow-guided re-115

trieval augmentation approach for repository-116

1https://pypi.org/
2The source code and datasets are submitted through the

Software and Data fields, respectively.

level code completion. DRACO builds a repo- 117

specific context graph for retrieval and gener- 118

ates well-formed prompts with relevant back- 119

ground knowledge in real-time completion. 120

• We construct a Python dataset ReccEval with 121

diverse completion targets. The experimental 122

results show that DRACO improves code exact 123

match by 3.43% and identifier F1-score by 124

3.27% on average compared to the state-of- 125

the-art approach (Zhang et al., 2023). 126

2 Related Work 127

Code completion. Early studies adopt statistical 128

LMs (Raychev et al., 2014; Proksch et al., 2015; 129

Raychev et al., 2016; He et al., 2021) and neural 130

models (Li et al., 2018; Svyatkovskiy et al., 2019; 131

Kim et al., 2021; Izadi et al., 2022; Tufano et al., 132

2023) for code completion. After pre-training on 133

large-scale code corpora, code LMs are familiar 134

with frequent code patterns and achieve superior 135

performance (Lu et al., 2021; Wang et al., 2021; 136

Le et al., 2022; Chen et al., 2021; Nijkamp et al., 137

2023b,a; Zheng et al., 2023; Allal et al., 2023; Li 138

et al., 2023b; Shen et al., 2023). Unlike traditional 139

single-file code completion, repository-level code 140

completion has drawn much attention to practical 141

development. Shrivastava et al. (2023b) generate 142

example-specific prompts using a prompt proposal 143

classifier and further propose RepoFusion (Shrivas- 144

tava et al., 2023a) to incorporate relevant repository 145

context by training code LMs. Ding et al. (2022) 146

learn in-file and cross-file context jointly on top of 147

pre-trained LMs. Lu et al. (2022) present ReACC 148

to train a code-to-code search retriever and a code 149

completion generator with an external source code 150

database. Zhang et al. (2023) propose RepoCoder, 151

2

https://pypi.org/

an iterative retrieval-generation framework to ap-152

proximate the intended completion target. Despite153

their good performance, these methods are limited154

by the high overhead of additional training or itera-155

tive generation.156

Retrieval-augmented generation. For scenar-157

ios where required knowledge is missing or out-158

dated in pre-trained LMs, RAG has achieved state-159

of-the-art performance in many NLP tasks (Cai160

et al., 2022; Feng et al., 2023; Mallen et al., 2023).161

Usually, RAG integrates the retrieved knowledge162

with frozen pre-trained LMs (Ram et al., 2023;163

Levine et al., 2022; Shi et al., 2023). There exist164

different types of retrievals including term-based165

sparse retriever (Robertson and Zaragoza, 2009;166

Trivedi et al., 2023), embedding-based dense re-167

triever (Karpukhin et al., 2020; Lewis et al., 2020),168

commercial search engines (Nakano et al., 2021;169

Liu et al., 2023b), and LMs themself (Yu et al.,170

2023; Sun et al., 2023). RAG is also broadly ap-171

plied to code intelligence tasks such as code sum-172

marization (Liu et al., 2021; Zhang et al., 2020;173

Zhou et al., 2023) and code generation (Hashimoto174

et al., 2018; Parvez et al., 2021; Li et al., 2023a). In175

this work, we leverage dataflow analysis to guide re-176

trieval, which mines more precise data dependency177

information for repository-level code completion.178

3 Methodology179

As shown in Figure 2, DRACO is a dataflow-guided180

retrieval augmentation approach for repository-181

level code completion. It follows the standard RAG182

framework (Lewis et al., 2020) including index-183

ing (§3.2), retrieval (§3.3), and generation (§3.4).184

Since our extended dataflow analysis is throughout185

DRACO, we first introduce it in §3.1. In this work,186

we focus on Python and the task of single-line code187

completion, which simulates real-world scenarios188

where users are programming in integrated devel-189

opment environments (IDEs) and only the context190

before the cursor is visible.191

3.1 Dataflow Analysis192

Dataflow analysis is a static program analysis that193

reacts to the data dependency relations between194

variables in a program, producing a dataflow graph195

(DFG). A DFG is a directed acyclic graph, in which196

nodes represent the variables and edges indicate197

where the variables come from and where they go.198

It provides crucial code semantic information that199

Relations Examples Triplets

assigns v = u (u, assigns, v)
as with f() as v (f, as, v)
refers u.v (u, refers, u.v)
typeof def f() -> v (v, typeof, f)
inherits class v(u) (u, inherits, v)

Table 1: Illustrations of type-sensitive relations.

is not affected by personal naming conventions and 200

programming styles. 201

We assume that the background knowledge rele- 202

vant to variable types is crucial for code completion. 203

Take the statement v = f(p) as an example, the 204

parameter p has far less influence on the variable 205

v than the call f does. Therefore, we extend tra- 206

ditional dataflow analysis by setting dependency 207

relation types. As depicted in Table 1, we focus on 208

five type-sensitive relations, which indicate what 209

the variable type is or where it derives from: 210

• Assigns relation is a one-to-one correspon- 211

dence in an assignment statement, which con- 212

trols variable creation and mutation. 213

• As relation is from with or except statements 214

and similar with the assigns relation. 215

• Refers relation represents a reference to an 216

existing variable or its attribute. 217

• Typeof relation is from the explicit type hints 218

(van Rossum and Lehtosalo, 2022) written by 219

programmers, indicating the data type of the 220

(return) value of a variable or function. 221

• Inherits relation is an implicit data depen- 222

dency relation since a subclass inherits all the 223

class members of its base classes. 224

We first parse Python code into an abstract syn- 225

tax tree (AST) by tree-sitter,3 which is feasible to 226

parse incomplete code snippets. Then, we identify 227

data dependency relations from the AST and prune 228

type-insensitive relations to obtain our DFG. 229

3.2 Repo-specific Context Graph 230

There is an offline preprocessing in RAG to index 231

a retrieval database. Instead of treating source code 232

as text (Lu et al., 2022; Zhang et al., 2023), we 233

parse a private repository into code entities and es- 234

tablish their relations through our dataflow analysis, 235

forming a repo-specific context graph. 236

For each code file in a repository, we traverse 237

its AST to collect code entities including modules, 238

classes, functions, and variables. A module entity 239

stores its file path and docstring as properties. A 240

class entity stores its name, signature, docstring, 241

3https://github.com/tree-sitter/tree-sitter

3

https://github.com/tree-sitter/tree-sitter

Repo-specific context graph

Repository

Dataflow graph

Unfinished code

Index
pyPhasesRecordloader/Signal.py

class Signal:

def setSignalTypeFromTypeStr(self):

pyPhasesRecordloader/RecordSignal.py
from .Signal import Signal

class RecordSignal:

def getSignalByName(self, name)->Signal

newSignal 7newSignal.typeStr 6

newSignal 5

signal.getSignalByName 5

signal 4 RecordSignal 4

RecordSignal 2

CF

A

CF

T
CF

xxx/Signal.py
class Signal:

...

xxx/RecordSignal.py
class RecordSignal:

...

Unfinished code

Prompt

Retrieve

LM

Parse

Figure 2: Overview of our approach. The rectangular boxes visualize the contains relations between the code
entities in the repo-specific context graph, and the solid arrows indicate the depends relations. The details of the
unfinished code are shown in Figure 1. The numbers labeled in the dataflow graph correspond to the line numbers
of the variables. The labels on the edges are the initials of the relation names defined in Section 3.1.

and starting line number. A function entity stores242

its name, signature, docstring, body, and starting243

line number. A variable entity stores its name, state-244

ment, and starting line number. There are natural245

contains relations between these entities, e.g., a246

class contains its member functions. Based on the247

type-sensitive relations in DFG, we establish de-248

pends relations between the entity pairs in individ-249

ual modules. Eventually, we establish depends re-250

lations between the variables in local import state-251

ments and the pointing entities in other modules.252

3.3 Dataflow-Guided Retrieval253

Given an unfinished code, we identify fine-grained254

imported information by dataflow analysis and re-255

trieve relevant entities from the repo-specific con-256

text graph. We do not intend to perform precise257

type inference (Peng et al., 2022) for a dynamically258

typed language like Python, but rather provide rele-259

vant background knowledge to code LMs, which260

provides the definitions of code entities such as261

class members and function arguments.262

All cross-file context is indicated by local263

import statements in Python. However, only con-264

sidering such coarse-grained import information265

may overlook the knowledge of its specific us-266

ages (Ding et al., 2022). We denote imported267

information by (module, name), where module268

indicates another code file in the repository and269

name indicates the specific code entity. Particu-270

larly, name can be expanded by its usages, i.e.,271

refers relations in the extracted DFG. For example,272

we obtain the fine-grained imported information273

(module, name.attr) if there is a statement con- 274

taining name.attr. For each local import state- 275

ment, we collect a set of fine-grained imported in- 276

formation, locate the corresponding entities in the 277

repo-specific context graph, and retrieve relevant 278

entities along depends relation using a depth-first 279

search. The retrieved entities provide comprehen- 280

sive type-related background knowledge for both 281

cross-file imports and usages in unfinished code. 282

3.4 Prompt Generation 283

Before querying LMs, we restore the retrieved enti- 284

ties to the source code and concatenate it with the 285

unfinished code to generate well-formed prompts. 286

Since the maximum input lengths of LMs are 287

finite and fixed, we follow the dynamic context al- 288

location strategy proposed in (Shrivastava et al., 289

2023b). It pre-allocates half of the total input 290

lengths for both the relevant background knowl- 291

edge and the unfinished code. If either is shorter 292

than the allocated length, the remaining tokens are 293

allocated to the other. We first set the entities that 294

have data relations with the line to be completed 295

as background knowledge, and then add as many 296

relevant entities as possible, in order by the line 297

numbers of other local import statements. 298

Our mission is to organize the prompts like the 299

original code to maintain the naturalness of pro- 300

grams (Hindle et al., 2012). We group the retrieved 301

entities in modules and merge those with contains 302

relations to avoid duplication, e.g., class members 303

would not be duplicated if the class already exists. 304

Benefiting from the design of our repo-specific con- 305

4

text graph, there are two prompt scopes, named def-306

inition and complete, to control the details of code307

entities. Compared to only definitions, prompts308

under the complete scope contain specific function309

bodies and variable statements. The code entities310

in the same module are sorted by their starting line311

number. Moreover, a comment “# file path of the312

module” is put ahead of each module to indicate313

the relative directory structure. Finally, we place314

the relevant background knowledge inside a multi-315

line string (triple quotes in Python) like a docstring,316

which precedes the unfinished code.317

4 Experiment Setup318

4.1 Datasets319

The widely-used datasets (Raychev et al., 2016; Lu320

et al., 2021; Peng et al., 2023) for code completion321

only provide a single unfinished code file as input.322

Several recent benchmarks (Zhang et al., 2023; Liu323

et al., 2023a) evaluate next-line prediction, which324

is different from our concern with the current in-325

complete line. CrossCodeEval (Ding et al., 2023)326

is a multilingual benchmark for repository-level327

code completion, where the statement to be com-328

pleted has at least one use of cross-file API. Since329

we focus on Python, we evaluate our DRACO on330

the Python subset of CrossCodeEval.331

To conduct a comprehensive evaluation, we fur-332

ther construct a new Python dataset ReccEval with333

more diverse completion targets. We collect the334

projects that are first released on PyPI between335

2023-01-01 to 2023-04-28, which is after the re-336

leases of pre-training corpora (Husain et al., 2019;337

Chen et al., 2021; Kocetkov et al., 2022). We pick338

the projects with permissive licenses (i.e., MIT,339

Apache, and BSD) and filter out those that have340

fewer than 6 or more than 100 Python code files.341

We identify the usages of local imported resources342

and randomly select a subsequent token as the cur-343

sor position. The context before the cursor is the344

input, while the current line after the cursor is the345

reference. For the diversity of ReccEval, we limit346

the maximum number of examples to one per code347

file and 10 per repository. Moreover, we ensure348

that the reference is not in the unfinished code and349

feed the examples to StarCoderBase-1B model (Li350

et al., 2023b) to remove the exact matches (Ding351

et al., 2023), which excludes strong clues in the un-352

finished code to make ReccEval more challenging.353

The statistics of ReccEval and the Python subset354

of CrossCodeEval are shown in Table 2, where the355

Features CrossCodeEval ReccEval

Repositories 471 2,635
Examples 2,665 6,461
Avg. # files in repository 30.5 24.6
Avg. # lines in input 73.9 113.1
Avg. # tokens in input 938.9 1,296.2
Last char of input dot any
Avg. # tokens in reference 13.2 8.6

Table 2: Statistics of the ReccEval dataset that we con-
struct and the Python subset of CrossCodeEval.

number of tokens is calculated using the StarCoder 356

tokenizer (Li et al., 2023b). 357

4.2 Code LMs 358

We conduct experiments with popular code LMs in 359

various sizes from 350M to 16.1B parameters: 360

• CodeGen (Nijkamp et al., 2023a,b) is a family 361

of auto-regressive LMs for program synthesis. 362

We use the CodeGen2.5 model with 7B pa- 363

rameters and the CodeGen models with 350M, 364

2.7B, 6.1B, and 16.1B parameters, which sup- 365

port a maximum context length of 2,048 to- 366

kens. We use their mono versions, which are 367

further trained on additional Python tokens. 368

• SantaCoder (Allal et al., 2023) is a 1.1B 369

model trained on Python, Java, and JavaScript, 370

which supports a maximum context length of 371

2,048 tokens. 372

• StarCoder (Li et al., 2023b) is a 15.5B model 373

trained on 80+ programming languages and 374

further trained on Python, which supports a 375

maximum context length of 8,192 tokens. 376

Ding et al. (2023) observe that GPT-3.5-turbo 377

(Ouyang et al., 2022) performs even worse than 378

CodeGen-6.1B on the Python subset of Cross- 379

CodeEval. Therefore, we do not consider chat 380

models in our experiments. 381

4.3 Implementation Details 382

We evaluate the retrieval-augmented methods that 383

do not involve training, which excludes several 384

works (Shrivastava et al., 2023a,b; Lu et al., 2022). 385

See Appendix A for more details: 386

• Zero-Shot directly feeds the unfinished code 387

to code LMs, which evaluates their perfor- 388

mance without any cross-file information. 389

• CCFinder (Ding et al., 2022) is a cross-file 390

context finder tool, which retrieves the rel- 391

evant cross-file context from the pre-built 392

project context graph by import statements. 393

We conduct experiments for CCFinder-k (= 394

1, 2), which indicates that CCFinder retrieves 395

5

Methods
CodeGen-350M SantaCoder-1.1B CodeGen25-7B StarCoder-15.5B

EM ES ID.EM F1 EM ES ID.EM F1 EM ES ID.EM F1 EM ES ID.EM F1

Zero-Shot 2.81 55.01 8.22 38.02 3.79 57.92 10.43 41.98 7.77 60.52 14.45 45.40 8.71 62.08 16.02 47.58
CCFinder-1 9.64 59.05 16.36 45.33 14.37 63.86 22.89 52.26 18.84 66.67 27.35 56.05 27.99 72.59 38.24 64.46
CCFinder-2 8.22 58.17 14.52 44.15 11.41 62.47 19.74 49.90 15.50 65.27 24.05 53.56 28.67 73.25 39.10 65.59
RG-1 9.19 60.10 16.89 46.45 12.35 64.09 22.10 51.79 17.34 67.36 27.28 56.22 26.27 72.70 37.00 64.04
RepoCoder 10.13 61.25 18.65 48.29 13.62 65.53 23.94 54.06 19.51 68.98 29.57 58.51 29.12 74.56 40.83 66.81
DRACO 13.02 61.30 20.53 49.04 20.64 67.04 29.83 57.37 24.99 70.10 34.63 61.14 34.67 75.83 45.63 69.93

Table 3: Performance comparison on the CrossCodeEval dataset. Numbers are shown in percentage (%).

Methods
CodeGen-350M SantaCoder-1.1B CodeGen25-7B StarCoder-15.5B

EM ES ID.EM F1 EM ES ID.EM F1 EM ES ID.EM F1 EM ES ID.EM F1

Zero-Shot 4.01 49.41 9.75 25.98 5.54 52.95 11.93 29.94 11.10 57.25 17.37 35.55 12.77 58.84 20.03 38.12
CCFinder-1 14.15 55.75 21.24 37.74 21.36 61.90 29.31 46.18 26.87 65.76 34.55 51.00 39.33 73.05 48.18 63.49
CCFinder-2 11.64 53.70 17.94 34.15 17.12 59.57 24.58 41.93 22.49 63.42 29.72 46.81 39.92 73.29 48.91 64.08
RG-1 19.44 59.08 26.02 40.92 23.62 63.23 30.58 46.24 29.33 66.94 36.06 51.36 42.67 74.64 51.11 64.64
RepoCoder 22.46 60.59 29.05 43.91 27.29 65.06 34.56 49.68 32.84 68.73 40.07 54.73 46.26 76.44 54.47 67.59
DRACO 22.12 60.41 29.73 46.09 30.26 66.90 39.08 55.43 36.46 70.76 44.67 60.40 46.49 76.80 55.98 70.32

Table 4: Performance comparison on the ReccEval dataset.

k-hop neighbors of cross-file code entities.396

• RG-1 and RepoCoder (Zhang et al., 2023)397

construct a retrieval database through a slid-398

ing window and retrieve similar code snip-399

pets using text similarity-based retrievers. Re-400

poCoder is an iterative retrieval-generation401

framework, which retrieves the database with402

the results generated in the previous iteration.403

RG-1 represents the standard RAG and is the404

first iteration of RepoCoder.405

For each method, we first preprocess all reposito-406

ries in the datasets. Then, we generate prompts for407

the unfinished code and record the time used. Fi-408

nally, we acquire the completion results by feeding409

prompts to each code LM. Note that a prediction is410

the first line of a completion result.411

We set the temperature of code LMs as 0 to412

obtain deterministic results. The maximum genera-413

tion length is set to 48 tokens, which is long enough414

to accomplish line completions. An exception is415

RG-1, which asks LMs to generate 100 tokens since416

RepoCoder requires sufficient content for further417

retrieval. We run StarCoder-15.5B and CodeGen-418

16.1B on an NVIDIA A800 with 80GB memory419

and run other LMs on an NVIDIA GeForce RTX420

4090 with 24GB memory.421

4.4 Evaluation Metrics422

We evaluate the accuracy of each method by code423

match and identifier match scores (Ding et al.,424

2023), as well as the efficiency by prompt gen-425

eration time. We report the average of each metric:426

• Code match. Given a prediction y and the ref-427

erence y∗, we assess y using the exact match428

accuracy (EM) and the Levenshtein edit sim-429

ilarity (ES) (Lu et al., 2021; Zhang et al., 430

2023). EM is calculated by an indicator func- 431

tion whose value is 1 if y = y∗; otherwise, it 432

is 0. ES = 1− Lev(y,y∗)
max(||y||,||y∗||) , where || · || cal- 433

culates the string length and Lev() calculates 434

the Levenshtein distance. 435

• Identifier match. Identifier exact match 436

(ID.EM) and F1-score (F1) evaluate the 437

model’s ability to predict the correct APIs 438

(Ding et al., 2023). We parse the code and 439

extract the identifiers from y and y∗, resulting 440

in two ordered lists of identifiers, which are 441

used to calculate these two metrics. 442

• Prompt generation time. As a frequently 443

used feature in real-world IDEs, the efficiency 444

of code completion deserves to be evaluated. 445

We record the prompt generation time, which 446

contains the time to retrieve relevant context 447

and the time to assemble final prompts. We 448

ignore the time spent by code LMs in gener- 449

ating predictions, which is determined by the 450

used LMs rather than the methods. 451

5 Results and Analyses 452

5.1 Performance Comparison 453

The performance comparison on the CrossCodeE- 454

val and ReccEval datasets is listed in Tables 3 and 4, 455

respectively. Additional results on other Code- 456

Gen models are supplemented in Appendix B.2. 457

DRACO significantly improves the performance 458

of various code LMs. Particularly, the CodeGen- 459

350M model integrated with DRACO even outper- 460

forms the zero-shot StarCoder-15.5B model. 461

In comparison to other retrieval-augmented 462

methods, DRACO also shows generally superior 463

6

Methods CrossCodeEval ReccEval

CCFinder-1 0.03 0.05
CCFinder-2 0.05 0.08
RG-1 0.01 0.02
RepoCoder 4.06 4.41
DRACO 0.04 0.04

Table 5: Prompt generation time (in seconds) of each
method using the CodeGen-350M model.

accuracy across all settings. The average absolute464

improvement on EM, ES, ID.EM, and F1 versus465

RepoCoder is 3.43%, 1.00%, 3.62%, and 3.27%,466

respectively. RepoCoder retrieves similar code467

demonstrations that help increase the ES metric of468

completion results. However, RepoCoder ignores469

the validity of its generated identifiers in the private470

repository, which decreases the metrics for code ex-471

act match and identifier match. Such almost-correct472

completion results may introduce unconscious bugs473

for the programmers who are unfamiliar with the474

repository. In contrast, DRACO presents the defi-475

nitions of relevant code entities, providing better476

control over code LMs to generate valid identifiers.477

Moreover, the background knowledge can be used478

as a reference to help programmers understand and479

review the completion results in IDEs. DRACO480

using the CodeGen-350M model is slightly worse481

than RepoCoder in terms of code match metrics482

on the ReccEval dataset, where the model may not483

be powerful enough to capture the data relations in484

our provided background knowledge.485

CCFinder retrieves cross-file code entities486

through plain import relations. The entities re-487

trieved by CCFinder were originally designed to488

be encoded for training code LMs. When used as489

a retrieval-augmented method, CCFinder retrieves490

too many code entities through coarse-grained im-491

ported information, resulting in truncation of truly492

relevant context. As a result, CCFinder-2 with493

more retrieval entities outperforms CCFinder-1 on494

the StarCoder model that supports longer inputs,495

while the opposite happens on the other code LMs.496

Guiding by our dataflow analysis, DRACO retrieves497

relevant code entities more precisely, leading to sig-498

nificantly superior performance.499

The performance of code completion varies on500

the two datasets. See Table 2 for the statistics of501

the datasets. First, the average reference length502

of ReccEval is significantly shorter than that of503

CrossCodeEval, leading to the higher EM metrics504

of both code and identifier on ReccEval. Moreover,505

all inputs of CrossCodeEval end with a dot where506

a correct API is required in the first place, which507

is more suitable for CCFinder and DRACO that 508

retrieve code definitions. Many inputs of ReccEval 509

end with partial names of the target APIs, which 510

facilitates text similarity-based retrievals includ- 511

ing RG-1 and RepoCoder. Therefore, the lead of 512

DRACO on CrossCodeEval is more significant. 513

5.2 Efficiency Evaluation 514

The time spent on prompt generation is perceived 515

by users whenever code completion is triggered. 516

Table 5 shows the prompt generation time of 517

each method using the CodeGen-350M model, 518

and additional results are shown in Appendix B.1. 519

CCFinder and DRACO require parsing the unfin- 520

ished code into an AST or a DFG, which is slightly 521

slower than RG-1 with text similarity-based re- 522

trieval but still comparable. RepoCoder relies on 523

RG-1 to generate sufficient content for the second 524

retrieval, which results in more than 4 seconds even 525

on the smallest CodeGen-350M model and may not 526

be feasible for real-time code completion. 527

In summary, DRACO is applicable to real-time 528

code completion in IDEs. Compared to the meth- 529

ods with comparable efficiencies (i.e., excluding 530

RepoCoder), DRACO is considerably ahead in the 531

performance of repository-level code completion. 532

5.3 Ablation Study 533

To analyze the effectiveness of dataflow analysis 534

in DRACO, we conduct an ablation study shown 535

in Tables 6 and 7. “w/o cross_df” disables the de- 536

pends relation in the repo-specific context graph, 537

making DRACO unable to handle the data depen- 538

dency relations in other code files. “w/o intra_df” 539

disables the dataflow analysis for the unfinished 540

code, which only allows DRACO to retrieve coarse- 541

grained imported information in the order of their 542

starting line numbers. “w/o dataflow” degenerates 543

DRACO into a naive method that simply takes the 544

imported cross-file entities in the unfinished code 545

as the relevant background knowledge. 546

The ablation study demonstrates that the com- 547

plete DRACO achieves the best performance, and 548

all usages of dataflow analysis play a positive role 549

in repository-level code completion. It can be ob- 550

served that the enhancement of the “intra_df” com- 551

ponent on the StarCoder model is less than that on 552

other models. This component places the more rel- 553

evant background knowledge in front of the prompt 554

to prevent truncation, which is weakened to some 555

extent on the StarCoder model with a maximum 556

context length of 8,192 tokens. 557

7

Methods
CodeGen-350M SantaCoder-1.1B CodeGen25-7B StarCoder-15.5B

EM ES ID.EM F1 EM ES ID.EM F1 EM ES ID.EM F1 EM ES ID.EM F1

DRACO 13.02 61.30 20.53 49.04 20.64 67.04 29.83 57.37 24.99 70.10 34.63 61.14 34.67 75.83 45.63 69.93
w/o cross_df 12.12 60.93 19.51 48.32 18.42 66.05 27.62 55.64 22.59 69.15 31.89 59.36 30.73 73.85 41.05 66.31
w/o intra_df 10.88 59.74 17.56 46.25 15.95 64.11 24.09 52.72 19.59 67.08 28.33 56.14 32.35 74.60 43.00 67.98
w/o dataflow 10.13 59.55 17.00 45.88 14.90 63.57 23.11 51.88 18.57 66.85 27.13 55.53 28.82 72.80 38.87 64.65

Table 6: Ablation study for dataflow analysis on the CrossCodeEval dataset.

Methods
CodeGen-350M SantaCoder-1.1B CodeGen25-7B StarCoder-15.5B

EM ES ID.EM F1 EM ES ID.EM F1 EM ES ID.EM F1 EM ES ID.EM F1

DRACO 22.12 60.41 29.73 46.09 30.26 66.90 39.08 55.43 36.46 70.76 44.67 60.40 46.49 76.80 55.98 70.32
w/o cross_df 19.75 58.95 27.19 43.52 27.05 65.12 35.61 52.23 32.95 68.97 40.89 56.97 42.01 74.40 51.21 65.89
w/o intra_df 16.67 57.28 23.62 40.11 23.03 62.87 31.09 47.89 27.83 66.42 35.66 52.25 43.88 75.39 53.07 67.62
w/o dataflow 15.45 56.40 22.33 38.73 21.58 62.01 29.62 46.44 26.42 65.65 34.14 50.67 40.46 73.63 49.45 64.37

Table 7: Ablation study for dataflow analysis on the ReccEval dataset.

59.45

65.95

69.90
72.78

61.30

67.04
70.10

75.83

52

56

60

64

68

72

76

80

CodeGen SantaCoder CodeGen25 StarCoder

ES

Definition
Complete

17.52

27.69

34.45

39.71

20.53

29.83

34.63

45.63

10

18

26

34

42

50

CodeGen SantaCoder CodeGen25 StarCoder

ID
.E

M

Definition
Complete

10.13

18.27

24.02

28.87

13.02

20.64

24.99

34.67

4
8

12
16
20
24
28
32
36
40

CodeGen SantaCoder CodeGen25 StarCoder

EM

Definition
Complete

46.73

56.31

61.38

65.79

49.04

57.37
61.14

69.93

40

48

56

64

72

CodeGen SantaCoder CodeGen25 StarCoder

F1

Definition
Complete

Figure 3: Performance comparison of two prompt
scopes on the CrossCodeEval dataset.

The performance of DRACO without dataflow558

analysis is still comparable with CCFinder-*.559

CCFinder groups the relevant context in code en-560

tities, which is counter-intuitive for source code561

(see the example shown in Appendix C). The re-562

sults reveal that the well-formed prompts generated563

by DRACO can better steer code LMs, even if the564

depth-first search for code entities in the pre-build565

context graph is absent.566

5.4 Prompt Scope567

The prompts generated by DRACO consist of the568

definitions of code entities, which provide options569

for the definition and complete scopes, as described570

in Section 3.4. We further conduct experiments to571

evaluate the influence of the two prompt scopes.572

The results on the CrossCodeEval and ReccEval573

datasets are shown in Figures 3 and 4, respectively.574

DRACO with the complete scope achieves the575

best performance across all settings, which indi-576

cates that code implementations can further en-577

hance code completion. Implementation details578

can provide a deeper understanding of code en-579

tities, along with the programming styles. More-580

over, DRACO with the definition scope outperforms581

58.70

66.02

70.21

74.12

60.41

66.90

70.76

76.80

52

56

60

64

68

72

76

80

CodeGen SantaCoder CodeGen25 StarCoder

ES

Definition
Complete

26.37

37.97

43.68

51.11

29.73

39.08

44.67

55.98

20

28

36

44

52

60

CodeGen SantaCoder CodeGen25 StarCoder

ID
.E

M

Definition
Complete

19.10

29.39

35.26

41.59

22.12

30.26

36.46

46.49

14
18
22
26
30
34
38
42
46
50

CodeGen SantaCoder CodeGen25 StarCoder

EM

Definition
Complete

43.40

54.83

59.95

66.63

46.09

55.43

60.40

70.32

35

43

51

59

67

75

CodeGen SantaCoder CodeGen25 StarCoder

F1

Definition
Complete

Figure 4: Performance comparison of two prompt
scopes on the ReccEval dataset.

CCFinder and RG-1 in most settings (cf. Tables 3 582

and 4), suggesting that the definitions without spe- 583

cific implementations are also useful for code LMs. 584

Since an implementation is usually much longer 585

than its definitions, both prompt scopes are optional 586

in practical applications, in a trade-off between per- 587

formance and cost. 588

6 Conclusions 589

In this paper, we propose DRACO, a dataflow- 590

guided retrieval augmentation approach for 591

repository-level code completion. To guide more 592

precise retrieval, we design an extended dataflow 593

analysis by setting type-sensitive data dependency 594

relations. DRACO parses the private repository into 595

code entities and relations to form a repo-specific 596

context graph. When triggering code completion, 597

DRACO retrieves relevant background knowledge 598

from the pre-built context graph, which is assem- 599

bled with the unfinished code to generate well- 600

formed prompts for querying code LMs. The ex- 601

periments on the CrossCodeEval dataset and our 602

ReccEval dataset show the superior accuracy and 603

applicable efficiency of DRACO. We will explore 604

other code semantic information in future work. 605

8

Ethical Considerations606

The code generated by pre-trained LMs may con-607

tain non-existent APIs or even introduce potential608

bugs. The retrieval-augmented approaches includ-609

ing ours mitigate this issue only to some extent. We610

recommend presenting our retrieved background611

knowledge to programmers for review and taking612

appropriate care of these risks if deploying our ap-613

proach in real-world applications.614

All the datasets and code LMs used in this work615

are publicly available with permissive licenses. The616

CrossCodeEval dataset and CodeGen family are617

licensed under the Apache-2.0 License. The Santa-618

Coder and StarCoder models are licensed under the619

BigCode OpenRAIL-M v1 license agreement. The620

repositories in our ReccEval dataset are all licensed621

under permissive licenses including MIT, Apache,622

and BSD licenses.623

Limitations624

DRACO relies on a code LM to support long in-625

puts and capture data dependency relations in the626

provided background knowledge. Thus, the perfor-627

mance of DRACO may be limited by the capability628

of the code LM. According to our experiments,629

DRACO still has a considerable improvement on630

the smallest CodeGen-350M model with 2,048 to-631

kens, which mitigates this limitation.632

The effectiveness of DRACO may degrade when633

the code intent is unclear. For new line or function634

body completion, the guidance of dataflow analy-635

sis is weakened since DRACO cannot set priorities636

for imported information. We focus on code com-637

pletion for an incomplete line, which is a realistic638

and widely used feature in IDEs. Future work can639

explore the role of dataflow analysis in different640

completion scenarios.641

DRACO requires changes to migrate to other pro-642

gramming languages. Our idea of guiding retrieval643

with dataflow analysis is not limited to Python.644

However, due to the different characteristics of645

programming languages, DRACO needs to extend646

dataflow analysis for target languages. The variety647

of static analysis tools for common programming648

languages provides convenience for implementing649

multilingual DRACO.650

References651

Loubna Ben Allal, Raymond Li, Denis Kocetkov,652
Chenghao Mou, Christopher Akiki, Carlos Muñoz653

Ferrandis, Niklas Muennighoff, Mayank Mishra, 654
Alex Gu, Manan Dey, Logesh Kumar Umapathi, 655
Carolyn Jane Anderson, Yangtian Zi, Joel Lamy- 656
Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry 657
Abulkhanov, Manuel Romero, Michael Lappert, 658
Francesco De Toni, Bernardo García del Río, Qian 659
Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue 660
Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab 661
Mangrulkar, David Lansky, Huu Nguyen, Danish 662
Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, 663
Yacine Jernite, Sean Hughes, Daniel Fried, Arjun 664
Guha, Harm de Vries, and Leandro von Werra. 2023. 665
SantaCoder: don’t reach for the stars! CoRR, 666
2301.03988:1–35. 667

Tom O. Barnett and Larry L. Constantine. 1968. Mod- 668
ular Programming: Proceedings of a National Sym- 669
posium. Information & Systems Institute, Leipzig, 670
Germany. 671

Deng Cai, Yan Wang, Lemao Liu, and Shuming Shi. 672
2022. Recent advances in retrieval-augmented text 673
generation. In SIGIR, pages 3417–3419, Madrid, 674
Spain. ACM. 675

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 676
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka- 677
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 678
Greg Brockman, Alex Ray, Raul Puri, Gretchen 679
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas- 680
try, Pamela Mishkin, Brooke Chan, Scott Gray, 681
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz 682
Kaiser, Mohammad Bavarian, Clemens Winter, 683
Philippe Tillet, Felipe Petroski Such, Dave Cum- 684
mings, Matthias Plappert, Fotios Chantzis, Eliza- 685
beth Barnes, Ariel Herbert-Voss, William Hebgen 686
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie 687
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, 688
William Saunders, Christopher Hesse, Andrew N. 689
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan 690
Morikawa, Alec Radford, Matthew Knight, Miles 691
Brundage, Mira Murati, Katie Mayer, Peter Welinder, 692
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya 693
Sutskever, and Wojciech Zaremba. 2021. Evaluat- 694
ing large language models trained on code. CoRR, 695
2107.03374:1–35. 696

Arghavan Moradi Dakhel, Vahid Majdinasab, Amin 697
Nikanjam, Foutse Khomh, Michel C. Desmarais, and 698
Zhen Ming (Jack) Jiang. 2023. GitHub Copilot AI 699
pair programmer: Asset or liability? J. Syst. Softw., 700
203:111734. 701

Yangruibo Ding, Zijian Wang, Wasi Uddin Ahmad, Han- 702
tian Ding, Ming Tan, Nihal Jain, Murali Krishna Ra- 703
manathan, Ramesh Nallapati, Parminder Bhatia, Dan 704
Roth, and Bing Xiang. 2023. CrossCodeEval: A di- 705
verse and multilingual benchmark for cross-file code 706
completion. In NeurIPS, pages 1–23, New Orleans, 707
LA, USA. 708

Yangruibo Ding, Zijian Wang, Wasi Uddin Ahmad, Mu- 709
rali Krishna Ramanathan, Ramesh Nallapati, Parmin- 710
der Bhatia, Dan Roth, and Bing Xiang. 2022. Co- 711
CoMIC: Code completion by jointly modeling in-file 712
and cross-file context. CoRR, 2212.10007:1–16. 713

9

Zhangyin Feng, Weitao Ma, Weijiang Yu, Lei Huang,714
Haotian Wang, Qianglong Chen, Weihua Peng, Xi-715
aocheng Feng, Bing Qin, and Ting Liu. 2023. Trends716
in integration of knowledge and large language mod-717
els: A survey and taxonomy of methods, benchmarks,718
and applications. CoRR, 2311.05876:1–22.719

Tatsunori B. Hashimoto, Kelvin Guu, Yonatan Oren, and720
Percy Liang. 2018. A retrieve-and-edit framework721
for predicting structured outputs. In NeurIPS, pages722
10073–10083, Montréal, Canada.723

Xincheng He, Lei Xu, Xiangyu Zhang, Rui Hao, Yang724
Feng, and Baowen Xu. 2021. PyART: Python API725
recommendation in real-time. In ICSE, pages 1634–726
1645, Madrid, Spain. IEEE.727

Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel,728
and Premkumar T. Devanbu. 2012. On the natural-729
ness of software. In ICSE, pages 837–847, Zurich,730
Switzerland. IEEE.731

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis732
Allamanis, and Marc Brockschmidt. 2019. Code-733
SearchNet challenge: Evaluating the state of seman-734
tic code search. CoRR, 1909.09436:1–6.735

Maliheh Izadi, Roberta Gismondi, and Georgios736
Gousios. 2022. CodeFill: Multi-token code com-737
pletion by jointly learning from structure and naming738
sequences. In ICSE, pages 401–412, Pittsburgh, PA,739
USA. ACM.740

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick741
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and742
Wen-tau Yih. 2020. Dense passage retrieval for open-743
domain question answering. In Proceedings of the744
2020 Conference on Empirical Methods in Natural745
Language Processing (EMNLP), pages 6769–6781,746
Online. Association for Computational Linguistics.747

Majeed Kazemitabaar, Justin Chow, Carl Ka To Ma,748
Barbara J. Ericson, David Weintrop, and Tovi Gross-749
man. 2023. Studying the effect of AI code generators750
on supporting novice learners in introductory pro-751
gramming. In CHI, pages 455:1–455:23, Hamburg,752
Germany. ACM.753

Seohyun Kim, Jinman Zhao, Yuchi Tian, and Satish754
Chandra. 2021. Code prediction by feeding trees755
to transformers. In ICSE, pages 150–162, Madrid,756
Spain. IEEE.757

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li,758
Chenghao Mou, Carlos Muñoz Ferrandis, Yacine Jer-759
nite, Margaret Mitchell, Sean Hughes, Thomas Wolf,760
Dzmitry Bahdanau, Leandro von Werra, and Harm761
de Vries. 2022. The Stack: 3 TB of permissively762
licensed source code. CoRR, 2211.15533:1–27.763

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio764
Savarese, and Steven Chu-Hong Hoi. 2022. CodeRL:765
Mastering code generation through pretrained models766
and deep reinforcement learning. In NeurIPS, pages767
1–15, New Orleans, LA, USA. Curran Associates768
Inc.769

Yoav Levine, Itay Dalmedigos, Ori Ram, Yoel Zeldes, 770
Daniel Jannai, Dor Muhlgay, Yoni Osin, Opher 771
Lieber, Barak Lenz, Shai Shalev-Shwartz, Amnon 772
Shashua, Kevin Leyton-Brown, and Yoav Shoham. 773
2022. Standing on the shoulders of giant frozen lan- 774
guage models. CoRR, 2204.10019:1–19. 775

Patrick S. H. Lewis, Ethan Perez, Aleksandra Pik- 776
tus, Fabio Petroni, Vladimir Karpukhin, Naman 777
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, 778
Tim Rocktäschel, Sebastian Riedel, and Douwe 779
Kiela. 2020. Retrieval-augmented generation for 780
knowledge-intensive NLP tasks. In NeurIPS, pages 781
9459–9474, Virtual. 782

Jia Li, Yunfei Zhao, Yongmin Li, Ge Li, and Zhi Jin. 783
2023a. AceCoder: Utilizing existing code to enhance 784
code generation. CoRR, 2303.17780:1–12. 785

Jian Li, Yue Wang, Michael R. Lyu, and Irwin King. 786
2018. Code completion with neural attention and 787
pointer networks. In IJCAI, pages 4159–4165, Stock- 788
holm, Sweden. ijcai.org. 789

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas 790
Muennighoff, Denis Kocetkov, Chenghao Mou, 791
Marc Marone, Christopher Akiki, Jia Li, Jenny 792
Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue 793
Zhuo, Thomas Wang, Olivier Dehaene, Mishig 794
Davaadorj, Joel Lamy-Poirier, João Monteiro, Oleh 795
Shliazhko, Nicolas Gontier, Nicholas Meade, Armel 796
Zebaze, Ming-Ho Yee, Logesh Kumar Umapathi, 797
Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, 798
Zhiruo Wang, Rudra Murthy V, Jason Stillerman, 799
Siva Sankalp Patel, Dmitry Abulkhanov, Marco 800
Zocca, Manan Dey, Zhihan Zhang, Nour Moustafa- 801
Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam 802
Singh, Sasha Luccioni, Paulo Villegas, Maxim Ku- 803
nakov, Fedor Zhdanov, Manuel Romero, Tony Lee, 804
Nadav Timor, Jennifer Ding, Claire Schlesinger, Hai- 805
ley Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, 806
Alex Gu, Jennifer Robinson, Carolyn Jane Ander- 807
son, Brendan Dolan-Gavitt, Danish Contractor, Siva 808
Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jer- 809
nite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas 810
Wolf, Arjun Guha, Leandro von Werra, and Harm 811
de Vries. 2023b. StarCoder: may the source be with 812
you! CoRR, 2305.06161:1–54. 813

Shangqing Liu, Yu Chen, Xiaofei Xie, Jing Kai Siow, 814
and Yang Liu. 2021. Retrieval-augmented generation 815
for code summarization via hybrid GNN. In ICLR, 816
Virtual. OpenReview.net. 817

Tianyang Liu, Canwen Xu, and Julian J. McAuley. 818
2023a. RepoBench: Benchmarking repository-level 819
code auto-completion systems. CoRR, 2306.03091:1– 820
18. 821

Xiao Liu, Hanyu Lai, Hao Yu, Yifan Xu, Aohan Zeng, 822
Zhengxiao Du, Peng Zhang, Yuxiao Dong, and Jie 823
Tang. 2023b. WebGLM: Towards an efficient web- 824
enhanced question answering system with human 825
preferences. In KDD, pages 4549–4560, Long Beach, 826
CA, USA. ACM. 827

10

https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550

Shuai Lu, Nan Duan, Hojae Han, Daya Guo, Seung-won828
Hwang, and Alexey Svyatkovskiy. 2022. ReACC:829
A retrieval-augmented code completion framework.830
In Proceedings of the 60th Annual Meeting of the831
Association for Computational Linguistics (Volume832
1: Long Papers), pages 6227–6240, Dublin, Ireland.833
Association for Computational Linguistics.834

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey835
Svyatkovskiy, Ambrosio Blanco, Colin B. Clement,836
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong837
Zhou, Linjun Shou, Long Zhou, Michele Tufano,838
Ming Gong, Ming Zhou, Nan Duan, Neel Sundare-839
san, Shao Kun Deng, Shengyu Fu, and Shujie Liu.840
2021. CodeXGLUE: A machine learning benchmark841
dataset for code understanding and generation. In842
NeurIPS, pages 1–16, Virtual. Curran Associates, Inc.843

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das,844
Daniel Khashabi, and Hannaneh Hajishirzi. 2023.845
When not to trust language models: Investigating846
effectiveness of parametric and non-parametric mem-847
ories. In Proceedings of the 61st Annual Meeting of848
the Association for Computational Linguistics (Vol-849
ume 1: Long Papers), pages 9802–9822, Toronto,850
Canada. Association for Computational Linguistics.851

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff852
Wu, Long Ouyang, Christina Kim, Christopher853
Hesse, Shantanu Jain, Vineet Kosaraju, William854
Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou,855
Gretchen Krueger, Kevin Button, Matthew Knight,856
Benjamin Chess, and John Schulman. 2021. We-857
bGPT: Browser-assisted question-answering with hu-858
man feedback. CoRR, 2112.09332:1–32.859

Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Sil-860
vio Savarese, and Yingbo Zhou. 2023a. CodeGen2:861
Lessons for training LLMs on programming and nat-862
ural languages. CoRR, 2305.02309:1–12.863

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan864
Wang, Yingbo Zhou, Silvio Savarese, and Caiming865
Xiong. 2023b. CodeGen: An open large language866
model for code with multi-turn program synthesis. In867
ICLR, pages 1–25, Kigali, Rwanda. OpenReview.net.868

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,869
Carroll L. Wainwright, Pamela Mishkin, Chong870
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,871
John Schulman, Jacob Hilton, Fraser Kelton, Luke872
Miller, Maddie Simens, Amanda Askell, Peter Welin-873
der, Paul F. Christiano, Jan Leike, and Ryan Lowe.874
2022. Training language models to follow instruc-875
tions with human feedback. In NeurIPS, volume 35,876
pages 27730–27744. Curran Associates, Inc.877

Md Rizwan Parvez, Wasi Ahmad, Saikat Chakraborty,878
Baishakhi Ray, and Kai-Wei Chang. 2021. Retrieval879
augmented code generation and summarization. In880
Findings of the Association for Computational Lin-881
guistics: EMNLP 2021, pages 2719–2734, Punta882
Cana, Dominican Republic. Association for Compu-883
tational Linguistics.884

Hengzhi Pei, Jinman Zhao, Leonard Lausen, Sheng Zha, 885
and George Karypis. 2023. Better context makes bet- 886
ter code language models: A case study on function 887
call argument completion. In AAAI, pages 5230– 888
5238, Washington, DC, USA. AAAI Press. 889

Yun Peng, Cuiyun Gao, Zongjie Li, Bowei Gao, David 890
Lo, Qirun Zhang, and Michael R. Lyu. 2022. Static 891
inference meets deep learning: A hybrid type infer- 892
ence approach for Python. In ICSE, pages 2019– 893
2030, Pittsburgh, PA, USA. ACM. 894

Yun Peng, Shuqing Li, Wenwei Gu, Yichen Li, Wenx- 895
uan Wang, Cuiyun Gao, and Michael R. Lyu. 2023. 896
Revisiting, benchmarking and exploring API recom- 897
mendation: How far are we? IEEE Trans. Softw., 898
49(4):1876–1897. 899

Sebastian Proksch, Johannes Lerch, and Mira Mezini. 900
2015. Intelligent code completion with Bayesian net- 901
works. ACM Trans. Softw. Eng. Methodol., 25(1):3:1– 902
3:31. 903

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay, 904
Amnon Shashua, Kevin Leyton-Brown, and Yoav 905
Shoham. 2023. In-context retrieval-augmented lan- 906
guage models. CoRR, 2302.00083:1–15. 907

Veselin Raychev, Pavol Bielik, and Martin T. Vechev. 908
2016. Probabilistic model for code with decision 909
trees. In OOPSLA, pages 731–747, Amsterdam, The 910
Netherlands. ACM. 911

Veselin Raychev, Martin T. Vechev, and Eran Yahav. 912
2014. Code completion with statistical language 913
models. ACM SIGPLAN Notices, 49(6):419–428. 914

Stephen Robertson and Hugo Zaragoza. 2009. The prob- 915
abilistic relevance framework: BM25 and beyond. 916
Foundations and Trends® in Information Retrieval, 917
3(4):333–389. 918

Bo Shen, Jiaxin Zhang, Taihong Chen, Daoguang Zan, 919
Bing Geng, An Fu, Muhan Zeng, Ailun Yu, Jichuan 920
Ji, Jingyang Zhao, Yuenan Guo, and Qianxiang 921
Wang. 2023. PanGu-Coder2: Boosting large lan- 922
guage models for code with ranking feedback. CoRR, 923
2307.14936:1–15. 924

Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon 925
Seo, Rich James, Mike Lewis, Luke Zettlemoyer, and 926
Wen-tau Yih. 2023. REPLUG: Retrieval-augmented 927
black-box language models. CoRR, 2301.12652:1– 928
12. 929

Disha Shrivastava, Denis Kocetkov, Harm de Vries, 930
Dzmitry Bahdanau, and Torsten Scholak. 2023a. Re- 931
poFusion: Training code models to understand your 932
repository. CoRR, 2306.10998:1–15. 933

Disha Shrivastava, Hugo Larochelle, and Daniel Tarlow. 934
2023b. Repository-level prompt generation for large 935
language models of code. In ICML, pages 31693– 936
31715, Honolulu, HI, USA. PMLR. 937

11

https://doi.org/10.18653/v1/2022.acl-long.431
https://doi.org/10.18653/v1/2022.acl-long.431
https://doi.org/10.18653/v1/2022.acl-long.431
https://doi.org/10.18653/v1/2023.acl-long.546
https://doi.org/10.18653/v1/2023.acl-long.546
https://doi.org/10.18653/v1/2023.acl-long.546
https://doi.org/10.18653/v1/2023.acl-long.546
https://doi.org/10.18653/v1/2023.acl-long.546
https://doi.org/10.18653/v1/2021.findings-emnlp.232
https://doi.org/10.18653/v1/2021.findings-emnlp.232
https://doi.org/10.18653/v1/2021.findings-emnlp.232

Zhiqing Sun, Xuezhi Wang, Yi Tay, Yiming Yang, and938
Denny Zhou. 2023. Recitation-augmented language939
models. In ICLR, Kigali, Rwanda. OpenReview.net.940

Alexey Svyatkovskiy, Ying Zhao, Shengyu Fu, and Neel941
Sundaresan. 2019. Pythia: AI-assisted code comple-942
tion system. In KDD, pages 2727–2735, Anchorage,943
AK, USA. ACM.944

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot,945
and Ashish Sabharwal. 2023. Interleaving retrieval946
with chain-of-thought reasoning for knowledge-947
intensive multi-step questions. In Proceedings of948
the 61st Annual Meeting of the Association for Com-949
putational Linguistics (Volume 1: Long Papers),950
pages 10014–10037, Toronto, Canada. Association951
for Computational Linguistics.952

Rosalia Tufano, Luca Pascarella, and Gabriele Bavota.953
2023. Automating code-related tasks through trans-954
formers: The impact of pre-training. In ICSE, pages955
2425–2437, Melbourne, Australia. IEEE.956

Łukasz Langa Guido van Rossum and Jukka957
Lehtosalo. 2022. PEP 484 – type hints.958
https://peps.python.org/pep-0484/.959

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H.960
Hoi. 2021. CodeT5: Identifier-aware unified pre-961
trained encoder-decoder models for code understand-962
ing and generation. In Proceedings of the 2021963
Conference on Empirical Methods in Natural Lan-964
guage Processing, pages 8696–8708, Online and965
Punta Cana, Dominican Republic. Association for966
Computational Linguistics.967

Wenhao Yu, Dan Iter, Shuohang Wang, Yichong Xu,968
Mingxuan Ju, Soumya Sanyal, Chenguang Zhu,969
Michael Zeng, and Meng Jiang. 2023. Generate970
rather than retrieve: Large language models are971
strong context generators. In ICLR, Kigali, Rwanda.972
OpenReview.net.973

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin974
Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou, and975
Weizhu Chen. 2023. RepoCoder: Repository-level976
code completion through iterative retrieval and gen-977
eration. In EMNLP, pages 2471–2484, Singapore.978
Association for Computational Linguistics.979

Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and980
Xudong Liu. 2020. Retrieval-based neural source981
code summarization. In ICSE, pages 1385–1397,982
Seoul, South Korea. ACM.983

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan984
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang,985
Yang Li, Teng Su, Zhilin Yang, and Jie Tang. 2023.986
CodeGeeX: A pre-trained model for code genera-987
tion with multilingual evaluations on HumanEval-X.988
CoRR, 2303.17568:1–30.989

Ziyi Zhou, Huiqun Yu, Guisheng Fan, Zijie Huang,990
and Kang Yang. 2023. Towards retrieval-based neu-991
ral code summarization: A meta-learning approach.992
IEEE Trans. Software Eng., 49(4):3008–3031.993

12

https://doi.org/10.18653/v1/2023.acl-long.557
https://doi.org/10.18653/v1/2023.acl-long.557
https://doi.org/10.18653/v1/2023.acl-long.557
https://doi.org/10.18653/v1/2023.acl-long.557
https://doi.org/10.18653/v1/2023.acl-long.557
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685

A Implementation Details of Baselines994

We describe more implementation details of995

CCFinder, RG-1, and RepoCoder, which are in996

line with the experimental setup in their papers:997

• CCFinder. Because CCFinder is not open998

source, we reproduce it according to its paper.999

We do not limit the number of retrieved code1000

entities, as the cross-file context would be trun-1001

cated if it exceeds the maximum length. We1002

also re-order the retrieved entities, ensuring1003

the entities from the same source file follow1004

the original code order.1005

• RG-1 and RepoCoder. In our experiments,1006

we use a sparse bag-of-words model as their1007

retriever, which calculates text similarity us-1008

ing the Jaccard index and achieves equivalent1009

performance to the dense retriever. The line1010

length of the sliding window and the sliding1011

size are set to 20 and 10, respectively. Accord-1012

ing to the maximum input length of code LMs,1013

the maximum number of the retrieved code1014

snippets in prompts is set to 40 for the Star-1015

Coder model and 10 for other models. The1016

number of iterations of RepoCoder is set to 2.1017

B Additional Evaluation1018

B.1 More Efficiency Evaluation Results1019

We also record the time spent on indexing the1020

repositories of CrossCodeEval and ReccEval, as1021

shown in Table 8. It is an offline preprocessing in1022

RAG, which indicates the time required to activate1023

a method. CCFinder and DRACO build retrieval1024

databases by statically parsing code files, which are1025

independent of the used code LMs. RG-1 and Re-1026

poCoder need to tokenize the code snippets within1027

a sliding window, which requires the tokenizers of1028

used LMs. Note that the tokenizers of CodeGen-*1029

models are the same. DRACO is 3–7 times faster1030

than RepoCoder in preprocessing time. As the size1031

of the repository increases, the preprocessing time1032

grows linearly. Therefore, RG-1 and RepoCoder1033

may suffer from scalability challenges.1034

The prompt generation time of each method us-1035

ing other code LMs is shown in Tables 9 and 10,1036

which show consistent conclusions with the main1037

paper. For the methods with one retrieval, only the1038

tokenizers have a subtle effect on efficiency when1039

different models are employed. As a result, the1040

prompt generation time using different CodeGen-*1041

models is the same for CCFinder, RG-1, as well as1042

DRACO. RepoCoder relies on RG-1 to generate1043

Methods Models CrossCodeEval ReccEval

CCFinder All 0.07 0.07

RG-1 &
RepoCoder

CodeGen 0.23 0.22
SantaCoder 0.25 0.22
CodeGen25 0.35 0.34
StarCoder 0.21 0.19

DRACO All 0.05 0.06

Table 8: Preprocessing time (in seconds) for the reposi-
tories in CrossCodeEval and ReccEval.

sufficient content for the second retrieval, where the 1044

efficiency mainly depends on the generation time of 1045

code LMs. In general, the generation efficiency of 1046

RepoCoder decreases as the model parameters in- 1047

crease. Its average prompt generation time is more 1048

than 3 seconds on the most efficient SantaCoder 1049

model, which far exceeds the time spent by other 1050

retrieval-augmented methods. Note that the archi- 1051

tectures of code LMs also matter in efficiency, e.g., 1052

SantaCoder-1.1B is faster than CodeGen-350M. 1053

The A800 GPU used to run the StarCoder-15.5B 1054

and CodeGen-16.1B models is superior to the 4090 1055

GPU used for the other models, so these are not 1056

head-to-head comparisons for RepoCoder. 1057

B.2 More Performance Comparison Results 1058

Beyond the experimental results of the main pa- 1059

per, we show additional evaluation results of other 1060

CodeGen models in Tables 11 and 12. The addi- 1061

tional results show consistent conclusions on per- 1062

formance comparisons in the main paper. Under 1063

the same architecture of the CodeGen-* models, 1064

the performance of all methods improves as the 1065

model parameters increase. Moreover, the improve- 1066

ment of DRACO for zero-shot code LMs increases 1067

as the model’s capability grows. It indicates that 1068

stronger LMs can better utilize the relevant back- 1069

ground knowledge retrieved by DRACO. 1070

C Prompt Examples 1071

We show the prompts generated by each method for 1072

the example unfinished code (see Figure 1). The 1073

prompts are excerpted for viewing the individual 1074

format, as shown in Figure 5. It can be observed 1075

that the prompts generated by DRACO look like 1076

natural code, which is in line with the training cor- 1077

pora of code LMs. The prediction result of each 1078

method using the CodeGen25-7B model is shown 1079

in Table 13, and only our DRACO generates the 1080

correct code line. 1081

13

Methods
SantaCoder-1.1B CodeGen25-7B StarCoder-15.5B

CrossCodeEval ReccEval CrossCodeEval ReccEval CrossCodeEval ReccEval

CCFinder-1 0.03 0.05 0.02 0.03 0.03 0.04
CCFinder-2 0.05 0.07 0.04 0.05 0.04 0.07
RG-1 0.01 0.02 0.02 0.02 0.01 0.01
RepoCoder 3.07 3.18 5.25 4.77 4.76 4.69
DRACO 0.04 0.04 0.03 0.04 0.06 0.08

Table 9: Prompt generation time (in seconds) of each method using SantaCoder, CodeGen25, and StarCoder models
(cf. Table 5).

Methods
CodeGen-2.7B CodeGen-6.1B CodeGen-16.1B

CrossCodeEval ReccEval CrossCodeEval ReccEval CrossCodeEval ReccEval

CCFinder-1 0.03 0.05 0.03 0.05 0.03 0.05
CCFinder-2 0.05 0.08 0.05 0.08 0.05 0.08
RG-1 0.01 0.02 0.01 0.02 0.01 0.02
RepoCoder 6.93 5.78 7.54 6.24 7.29 7.14
DRACO 0.04 0.04 0.04 0.04 0.04 0.04

Table 10: Prompt generation time (in seconds) of each method using other CodeGen models (cf. Table 5).

Methods
CodeGen-2.7B CodeGen-6.1B CodeGen-16.1B

EM ES ID.EM F1 EM ES ID.EM F1 EM ES ID.EM F1

Zero-Shot 5.44 57.85 11.71 42.22 6.57 59.01 13.13 44.11 7.05 59.88 13.88 45.27
CCFinder-1 14.30 63.18 22.51 51.28 16.21 65.00 24.58 53.70 17.19 65.57 26.19 55.36
CCFinder-2 11.41 61.74 19.47 48.92 13.21 63.23 21.39 51.17 14.15 63.89 22.59 52.17
RG-1 12.68 63.87 21.58 51.89 14.82 65.12 23.53 53.54 15.27 65.87 24.65 54.76
RepoCoder 14.07 65.12 23.90 53.33 15.87 66.74 26.15 55.80 17.04 67.69 27.62 57.36
DRACO 18.99 65.52 27.50 55.07 22.36 68.06 31.37 58.60 22.78 68.09 32.08 59.40

Table 11: Performance comparison on the CrossCodeEval dataset using other CodeGen models (cf. Table 3).

Methods
CodeGen-2.7B CodeGen-6.1B CodeGen-16.1B

EM ES ID.EM F1 EM ES ID.EM F1 EM ES ID.EM F1

Zero-Shot 6.73 53.30 13.05 30.65 8.34 54.77 14.64 32.60 10.12 55.84 16.50 34.17
CCFinder-1 20.38 60.80 28.12 44.83 23.56 63.07 31.56 47.90 24.64 64.17 32.66 49.28
CCFinder-2 17.21 59.13 24.32 41.58 19.66 60.77 26.93 43.73 20.83 61.85 28.25 45.11
RG-1 24.49 63.12 31.34 46.51 25.86 64.75 32.66 48.37 27.97 66.18 35.07 50.37
RepoCoder 27.84 65.07 35.13 49.71 29.45 66.62 36.71 51.67 31.73 67.94 38.96 53.64
DRACO 29.42 65.91 37.63 53.69 32.05 67.93 40.83 56.80 33.76 69.20 42.38 58.38

Table 12: Performance comparison on the ReccEval dataset using other CodeGen models (cf. Table 4).

14

'''
pyPhasesRecordloader.RecordSignal.RecordSignal
@classLogger
class RecordSignal:

pyPhasesRecordloader.RecordSignal.RecordSignal.__init__
def __init__(self, targetFrequency=200, recordId=None):

self.recordId = recordId
self.signals: List[Signal] = []
self.labelSignals = []
self.signalNames = []
self.targetFrequency = targetFrequency

pyPhasesRecordloader.RecordSignal.RecordSignal.getSignalByName
def getSignalByName(self, name) -> Signal:

index = self.getSignalIndexByName(name)
return self.signals[index]

...
'''

(a) CCFinder-*.

'''
Here are some relevant code fragments from other files

of the repo:
--
the below code fragment can be found in:
pyPhasesRecordloader-0.3.12/pyPhasesRecordloader/RecordLoader.py
--
signalTypeStr = self.signalTypeDict[signalName]
else:
self.logError("Signal '%s' had no type when

initilizing the RecordLoader" % str(signalName))
signalTypeStr = "unknown"
return signalTypeStr

...
--
the below code fragment can be found in:
pyPhasesRecordloader-0.3.12/pyPhasesRecordloader/RecordSignal.py
...
'''

(b) RepoCoder, same as RG-1.

'''
pyPhasesRecordloader/Signal.py
class Signal:

def __init__(
self, name="Unknown", signal: np.ndarray = None,
frequency=100, type=SignalType.UNKNOWN, typeStr="unknown"

) -> None:
self.name = name
self.signal = signal
self.frequency = frequency
self.type = type
self.typeStr = typeStr

def setSignalTypeFromTypeStr(self):
if self.typeStr in signalTypeDict:

self.type = signalTypeDict[self.typeStr]
else:

self.type = SignalType.UNKNOWN
...

'''

(c) Our DRACO.

'''
pyPhasesRecordloader/Signal.py
class Signal:

def __init__(
self, name="Unknown", signal: np.ndarray = None,
frequency=100, type=SignalType.UNKNOWN, typeStr="unknown"

) -> None:
self.name
self.signal
self.frequency
self.type
self.typeStr

def setSignalTypeFromTypeStr(self):
def getFilterCoefficients(self, tansitionWidth=15.0,

cutOffHz=30.0, rippleDB=40.0):
def bandpass(self, low, high, order=10):
def lowpass(self, value, order=10):
...

'''

(d) DRACO with the definition scope.

Figure 5: Excerpts of example prompts generated by different methods.

Methods Predictions Edit similarity

Zero-Shot channel = newChannelName 24
CCFinder-1 type = Signal.getType(channelType) 53
CCFinder-2 type = Signal.getType(channelType) 53
RG-1 type = channelType 36
RepoCoder signal = newSignal.signal.astype(channelType) 45
DRACO setSignalTypeFromTypeStr() 100

Ground Truth setSignalTypeFromTypeStr() -

Table 13: The example prediction of each method using the CodeGen25-7B model.

15

	Introduction
	Related Work
	Methodology
	Dataflow Analysis
	Repo-specific Context Graph
	Dataflow-Guided Retrieval
	Prompt Generation

	Experiment Setup
	Datasets
	Code LMs
	Implementation Details
	Evaluation Metrics

	Results and Analyses
	Performance Comparison
	Efficiency Evaluation
	Ablation Study
	Prompt Scope

	Conclusions
	Implementation Details of Baselines
	Additional Evaluation
	More Efficiency Evaluation Results
	More Performance Comparison Results

	Prompt Examples

