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Abstract

Recent years have witnessed the deployment of
code language models (LMs) in various code
intelligence tasks such as code completion. Yet,
it is challenging for pre-trained LMs to generate
correct completions in private repositories. Pre-
vious studies retrieve cross-file context based
on import relations or text similarity, which is
insufficiently relevant to completion targets. In
this paper, we propose a dataflow-guided re-
trieval augmentation approach, called DRACO,
for repository-level code completion. DRACO
parses a private repository into code entities and
establishes their relations through an extended
dataflow analysis, forming a repo-specific con-
text graph. Whenever triggering code comple-
tion, DRACO precisely retrieves relevant back-
ground knowledge from the repo-specific con-
text graph and generates well-formed prompts
for querying LMs. Furthermore, we construct
a large Python dataset, ReccEval, with more
diverse completion targets. Our experiments
demonstrate the superior accuracy and appli-
cable efficiency of DRACO, improving code
exact match by 3.43% and identifier F1-score
by 3.27% on average compared to the state-of-
the-art approach.

1 Introduction

Pre-trained language models (LMs) of code (Chen
et al., 2021; Nijkamp et al., 2023a,b; Allal et al.,
2023; Li et al., 2023b) have shown remarkable per-
formance in improving programming productivity
(Kazemitabaar et al., 2023; Dakhel et al., 2023).
Instead of using a single code file, well-designed
programs emphasize separating complicated func-
tionality into independent modules (Barnett and
Constantine, 1968). While facilitating collabora-
tive development and software maintenance, it in-
troduces the real-world problem of repository-level
code completion: given an unfinished code file in
a private repository, complete the following pieces
of code at the cursor position.

Despite pre-training on large-scale corpora, code
LMs are still blind to unique naming conventions
and programming styles in private repositories (Pei
et al., 2023; Liu et al., 2023a; Ding et al., 2023).
Previous works fine-tune LMs to leverage cross-
file context (Ding et al., 2022; Shrivastava et al.,
2023a,b), which requires additional training data
and is difficult to work with larger LMs. Recently,
retrieval-augmented generation (RAG) is widely
used to aid pre-trained LMs with external knowl-
edge and maintain their parameters intact (Lewis
et al., 2020; Mallen et al., 2023; Trivedi et al.,
2023). For repository-level code completion, the
retrieval database is the current private repository.
The state-of-the-art approach, RepoCoder (Zhang
et al., 2023), incorporates a text similarity-based
retriever and a code LM.

As shown in Figure 1, the CodeGen25 Python
model (Nijkamp et al., 2023a) with 7 billion pa-
rameters assigns a value to the attribute channel
of the object newSignal, which seems rational in
the unfinished code but is outside the list of valid
attributes. Due to the lack of similar code snip-
pets in the repository, the text similarity-based ap-
proaches (Zhang et al., 2023) also fail to complete
the correct code line. From a programmer’s per-
spective, one would explore the data origin of the
variable newSignal in Line 7. It comes from the
call signal.getSignalByName in Line 5, where
the variable type of signal is RecordSignal im-
ported from the module RecordSignal (Lines 2
and 4). After providing relevant background knowl-
edge in the private repository, the model would
know that the variable type of newSignal is the
class Signal and thus call the correct function.

Inspired by this programming behavior in pri-
vate repositories, we propose DRACO, a novel
dataflow-guided retrieval augmentation approach
for repository-level code completion, which steers
code LMs with relevant background knowledge
rather than similar code snippets. Dataflow analy-
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Figure 1: A real-world example of repository-level code completion. The solid line indicates that only the unfinished
code is fed to the code LM. The dashed line indicates that relevant background knowledge from the repository and
the unfinished code are concatenated into a prompt for querying the code LM.

sis is a static program analysis reacting to data de-
pendency relations between variables in a program.
In this work, we extend traditional dataflow analy-
sis by setting type-sensitive dependency relations.
We follow the standard RAG framework (Lewis
et al., 2020): (i) Indexing, which parses a private
repository into code entities and establishes their
relations through dataflow analysis, forming a repo-
specific context graph for retrieval. (ii) Retrieval,
which uses dataflow analysis to obtain fine-grained
imported information in the unfinished code and
retrieves relevant code entities from the pre-built
context graph. (iii) Generation, which organizes
the relevant background knowledge as natural code
and concatenates it with the unfinished code to gen-
erate well-formed prompts for querying code LMs.
In addition to the existing dataset CrossCodeE-
val (Ding et al., 2023) for repository-level code
completion, we construct a new dataset, ReccE-
val, with diverse completion targets collected from
Python Package Index (PyPI).! We conduct exper-
iments with popular code LMs of various sizes
from 350M to 16.1B parameters (Nijkamp et al.,
2023a,b; Allal et al., 2023; Li et al., 2023b). Our ex-
periments demonstrate that DRACO achieves gen-
erally superior accuracy across all settings. Further-
more, DRACO is plug-and-play for various code
LMs and applicable to real-time code completion.
Our main contributions are outlined as follows:
* We design an extended dataflow analysis by
setting type-sensitive data dependency rela-
tions, which supports more precise retrieval.
» We propose DRACO,? a dataflow-guided re-
trieval augmentation approach for repository-
"ttps://pypi.org/

’The source code and datasets are submitted through the
Software and Data fields, respectively.

level code completion. DRACO builds a repo-
specific context graph for retrieval and gener-
ates well-formed prompts with relevant back-
ground knowledge in real-time completion.

* We construct a Python dataset ReccEval with
diverse completion targets. The experimental
results show that DRACO improves code exact
match by 3.43% and identifier F1-score by
3.27% on average compared to the state-of-
the-art approach (Zhang et al., 2023).

2 Related Work

Code completion. Early studies adopt statistical
LMs (Raychev et al., 2014; Proksch et al., 2015;
Raychev et al., 2016; He et al., 2021) and neural
models (Li et al., 2018; Svyatkovskiy et al., 2019;
Kim et al., 2021; Izadi et al., 2022; Tufano et al.,
2023) for code completion. After pre-training on
large-scale code corpora, code LMs are familiar
with frequent code patterns and achieve superior
performance (Lu et al., 2021; Wang et al., 2021;
Le et al., 2022; Chen et al., 2021; Nijkamp et al.,
2023b,a; Zheng et al., 2023; Allal et al., 2023; Li
et al., 2023b; Shen et al., 2023). Unlike traditional
single-file code completion, repository-level code
completion has drawn much attention to practical
development. Shrivastava et al. (2023b) generate
example-specific prompts using a prompt proposal
classifier and further propose RepoFusion (Shrivas-
tava et al., 2023a) to incorporate relevant repository
context by training code LMs. Ding et al. (2022)
learn in-file and cross-file context jointly on top of
pre-trained LMs. Lu et al. (2022) present ReACC
to train a code-to-code search retriever and a code
completion generator with an external source code
database. Zhang et al. (2023) propose RepoCoder,
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an iterative retrieval-generation framework to ap-
proximate the intended completion target. Despite
their good performance, these methods are limited
by the high overhead of additional training or itera-
tive generation.

Retrieval-augmented generation. For scenar-
ios where required knowledge is missing or out-
dated in pre-trained LMs, RAG has achieved state-
of-the-art performance in many NLP tasks (Cai
et al., 2022; Feng et al., 2023; Mallen et al., 2023).
Usually, RAG integrates the retrieved knowledge
with frozen pre-trained LMs (Ram et al., 2023;
Levine et al., 2022; Shi et al., 2023). There exist
different types of retrievals including term-based
sparse retriever (Robertson and Zaragoza, 2009;
Trivedi et al., 2023), embedding-based dense re-
triever (Karpukhin et al., 2020; Lewis et al., 2020),
commercial search engines (Nakano et al., 2021;
Liu et al., 2023b), and LMs themself (Yu et al.,
2023; Sun et al., 2023). RAG is also broadly ap-
plied to code intelligence tasks such as code sum-
marization (Liu et al., 2021; Zhang et al., 2020;
Zhou et al., 2023) and code generation (Hashimoto
etal., 2018; Parvez et al., 2021; Li et al., 2023a). In
this work, we leverage dataflow analysis to guide re-
trieval, which mines more precise data dependency
information for repository-level code completion.

3 Methodology

As shown in Figure 2, DRACO is a dataflow-guided
retrieval augmentation approach for repository-
level code completion. It follows the standard RAG
framework (Lewis et al., 2020) including index-
ing (§3.2), retrieval (§3.3), and generation (§3.4).
Since our extended dataflow analysis is throughout
DRACO, we first introduce it in §3.1. In this work,
we focus on Python and the task of single-line code
completion, which simulates real-world scenarios
where users are programming in integrated devel-
opment environments (IDEs) and only the context
before the cursor is visible.

3.1 Dataflow Analysis

Dataflow analysis is a static program analysis that
reacts to the data dependency relations between
variables in a program, producing a dataflow graph
(DFG). A DFG is a directed acyclic graph, in which
nodes represent the variables and edges indicate
where the variables come from and where they go.
It provides crucial code semantic information that

Relations | Examples | Triplets
assigns vV =u (u, assigns, v)
as with f() as v (f, as, v)
refers u.v (u, refers, u.v)
typeof def f() -> v (v, typeof, f)
inherits class v(u) (u, inherits, v)

Table 1: Illustrations of type-sensitive relations.

is not affected by personal naming conventions and
programming styles.

We assume that the background knowledge rele-
vant to variable types is crucial for code completion.
Take the statement v = f(p) as an example, the
parameter p has far less influence on the variable
v than the call f does. Therefore, we extend tra-
ditional dataflow analysis by setting dependency
relation types. As depicted in Table 1, we focus on
five type-sensitive relations, which indicate what
the variable type is or where it derives from:

* Assigns relation is a one-to-one correspon-
dence in an assignment statement, which con-
trols variable creation and mutation.

* As relation is from with or except statements
and similar with the assigns relation.

* Refers relation represents a reference to an
existing variable or its attribute.

» Typeof relation is from the explicit type hints
(van Rossum and Lehtosalo, 2022) written by
programmers, indicating the data type of the
(return) value of a variable or function.

* Inherits relation is an implicit data depen-
dency relation since a subclass inherits all the
class members of its base classes.

We first parse Python code into an abstract syn-
tax tree (AST) by tree-sitter,> which is feasible to
parse incomplete code snippets. Then, we identify
data dependency relations from the AST and prune
type-insensitive relations to obtain our DFG.

3.2 Repo-specific Context Graph

There is an offline preprocessing in RAG to index
a retrieval database. Instead of treating source code
as text (Lu et al., 2022; Zhang et al., 2023), we
parse a private repository into code entities and es-
tablish their relations through our dataflow analysis,
forming a repo-specific context graph.

For each code file in a repository, we traverse
its AST to collect code entities including modules,
classes, functions, and variables. A module entity
stores its file path and docstring as properties. A
class entity stores its name, signature, docstring,

Shttps://github.com/tree-sitter/tree-sitter
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Figure 2: Overview of our approach. The rectangular boxes visualize the contains relations between the code
entities in the repo-specific context graph, and the solid arrows indicate the depends relations. The details of the
unfinished code are shown in Figure 1. The numbers labeled in the dataflow graph correspond to the line numbers

of the variables. The labels on the edges are the initials of the relation names defined in Section 3.1.

and starting line number. A function entity stores
its name, signature, docstring, body, and starting
line number. A variable entity stores its name, state-
ment, and starting line number. There are natural
contains relations between these entities, e.g., a
class contains its member functions. Based on the
type-sensitive relations in DFG, we establish de-
pends relations between the entity pairs in individ-
ual modules. Eventually, we establish depends re-
lations between the variables in local import state-
ments and the pointing entities in other modules.

3.3 Dataflow-Guided Retrieval

Given an unfinished code, we identify fine-grained
imported information by dataflow analysis and re-
trieve relevant entities from the repo-specific con-
text graph. We do not intend to perform precise
type inference (Peng et al., 2022) for a dynamically
typed language like Python, but rather provide rele-
vant background knowledge to code LMs, which
provides the definitions of code entities such as
class members and function arguments.

All cross-file context is indicated by local
import statements in Python. However, only con-
sidering such coarse-grained import information
may overlook the knowledge of its specific us-
ages (Ding et al., 2022). We denote imported
information by (module, name), where module
indicates another code file in the repository and
name indicates the specific code entity. Particu-
larly, name can be expanded by its usages, i.e.,
refers relations in the extracted DFG. For example,
we obtain the fine-grained imported information

(module, name.attr) if there is a statement con-
taining name.attr. For each local import state-
ment, we collect a set of fine-grained imported in-
formation, locate the corresponding entities in the
repo-specific context graph, and retrieve relevant
entities along depends relation using a depth-first
search. The retrieved entities provide comprehen-
sive type-related background knowledge for both
cross-file imports and usages in unfinished code.

3.4 Prompt Generation

Before querying LMs, we restore the retrieved enti-
ties to the source code and concatenate it with the
unfinished code to generate well-formed prompts.

Since the maximum input lengths of LMs are
finite and fixed, we follow the dynamic context al-
location strategy proposed in (Shrivastava et al.,
2023b). It pre-allocates half of the total input
lengths for both the relevant background knowl-
edge and the unfinished code. If either is shorter
than the allocated length, the remaining tokens are
allocated to the other. We first set the entities that
have data relations with the line to be completed
as background knowledge, and then add as many
relevant entities as possible, in order by the line
numbers of other local import statements.

Our mission is to organize the prompts like the
original code to maintain the naturalness of pro-
grams (Hindle et al., 2012). We group the retrieved
entities in modules and merge those with contains
relations to avoid duplication, e.g., class members
would not be duplicated if the class already exists.
Benefiting from the design of our repo-specific con-



text graph, there are two prompt scopes, named def-
inition and complete, to control the details of code
entities. Compared to only definitions, prompts
under the complete scope contain specific function
bodies and variable statements. The code entities
in the same module are sorted by their starting line
number. Moreover, a comment “# file path of the
module” is put ahead of each module to indicate
the relative directory structure. Finally, we place
the relevant background knowledge inside a multi-
line string (triple quotes in Python) like a docstring,
which precedes the unfinished code.

4 Experiment Setup

4.1 Datasets

The widely-used datasets (Raychev et al., 2016; Lu
et al., 2021; Peng et al., 2023) for code completion
only provide a single unfinished code file as input.
Several recent benchmarks (Zhang et al., 2023; Liu
et al., 2023a) evaluate next-line prediction, which
is different from our concern with the current in-
complete line. CrossCodeEval (Ding et al., 2023)
is a multilingual benchmark for repository-level
code completion, where the statement to be com-
pleted has at least one use of cross-file API. Since
we focus on Python, we evaluate our DRACO on
the Python subset of CrossCodeEval.

To conduct a comprehensive evaluation, we fur-
ther construct a new Python dataset ReccEval with
more diverse completion targets. We collect the
projects that are first released on PyPI between
2023-01-01 to 2023-04-28, which is after the re-
leases of pre-training corpora (Husain et al., 2019;
Chen et al., 2021; Kocetkov et al., 2022). We pick
the projects with permissive licenses (i.e., MIT,
Apache, and BSD) and filter out those that have
fewer than 6 or more than 100 Python code files.
We identify the usages of local imported resources
and randomly select a subsequent token as the cur-
sor position. The context before the cursor is the
input, while the current line after the cursor is the
reference. For the diversity of ReccEval, we limit
the maximum number of examples to one per code
file and 10 per repository. Moreover, we ensure
that the reference is not in the unfinished code and
feed the examples to StarCoderBase-1B model (Li
et al., 2023b) to remove the exact matches (Ding
et al., 2023), which excludes strong clues in the un-
finished code to make ReccEval more challenging.

The statistics of ReccEval and the Python subset
of CrossCodeEval are shown in Table 2, where the

Features CrossCodeEval ReccEval
# Repositories 471 2,635
# Examples 2,665 6,461
Avg. # files in repository 30.5 24.6
Avg. # lines in input 73.9 113.1
Avg. # tokens in input 938.9 1,296.2
# Last char of input dot any
Avg. # tokens in reference 132 8.6

Table 2: Statistics of the ReccEval dataset that we con-
struct and the Python subset of CrossCodeEval.

number of tokens is calculated using the StarCoder
tokenizer (Li et al., 2023b).

4.2 Code LMs

We conduct experiments with popular code LMs in
various sizes from 350M to 16.1B parameters:

* CodeGen (Nijkamp et al., 2023a,b) is a family
of auto-regressive LMs for program synthesis.
We use the CodeGen2.5 model with 7B pa-
rameters and the CodeGen models with 350M,
2.7B, 6.1B, and 16.1B parameters, which sup-
port a maximum context length of 2,048 to-
kens. We use their mono versions, which are
further trained on additional Python tokens.
SantaCoder (Allal et al., 2023) is a 1.1B
model trained on Python, Java, and JavaScript,
which supports a maximum context length of
2,048 tokens.

StarCoder (Li et al., 2023b) is a 15.5B model
trained on 80+ programming languages and
further trained on Python, which supports a
maximum context length of 8,192 tokens.

Ding et al. (2023) observe that GPT-3.5-turbo
(Ouyang et al., 2022) performs even worse than
CodeGen-6.1B on the Python subset of Cross-
CodeEval. Therefore, we do not consider chat
models in our experiments.

4.3 Implementation Details

We evaluate the retrieval-augmented methods that
do not involve training, which excludes several
works (Shrivastava et al., 2023a,b; Lu et al., 2022).
See Appendix A for more details:

* Zero-Shot directly feeds the unfinished code
to code LMs, which evaluates their perfor-
mance without any cross-file information.

* CCFinder (Ding et al., 2022) is a cross-file
context finder tool, which retrieves the rel-
evant cross-file context from the pre-built
project context graph by import statements.
We conduct experiments for CCFinder-k (=
1, 2), which indicates that CCFinder retrieves



Methods

CodeGen-350M

SantaCoder-1.1B

CodeGen25-7B

StarCoder-15.5B

| EM ES IDEM Fl | EM ES IDEM Fl | EM ES IDEM Fl | EM ES IDEM FI
Zero-Shot | 2.81 5501 822 38.02 | 3.79 57.92 1043 4198 | 7.77 6052 1445 4540 | 871 6208 16.02 47.58
CCFinder-1 | 9.64 59.05 1636 4533 | 1437 63.86 2289 5226 | 18.84 66.67 27.35 56.05|27.99 72.59 3824 6446
CCFinder-2 | 822 58.17 1452 44.15 | 1141 6247 1974 4990 | 1550 6527 24.05 53.56 | 28.67 7325 39.10 65.59
RG-1 9.19 60.10 1689 4645|1235 64.09 22.10 51.79 | 17.34 6736 2728 5622 | 2627 7270 37.00 64.04
RepoCoder | 10.13  61.25 18.65 4829 | 13.62 6553 2394 54.06 | 19.51 6898 29.57 58.51 |29.12 74.56 40.83 66.81
DRACO 13.02 6130 2053  49.04 | 20.64 67.04 29.83 57.37 | 24.99 7010 34.63 61.14 | 34.67 7583 4563 69.93

Table 3: Performance comparison on the CrossCodeEval dataset. Numbers are shown in percentage (%).

| CodeGen-350M | SantaCoder-1.1B | CodeGen25-7B | StarCoder-15.5B
Methods | M ES IDEM Fl | EM ES IDEM Fl | EM ES IDEM Fl | EM ES IDEM FI
Zero-Shot | 4.01 4941 975 2598 | 554 5295 1193 2994|1110 57.25 1737 3555|1277 58.84 20.03 38.12
CCFinder-1 | 14.15 5575 2124 3774 | 21.36 61.90 29.31 46.18 | 26.87 6576 3455 51.00 | 39.33 73.05 48.18 63.49
CCFinder-2 | 11.64 5370 17.94 34.15 | 17.12 59.57 2458 41.93 | 2249 6342 2972 46.81 | 39.92 73.29 4891 64.08
RG-1 1944 59.08 26.02 4092 | 23.62 63.23 3058 4624 | 2933 6694 3606 51.36 | 42.67 74.64 5111  64.64
RepoCoder | 22.46 60.59 29.05 4391 | 27.29 6506 3456 49.68 | 32.84 68.73 40.07 5473 | 46.26 7644 5447 67.59
DRACO 2212 6041 2973 46.09 | 30.26 66.90 39.08 5543 | 36.46 70.76 44.67 60.40 | 4649 76.80 5598 70.32

Table 4: Performance comparison on the ReccEval dataset.

k-hop neighbors of cross-file code entities.

* RG-1 and RepoCoder (Zhang et al., 2023)
construct a retrieval database through a slid-
ing window and retrieve similar code snip-
pets using text similarity-based retrievers. Re-
poCoder is an iterative retrieval-generation
framework, which retrieves the database with
the results generated in the previous iteration.
RG-1 represents the standard RAG and is the
first iteration of RepoCoder.

For each method, we first preprocess all reposito-
ries in the datasets. Then, we generate prompts for
the unfinished code and record the time used. Fi-
nally, we acquire the completion results by feeding
prompts to each code LM. Note that a prediction is
the first line of a completion result.

We set the temperature of code LMs as 0 to
obtain deterministic results. The maximum genera-
tion length is set to 48 tokens, which is long enough
to accomplish line completions. An exception is
RG-1, which asks LMs to generate 100 tokens since
RepoCoder requires sufficient content for further
retrieval. We run StarCoder-15.5B and CodeGen-
16.1B on an NVIDIA A800 with 80GB memory
and run other LMs on an NVIDIA GeForce RTX
4090 with 24GB memory.

4.4 Evaluation Metrics

We evaluate the accuracy of each method by code
match and identifier match scores (Ding et al.,
2023), as well as the efficiency by prompt gen-
eration time. We report the average of each metric:
* Code match. Given a prediction y and the ref-
erence y*, we assess y using the exact match
accuracy (EM) and the Levenshtein edit sim-

ilarity (ES) (Lu et al., 2021; Zhang et al.,

2023). EM is calculated by an indicator func-

tion whose value is 1 if y = y*; otherwise, it

is0.ES=1-— mai?ﬁ#, where || - || cal-
yll,lly*I1)
culates the string length and Lev() calculates
the Levenshtein distance.

* Identifier match. Identifier exact match
(ID.EM) and Fl-score (F1) evaluate the
model’s ability to predict the correct APIs
(Ding et al., 2023). We parse the code and
extract the identifiers from y and y*, resulting
in two ordered lists of identifiers, which are
used to calculate these two metrics.

* Prompt generation time. As a frequently
used feature in real-world IDEs, the efficiency
of code completion deserves to be evaluated.
We record the prompt generation time, which
contains the time to retrieve relevant context
and the time to assemble final prompts. We
ignore the time spent by code LMs in gener-
ating predictions, which is determined by the
used LMs rather than the methods.

S Results and Analyses

5.1 Performance Comparison

The performance comparison on the CrossCodeE-
val and ReccEval datasets is listed in Tables 3 and 4,
respectively. Additional results on other Code-
Gen models are supplemented in Appendix B.2.
DRACO significantly improves the performance
of various code LMs. Particularly, the CodeGen-
350M model integrated with DRACO even outper-
forms the zero-shot StarCoder-15.5B model.

In comparison to other retrieval-augmented
methods, DRACO also shows generally superior



Methods \ CrossCodeEval  ReccEval
CCFinder-1 0.03 0.05
CCFinder-2 0.05 0.08
RG-1 0.01 0.02
RepoCoder 4.06 441
DrACO 0.04 0.04

Table 5: Prompt generation time (in seconds) of each
method using the CodeGen-350M model.

accuracy across all settings. The average absolute
improvement on EM, ES, ID.EM, and F1 versus
RepoCoder is 3.43%, 1.00%, 3.62%, and 3.27%,
respectively. RepoCoder retrieves similar code
demonstrations that help increase the ES metric of
completion results. However, RepoCoder ignores
the validity of its generated identifiers in the private
repository, which decreases the metrics for code ex-
act match and identifier match. Such almost-correct
completion results may introduce unconscious bugs
for the programmers who are unfamiliar with the
repository. In contrast, DRACO presents the defi-
nitions of relevant code entities, providing better
control over code LMs to generate valid identifiers.
Moreover, the background knowledge can be used
as a reference to help programmers understand and
review the completion results in IDEs. DRACO
using the CodeGen-350M model is slightly worse
than RepoCoder in terms of code match metrics
on the ReccEval dataset, where the model may not
be powerful enough to capture the data relations in
our provided background knowledge.

CCFinder retrieves cross-file code entities
through plain import relations. The entities re-
trieved by CCFinder were originally designed to
be encoded for training code LMs. When used as
a retrieval-augmented method, CCFinder retrieves
too many code entities through coarse-grained im-
ported information, resulting in truncation of truly
relevant context. As a result, CCFinder-2 with
more retrieval entities outperforms CCFinder-1 on
the StarCoder model that supports longer inputs,
while the opposite happens on the other code LMs.
Guiding by our dataflow analysis, DRACO retrieves
relevant code entities more precisely, leading to sig-
nificantly superior performance.

The performance of code completion varies on
the two datasets. See Table 2 for the statistics of
the datasets. First, the average reference length
of ReccEval is significantly shorter than that of
CrossCodeEval, leading to the higher EM metrics
of both code and identifier on ReccEval. Moreover,
all inputs of CrossCodeEval end with a dot where
a correct API is required in the first place, which

is more suitable for CCFinder and DRACO that
retrieve code definitions. Many inputs of ReccEval
end with partial names of the target APIs, which
facilitates text similarity-based retrievals includ-
ing RG-1 and RepoCoder. Therefore, the lead of
DRACO on CrossCodeEval is more significant.

5.2 Efficiency Evaluation

The time spent on prompt generation is perceived
by users whenever code completion is triggered.
Table 5 shows the prompt generation time of
each method using the CodeGen-350M model,
and additional results are shown in Appendix B.1.
CCFinder and DRACO require parsing the unfin-
ished code into an AST or a DFG, which is slightly
slower than RG-1 with text similarity-based re-
trieval but still comparable. RepoCoder relies on
RG-1 to generate sufficient content for the second
retrieval, which results in more than 4 seconds even
on the smallest CodeGen-350M model and may not
be feasible for real-time code completion.

In summary, DRACO is applicable to real-time
code completion in IDEs. Compared to the meth-
ods with comparable efficiencies (i.e., excluding
RepoCoder), DRACO is considerably ahead in the
performance of repository-level code completion.

5.3 Ablation Study

To analyze the effectiveness of dataflow analysis
in DRACO, we conduct an ablation study shown
in Tables 6 and 7. “w/o cross_df” disables the de-
pends relation in the repo-specific context graph,
making DRACO unable to handle the data depen-
dency relations in other code files. “w/o intra_df”’
disables the dataflow analysis for the unfinished
code, which only allows DRACO to retrieve coarse-
grained imported information in the order of their
starting line numbers. “w/o dataflow” degenerates
DRACO into a naive method that simply takes the
imported cross-file entities in the unfinished code
as the relevant background knowledge.

The ablation study demonstrates that the com-
plete DRACO achieves the best performance, and
all usages of dataflow analysis play a positive role
in repository-level code completion. It can be ob-
served that the enhancement of the “intra_df” com-
ponent on the StarCoder model is less than that on
other models. This component places the more rel-
evant background knowledge in front of the prompt
to prevent truncation, which is weakened to some
extent on the StarCoder model with a maximum
context length of 8,192 tokens.



‘ CodeGen-350M ‘

SantaCoder-1.1B

| CodeGen25-7B | StarCoder-15.5B

Methods

| EM ES IDEM Fl | EM ES IDEM

FI | EM ES IDEM Fl | EM ES IDEM Fl

DrACO
w/o cross_df
w/o intra_df
w/o dataflow

13.02 61.30 20.53
12,12 6093  19.51
10.88 59.74 17.56
10.13  59.55 17.00

49.04 | 20.64 67.04
48.32 | 18.42 66.05
46.25 | 1595 64.11
45.88 | 1490 63.57

29.83
27.62
24.09
23.11

57.37 | 2499 70.10 34.63 61.14 | 34.67 7583 45.63 69.93
55.64 | 2259 69.15 31.89 5936 | 30.73 73.85 41.05 66.31
5272 | 1959 67.08 2833 56.14 | 32.35 74.60 43.00 67.98
51.88 | 18.57 66.85 27.13 5553 | 28.82 72.80 38.87 64.65

Table 6: Ablation study for dataflow analysis on the CrossCodeEval dataset.

| CodeGen-350M |

SantaCoder-1.1B

| CodeGen25-7B | StarCoder-15.5B

Methods

| EM ES IDEM Fl | EM ES

ID.EM

FI | EM ES IDEM FlI | EM ES IDEM Fl

DrACO
w/o cross_df
w/o intra_df
w/o dataflow

22.12 6041 29.73  46.09
19.75 5895 27.19 43.52
16.67 57.28 23.62 40.11
1545 5640 2233 3873

30.26  66.90
27.05 65.12
23.03 62.87
21.58 62.01

39.08
35.61
31.09
29.62

5543 | 36.46 70.76 44.67 60.40 | 46.49 76.80 5598 70.32
5223 | 3295 6897 40.89 5697 | 4201 7440 5121 65.89
47.89 | 27.83 66.42 3566 5225 |43.88 7539 53.07 67.62
4644 | 26.42 65.65 34.14 50.67 | 4046 73.63 4945 64.37

Table 7: Ablation study for dataflow analysis on the ReccEval dataset.
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Figure 3: Performance comparison of two prompt

scopes on the CrossCodeEval dataset.

The performance of DRACO without dataflow
analysis is still comparable with CCFinder-*.
CCFinder groups the relevant context in code en-
tities, which is counter-intuitive for source code
(see the example shown in Appendix C). The re-
sults reveal that the well-formed prompts generated
by DRACO can better steer code LMs, even if the
depth-first search for code entities in the pre-build
context graph is absent.

5.4 Prompt Scope

The prompts generated by DRACO consist of the
definitions of code entities, which provide options
for the definition and complete scopes, as described
in Section 3.4. We further conduct experiments to
evaluate the influence of the two prompt scopes.
The results on the CrossCodeEval and ReccEval
datasets are shown in Figures 3 and 4, respectively.

DRACO with the complete scope achieves the
best performance across all settings, which indi-
cates that code implementations can further en-
hance code completion. Implementation details
can provide a deeper understanding of code en-
tities, along with the programming styles. More-
over, DRACO with the definition scope outperforms

S0 7649
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S Complete
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55.98 - 70.32
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\
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\
\
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CodeGen  SantaCoder CodeGen25 StarCoder
Figure 4: Performance comparison of two prompt
scopes on the ReccEval dataset.

CCFinder and RG-1 in most settings (cf. Tables 3
and 4), suggesting that the definitions without spe-
cific implementations are also useful for code LMs.
Since an implementation is usually much longer
than its definitions, both prompt scopes are optional
in practical applications, in a trade-off between per-
formance and cost.

6 Conclusions

In this paper, we propose DRACO, a dataflow-
guided retrieval augmentation approach for
repository-level code completion. To guide more
precise retrieval, we design an extended dataflow
analysis by setting type-sensitive data dependency
relations. DRACO parses the private repository into
code entities and relations to form a repo-specific
context graph. When triggering code completion,
DRACO retrieves relevant background knowledge
from the pre-built context graph, which is assem-
bled with the unfinished code to generate well-
formed prompts for querying code LMs. The ex-
periments on the CrossCodeEval dataset and our
ReccEval dataset show the superior accuracy and
applicable efficiency of DRACO. We will explore
other code semantic information in future work.



Ethical Considerations

The code generated by pre-trained LMs may con-
tain non-existent APIs or even introduce potential
bugs. The retrieval-augmented approaches includ-
ing ours mitigate this issue only to some extent. We
recommend presenting our retrieved background
knowledge to programmers for review and taking
appropriate care of these risks if deploying our ap-
proach in real-world applications.

All the datasets and code LMs used in this work
are publicly available with permissive licenses. The
CrossCodeEval dataset and CodeGen family are
licensed under the Apache-2.0 License. The Santa-
Coder and StarCoder models are licensed under the
BigCode OpenRAIL-M v1 license agreement. The
repositories in our ReccEval dataset are all licensed
under permissive licenses including MIT, Apache,
and BSD licenses.

Limitations

DRACO relies on a code LM to support long in-
puts and capture data dependency relations in the
provided background knowledge. Thus, the perfor-
mance of DRACO may be limited by the capability
of the code LM. According to our experiments,
DRACO still has a considerable improvement on
the smallest CodeGen-350M model with 2,048 to-
kens, which mitigates this limitation.

The effectiveness of DRACO may degrade when
the code intent is unclear. For new line or function
body completion, the guidance of dataflow analy-
sis is weakened since DRACO cannot set priorities
for imported information. We focus on code com-
pletion for an incomplete line, which is a realistic
and widely used feature in IDEs. Future work can
explore the role of dataflow analysis in different
completion scenarios.

DRACO requires changes to migrate to other pro-
gramming languages. Our idea of guiding retrieval
with dataflow analysis is not limited to Python.
However, due to the different characteristics of
programming languages, DRACO needs to extend
dataflow analysis for target languages. The variety
of static analysis tools for common programming
languages provides convenience for implementing
multilingual DRACO.
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A Implementation Details of Baselines

We describe more implementation details of
CCFinder, RG-1, and RepoCoder, which are in
line with the experimental setup in their papers:

* CCFinder. Because CCFinder is not open
source, we reproduce it according to its paper.
We do not limit the number of retrieved code
entities, as the cross-file context would be trun-
cated if it exceeds the maximum length. We
also re-order the retrieved entities, ensuring
the entities from the same source file follow
the original code order.

RG-1 and RepoCoder. In our experiments,
we use a sparse bag-of-words model as their
retriever, which calculates text similarity us-
ing the Jaccard index and achieves equivalent
performance to the dense retriever. The line
length of the sliding window and the sliding
size are set to 20 and 10, respectively. Accord-
ing to the maximum input length of code LMs,
the maximum number of the retrieved code
snippets in prompts is set to 40 for the Star-
Coder model and 10 for other models. The
number of iterations of RepoCoder is set to 2.

B Additional Evaluation

B.1 More Efficiency Evaluation Results

We also record the time spent on indexing the
repositories of CrossCodeEval and ReccEval, as
shown in Table 8. It is an offline preprocessing in
RAG, which indicates the time required to activate
a method. CCFinder and DRACO build retrieval
databases by statically parsing code files, which are
independent of the used code LMs. RG-1 and Re-
poCoder need to tokenize the code snippets within
a sliding window, which requires the tokenizers of
used LMs. Note that the tokenizers of CodeGen-*
models are the same. DRACO is 3—7 times faster
than RepoCoder in preprocessing time. As the size
of the repository increases, the preprocessing time
grows linearly. Therefore, RG-1 and RepoCoder
may suffer from scalability challenges.

The prompt generation time of each method us-
ing other code LMs is shown in Tables 9 and 10,
which show consistent conclusions with the main
paper. For the methods with one retrieval, only the
tokenizers have a subtle effect on efficiency when
different models are employed. As a result, the
prompt generation time using different CodeGen-*
models is the same for CCFinder, RG-1, as well as
DRACoO. RepoCoder relies on RG-1 to generate
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Methods Models CrossCodeEval ReccEval
CCFinder All 0.07 0.07
CodeGen 0.23 0.22
RG-1 & SantaCoder 0.25 0.22
RepoCoder | CodeGen25 0.35 0.34
StarCoder 0.21 0.19
DrACO All 0.05 0.06

Table 8: Preprocessing time (in seconds) for the reposi-
tories in CrossCodeEval and ReccEval.

sufficient content for the second retrieval, where the
efficiency mainly depends on the generation time of
code LMs. In general, the generation efficiency of
RepoCoder decreases as the model parameters in-
crease. Its average prompt generation time is more
than 3 seconds on the most efficient SantaCoder
model, which far exceeds the time spent by other
retrieval-augmented methods. Note that the archi-
tectures of code LMs also matter in efficiency, e.g.,
SantaCoder-1.1B is faster than CodeGen-350M.
The A800 GPU used to run the StarCoder-15.5B
and CodeGen-16.1B models is superior to the 4090
GPU used for the other models, so these are not
head-to-head comparisons for RepoCoder.

B.2 More Performance Comparison Results

Beyond the experimental results of the main pa-
per, we show additional evaluation results of other
CodeGen models in Tables 11 and 12. The addi-
tional results show consistent conclusions on per-
formance comparisons in the main paper. Under
the same architecture of the CodeGen-* models,
the performance of all methods improves as the
model parameters increase. Moreover, the improve-
ment of DRACO for zero-shot code LMs increases
as the model’s capability grows. It indicates that
stronger LMs can better utilize the relevant back-
ground knowledge retrieved by DRACO.

C Prompt Examples

We show the prompts generated by each method for
the example unfinished code (see Figure 1). The
prompts are excerpted for viewing the individual
format, as shown in Figure 5. It can be observed
that the prompts generated by DRACO look like
natural code, which is in line with the training cor-
pora of code LMs. The prediction result of each
method using the CodeGen25-7B model is shown
in Table 13, and only our DRACO generates the
correct code line.



| SantaCoder-1.1B | CodeGen25-7B | StarCoder-15.5B

Methods \ CrossCodeEval ReccEval \ CrossCodeEval  ReccEval \ CrossCodeEval  ReccEval
CCFinder-1 0.03 0.05 0.02 0.03 0.03 0.04
CCFinder-2 0.05 0.07 0.04 0.05 0.04 0.07
RG-1 0.01 0.02 0.02 0.02 0.01 0.01
RepoCoder 3.07 3.18 5.25 4.77 4.76 4.69
DrACO 0.04 0.04 0.03 0.04 0.06 0.08

Table 9: Prompt generation time (in seconds) of each method using SantaCoder, CodeGen25, and StarCoder models
(cf. Table 5).

| CodeGen-2.7B | CodeGen-6.1B | CodeGen-16.1B
Methods \ CrossCodeEval ReccEval \ CrossCodeEval ReccEval \ CrossCodeEval ReccEval
CCFinder-1 0.03 0.05 0.03 0.05 0.03 0.05
CCFinder-2 0.05 0.08 0.05 0.08 0.05 0.08
RG-1 0.01 0.02 0.01 0.02 0.01 0.02
RepoCoder 6.93 5.78 7.54 6.24 7.29 7.14
DrACO 0.04 0.04 0.04 0.04 0.04 0.04

Table 10: Prompt generation time (in seconds) of each method using other CodeGen models (cf. Table 5).

\ CodeGen-2.7B \ CodeGen-6.1B \ CodeGen-16.1B
| EM ES IDEM Fl | EM ES IDEM Fl | EM ES IDEM Fl

Zero-Shot 544 5785 11.71 4222 | 657 59.01 13.13 44.11| 7.05 59.88 13.88 45.27
CCFinder-1 | 1430 63.18 22.51 51.28 | 16.21 65.00 24.58 53.70 | 17.19 65.57 26.19 55.36
CCFinder-2 | 11.41 61.74 1947 4892 | 13.21 63.23 21.39 51.17 | 1415 63.89 22.59 52.17
RG-1 12.68 63.87 21.58 51.89 | 14.82 65.12 2353 53.54 | 1527 6587 24.65 54.76
RepoCoder | 14.07 65.12 2390 53.33 | 1587 66.74 26.15 5580 | 17.04 67.69 27.62 57.36
DrACO 1899 6552 27.50 55.07 | 22.36 68.06 31.37 58.60 | 22.78 68.09 32.08 59.40

Methods

Table 11: Performance comparison on the CrossCodeEval dataset using other CodeGen models (cf. Table 3).

\ CodeGen-2.7B \ CodeGen-6.1B \ CodeGen-16.1B
| EM ES IDEM Fl | EM ES IDEM Fl | EM ES IDEM Fl

Zero-Shot 6.73 5330 13.05 30.65| 834 5477 14.64 32.60 | 10.12 5584 16.50 34.17
CCFinder-1 | 20.38 60.80 28.12 44.83 | 23.56 63.07 31.56 47.90 | 24.64 64.17 32.66 49.28
CCFinder-2 | 17.21 59.13 2432 4158 | 19.66 60.77 2693 43.73 | 20.83 61.85 2825 45.11
RG-1 2449 63.12 3134 4651 | 25.86 64.75 32.66 4837 | 2797 66.18 35.07 50.37
RepoCoder | 27.84 65.07 35.13 49.71 | 2945 66.62 36.71 51.67 | 31.73 67.94 3896 53.64
DrACO 2942 6591 37.63 53.69 | 32.05 67.93 4083 56.80 | 33.76 69.20 42.38 58.38

Methods

Table 12: Performance comparison on the ReccEval dataset using other CodeGen models (cf. Table 4).
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# pyPhasesRecordloader.RecordSignal.RecordSignal
@classLogger
class RecordSignal:

# pyPhasesRecordloader.RecordSignal.RecordSignal.__init
def __init__ (self, targetFrequency=200, recordId=None):
self.recordId = recordId
self.signals: List[Signal] = []
self.labelSignals = []
self.signalNames = []
self.targetFrequency = targetFrequency

# pyPhasesRecordloader.RecordSignal.RecordSignal.getSignalByName
def getSignalByName (self, name) -> Signal:

index = self.getSignalIndexByName (name)

return self.signals[index]

(a) CCFinder-*.

v
# pyPhasesRecordloader/Signal.py
class Signal:
def __init_ (
self, name="Unknown", signal: np.ndarray = None,
frequency=100, type=SignalType.UNKNOWN, typeStr="unknown
) => None:
self.name = name
self.signal = signal
self.frequency = frequency
self.type = type
self.typeStr = typeStr

setSignalTypeFromTypeStr (self) :
if self.typeStr in signalTypeDict:

# Here are some relevant code fragments from other files
of the repo:

oo mm o

# the below code fragment can be found in:

# pyPhasesRecordloader-0.3.12/pyPhasesRecordloader/RecordLoader.py

oo mmm o

# signalTypeStr = self.signalTypeDict[signalName]

# else:

# self.logError("Signal '$s' had no type when
initilizing the RecordLoader" % str(signalName))

# signalTypeStr = "unknown"

# return signalTypeStr

oo

# the below code fragment can be found in:

#

pyPhasesRecordloader-0.3.12/pyPhasesRecordloader/RecordSignal.py

(b) RepoCoder, same as RG-1.

# pyPhasesRecordloader/Signal.py
class Signal:
def _ init_ (
self, name="Unknown", signal: np.ndarray = None,
frequency=100, type=SignalType.UNKNOWN, typeStr="unknown"
) -> None:
self.name
self.signal
self. frequency
self. type
self. typeStr

def
def

setSignalTypeFromTypeStr (self)
getFilterCoefficients (self, tansitionWidth=15.0,

self.type = signalTypeDict[self.typeStr] cutOffHz=30.0, rippleDB=40.0):
else: def bandpass(self, low, high, order=10):
self.type = SignalType.UNKNOWN def lowpass(self, value, order=10):
(c) Our DrRACO. (d) DRACO with the definition scope.
Figure 5: Excerpts of example prompts generated by different methods.
Methods | Predictions | Edit similarity
Zero-Shot channel = newChannelName 24
CCFinder-1 type = Signal.getType(channel Type) 53
CCFinder-2 type = Signal.getType(channelType) 53
RG-1 type = channelType 36
RepoCoder signal = newSignal.signal.astype(channel Type) 45
DraCo setSignal TypeFromTypeStr() 100

Ground Truth | setSignalTypeFromTypeStr()

Table 13: The example prediction of each method using the CodeGen25-7B model.
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