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ABSTRACT

Large language models (LLMs) have not only achieved impressive progress in
natural language processing tasks but also demonstrated remarkable performance
in practical applications such as intelligent customer service. However, LLMs
continue to demonstrate shortcomings in complex logical reasoning and decision-
making capabilities. As one of the key elements in human intelligence, logical
reasoning plays a crucial role in various tasks, including natural language under-
standing, intelligent question-answering, and knowledge graph construction. The
deficiency of LLMs in logical reasoning significantly limits their applications,
especially in domains requiring high accuracy and trustworthiness. To tackle this
issue, we focus on propositional logic and introduce a logic QA-specific phased
fine-tuning method to enhance the logical reasoning capabilities of LLMs, perform-
ing supervised fine-tuning from easy to hard. Based on the symbolic logical form
complexity derived from disjunctive normal form (DNF) and the LLM logical rea-
soning complexity in propositional logic question-answering tasks, the difficulty of
logic question-answering samples is automatically computed, and the training data
is stratified based on the difficulty. A dedicated fine-tuning dataset for propositional
logic is constructed, and experiments demonstrate the significant effectiveness of
our method, especially in those tasks demanding strong logical reasoning ability.

1 INTRODUCTION

Large language models (LLMs) have demonstrated impressive performance across a wide range of
natural language processing tasks. However, recent studies have found that there are still significant
challenges regarding the logical reasoning abilities of LLMs (Luo et al., 2023; Calanzone et al.,
2025). Logical reasoning tasks require LLMs to perform complex deductive, inductive, or abductive
reasoning over a set of premises and logical rules (Morishita et al., 2024; Sun et al., 2024). Specifically,
models are asked to determine whether a given conclusion can be logically inferred from the provided
premises. For instance, given premises such as “All mammals are animals; all dogs are mammals; all
cats are mammals; all Golden Retrievers are dogs”, the LLM is required to determine the statement
“All Golden Retrievers are animals” from the choices “True, False or Unknown”. To answer correctly,
the model has to construct the logical reasoning chain “Golden Retrievers → dogs → mammals →
animals” and thus infer the statement is True. When facing problems that cannot be directly solved by
pattern matching from common-sense knowledge in the training set, the complex logical reasoning
ability is crucial to guarantee a human-like cognitive intelligence (Mirzadeh et al., 2025).

Surprisingly, the LLaMA-13B model achieves only 33.63% accuracy under 8-shot prompting on
FOLIO (Han et al., 2024), barely outperforming random guessing (33.33%), which highlights that
pre-trained LLMs with in-context learning fail to solve complex logical reasoning tasks. Numerous
efforts have been made to enhance the logical reasoning capabilities of LLMs, which can be generally
classified into three categories. Solver-based methods firstly translate natural language problems into
symbolic logic representations, and then leverage an external logic solver to infer answers (Ye et al.,
2023; Pan et al., 2023; Olausson et al., 2023). Prompt-based methods fall into two main paradigms:
one prompts LLMs to generate explicit logical chains in natural language (Wei et al., 2022; Yao et al.,
2024; Zhang et al., 2024), while the other uses LLMs to translate into symbolic language, logically
infer answers and verification via carefully designed prompts (Xu et al., 2024; Liu et al., 2024; Li
et al., 2024b). Fine-tuning approaches enhance logical reasoning performance by either constructing
synthetic datasets with detailed logical deduction steps (Bao et al., 2024; Morishita et al., 2024) or
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Figure 1: (a) Overview of the phased fine-tuning framework for enhancing the LLM logical reasoning
ability; (b) Proposed framework for computing symbolic logical form complexity and LLM logical
reasoning complexity based on the disjunctive normal form (DNF) transformation.

augmenting training data with logical reasoning examples (Feng et al., 2024; Wan et al., 2024; Jiao
et al., 2024), thereby improving both model accuracy and interpretability in logical reasoning tasks.

However, solver-based approaches are prone to low execution rates due to translation errors and
face problems such as search explosion for complex logical reasoning problems (Liu et al., 2024;
Li et al., 2024b). Prompt-based approaches rely on the original logical reasoning abilities of pre-
trained models, yet empirically, LLMs such as LLaMA-13B with in-context learning have been
shown to perform only marginally better than random guessing in logical QA tasks (Yang et al.,
2024a). In addition, we found that directly fine-tuning the LLMs is unable to effectively solve
complex logical reasoning problems. This is because logical reasoning problems contain complex
logical rules implicitly compared to general reasoning problems (Luo et al., 2023), as well as the
inability of LLMs to comprehend and integrate multiple complex logical premises and logical rules
directly to infer the truth of the conclusions (Morishita et al., 2024). These significantly restrict the
practical application of large language models in scenarios such as intelligent question-answering
and autonomous decision-making. Therefore, there still needs to develop more effective fine-tuning
paradigms for the logical reasoning of LLMs.

To fill this gap, we focus on propositional logic QA within logical reasoning tasks in this study and
propose a novel phased fine-tuning strategy to enhance LLMs’ logical reasoning by a curriculum
learning (Bengio et al., 2009) framework that progressively trains LLM from easy to difficult tasks,
as Figure 1 shows. The most important step in curriculum learning lies in the difficulty measurement
of logical QA tasks, which has not been studied before. In this paper, we adhere to the nature of
logical QA and define the difficulty of solving a logical QA task as the complexity of determining a
proposition’s truth value, which depends on two factors: (a) the symbolic logical form complexity
based on a partial order of disjunctive normal form (DNF) and (b) the LLM logical reasoning
complexity based on the probabilities of atomic propositions in DNF being true. This forms the core
idea of our propositional logic difficulty measurement method in this study.

The contributions of this paper include four main aspects:

• We propose a propositional logic difficulty decomposition method based on syntactic com-
plexity and semantic understanding difficulty, which evaluates problem difficulty by convert-
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ing natural language logical problems into standardized Disjunctive Normal Form (DNF)
and considering both logical form complexity and LLM logical reasoning complexity.

• We design a phased fine-tuning framework for propositional logic QA, organizing training
data from easy to hard to enable incremental gain of logical reasoning ability.

• We construct a propositional logic-specific fine-tuning dataset, providing a valuable bench-
mark through symbolic translation and detailed difficulty annotation.

• Extensive experiments validate the effectiveness of our method, showing that phased fine-
tuning significantly improves model performance on standard logical reasoning benchmarks
as well as general reasoning tasks, especially in handling complex, long reasoning steps.
This work not only provides an effective path for enhancing LLMs’ logical reasoning ability
but also offers a scalable approach for more complex logical reasoning tasks.

2 PRELIMINARIES

2.1 PROPOSITIONAL LOGIC

Propositional logic represents propositions in natural language and the logical relations among
them through formal symbolic notation. Each proposition is recursively constructed from atomic
propositions and logical connectives. An atomic proposition is a statement that cannot be further
decomposed into sub-propositions. Logical connectives express the logical relationships between
propositions, and the corresponding meanings in natural language of logical connectives can be found
in the supplementary material. These logical connectives cover the primary types of relations between
propositions or sentences. To determine which forms of inference are valid, logic introduces truth-
value semantics, which assigns a truth value to each atomic proposition via a truth-value function. The
truth-value function is defined as Pron → V , where Pron denotes the set of all atomic propositions
and V = {T, F} represents the range of truth values, with T and F indicating “true” and “false,”
respectively. Based on this, the truth values of compound propositions formed by logical connectives
can be inductively defined as shown in the supplementary material.

2.2 LOGICAL QUESTION ANSWERING IN NATURAL LANGUAGE

In the logical question answering task, we have m logic QA samples of the form
{P (1)

i , P
(2)
i , . . . , P

(ni)
i , Ci, Yi}mi=1, where P (1)

i , P
(2)
i , . . . , P

(ni)
i are the premises in natural language

form, Ci is the conclusion in natural language form, and Yi is the label indicating whether Ci is
true given the premises. If the conclusion can be logically derived from the premises, it is labeled
as “true”; if the conclusion can be proved to be false based on the premises, it is labeled as “false”;
and if the conclusion’s truth value cannot be determined from the premises, the output should be
“undetermined/unknown.”

The following is an example of a logic QA task. The premises given to the model are: “Premise 1: If
Tom reads “Game Theory”, then he will gain knowledge”, “Premise 2: If Tom gains knowledge, then
he will become smarter”, and “Premise 3: Tom reads “Game Theory”. The question is then posed:

“Is the following assertion true: Tom will become smarter?” The correct answer should be “True”,
because based on the three premises and the rules of inference, we can derive the conclusion “Tom
gains knowledge”, which infers the assertion “Tom will become smarter”.

It is important to note that, since logic QA tasks are designed to assess the reasoning ability of large
models, the given premises are typically assumed to be true, or consistent with factual knowledge or
a knowledge base. This contrasts with reasoning in propositional logic, which also considers cases
where the premises may be false. In propositional logic, if the premises are false, any conclusion can
be inferred as true, meaning the inference is always valid. However, in logic QA tasks for LLMs,
such scenarios where the premises are false are generally not considered.

3 METHOD

In this study, we propose a method for measuring the difficulty of logical QA by combining the
complexity in symbolic language of propositional logic, along with the complexity in natural language.

3
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The former captures the difficulty of reasoning from premises to conclusion using logical symbolic
language, while the latter reflects the difficulty for a pretrained LLM to understand the premises and
conclusion in natural language. This idea aligns with the principle in logic that “the validity of a
conclusion depends on the truth of the premises and the validity of the argument.” Based on this
difficulty measurement, we propose a phased fine-tuning framework that stratifies samples in logic
QA data and fine-tunes LLMs from easy to hard to achieve better reasoning ability.

3.1 TRANSLATION FROM NATURAL LANGUAGE TO SYMBOLIC LANGUAGE

It is important to note that each premise and conclusion may consist of multiple atomic propositions,
so their complexity cannot simply be measured by the number of premises ni. To assess the difficulty
of the propositional logic QA task, we need to translate the natural language into symbolic language.
We leverage a pretrained LLM to perform this translation.

The translation involves two steps. First, we extract atomic propositions from the set of premises
and assign symbolic representations, resulting in a mapping between symbols and natural language
expressions. After obtaining the mapping, we then represent the original premises and conclusion
using symbolic language. Since atomic propositions may be expressed differently across different
premises in natural language, we again utilize the large language model to perform this conversion.
See the supplementary material for an example of the prompts and outputs used in this step.

3.2 SYMBOLIC LOGICAL FORM COMPLEXITY

After translation, the natural language logic QA data is converted into symbolic language. We denote
the resulting symbolic data as {P (1)

i , P
(2)
i , . . . , P

(ni)
i , Ci, Yi}mi=1, where each lowercase symbol

represents a formula of a proposition, possibly composed of multiple atomic propositions. The logic
QA task is equivalent to determining the truth value of the following formula:(

ni∧
l=1

P
(l)
i

)
→ Ci. (1)

Although we have expressed the problem in symbolic form, due to the equivalence of logical formulas,
the same semantic content can be expressed using different syntactic structures. For example, the
formulas P → Q and ¬P ∨Q are logically equivalent, although the former is an implication and
the latter is a disjunction. As a more complex example, (P ∧Q) ∨ (R ∧ S) is logically equivalent
to (P ∨ R) ∧ (P ∨ S) ∧ (Q ∨ R) ∧ (Q ∨ S). Clearly, equivalent formulas can vary significantly
in form, and thus, the complexity of symbolic language cannot be reliably measured directly from
the original translated formulas. Instead, we must transform all original formulas into a unified and
comparable form. In propositional logic, canonical forms such as disjunctive normal form (DNF)
possess a well-defined and consistent syntactic structure.
Definition 3.1. A disjunctive normal form (DNF) is a disjunction of conjunctions, where each
conjunction consists of atomic propositions or their negations. It is formally expressed as:

Q =

n∨
i=1

mi∧
j=1

Eij

 , (2)

where Eij is an atomic proposition or the negation of an atomic proposition.

Classical results in logic, such as the DNF theorem, state that every propositional formula can be
equivalently transformed into DNF. This provides the foundation for defining a unified measure of
complexity in symbolic language for propositional logic formulas. We propose that the total length
of a DNF formula

∑n
i=1 mi can serve as a measurement for its complexity. In the following, we

elaborate on the rationale behind this measurement.
Lemma 3.1. Every propositional logic formula can be transformed into an equivalent disjunctive
normal form (DNF) (Davey & Priestley, 2002).

The dual form of DNF is conjunctive normal form (CNF). Theoretically, there is a similar result
for CNF as Lemma 3.1, and CNF can also serve as a standard form in complexity measurement.
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However, the logic QA tasks are all of the form (
∧ni

l=1 P
i
l ) → Ci, transforming them into CNF often

leads to an exponential explosion, whereas the resulting DNF is typically more compact. Empirically,
on some samples with an average number of premises of 8.2, we find that the average transformed
DNF length is 19.2, while the average CNF length is 9568.5. When converted to DNF, the resulting
formula lengths are inflated on average by a factor of 2.53 compared to the number of prerequisites,
while for CNF, the result is 577.85. See the supplementary material for more details.

When measuring syntactic complexity, since all formulas have been transformed into the form in
Definition 3.1, we can ignore the differences between atomic propositions themselves and focus only
on quantitative characteristics. The syntactic complexity of each DNF formula

∨n
i=1

(∧mi

j=1 Eij

)
is entirely determined by a sequence of integers (m1,m2, . . . ,mn). Without loss of generality, we
assume m1 ≥ m2 ≥ . . . ≥ mn; otherwise, we reorder the DNF formula using the commutative
law. Given two DNF formulas Q and Q′ with corresponding sequences (m1,m2, . . . ,mn) and
(m′

1,m
′
2, . . . ,m

′
n′), we define a binary relation ≻ between these two sequences as follows:

Definition 3.2. (m1, . . . ,mn) ≻ (m′
1, . . . ,m

′
n′) ⇐⇒ n ≥ n′, m1 ≥ m′

1, . . . , mn′ ≥ m′
n′ .

In fact, (m1,m2, . . . ,mn) ≻ (m′
1,m

′
2, . . . ,m

′
n′) indicates that the DNF formula corresponding to

the former is strictly more difficult than the latter in form, because it represents a disjunction of more
conjunctive clauses, and its largest conjunctive clause contains more atomic propositions. If neither
(m1,m2, . . . ,mn) ≻ (m′

1,m
′
2, . . . ,m

′
n′) nor (m′

1,m
′
2, . . . ,m

′
n′) ≻ (m1,m2, . . . ,mn) holds, we

consider the two formulas incomparable in difficulty: one contains more disjunctions, while the other
contains more atomic propositions in the largest conjunction. Let S be the set of integer sequences
corresponding to all DNF formulas transformed from the dataset. Then ≻ is a partial order on S. The
proof for the following proposition is in the supplementary material.
Proposition 3.1. ≻ defines a partial order on the set S.

We aim to define a complexity measurement function CSL : S → R+, such that samples that are
strictly more difficult receive a higher complexity score. This gives rise to the following Difficulty
Partial Order Principle.
Definition 3.3. We say a complexity measurement function satisfies the Difficulty Partial Order
Principle if any (m1,m2, . . . ,mn) ≻ (m′

1,m
′
2, . . . ,m

′
n′), we have

CSL((m1,m2, . . . ,mn)) ≥ CSL((m
′
1,m

′
2, . . . ,m

′
n′)).

We can prove that using the DNF length as the definition of complexity in symbolic language, i.e.,
CSL((m1,m2, . . . ,mn)) =

∑n
i=1 mi satisfies the above Difficulty Partial Order Principle.

Theorem 3.1. CSL((m1,m2, . . . ,mn)) :=
∑n

i=1 mi satisfies the Difficulty Partial Order Principle.

Proof. If (m1,m2, . . . ,mn) ≻ (m′
1,m

′
2, . . . ,m

′
n′), then we have n ≥ n′, m1 ≥ m′

1, . . . , mn′ ≥
m′

n′ . Therefore,

CSL((m1,m2, . . . ,mn)) =

n∑
i=1

mi ≥
n′∑
i=1

mi ≥
n′∑
i=1

m′
i = CSL((m

′
1,m

′
2, . . . ,m

′
n′)).

3.3 LLM LOGICAL REASONING COMPLEXITY

In original logical QA tasks, both premises and conclusions are in natural language form. However,
the aforementioned complexity in symbolic language only considers the form of logical formulas,
without accounting for the complexity in natural language.

Based on the transformed DNF as Eq. 3.1, Let Prw(P = ⊤) be the probability of the proposition
P being true, given by the LLM we would like to fine-tune. Since we have extracted the atomic
proposition of the smallest unit from the premises, we follow recent neuro-symbolic AI work (van
Krieken et al., 2024; Calanzone et al., 2025) to make the following assumption of independence.
Assumption 3.1. Given the parameters of the LLM, the atomic propositions Eij are independent
from each other. Formally E11 ⊥⊥ E12 ⊥⊥ · · · ⊥⊥ Emn

n |w.
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Note that we only rely on the independence between atomic propositions instead of the premises,
posing a weaker assumption. Then we can compute the probability of the logic QA being true as
follows:

Prw(Q = ⊤) = 1−
n∏

i=1

1−
mi∏
j=1

Prw(Eij = ⊤)

 ,

. We then defined the LLM logical reasoning complexity based on the following information entropy:
CNL = −Prw(Q = ⊤) log2(Prw(Q = ⊤))− (1− Prw(Q = ⊤)) log2(1− Prw(Q = ⊤)).

For the example in Figure 1, if we have Prw(P = ⊤) = 0.2, Prw(Q = ⊤) = 0.4 and Prw(C =
⊤) = 0.7, then the probability of the original logical QA being true can be computed as:
Prw ((P ∧ ¬Q) ∨ (Q ∧ ¬C) ∨ ¬P ∨ C = ⊤)

=1− (1− Prw(P = ⊤) Prw(Q =⊥))(1− Prw(Q = ⊤) Prw(C =⊥))(1− Prw(P =⊥))(1− Prw(C = ⊤))

=1− (1− 0.2 ∗ 0.6)(1− 0.4 ∗ 0.3)(1− 0.8)(1− 0.7) = 0.95.

Note that the conclusion in the original QA problem was C, and that the probability that the LLM
alone will determine whether C is correct is different from the result from the above computation.
This reflects the difference between the logical QA task and general QA.

3.4 DATASET STRATIFICATION BASED ON DIFFICULTY

For a logical QA sample, we have obtained both the symbolic logical form complexity and the LLM
logical reasoning complexity. These need to be combined into an overall sample difficulty measure
for data stratification. We find that the empirical distributions of both complexities are close to normal,
which can be seen in the supplementary material.

Let Si = (P
(1)
i , P

(2)
i , . . . , P

(ni)
i , Ci) be sample i in natural language, and si be the corresponding

sequence of integer in its DNF. We define the final sample complexity as follows:
Cfinal,i = αCSL,i + (1− α)CNL,i, (3)

where CSL,i is the normalized value of the formal complexity CSL(si) for sample i, i.e.,
CSL(si)−mink CSL(sk)

maxk CSL(sk)−mink CSL(sk)
, and CNL,i is the normalized value of the natural language complexity for

sample i similarly.

We observe that the final sample difficulty is approximately normally distributed, with a maximum
around 0.7, indicating that the rankings of formal and natural language complexities are not entirely
consistent. See more details in the supplementary material. We stratify the training data into three
parts with increasing difficulty, and fine-tune LLM on these parts sequentially in a phased manner.
In other words, instead of training with the randomly shuffled whole dataset, we split the dataset
according to the difficulty measurement and only allow the shuffle within the same subparts.

4 THEORETICAL ANALYSIS

Let D be the distribution of training samples {St}nt=1 (suppose the index corresponds to the training
order). Let w be the tunable parameter vector of LLM. Let L(St,w) denote the loss of the model
with parameter w when given St. We assume the last layer of LLM is tunable, under the objective:

min
w

LD(w) = ESt∼D(L(St,w)).

SGD computes a sequence of estimators {wt}nt=1. Although in practice, a variant of SGD with batch
size larger than 1 is used, we analyze here a basic form with the update rule:

wt+1 = wt − η
∂L(St,w)

∂w
|w=wt

,

where η is the learning rate. Let w̄ = argminw LD(w) be the optimal parameter vector, based on
which we can define the Difficulty Score as:

Ψ(St) = L(St, w̄).

Let ∆t(Ψ) = E[||wt − w̄||2 − ||wt+1 − w̄||2 | Ψ] be the expected convergence rate at step t, given
fixed difficulty score Ψ. Then we have the following result, motivating training easiest samples first.
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Table 1: Comparison of our phased instruction fine-tuning and one-off instruction fine-tuning
baselines across different reasoning benchmark datasets. RI denotes relative improvement over the
corresponding baseline.

Benchmark Metric LLaMA LLaMA-PFT RI Ministral Ministral-PFT RI
MMLU acc 0.608± 0.003 0.614 ± 0.003 0.986% ↑ 0.489± 0.004 0.506 ± 0.004 3.497% ↑

BIG-bench exact_match 0.297± 0.005 0.330 ± 0.005 10.992% ↑ 0.101± 0.003 0.116 ± 0.003 14.680% ↑
RobustLR acc 0.690± 0.008 0.730 ± 0.008 5.791% ↑ 0.624± 0.008 0.629 ± 0.008 0.753% ↑
LogicNLI acc 0.355± 0.010 0.375 ± 0.010 5.775% ↑ 0.414± 0.011 0.440 ± 0.011 6.280% ↑

SNLI acc 0.536± 0.005 0.639 ± 0.004 19.321% ↑ 0.480± 0.005 0.485 ± 0.005 1.187% ↑
RTE acc 0.783± 0.008 0.833 ± 0.007 6.410% ↑ 0.815± 0.007 0.820 ± 0.007 0.588% ↑

ARC (challenge) acc 0.514± 0.014 0.533 ± 0.014 3.654% ↑ 0.469± 0.014 0.471 ± 0.014 0.533% ↑
MathQA acc_norm 0.380± 0.008 0.398 ± 0.009 4.572% ↑ 0.338± 0.008 0.341 ± 0.008 0.797% ↑
FOLIO exact_match 0.410± 0.015 0.448 ± 0.015 9.255% ↑ 0.504 ± 0.015 0.503± 0.015 0.199% ↓

LogiQA2.0 acc_norm 0.363± 0.012 0.386 ± 0.012 6.305% ↑ 0.298± 0.011 0.306 ± 0.011 2.782% ↑

Table 2: Ablation study results on different benchmarks with and without CSL and CNL for LLaMA
and Minstral.

Benchmark Metric LLaMA-PFT w/o CSL w/o CNL Ministral-PFT w/o CSL w/o CNL

MMLU acc 0.614 ± 0.003 0.533± 0.004 0.527± 0.004 0.506 ± 0.004 0.505± 0.004 0.463± 0.004
Big-bench exact_match 0.330 ± 0.005 0.154± 0.004 0.145± 0.004 0.116 ± 0.003 0.054± 0.002 0.084± 0.003
RobustLR acc 0.730 ± 0.008 0.591± 0.009 0.624± 0.008 0.629 ± 0.008 0.543± 0.009 0.583± 0.009
LogicNLI acc 0.375 ± 0.010 0.333± 0.010 0.359± 0.010 0.440 ± 0.011 0.358± 0.010 0.358± 0.010

SNLI acc 0.639 ± 0.004 0.566± 0.005 0.494± 0.005 0.485 ± 0.005 0.456± 0.005 0.298± 0.004
RTE acc 0.833 ± 0.007 0.777± 0.008 0.798± 0.008 0.820 ± 0.007 0.781± 0.008 0.807± 0.007

ARC (challenge) acc 0.533 ± 0.014 0.502± 0.014 0.495± 0.014 0.471 ± 0.014 0.460± 0.014 0.447± 0.014
MathQA acc_norm 0.398 ± 0.009 0.375± 0.008 0.369± 0.008 0.341 ± 0.008 0.340± 0.008 0.337± 0.008
FOLIO exact_match 0.448 ± 0.015 0.284± 0.014 0.335± 0.014 0.503 ± 0.015 0.489± 0.015 0.499± 0.015

LogiQA2.0 acc_norm 0.386 ± 0.012 0.321± 0.011 0.307± 0.011 0.306± 0.011 0.297± 0.011 0.307 ± 0.011

Theorem 4.1. At step t, the expected convergence rate for training sample St is monotonically
decreasing with the Difficulty Score Ψ(St). Formally, we have

∂∆t(Ψ)

∂Ψ
= −8η2ESt∼D|Ψ

[
∥St∥2

]
Ψ ≤ 0.

Corollary 4.2. To achieve faster convergence to w̄, we should choose the easier sample at each step,
thus resulting in training from easy to hard.

The above result demonstrates that training with easier samples achieves faster convergence, which
motivates our phased fine-tuning based on the sample’s logical complexity. See supplementary
material for the detailed proof.

5 EXPERIMENTS

This section aims to validate the effectiveness of our proposed difficulty measurement method for
natural language propositional logic QA by comparing the performance of two training strategies:
one-off instruction fine-tuning and our proposed phased instruction fine-tuning. All fine-tuning
experiments are conducted on the open-source models LLaMA-3.1 8B-Instruct (Dubey et al.,
2024) and Ministral-8B-Instruct-2410 (Min, 2024).

Datasets and Benchmarks. We construct the training set for propositional logic QA based on the
public dataset FLDx2 (Morishita et al., 2024). The 31,420 QA pairs related to propositional logic
are our training data. The benchmarks include: FOLIO (Han et al., 2024), SNLI (Bowman et al.,
2015), MMLU (Hendrycks et al., 2021), Big-bench (Srivastava et al.) RobustLR (Sanyal et al., 2022),
LogicNLI (Tian et al., 2021), RTE datasets (Dagan et al., 2005; Giampiccolo et al., 2007; Bentivogli
et al., 2009) , ARC challenge dataset (Clark et al., 2018), MathQA (Amini et al., 2019), LogiQA2.0
(Liu et al., 2023). Datasets annotated with “mcq” denote multiple-choice tasks, and those without
annotations are treated as QA tasks by default. For all benchmarks, we evaluate using in-context
learning with zero-shot or few-shot settings, which can be seen in the supplementary materials.
The reported metrics include accuracy (acc), normalized accuracy over multiple correct answers
(acc_norm), and exact match rate (exact_match), which requires character-level exact correspondence.
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Table 3: Performance of LLaMA under different instruction training orders. Background cell colors
range from light to dark, indicating increasing values within each row.

Benchmark Metric 1-2-3 2-1-3 3-1-2 1-3-2 2-3-1 3-2-1
MMLU acc 0.614± 0.003 0.598± 0.003 0.617± 0.003 0.611± 0.003 0.612± 0.003 0.600± 0.003

Big-bench exact_match 0.330± 0.005 0.313± 0.005 0.272± 0.005 0.287± 0.005 0.287± 0.005 0.317± 0.005
RobustLR acc 0.730± 0.008 0.672± 0.008 0.674± 0.008 0.718± 0.008 0.641± 0.008 0.594± 0.009
LogicNLI acc 0.375± 0.010 0.409± 0.011 0.451± 0.011 0.424± 0.011 0.418± 0.011 0.342± 0.010

SNLI acc 0.639± 0.004 0.623± 0.004 0.498± 0.005 0.488± 0.005 0.613± 0.004 0.578± 0.004
RTE acc 0.833± 0.007 0.827± 0.007 0.810± 0.007 0.784± 0.008 0.749± 0.008 0.806± 0.007

ARC (challenge) acc 0.533± 0.014 0.511± 0.014 0.535± 0.014 0.513± 0.014 0.531± 0.014 0.517± 0.014
MathQA acc_norm 0.398± 0.009 0.368± 0.008 0.351± 0.008 0.388± 0.008 0.367± 0.008 0.367± 0.008
FOLIO exact_match 0.448± 0.015 0.349± 0.015 0.412± 0.015 0.441± 0.015 0.421± 0.015 0.402± 0.015

LogiQA2.0 acc_norm 0.386± 0.012 0.369± 0.012 0.374± 0.012 0.380± 0.012 0.381± 0.012 0.379± 0.012

Experimental Setup. For training, we use LLaMA-Factory (Zheng et al., 2024), and employ
DeepSpeed’s Zero3 for parallel, full-parameter fine-tuning. All experiments use a consistent learning
rate of 5e-6 and 1 training epoch. We set the per-device batch size to 8, gradient accumulation steps
to 1, weight decay to 0.1, and warmup ratio to 0.1. A cosine learning rate scheduler is used, following
standard fine-tuning practices for large language models.

Performance Comparison. We compare the performance of our proposed staged instruction tuning
with the baseline one-off instruction fine-tuning across multiple benchmark datasets, as shown in
Table 1. Our method significantly outperforms the baseline on nearly all benchmarks. It is worth
noting that LLaMA generally outperforms Ministral on these benchmarks. And on this basis, our
method still exhibits a more significant performance improvement in the LLaMA model.

Ablation Study. We conduct ablation experiments to validate the effectiveness of complexity in
symbolic language and complexity in natural language in our proposed approach. Table 2 shows
the results on numerous benchmarks. Removing either complexity in symbolic language (w/o CSL)
or complexity in natural language (w/o CNL), and performing the same difficulty partitioning and
phased fine-tuning, different degrees of performance degradation are observed. On the majority
of benchmarks, the loss in performance compared to the baseline is comparable for both ablated
versions, but on the natural language inference benchmark SNLI, removing complexity in natural
language impairs performance more significantly.

Phased Fine-tuning for All Permutations of Training Order. We investigate the effect of training
order on the performance of LLaMA on all 10 datasets, as shown in Table 3. Note that the normal
order (1-2-3) achieves the overall best performance, which shows it can help LLM to build a basic
understanding and confidence, gradually ramping up to harder tasks. In addition, the inverse order
(3-2-1) achieves the worst performance, which means the simpler sample should be trained in the
beginning stage or the middle stage.

Evolution of Accuracy Along with the Training Steps. We show the accuracy evolution of LLaMA
on different benchmarks during training in Figure 2. For all four datasets, our method steadily
outperforms the baseline when training converges, indicating better learning performance. In addition,
except for RobustLR, we achieve consistently better results at the early stage of training compared to
the baselines, demonstrating the effectiveness of our approach.

Sensitivity Analysis. To investigate which complexity (symbolic logical form or LLM logical
reasoning) is more essential in the sample splitting, we conduct the sensitivity analysis on the weight
parameter α, as shown in Figure 3. We find that a small α is the best choice for Ministral, and a
large α is the best choice for LLaMA, showing there is no general consistent choice of α for different
datasets and backbones, and indicating that both complexity are important.

6 RELATED WORK

Logical Reasoning in LLMs. Methods for enhancing the logical reasoning capabilities of large
language models can be broadly categorized into three types. Solver-based approaches first prompt
LLMs to convert natural language problems into symbolic expressions, then leverage a corresponding
logic solver to infer the answer (Ye et al., 2023; Pan et al., 2023; Olausson et al., 2023). Prompt-based
methods follow two main strategies. The first explicitly generates logical chains during question
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Figure 2: The evolution of accuracy of LLaMA on logical and other reasoning benchmarks along
with the training steps. The dashed blue lines represent the performance of baseline.
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Figure 3: Sensitivity analysis on the weight parameter α. The blue line represents the results of
LLaMA, while the orange line represents the results of Ministral.

answering (Wei et al., 2022; Yao et al., 2024; Zhang et al., 2024). The second strategy leverages
LLMs through prompts to symbolize natural language, reason step by step, and verify results (Xu
et al., 2024; Liu et al., 2024; Li et al., 2024b). Fine-tuning approaches construct synthetic datasets
that contain clear logical reasoning processes (Bao et al., 2024; Morishita et al., 2024), or argument
the training dataset with logical reasoning data (Feng et al., 2024; Wan et al., 2024; Jiao et al., 2024)
to fine-tune the LLMs to improve the accuracy of logic reasoning. While previous approaches that
fine-tune LLMs in a single stage with logical reasoning datasets, our work introduces a phased
fine-tuning method to train LLMs progressively from simple to complex logical reasoning samples.

Curriculum Learning. Curriculum Learning (CL) (Bengio et al., 2009), inspired by the human
learning process, is a training strategy in machine learning that presents data in a “from easy to
hard” manner, significantly improving both generalization and training efficiency (Campos, 2021;
Wang et al., 2020). Pang et al. (2024) and Huang & Xiong (2024) both design instruction fine-tuning
strategies that organize data from easy to hard by models’ feedback, demonstrating gains across
multiple tasks of LLMs. TAPIR (Yue et al., 2024) also uses a strong oracle LLM to iteratively select
and refine increasingly difficult samples, systematically escalating task difficulty during training.
Yang et al. (2024b) study fine-tuning based on CL in medical QA and observe modest accuracy gains
from sorting examples by difficulty. Wu et al. (2024) and Varshney et al. (2022) design a CL training
framework based on data quality or model uncertainty, boosting performance respectively on visual
instruction and multiple NLP tasks. Our paper first introduces phased fine-tuning based on curriculum
learning into logical QA tasks to significantly improve the logical reasoning ability of LLMs.

7 CONCLUSION

This study focuses on logic QA tasks and explores employing phased instruction fine-tuning to
enhance the logical reasoning ability of large language models. We introduced a method for com-
puting sample difficulty by combining the symbolic logical form complexity and the LLM logical
reasoning complexity of logic QA tasks. This enables automatic difficulty measurement directly from
propositional logic data, without relying on external difficulty annotations. We carefully constructed
a training set of propositional logic QA samples based on the public FLDx2 dataset and conducted
evaluations on multiple benchmark datasets, covering logical task RobustLR, LogicNLI, SNLI, RTE,
FOLIO, and LogiQA2.0, and general reasoning tasks MMLU, Big-bench, ARC, and MathQA. Exper-
imental results demonstrate the effectiveness of our phased fine-tuning approach for logical reasoning
and general reasoning, as well as the reliability of our proposed automatic difficulty measurement
method. One possible limitation of this paper is that the current phased fine-tuning approach focuses
only on basic propositional logic, and can be further extended to more complex logic systems in the
future, including first-order logic, modal logic, and higher-order logic.
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REPRODUCIBILITY STATEMENT

The dataset preprocessing procedures, experimental details and evaluation metrics are described
in the main text. Complete training code are provided in an anonymized repository at https:
//anonymous.4open.science/r/ICLR26_23017-FF14.
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USAGE OF LLMS

In this work, we limitedly use LLMs as an assistive writing tool. Specifically, we used LLMs to
replace words with synonyms, restructure sentences, and check grammars in the paragraphs. All
significant contributions, research ideas, experiments, analyses, and final writing decisions were made
by the authors. The authors understand that they take full responsibility for the contents written in
this paper.

A LOGICAL CONNECTIVES

Table 4: Definition of logical connectives.

Logical Connective Name Meaning in Natural Language
¬ Negation It is not the case that ...
∧ Conjunction Both ... and ...
∨ Disjunction Either ... or ...
→ Implication If ... then ...
↔ Biconditional ... if and only if ...

Table 5: Truth table of logical connectives.

P Q ¬P P ∧Q P ∨Q P → Q P ↔ Q

T T F T T T T

T F F F T F F

F T T F T T F

F F T F F T T

B PROMPTS FOR TRANSLATING NATURAL LANGUAGE TO SYMBOLIC
LANGUAGE

C STATISTICAL DESCRIPTION OF DATASETS

We observe the formal complexity CSL and other potential difficulty indicators of the samples,
including the number of premises, types of atomic propositions, and the DNF length we defined.
Their frequency distributions are shown in Figure 5. It can be seen that our defined formal complexity
CSL provides good discrimination and has a distribution closer to normal compared to the other two
indicators.

The resulting frequency distribution of sample complexity in propositional logic QA is shown in
Figure 6a, and the cumulative distribution function estimated via kernel density estimation is shown
in Figure 6b. It can be seen that the final sample complexity is approximately normally distributed,
with a maximum around 0.7, indicating that the rankings of formal and natural language complexities
are not entirely consistent.

D BENCHMARK DATASETS

• FOLIO dataset (Han et al., 2024) evaluates the first-order logical reasoning abilities.

• SNLI dataset (Bowman et al., 2015) evaluates the abilities of recognizing entailment relations
between short text pairs.

• MMLU dataset (Hendrycks et al., 2021) evaluates knowledge and reasoning abilities across
57 diverse tasks at high school, college, and professional levels.
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• Task
- Destract atomic	propositions	from	the	
following	facts	and	assign	symbols;	

• Input
- Fact1: If	Tom	read	Game	Theory,	then	he	
gained	knowledge.
- Fact2: If	Tom gains	knowledge,	he	
becomes	smarter.
- Fact3: Tom read	Game	Theory.

• Output
- {“symbol1”:	“proposition1”,	“symbol2”:	
“proposition2”,	...}	 (use	P,	Q,	R	as	symbols,	
and	¬	for	negation)

“P":	“Tom	reads	“Game	Theory”
"Q":	“Tom gains	knowledge”
"R":	“Tom becomes	smarter”

LLM

𝑃 → 𝑄
𝑄 → 𝑅
𝑃

LLM

• Task
- Generate	propositional	logic	formula	based	on	the	mapping	of	atomic	
propositions

• Mapping
{
“P":	“Tom	reads	“Game	Theory”,
"Q":	“Tom gains	knowledge”,
"R":	“Tom becomes	smarter”,
}

• Sentences
- Fact1: If	Tom	read	Game	Theory,	then	he	gained	knowledge.
- Fact2: If	Tom gains	knowledge,	he	becomes	smarter.
- Fact3: Tom read	Game	Theory.

• Output
- only	output	the	symbolic	formula	such	as	(P	∧	Q)	→ R）

Step1: Extracting	Atomic	
Propositions	from	the	Premises

Step2:	Translating	Premises	and	Conclusion

Figure 4: Example of prompts and outputs for step1: extracting atomic propositions from the premises
and step2: translating premises and conclusion based on the mapping of atomic propositions.

Figure 5: Histogram of the frequency distribution of the number of premises, propositional variables,
and atomic propositions in DNF

• Big-bench dataset (Srivastava et al.) comprises 204 diverse tasks spanning linguistics, math,
common-sense reasoning. We perform CoT evaluation in zeroshot setting with Big-bench.

• RobustLR dataset (Sanyal et al., 2022) tests abstract and compositional logical reasoning
by multiple-choice questions. We construct the data into multiple choice questions with
RobustLR.

• LogicNLI dataset (Tian et al., 2021) is an NLI-style benchmark designed to diagnose
language models’ first-order logic reasoning ability. We construct the data into multiple
choice questions with LogicNLI.

• RTE dataset (Dagan et al., 2005; Giampiccolo et al., 2007; Bentivogli et al., 2009) comes
from a series of textual entailment reasoning tasks. We construct the data into multiple
choice questions with RTE.

• ARC (Challenge) (Clark et al., 2018) is a more challenging subset in a benchmark of grade-
school science questions designed to test knowledge-intensive and reasoning-heavy question
answering.

• MathQA dataset (Amini et al., 2019) is a large-scale collection of math word problems
requiring interpretable and accurate neural reasoning.
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(a) Histogram of the frequency (b) Cumulative distribution function estimated by ker-
nel density

Figure 6: Statistical description of logic QA sample complexity.

• LogiQA2.0 dataset (Liu et al., 2023) evaluates complex logical reasoning abilities with 35k
premise–hypothesis pairs.

E PROOF SKETCH

Proposition 3.1. ≻ defines a partial order on the set S.

Proof. Consider any (m1,m2, . . . ,mn) ∈ S. Clearly, we have n ≥ n, m1 ≥ m1, m2 ≥
m2, . . . , mn ≥ mn, hence q ≻ q, and reflexivity holds.

Consider any (m1,m2, . . . ,mn), (m′
1,m

′
2, . . . ,m

′
n′) ∈ S. If (m1,m2, . . . ,mn) ≻

(m′
1,m

′
2, . . . ,m

′
n′) and (m′

1,m
′
2, . . . ,m

′
n′) ≻ (m1,m2, . . . ,mn) both hold, then n ≥ n′ and

n′ ≥ n, so n = n′; similarly, from m1 ≥ m′
1, . . . , mn′ ≥ m′

n′ and m′
1 ≥ m1, . . . , m

′
n ≥ mn, we

have m1 = m′
1, . . . , mn′ = m′

n′ , thus (m1,m2, . . . ,mn) = (m′
1,m

′
2, . . . ,m

′
n′), and antisymmetry

holds.

Consider any (m1,m2, . . . ,mn), (m′
1,m

′
2, . . . ,m

′
n′), (m′′

1 ,m
′′
2 , . . . ,m

′′
n′′) ∈ S. If

(m1,m2, . . . ,mn) ≻ (m′
1,m

′
2, . . . ,m

′
n′) and (m′

1,m
′
2, . . . ,m

′
n′) ≻ (m′′

1 ,m
′′
2 , . . . ,m

′′
n′′), then

n ≥ n′ and n′ ≥ n′′, hence n ≥ n′′; similarly, from m1 ≥ m′
1, . . . , mn′ ≥ m′

n′ and
m′

1 ≥ m′′
1 , . . . , m′

n′′ ≥ m′′
n′′ , we get m1 ≥ m′′

1 , . . . , mn′′ ≥ m′′
n′′ , i.e., (m1,m2, . . . ,mn) ≻

(m′′
1 ,m

′′
2 , . . . ,m

′′
n′′), and transitivity holds.

In conclusion, ≻ defines a partial order on S.

Theorem 4.1. At step t, the expected convergence rate for training sample St is monotonically
decreasing with the Difficulty Score Ψ(St). Formally, we have

∂∆t(Ψ)

∂Ψ
= −8η2ESt∼D|Ψ

[
∥St∥2

]
Ψ ≤ 0.

Proof. Let the last-layer representation of LLM be xi for training sample i. We require another
assumption that the probability of label Y depends only on the loss L(St, w̄) and is independent of x
to prove this theorem.

We formulate the logic QA task as a regression problem that predicts the probability of the conclusion
being true. Then the loss can be written as:

L(St,w) = (x · w − y)2.

Let s denote the gradient vector at step t, then the updating equation for the parameter vector is:

wt+1 = wt − 2η(x ·w − y)x = wt + s (4)
s
.
= −2η(x ·w − y)x (5)
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Let Ωx denote the hyperplane on which the gradient s vanishes, i.e., s = 0. Let z̄ be the projection of
w̄ on Ωx. The Difficulty Score of St is Ψ(St) = L(St, w̄) = L(St, z̄ + (w̄− z̄)) = ||St||2||w̄− z̄||2.

Next, we embed the data points in the parameters space, representing each datapoint x using a
hyperspherical coordinate system [r, ϑ,Φ], with pole (origin) fixed at w̄ and polar axis (zenith
direction) O⃗ = w̄ − wt. r denotes the vector’s length, while 0 ≤ ϑ ≤ π denotes the polar angle with
respect to O⃗. Let Φ = [φ1, . . . , φd−1] denote the remaining polar angles.

We introduce the notation λ = ∥w̄ − wt∥. Let sO denote the projection of the gradient vector s on
the polar axis O⃗, and let s⊥ denote the perpendicular component. From the updating equation and
the definition of Ψ, we have s = −2ηx(x · wt − y) = −2ηx(x · (wt − w̄)±Ψ), and

sO = s · w̄ − wt

λ

= 2
η

λ

[
r2λ2 cos2 ϑ∓Ψrλ cosϑ.

]
Then, the convergence rate at wt given Ψ is:

∆(Ψ) = (−λ)2 − ESt∼D|Ψ[(−λ+ sO)
2 + s2⊥]

= λ2 −
(
λ2 − 2λESt∼D|Ψ[sO] + ESt∼D|Ψ[s

2
O]
)
− ESt∼D|Ψ[s

2
⊥]

= 2λESt∼D|Ψ[sO]− ESt∼D|Ψ[s
2]

To simplify the notations, henceforth E stands for ESt∼D|Ψ. In addition, we define a shorthand
notation (±Ψ) to be used inside the expectation operator E[·]. It conveys that the operand of E[]
should be multiplied by either +Ψ or −Ψ, depending on whether the label y equals x · w̄ + Ψ
or x · w̄ − Ψ respectively. When expectation is computed, each case is assigned the conditional
probability of the corresponding label as defined above. Then we have:

∆(Ψ) = 4ηE[r2λ2 cos2 ϑ]− 4η2E[r4λ2 cos2 ϑ]− 4η2Ψ2E[r2]− 4ηE[(±Ψ)rλ cosϑ]

− 8η2E[(±Ψ)r3λ cosϑ].

By the additional assumption about the distribution of Y , we have

E[(±Ψ)rλ cosϑ] = E[(±Ψ)r3λ cosϑ] = 0,

from which we can infer that

∆(Ψ) = 4ηE[r2λ2 cos2 ϑ]− 4η2E[r4λ2 cos2 ϑ]− 4η2Ψ2E[r2].

As a consequence, we have

∂∆t(Ψ)

∂Ψ
= −8η2ESt∼D|Ψ

[
∥St∥2

]
Ψ ≤ 0,

which concludes the proof of the theorem.

F COMPARISON BETWEEN CNF AND DNF

Definition F.1. A conjunctive normal form (CNF) is a conjunction of disjunctions, where each
disjunction consists of atomic propositions or their negations. It is formally expressed as:

q =

n∧
i=1

mi∨
j=1

eij

 ,

where eij is an atomic proposition or the negation of an atomic proposition.
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In practice, transforming formula 1 into CNF incurs significantly higher time and space complexity
than DNF, and the extreme length expansion makes CNF unsuitable for defining syntactic complexity.

As shown in Table 6, for the first nine samples in our dataset (the tenth sample contains 22 premises
and could not be converted to CNF within a reasonable time), the average length of CNF is over 500
times that of DNF, and the average CPU runtime is more than three times longer. Compared to the
number of original premises, CNF length expands by a factor of 500, whereas DNF length increases
only by a factor of 2. Therefore, we adopt DNF as the canonical form.

Table 6: Statistics on the time and space complexity of converting to DNF and CNF

Canonical Form Avg. Length Avg. Runtime Avg. #Premises Max #Premises Avg. Length / #Premises

DNF 19.2 1.12e-6s 8.2 18 2.53
CNF 9568.5 5.48e-7s 8.2 18 577.85

G COST AND RUNTIME ANALYSIS

Our proposed method involves some extra computation via API or on a local GPU server. The token
consumption in the step translating natural language to symbolic language is 25,091,708 in total. Note
that the translation should only be performed once; then, the results can be stored for the complexity
labeling and training. The typical runtime by step can be seen in Table 7.

Table 7: Runtime cost of the whole process including translating natural language to symbolic
language, complexity labeling, and fine-tuning training.

Step Translation CSL CNL Training

Time 8.2 h 2 min 23.5 min 2 h 23 min

H EXTRA EXPERIMENTAL RESULTS

We conduct more experiments on the Ministral model. The first one is the phased fine-tuning for all
permutations of training order, which is shown in Table 8. The second one is about an additional
performance comparison, with a naive baseline using the prompt-based method to obtain the difficulty
of all samples and perform phased fine-tuning. The result can be seen in Table 9. Our method
significantly outperforms this baseline on almost all benchmarks except for MathQA.

Table 8: Performance of Ministral under different instruction training orders. Background cell colors
range from light to dark, indicating increasing values within each row.

Benchmark Metric 1-2-3 2-1-3 3-1-2 1-3-2 2-3-1 3-2-1
MMLU acc 0.506 ± 0.004 0.429± 0.004 0.458± 0.004 0.469± 0.004 0.478± 0.004 0.487± 0.004

Big-bench exact_match 0.116 ± 0.003 0.074± 0.003 0.081± 0.003 0.073± 0.003 0.106± 0.004 0.092± 0.003
RobustLR acc 0.629± 0.008 0.457± 0.009 0.621± 0.009 0.689 ± 0.008 0.428± 0.009 0.509± 0.009
LogicNLI acc 0.440 ± 0.011 0.364± 0.011 0.292± 0.010 0.386± 0.011 0.350± 0.010 0.284± 0.010

SNLI acc 0.485 ± 0.005 0.336± 0.004 0.373± 0.004 0.345± 0.004 0.197± 0.004 0.435± 0.005
RTE acc 0.820± 0.007 0.762± 0.008 0.823 ± 0.007 0.594± 0.009 0.821± 0.007 0.808± 0.007

ARC (challenge) acc 0.471± 0.014 0.446± 0.014 0.473± 0.014 0.466± 0.014 0.474 ± 0.014 0.470± 0.014
MathQA acc_norm 0.341± 0.008 0.339± 0.008 0.343± 0.008 0.350 ± 0.008 0.339± 0.008 0.345± 0.008
FOLIO exact_match 0.503± 0.015 0.407± 0.015 0.483± 0.015 0.493± 0.015 0.472± 0.015 0.512 ± 0.015

LogiQA2.0 acc_norm 0.306 ± 0.011 0.306± 0.011 0.297± 0.011 0.306± 0.011 0.302± 0.011 0.288± 0.011

I RELATED WORK

Curriculum learning. Curriculum Learning (CL), inspired by the human learning process (Bengio
et al., 2009), is a training strategy in machine learning that presents data in a “from easy to hard”
manner, significantly improving both generalization and training efficiency. In computer vision,
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Table 9: Comparison of our phased instruction fine-tuning and phased fine-tuning with prompt-based
difficulty labeling baselines across different reasoning benchmark datasets. RI denotes relative
improvement over the corresponding baseline.

Benchmark Metric Ministral-P Ministral-PFT RI
MMLU acc 0.435± 0.004 0.506 ± 0.004 16.322% ↑

BIG-bench exact_match 0.089± 0.003 0.116 ± 0.003 30.337% ↑
RobustLR acc 0.581± 0.009 0.629 ± 0.008 8.262% ↑
LogicNLI acc 0.367± 0.011 0.440 ± 0.011 19.891% ↑

SNLI acc 0.218± 0.004 0.485 ± 0.005 122.477% ↑
RTE acc 0.804± 0.008 0.820 ± 0.007 1.990% ↑

ARC (challenge) acc 0.453± 0.014 0.471 ± 0.014 3.974% ↑
MathQA acc_norm 0.348 ± 0.008 0.341± 0.008 2.011% ↓
FOLIO exact_match 0.504± 0.015 0.492 ± 0.015 2.236% ↑

LogiQA2.0 acc_norm 0.298± 0.011 0.306 ± 0.011 2.685% ↑

CL has been successfully applied to tasks such as image classification and object detection. For
example, it improves model performance by gradually increasing image complexity (Soviany et al.,
2020), mitigates the impact of noisy data in weakly supervised settings by filtering high-confidence
samples (Jiang et al., 2018), and enhances image quality in GANs through progressive generation
strategies (Karras et al., 2017). Natural language processing (NLP) is one of the most successful
domains for curriculum application. In machine translation, curriculum designs based on sentence
length or complexity reduce training time by 70% and improve BLEU scores by 2.2 points (Platanios
et al., 2019). CL also significantly improves model performance in reading comprehension (Tay
et al., 2019), relation extraction (Huang & Jia, 2019), and other tasks by dynamically adjusting data
difficulty.

CL has also demonstrated unique advantages in multimodal learning (Gong et al., 2019) and rein-
forcement learning (Florensa et al., 2017). However, its broader adoption still faces major challenges.
On the one hand, curriculum design heavily relies on domain knowledge, while automatic curriculum
generation methods (e.g., self-paced learning and RL-based teacher models) often suffer from high
computational cost and sensitivity to hyperparameters. On the other hand, curriculum strategies are
highly task-dependent, lacking unified theoretical guidance, and existing research lacks clear defini-
tions of “easy” and “hard” samples, as well as standardized benchmarks for evaluating curriculum
effectiveness (Wang et al., 2020).

Despite its strong empirical success in machine learning, current mainstream instruction finetuning
approaches, such as LIMA, Alpaca, Alpagasus, and Superfiltering (Li et al., 2023; 2024a), typically
adopt a one-off instruction fine-tuning paradigm on entire instruction datasets, which are characterized
by high quality and diversity. These methods focus on proposing various techniques for data selection,
construction, and filtering to optimize datasets for better fine-tuning performance with high-quality,
high-difficulty, and diverse data (Wang et al., 2023). However, they overlook the internal complexity
of the instruction set itself. As a result, the one-off fine-tuning paradigm fails to sufficiently equip
models with the ability to precisely understand and execute diverse instructions. Although curriculum
learning has been applied in some LLMs training mehods, as mentioned in Section 6 of the main text,
it has not yet been considered for enhancing logical reasoning capabilities in LLMs.

In this paper, we propose a novel difficulty measurement of logical QA and then we finetune the
pre-trained models progressively on the ordered sequence focusing on the LLM’s logical reasoning
abilities.

Logical reasoning in LLMs. Methods for enhancing the logical reasoning capabilities of large
language models can be broadly categorized into three types: approaches based on external solvers,
prompt design, and fine-tuning. The solver-based approaches usually prompt the model to convert
natural language problems into symbolic expressions, then call a corresponding logic solver for
logical reasoning, and finally generate the answer using ensemble methods such as majority voting.
Main methods following this approach include Satlm (Ye et al., 2023), LOGIC-LM (Pan et al., 2023),
LINC (Olausson et al., 2023), etc.
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Prompt-based methods follow two main strategies. The first explicitly models logical chains during
question answering, such as CoT (Wei et al., 2022), ToT (Yao et al., 2024), DoT (Zhang et al.,
2024). The second strategy prompts the LLMs sequentially perform tasks such as symbolizing
natural language problems, decomposing the task, reasoning step by step, and verifying results. Main
methods based on this approach include SymbCoT (Xu et al., 2024), Logic-of-Thought (Liu et al.,
2024), LINA (Li et al., 2024b), etc.

The limitations in the reasoning abilities of large language models can largely be attributed to the
lack of high-quality reasoning samples (especially multi-step logical deductions or proofs) in the
pretraining corpora (Morishita et al., 2024). Fine-tuning approaches address this by constructing
synthetic datasets that contain clearly presented logical reasoning processes, or by collecting large
numbers of logical reasoning steps to augment the training data, thereby fine-tuning the models to
improve both accuracy and interpretability.

A logic-driven contrastive learning approach (Wang et al., 2022) and a data augmentation method,
AMR-LDA (Bao et al., 2024), aim to augment logical reasoning datasets by leveraging structured
semantic representations and logic-modified AMR graphs. To increase interpretability, LOGIPT (Feng
et al., 2024) simulates the reasoning process of the Pyke solver and is fine-tuned on an instruction
dataset aligning natural language problems with symbolic reasoning steps. Similarly, ALT (Morishita
et al., 2024) creates a synthetic logic corpus from deduction steps, using them to fine-tune models
for step-wise reasoning. LogicAsker (Wan et al., 2024) builds a skill set grounded in formal logic,
generates corresponding natural language tasks, and adaptively fine-tunes LLMs by diagnosing
weaknesses in reasoning abilities. To minimize annotation cost, LogicLLM (Jiao et al., 2024)
proposes a fully self-supervised framework for integrating logical reasoning into LLMs.

However, solver-based methods are vulnerable to errors in translation and face challenges such
as search space explosion when handling complex logical reasoning problems. Prompt-based
methods depend on the model’s initial reasoning capabilities from pretraining, but empirical evidence
suggests that models like LLaMA-13B achieve only slightly better than random performance on
logical question-answering tasks when relying solely on in-context learning. Moreover, we observe
that directly fine-tuning large models often fails to effectively address complex logical reasoning
tasks, highlighting the need to develop more efficient fine-tuning paradigms tailored specifically for
enhancing logical reasoning in large language models. This paper addresses the limitations of existing
one-off fine-tuning approaches by applying a phased fine-tuning methods inspired by curriculum
learning. We carefully design a difficulty measurement of logical QA and a phased partitioning
strategy, aiming to improve fine-tuning efficiency through phased training and effectively enhance
the logical reasoning ability of large language models.

J BROADER IMPACTS

Our work aims to enhance the logical reasoning abilities of large language models through a phased
fine-tuning framework guided by propositional logic difficulty. On the positive side, this advancement
may increase the reliability and trustworthiness of LLMs in critical applications such as education,
legal document analysis, and scientific research, where rigorous logical reasoning is essential. It
could also benefit downstream systems in fields requiring interpretable and structured reasoning,
supporting more transparent decision-making processes.

However, we also recognize several potential risks. Improving logical inference capabilities could
inadvertently strengthen the use of LLMs in generating misleading arguments or disinformation that
appear logically coherent, which may increase the difficulty of detection. Additionally, in domains
where fairness or ethical norms intersect with logic (e.g., automated legal judgments), stronger logical
reasoning might be used to justify biased conclusions if the model is trained on skewed or flawed
data.

To mitigate these risks, we recommend pairing our approach with robust data auditing, bias detection
mechanisms, and transparency practices that ensure the models’ reasoning chains can be inspected.
Furthermore, the release of models trained using our methodology should consider controlled
environments or usage agreements to discourage misuse.
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