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Abstract
We propose a framework for localized learning
with Reservoir Computing dynamical neural sys-
tems in pervasive environments, where data is
distributed and dynamic. We use biologically
plausible intrinsic plasticity (IP) learning to opti-
mize the non-linearity of system dynamics based
on local objectives and extend it to account for
data uncertainty. We develop two algorithms
for federated and continual learning, FedIP and
FedCLIP, which respectively extend IP to client-
server topologies and prevent catastrophic for-
getting in streaming data scenarios. Results on
real-world datasets from human monitoring show
that our approach improves performance and ro-
bustness, while preserving privacy and efficiency.

1. Introduction
The increasing demand for ML systems in on-the-edge appli-
cations (Bacciu et al., 2021a; De Caro et al., 2022) poses new
challenges for learning in pervasive environments, where
large numbers of resource-constrained devices are involved
(Figure 1). For example, in healthcare applications (Nguyen
et al., 2022; Can & Ersoy, 2021), physiological data from
wearable devices must be processed to detect heart con-
ditions, while respecting privacy regulations (Horvitz &
Mulligan, 2015) and ensuring model reliability over time.

We identify three main challenges for learning in this do-
main: (1) achieving a good trade-off between performance
and efficiency on temporal data; (2) complying with pri-
vacy constraints that prevent data sharing; (3) avoiding data
oblivion, i.e., the loss of information due to data discarding.

Existing learning methodologies can partially address these
challenges. Echo State Networks (ESNs) (Jaeger, 2001) are
efficient models for temporal data that have been successful
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Figure 1. Learning in a pervasive environment.

in Human Activity Recognition (HAR) applications (Bacciu
et al., 2021b). Federated Learning (FL) (McMahan et al.,
2017) is a distributed learning method that preserves data
privacy by learning a global model without transferring
local data. Continual Learning (CL) (Parisi et al., 2019) is a
learning paradigm that allows updating a model over time
from a continuous data stream without forgetting previous
knowledge. However, the integration of these areas is still
limited and none of the existing works address the scenario
we consider in this paper.

We propose a methodology and practical algorithms for
learning in pervasive environments based on Intrinsic Plas-
ticity (Triesch, 2005), an unsupervised algorithm for adapt-
ing a reservoir’s dynamics to the input sequence. Our con-
tribution is threefold: (1) we extend the learning approach
of Intrinsic Plasticity (IP) to handle the uncertainty arising
from data distribution over space and time; (2) we pro-
pose Federated Intrinsic Plasticity (FedIP), an instanti-
ation of the Federated Averaging algorithm for adapting
a reservoir from client-server federation with stationary
data; (3) we introduce Federated Continual Intrinsic Plastic-
ity (FedCLIP), an extension of FedIP to deal with non-
stationary scenarios. We evaluate the algorithms with an
incremental experimental setup based on two HAR bench-
marks and show that they can improve the performance of
the global model with low computation and communication
overhead, and cope with data non-stationarity.
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2. Local Dynamics Adaptation in Pervasive
Environments

Reservoir Computing Reservoir Computing (RC)
(Lukoševičius & Jaeger, 2009) is a paradigm that leverages
the evolution of the neural activations of Recurrent Neural
Networks (RNNs) as a discrete-time non-linear dynamical
system. A remarkable example in RC is represented by
ESNs (Jaeger, 2001; Jaeger & Haas, 2004), which allow
learning on sequential data efficiently. ESNs are made up
of two main components: a reservoir, a recurrent layer
of sparsely connected neurons, holding the internal state
which evolves over time; a readout, a typically linear
transformation on the domain of the reservoir states.
Formally, we consider an ESN with NU input units, NR

hidden recurrent units, and NY output units. Given an input
sequence of vectors u(t) ∈ RNU with t ∈ {0, . . . , T − 1},
the equations modeling the state transition of the reservoir
with leaky-integrator neurons (Jaeger et al., 2007) and the
transformation applied by the readout can be described as

xnet(t) = Winu(t) + brec + Ŵx(t− 1),

x(t) = (1− a)x(t− 1) + af (xnet(t)) ,

y(t) = Wx(t) + bout,

(1)

where Win ∈ RNR×NU is the input-to-reservoir weight ma-
trix, Ŵ ∈ RNR×NR is the recurrent reservoir-to-reservoir
weight matrix, brec ∈ RNR is the reservoir bias term, f is
the non-linearity applied to the neurons’ cumulative input,
a ∈ (0, 1] is the leaking rate, W ∈ RNY ×NR is the readout
weight matrix, bout is the output bias term. The hidden state
of the reservoir at time t = 0 is initialized as x(0) = 0.

Instead of backpropagating the error signal through time as
in standard RNNs, ESNs keep the input-to-reservoir matrix
Win and the reservoir-to-reservoir matrix Ŵ fixed, with
the only constraint of choosing spectral radius ρ(Ŵ) <
1 to empirically display asymptotically stable dynamics1.
Thus, the readout weights W are the only free parameters.
By formulating the learning problem of the readout as a
least squares problem, we can take advantage of Ridge
Regression (RR) to obtain a closed-form solution defined as

W = YST (SST + λI)−1, (2)

where Y denotes the matrix of time-ordered target labels,
S is the matrix of time-ordered reservoir states, λ is an
L2-regularization term, and I is the identity matrix.

Intrinsic Plasticity Given the formulation of the reservoir,
it is clear that the random initialization may affect the repre-
sentation capabilities of the dynamical system. Following

1The interested reader can find rigorous discussions on the-
oretical aspects of reservoir initialization in (Yildiz et al., 2012;
Gallicchio & Micheli, 2017).

the line of argument from (Schrauwen et al., 2008), maxi-
mizing the information gain of a reservoir corresponds to
maximizing the entropy of the output distribution of each
neural unit. When the non-linearity f is the tanh function,
the maximum entropy distribution is the Gaussian. As a re-
sult, the information gain can be measured as the following
Kullback-Leibler divergence:

L(θ;µ, σ) = DKL(q̃ || Nµ,σ)

=

∫
q̃(x) log

(
q̃(x)

Nµ,σ(x)

)
dx,

(3)

where q̃ is the empirical distribution of the neural activa-
tions upon application of f̃(· ; θ) as non-linearity, and Nµ,σ

is the desired Gaussian distribution with mean µ and stan-
dard deviation σ. Given the formula in eq. (3), minimizing
the Kullback-Leibler (KL) divergence between the empir-
ical distribution and the desired Gaussian corresponds to
maximizing the information gain of a reservoir. From a prac-
tical perspective, this is performed by IP (Schrauwen et al.,
2008), an algorithm inspired by a biological phenomenon
called homeostatic plasticity. Focusing the attention on the
i-th neural unit, the algorithm requires the neuron’s function
to be reformulated as f̃(xi

net; θ
i) = f(gixi

net + bi), where
θ = {g,b} is the set of learnable, unit-wise gain and the
bias parameters of the reservoir’s non-linearity. The deriva-
tion of the loss function leads to the following update rules
for the set of gain and bias parameters:

∆b = −η
(
− µ

σ2
+

x̃

σ2
+ 1− x̃2 + µx̃

)
,

∆g =
η

g
+∆bxnet,

(4)

where x̃ is the result of the application of f̃ in the com-
putation of the state transition, and η is the learning rate.
A desirable effect of the algorithm is the reduction of the
variance in performance caused by bad initializations of the
reservoir’s parameters.

The objective of our work is to extend this formulation to
cope with decentralized environments characterized by both
stationary and non-stationary data distributions.

2.1. Decentralized Plasticity with Stationary Data

Dealing with an environment that is characterized by a mas-
sive distribution of devices with private data leads straight-
forwardly to formulating the problem as a Federated Learn-
ing (FL) problem (McMahan et al., 2017). FL is a dis-
tributed machine learning approach that aims to solve learn-
ing tasks by a loose federation of participating devices while
complying with privacy requirements of their local data
(Mothukuri et al., 2021). In particular, it learns a global
model by aggregating only local models, instead of gath-
ering raw data from participants. Formally, given a finite
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set clients C, and assuming that each client c ∈ C holds a
local dataset Dc, a FL problem consists in learning a global
model f by minimizing the following objective function:

L(f) =
∑
c∈C

pcLc(fc,Dc), (5)

where fc denotes the local realization of the global model,
Lc(fc,Dc) is the local loss function computed on the local
dataset, and pc are client-specific weighting factors such
that 0 ≤ pc ≤ 1 and

∑|C|
c=1 pc = 1. The parameters pc have

a twofold purpose: (1) selecting the clients to involve in
the learning process; (2) weighing local loss functions to
account for the non-i.i.d. data distribution among the clients
(statistical heterogeneity) and the different availability and
reliability of the devices where they are deployed (system
heterogeneity).

In the federated setting it is reasonable to assume that, given
a finite set of clients C, we compute the global model θ
as a convex combination of the local models learned by
the clients, i.e., θ =

∑
c∈C pcθc. Here, we specialize this

concept by assuming that the distribution q̃ can be calculated
as a convex combination of the clients’ local distributions,
i.e., q̃ =

∑
c∈C pcq̃c. This assumption allows us to derive

an upper bound of the centralized loss function in eq. (3):

DKL(q̃ || Nµ,σ) = DKL

(∑
c∈C

pcq̃c || Nµ,σ

)

= DKL

(∑
c∈C

pcq̃c ||
∑
c∈C

pcNµ,σ

)
≤
∑
c∈C

pcDKL(q̃i || Nµ,σ).

Since minimizing the upper bound implies the minimization
of the initial loss, we can re-define the loss function for the
federated setting as follows:

LF (θ;µ, σ) =
∑
c∈C

pcLc(θc;µ, σ)

=
∑
c∈C

pcDKL(q̃c || Nµ,σ),
(6)

where q̃ is the global distribution of the reservoir’s neural
activations, q̃c is the empirical distribution of the activations
of client c, computed with its local realization of the global
model f̃c on the local dataDc, and pc is the weighting factor
introduced in eq. (5). In this formulation of the loss function,
the parameters pc account for the same purpose of eq. (5),
balancing the contributions from clients depending on the
statistical and system heterogeneity.

Federated Intrinsic Plasticity Our proposal is intended
for a client-server topology and is based on Federated Aver-
aging (FedAvg). The algorithm, namely FedIP (initially

Algorithm 1 Federated Intrinsic Plasticity (FedIP)
Input: clients C, number of rounds R, learning rate η,
local epochs E, batch size B
R ← {Win,Ŵ,brec, α}
θ0 ← {g0 ← 1, b0 ← 0}
SendR to all clients c ∈ C
for each round r ∈ {0, 1, . . . , R− 1} do

for each client c ∈ C in parallel do
Send θr to client c
θrc ← IPUpdatec(gr, br, η, E)

end for
θr+1 ←

{∑
c∈C

nc

n gr+1
c ,

∑
c∈C

nc

n br+1
c

}
end for

Algorithm 2 IPUpdate (on client c)
Input: global gain gr, global bias br, learning rate η,
local epochs E
gc, bc ← gr,br

Split local data into a set of batches B of size B
for epoch e ∈ {0, 1, . . . , E − 1} do

for batch b ∈ B do
Compute the average ∆gb, ∆bb over b
gc, bc ← gc +∆gb, bc +∆bb

end for
end for
return gc, bc

proposed by (De Caro et al., 2022)), instantiates FedAvg
((McMahan et al., 2017), described in 5) to learn the global
gain and bias parameters, i.e., θ = {g,b}, by minimiz-
ing the loss function in eq. (6) (the pseudocode of the
server side is summarized in Algorithm 1). In the initial-
ization phase, the server initializes reservoirs parameters
R = {Win,Ŵ,brec, α} and broadcasts them to all the
clients. Then, it initializes the global gain and bias param-
eters θ and begins the learning rounds. In a generic round
r, the server broadcasts the global gain and bias θr to all
the clients (line 6). This initializes the clients’ side of the
algorithm (summarized in Algorithm 2: each client c ∈ C
performs E iterations of IP on the local dataset. Then, they
send their local parameters θr+1

c = {gr+1
c ,br+1

c } back to
the server (line 7). Finally, the server updates the parameters
to θr+1 by applying the same aggregation rule described in
Algorithm 5 (line 9). In FedIP, the number of parameters
exchanged between a client and the server in each communi-
cation step is exactly 2NR, with NR number of neural units
in the reservoir. A linear communication cost on the num-
ber of parameters of the model is a clear advantage in the
federated setting and makes the algorithm suitable for sce-
narios in which we leverage far-edge devices. FedIP suits
the general, gradient-based framework of FedOpt (Reddi
et al., 2021) and allows for applying different client sam-
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pling (Huang et al., 2020; Lattimore & Szepesvári, 2020;
Huang et al., 2021), local learning (Li et al., 2020; Karim-
ireddy et al., 2020), and aggregation (Wang et al., 2020b;a;
Lin et al., 2020) techniques.

2.2. Decentralized Plasticity with Non-Stationary Data

Pervasive environments are characterized by resource-
constrained devices, and the data may not be retained for
long periods of time due to such constraints. As a result, the
learning process of each client unfolds on a data stream, and
we cannot assume stationarity of the data over the stream.

In a non-stationary setting, we rely on the same formal-
ization by (Lesort et al., 2021): we assume that, given a
finite set of contexts K (i.e., possible states of the data dis-
tribution), there exists a hidden, discrete stochastic process
{Kt}Tt=1 that determines the evolution of the data distribu-
tion over time. Given that pk,t corresponds to the realization
of the context variable for context k at time t, we can apply
the following derivation:

DKL(q̃ || Nµ,σ) =

∫
q̃(x) log

q̃(x)

Nµ,σ
dx

=

∫ T∑
t=1

∑
k∈K

pt,kq̃k(x) log

∑
k∈K pt,kq̃k(x)

Nµ,σ
dx

=

T∑
t=1

∫ ∑
k∈K

pt,kq̃k(x) log

∑
k∈K pt,kq̃k(x)∑
k∈K pt,kNµ,σ

dx

=

T∑
t=1

DKL

(∑
k∈K

pt,kq̃k ||
∑
k∈K

pt,kNµ,σ

)

≤
T∑

t=1

∑
k∈K

pt,kDKL(q̃k || Nµ,σ).

However, the realizations of the context variable pk,t are
not observable, and we can rely only on the information
provided by the data available at time t. Thus, by assuming
that, at time t, the available data are enough to approximate
the behavior of the stochastic process, we can approximate
the loss function as follows:

LC(θ;σ, µ) =

T∑
t=1

∑
k∈K

pt,kDKL(q̃k || Nµ,σ)

≃
T∑

t=1

DKL(q̃t || Nµ,σ),

(7)

where q̃t is the empirical distribution computed upon appli-
cation of f̃(·, θ) on the dataset at experience t, i.e., Dt, and
Nµ,σ is the desired gaussian distribution with mean µ and
standard deviation σ.

Given a federated and non-stationary setting with a finite
set of clients C, each with its own bounded data stream of

T learning experiences, we can plug the formulation with
non-stationary data in the federated setting defined in 5, and
define the loss function of IP as

LFC(θ;σ, µ) =

T∑
t=1

∑
c∈C

pt,cDKL(q̃t,c || Nµ,σ),

where q̃t,c is the empirical distribution computed by the
client c on the local data observed at time t, i.e.,Dt,c and pt,c
is a weighting factor which balances the contributions from
the clients at time t. Here, the weighting factor pt,c models
the evolution of the data stream and system for each client.
This implies that both statistical heterogeneity and system
heterogeneity may evolve over time. In the former case, this
depends on the relationship present between the stochastic
processes of the clients involved. In the second case, it
depends on the environmental conditions under which the
process unfolds (e.g., device failures, mobility degrading
network quality).

Federated Continual Intrinsic Plasticity The main issue
that arises when learning from a stream of non-stationary
data is phenomenon of catastrophic forgetting (McCloskey
& Cohen, 1989; French, 1999): when exposing the model
to learn multiple tasks sequentially, optimizing the model to
solve the new task interferes with the knowledge about the
previous tasks. Such a problem is addressed by CL (Parisi
et al., 2019), which focuses on developing learning models
capable of integrating novel information while mitigating
interference with consolidated knowledge.

In a CL scenario, we assume that the data arrives in a
streaming fashion as a sequence of learning experiences
S = e1, e2, . . . . Given a stream of n experiences S =
e1, . . . , en, each experience ei consists in a batch of exam-
ples Di. The objective of a CL algorithm is to minimize the
loss LS over the entire stream of data S:

LS(f
CL
n , n) =

1∑n
i=1 |Di

test|

n∑
i=1

Lexp(f
CL
n ,Dtest

i ), (8)

where Lexp(f
CL
n ,Dtest

i ) the loss computed on the test data
of experience ei, i.e., Dtest

i . This is usually performed with
the aid of a memory bufferM which retains the knowledge
from previous experiences in some form, and a continual
learning strategy, which determines how to updateM.

To cope with this setting, we propose Federated Contin-
ual Intrinsic Plasticity (FedCLIP), which extends the local
adaptation of clients for including a CL strategy (the pseu-
docode is summarized in Algorithms 3). FedCLIP relies
on two assumptions: (1) all the clients face the same number
of learning experiences, and the server is informed about
such number; (2) at a generic time t, the clients are all syn-
chronized on the learning experience et,c. The algorithm is
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Algorithm 3 Federated Continual Intrinsic Plasticity
(FedCLIP)

Input: clients C, learning rate η, local epochs E, batch
size B
R ← {Win,Ŵ, α}
θ00 ← {g0

0 ← 1, b0
0 ← 0}

SendR to all clients c ∈ C
for each experience t ∈ {0, 1, . . . , T − 1} do

for each round r ∈ {0, 1, . . . , R− 1} do
for each client c ∈ C in parallel do

Send θrt to client c
θrt,c ← ContinualIPUpdatec(t, gr

t , br
t , η, E,

r == R− 1)
end for
θr+1
t ←

{∑
c∈C

nt,c

nt
gr
t,c,

∑
c∈[C]

nt,c

nt
br
t,c

}
end for

end for

Algorithm 4 ContinualIPUpdate (on client c)
Env: stream = [D0,D1, . . . ,DT−1],M0 = {}
Input: experience t, global gain gr

t , global bias br
t , learn-

ing rate η, epochs E, boolean update
Bt ← split data Dt ∪Mt into a set of batches of size B
for epoch e ∈ {0, 1, . . . , E − 1} do

for batch b ∈ B do
Compute the average ∆gb, ∆bb over b
gt, bt ← gt +∆gb, bt +∆bb

end for
end for
if update then
Mt+1 ← UpdateWithStrategy(Dt,Mt)

end if
return {gt,bt}

organized into learning experiences, and each experience
unfolds over R communication rounds between the partici-
pants. At experience t and round r, the server broadcasts the
global parameters θrt to all the clients (line 7). As in FedIP,
this initializes the clients’ side of the algorithm (summarized
in Algorithm 4): each client performs E epochs of IP on
the dataset Dt and bufferMt according to the chosen CL
strategy. Then, the client sends the locally updated param-
eters back to the server (line 8), which updates the local
model by aggregating all the received local models (line 10).
When the (R− 1)-th round ends, the server requests all the
clients to update their own local buffer to prepare for the
next learning experience (condition r == R− 1 on line 8).

While in this paper we employed a replay strategy based
on reservoir sampling ((Vitter, 1985), detailed in Appendix
A.3), we believe that this algorithm can be easily extended to
any replay strategy (Robins, 1995; Hayes et al., 2019; Shin
et al., 2017). Also, with few expedients, it may be extended

to regularization strategies (Kirkpatrick et al., 2017; Li &
Hoiem, 2018; Zenke et al., 2017), which add a regularization
term to the loss function of the current experience to con-
solidate previous knowledge; and architectural strategies
(Lomonaco & Maltoni, 2017; Mallya & Lazebnik, 2018;
Rusu et al., 2016), which aim to isolate model parameters,
depending on the task at hand.

3. Experimental Assessment
The objective of the experimental evaluation is to assess
the behavior of the proposed IP extensions in each of the
corresponding settings. To do so, we designed an exper-
imental setup where we incrementally added complexity
to the scenario, starting from a baseline setup in which we
assume that all the data is available in advance on a single
machine, and ending with the full federated and continual
integration. In all settings, we repeated the experiments with
different percentages of training clients and assessed: (1) the
capability of each algorithm to fit the empirical distribution
of the activations to the desired Gaussian distribution; (2)
the classification performance of a readout trained on top of
a reservoir trained with the proposed algorithms.

The codebase of the experimental assessment is based on
Ray (Moritz et al., 2017; Liaw et al., 2018), FedRay2 and
Torch-ESN3. In particular, FedRay is a research framework
for easy implementation, deployment and scalability of FL
experiments. Torch-ESN is a library implementing function-
alities and wrappers for ESNs. We make the code publicly
available for the sake of reproducibility4.

3.1. Setup

We tested the FedIP and FedCLIP on the WEarable Stress
and Affect Detection (WESAD) (Schmidt et al., 2018) and
the Heterogeneity Human Activity Recognition (HHAR)
(Stisen et al., 2015) datasets, two Human Activity Recogni-
tion benchmarks. We provide the details of the dataset and
their description in Appendix B.1 Both datasets lend them-
selves to adaptation to federated and continual scenarios. In
particular, we split the data into user-specific chunks to sim-
ulate the distribution across the devices (15 for WESAD, 9
for HHAR). Then, we simulate drifts by splitting each user-
specific chunk into learning experiences dependent on the
activity performed by the user in WESAD, and the device
worn by the user in HHAR.

As summarized by Figure 2, we built a set of experiments
where we incrementally add levels of complexity to the
scenario at hand. In the stationary setting, we developed
a centralized baseline, where all the data is available in

2https://github.com/vdecaro/fedray/
3https://github.com/vdecaro/torch-esn/
4https://github.com/vdecaro/federated-esn/tree/exp/neucom

5

https://github.com/vdecaro/fedray/
https://github.com/vdecaro/torch-esn/
https://github.com/vdecaro/federated-esn/tree/exp/neucom


Decentralized Plasticity in Reservoir Dynamical Networks for Pervasive Environments

Figure 2. Representation of the different data grouping among the four assessed scenarios. Each chunk Di,e represents the data of the i-th
client from the e-th learning experience. From left to right. Full dataset: a single machine holds all the data in advance. Federated
scenario: each user holds the full private dataset in advance. Continual scenario: a single machine gets the data from clients in a
streaming fashion. Federated and continual scenario: each user has its own private data stream.

advance on a single machine (Figure 2, left). Here, we
assessed the behavior of an ESN trained via RR only and
via IP+RR. We extended this baseline towards spatial dis-
tribution by experimenting on a federated and stationary
scenario, where each client has its own, private data as a full
dataset available in advance (Figure 2, center-left). Here,
we evaluated the performance of an ESN trained via FedIP
and Federated Ridge Regression (FedRR) and compared it
with a baseline ESN trained only via FedRR. In the con-
tinual setting, we followed the same approach as in the
stationary one. We provided a centralized baseline, where
the data arrives in a streaming fashion on a single machine
(Figure 2, center-right). First, we assessed the behavior of
ContinuaL Intrinsic Plasticity (CLIP) with two baselines
CL strategies: naı̈ve, trains both the reservoir and the read-
out only on the data available from the current experience;
joint, accumulates all the data up to the current experience
and re-trains the model from scratch. Then, we assessed
CLIP with the Replay strategy with a fixed buffer updated
via Reservoir Sampling, where we trained the reservoir as
described in Algorithm 7, and the readout by applying RR
to the union of the data from the current experience and the
data available from the buffer. Finally, we assess the be-
havior of FedCLIP in the federated and continual setting,
where each client has its own, private data stream (Figure
2, right). Here, we applied the same strategies as in the
centralized one, i.e., naı̈ve, replay and joint.

In each scenario, we repeated the experiments with four per-
centages of training clients, i.e., {25%, 50%, 75%, 100%}
to assess the generalization capabilities of the algorithms.
The workflow of each experiment is described in Appendix
B.2. We employed the accuracy to evaluate the performance
in the stationary setting, and the stream accuracy in the
non-stationary setting. On the WESAD dataset, during the
risk assessment phase, we also computed the reservoir’s
activation density to investigate the behavior of the adapted
reservoir. Finally, on all the settings, we verify the results
statistically by applying a two-sided T-Test, comparing the

performances of the baselines (summarized in Appendix
B.3) with the ones of the proposed methods. We consider
the differences between the results statistically significant
for p-values ≤ 0.05.

3.2. Results

Federated and Stationary Setting In Table 1 we report
the test accuracy in the federated and stationary. From these
results and Figure 3, we can observe two distinct behaviours
of FedIP, depending on the percentage of training clients
involved. For lower percentages of training clients, i.e., 25%
and 50%, we can observe that the ESNs trained with FedIP
significantly outperform those trained via FedRR, with a
gain of at least 5 accuracy points (except for HHAR with
50% training clients). In these cases, FedIP acts mainly
as a regularizer: since the information to be represented
with 25% and 50% of clients is low, the algorithm clus-
ters it within Gaussians with small standard deviations (i.e.,
σ = 0.05 for 25% of training clients, and σ = 0.1 for 50%).
Instead, for higher percentages of training clients, i.e., 75%
and 100%, the performance gain becomes less significant,
but still in favor of the ESNs trained via FedIP. In this
case, FedIPmaximizes the information gain by dampening
the effect of the band-pass filtering applied by the tanh acti-
vation. These points suggest that the information gained by
the use of FedIP improves the generalization capabilities
of the ESNs.

Consistently with what we discussed in Section 2.1, train-
ing the reservoir via FedIP mitigates the variance in the
performance in comparison with the ESNs adapted only via
FedRR. The rationale about the dynamics of an untrained
reservoir still holds: initializing the reservoir naı̈vely does
not allow to appropriately represent features that are useful
for discriminating the correct label. Instead, adapting the
reservoir via FedIP allows obtaining good representations
of the information even in the face of bad initializations.
However, the results on HHAR with 50% of training clients
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Table 1. Results of the experiments on the stationary settings. The best results are highlighted in bold, and the results whose difference is
not statistically significant (i.e., p-value > 0.05) are highlighted in italics.

%TR WESAD HHAR
w/o FedIP w/ FedIP w/o FedIP w/ FedIP

25% 72.09± 0.59 78.68 ± 0.12 57.08± 3.11 69.83 ± 0.64

50% 72.04± 1.03 77.43 ± 0.19 63.88 ± 6.02 57.74 ± 0.19

75% 76.53± 1.08 77.97 ± 0.41 71.09 ± 0.56 71.08 ± 0.69

100% 77.78± 0.58 79.42 ± 0.39 70.29 ± 0.99 71.38 ± 0.43

Figure 3. Activation density computed on test clients (columns)
with reservoirs trained on different percentages of training clients
(rows).

expose a drawback of this effect. Depending on the quality
of the input information, the algorithm may filter out also
“lucky” initializations. Finally, we can observe that the
performance obtained in the federated setting is compara-
ble, if not greater than the one reported for the centralized
setting (reported in Table 4). This highlights that not only
FedIP does not suffer from the approximation given by
the model averaging, but it may take advantage of it. As
we mentioned, IP optimizes the neurons’ parameters to
let the activations’ densities converge towards a Gaussian
distribution. It is known that a convex combination of n
Gaussian distributions is itself a Gaussian distribution. In-
tuitively, while each client converges to the optimal set of
parameters to best fit the Gaussian with respect to the local
activations, the aggregation may leverage such property to
compose accurate information about the local distributions
without suffering from approximations.

Federated and Continual Setting Table 2 reports the
stream accuracy of an ESN trained in the federated and
non-stationary setting.

On a general note, Table 2 and Figure 4 show that, while the
naı̈ve strategy is not able to retain information from previous
experiences, and it is prone to forgetting, the joint strategy
acts as an upper bound with respect to the performance
of the CL strategies. Furthermore, the performances in
the federated setting are consistent with the ones of the
centralized baseline (reported in Table 5).

On WESAD, the replay strategy is able to achieve the same
performance as the joint strategy over the stream with any
percentage of training clients. This highlights not only ro-
bustness to forgetting, but also the capability of FedCLIP
to learn the same information as in the stationary scenario
with less amount of data. Furthermore, Figure 5 highlights
two points. First, we can observe that the distribution of acti-
vations gradually adjusts as we proceed through the learning
experiences, converging to approximately the same distribu-
tion obtained in the stationary case (Figure 3, left). More-
over, paying attention to the distribution of “amusement”
activations in Figure 5 (right), we notice that convergence
toward its final distribution begins before meeting the data
from the corresponding learning experience. This denotes
that FedCLIP is characterized by good forward transfer in
the adaptation of reservoir dynamics.

On HHAR, all the strategies are able to maintain a stable
accuracy during the first three learning experiences. This
happens because the devices corresponding to these experi-
ences are the three smartphones kept by the user performing
the activities. Instead, in the fourth experience, correspond-
ing to the smartwatch, the relation between the movement
of the user and the performed activity changes, causing an
abrupt concept drift and a consequent decay in performance.

4. Conclusions
In this paper, we have proposed a framework for localized
learning based on homeostatic plasticity of dynamical neural
systems, based on Reservoir Computing (RC). We extended
Intrinsic Plasticity (IP), a method to adapt ESNs reservoir
dynamics to the input sequence, to a client-server, pervasive
scenario with federated and continual data. We proposed
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Table 2. Results of the experiments on the federated and continual setting. In the federated setting, the best results are highlighted in bold,
and the results whose difference is not statistically significant (i.e., p-value > 0.05) are highlighted in italics.

%TR WESAD HHAR
Naı̈ve Replay Joint Naı̈ve Replay Joint

25% 27.32± 10.86 79.23 ± 0.44 78.75 ± 0.67 34.85± 3.08 51.16± 5.88 69.44 ± 0.38

50% 30.60± 7.51 77.49 ± 0.89 75.95± 1.07 30.16± 2.10 43.77± 1.50 60.85 ± 4.37

75% 51.50± 4.10 77.04± 0.89 78.17 ± 0.54 28.62± 0.93 59.83± 0.88 71.14 ± 0.84

100% 50.80± 1.50 77.46± 1.31 79.51 ± 0.35 30.30± 0.43 62.28± 0.54 71.22 ± 0.32

Figure 4. Stream accuracy of an ESN trained via FedCLIP as learning experiences progress, with different percentages of training clients.

Figure 5. Activation density on the test clients of the global reservoir trained via FedCLIP. Left: density on the last learning experience
with each percentage of training clients. Right: density after each learning experience with the 25% of training clients.

FedIP for federated and stationary data, and FedCLIP
for federated and non-stationary data. We tested our algo-
rithms on two HAR benchmarks with incremental setup and
different numbers of training clients. The achieved results
indicate that our proposals improve the global model perfor-
mance, achieving comparable results to the joint baseline
and their centralized versions, at the same time showing

robustness against model averaging approximation.
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A. Algorithms
A.1. Federated Averaging

Algorithm 5 Federated Averaging (FedAvg)
Input: Initial model θ0; number of rounds R; number of local epochs E; learning rate η
for each round r ∈ {0, 1, . . . , R− 1} do

Sample a subset Sr from clients Cr
Broadcast θr to all clients i ∈ Sr
for client c ∈ St in parallel do
θrc ← LOCALSGDc(θ

r, η, E)
end for
Update global model θr+1 ←

∑
c∈St

nc

n θrc
end for

Algorithm 6 LOCALSGD (on client c)
Input: Global model θr; learning rate η; number of local epochs E
Split local dataset Dc in set of batches B
θrc ← θr

for epoch e ∈ {0, 1, . . . , E − 1} do
for batch b ∈ B do
θrc ← θrc − η∇Lc(θ

r
c , b)

end for
end for
return θrc

At the beginning of the r-th round, a set of clients Cr is available, and the server broadcasts θr to a random subset of
participants Sr ⊂ Cr sampled uniformly. Each client c ∈ Sr performs E local SGD steps on its local data and sends its
updated local model θrC to the server. Then, the server updates its global model with the formula

θr+1 =
∑
c∈St

nc

n
θrc , (9)

where nc is the size of the local datasetof the c-th client and n is the sum of the sizes of the local datasets of clients
participating to the r-th round. Notice that, in this algorithm, the variable pc of eq. (5) is implicitly modelled by the sampling
of St and the term nc

n , which model client selection across C and roughly approximates statistical heterogeneity respectively.

A.2. Continual Intrinsic Plasticity

CLIP is the centralized version of FedCLIP, and is articulated in learning experiences, one for each task in the given data
stream. During the t-th experience, it splits the data from the current dataset Dt and the memory bufferMt in a set of
mini-batches Bt (line 4). Then, it performs E training epochs by applying Intrinsic Plasticity on the mini-batches in Bt
(lines 5-10). When the learning phase is complete, it updates the model (line 11) and the memory buffer (line 12) for the
learning experience (t+ 1).

The policy for updating the memory buffer and sampling the mini-batches (which refer to lines 12 and 4 respectively in
Algorithm 7) depends on the CL strategy at hand. In particular, we applied three main strategies:

• naı̈ve, the algorithm is not equipped with a memory buffer and the mini-batches are sampled from the dataset of the
current experience Dt;

• replay with reservoir sampling (Vitter, 1985), where a bounded buffer is kept balanced with data from each of the
previous learning experiences, and each mini-batch is injected with data from the buffer sampled uniformly;

• joint, the memory keeps all the data from all the learning experiences up to Dt, and the mini-batches are sampled by
chunking Dt ∪Mt.
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Algorithm 7 ContinualIP
Input: stream = [D0,D1, . . . ,DT−1], learning rate η, epochs E
θ0 = {1, 0}
M0 = {}
for Dt ∈ stream do
Bt ← split data Dt ∪Mt into a set of batches of size B
for epoch e ∈ {0, 1, . . . , E − 1} do

for batch b ∈ B do
Compute the average ∆gb, ∆bb over b
gt, bt ← gt +∆gb, bt +∆bb

end for
end for
θt+1 ← {gt,bt}
Mt+1 ← UpdateWithStrategy(Dt,Mt)

end for
return θT

While the former and the latter represent a lower and upper bound on the performance respectively (Lesort et al., 2019), the
replay strategy represents our CL strategy of choice in the proposed setting.

A.3. Replay with Reservoir Sampling

Given a buffer of samplesM of size n, the state of the buffer at experience i > 0 is

Mi =
⋃

i∈{0,...i−1}

Bi,

where Bi ⊆ Dtrain
i and |Bi| =

⌊
|Dtrain

i |∑
j∈{0,...i−1} |Dtrain

j | ∗ n
⌋

. Informally speaking, at experience ei, the buffer keeps data

from all the previous learning experiences while maintaining the same proportions with respect to the sizes of the training
datasets. During the learning experience ei, the mini-batches are injected with samples from both Dtrain

i andMi.

B. Further details on experiments
B.1. Datasets Description and Preprocessing

WESAD is a dataset for stress and affect detection from wearable devices. It was collected from 15 participants in a ∼36-
minute session where they performed activities depending on the cognitive state to be induced. In particular, data collection
unfolded over five main contexts: baseline condition; stress induction; meditation; amusement induction; meditation. Each
sample in the resulting time series is equipped with a label corresponding to the expected cognitive states of the user. In our
setup, we used a subset of the available data, which consisted of 8 synchronized time series of physiological data sampled at
700Hz by a chest-worn device. We normalized the data of each user and chunked it in non-overlapping sequences of 700
samples (i.e., 1 second).

HHAR is a dataset for activity recognition. It was collected from 9 users keeping 12 smart devices while performing
different activities (biking, sitting, standing, walking, stair up, and stair down), to show the heterogeneity of the sensing
across the devices. For each user, we selected a subset of samples corresponding to the smartphones LG Nexus4, Samsung
Galaxy S3, Samsung Galaxy S3 Mini, and the smartwatch LG Watch. Each sample had 6 features corresponding to the
axes of the device’s accelerometer and gyroscope, and a label denoting one of the 6 activities performed by the user. For
each user and device, we downsampled the sequence to 100Hz to obtain homogeneity of sampling rate across the devices,
normalized it, and split the corresponding chunk into non-overlapping sequences of 200 samples (∼2 seconds).
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B.2. Hyperparameters and experiment workflow

Table 3. Search space for the two datasets. Above: hyperparameters tested on the stationary setting. The space spanned by Reservoir and
RR / FedRR is common to all the algorithms. The subspaces spanned by IP and FedIP are employed only in experiments with the
corresponding algorithms. . Below: hyperparameters tested on the continual settings. We constrained the hyperparameter space by using
from the best configuration selected on the corresponding centralized and federated settings. Then, we limited this phase to a grid search
for selecting the optimal number of learning iterations (i.e., epochs in IP and rounds in FedIP) to perform in each learning experience.

WESAD HHAR

Reservoir

Units {200,300,400} {100, 200, 300, 400, 500}
ρ(Ŵ) [0.3, 0.99) [0.3, 0.99)

Input Scaling [0.5, 1) [0.5, 1)
Leaking Rate [0.1, 0.8] [0.1, 0.5]

RR / FedRR L2 [1e−4, 1] [1e−4, 1]

IP

µ 0 0
σ (0.05, 1) (0.05.1)
η 0.01 0.01

Epochs {10, 12, . . . , 20} {10, 12, . . . , 20}

FedIP

µ 0 0
σ (0.05, 1) (0.05.1)
η 0.01 0.01

Global Rounds {10, 12, . . . , 20} {10, 12, . . . , 20}
Local Epochs {3, 5, 10} {3, 5, 10}

WESAD HHAR

CLIP
Exp. Epochs ip epochs/2± 2 ip epochs/2± 2
Buffer Size 5% full dataset size 5% full dataset size

FedCLIP
Exp. Rounds fedip rounds/5± 2 fedip rounds/4± 2
Buffer Size 5% user dataset size 5% user dataset size

An experiment consisted of three steps:

1. Model selection: given the search spaces depicted in Table 3, we performed a random search with 100 configurations if
the scenario is stationary, and a grid search if it is continual. We selected the configurations with the highest scores on
the data from the validation clients;

2. Re-training: given the best configuration selected in step 1, we retrained 5 instances of the model and the corresponding
algorithm with the corresponding configuration;

3. Risk assessment: we assessed the performance of the 5 instances by computing the metrics on the data from the test
clients.

The metrics that we employed for steps (1) and (3) are the accuracy and the stream accuracy for the stationary and continual
settings, respectively.

B.3. Centralized Baselines
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Table 4. Results on the stationary settings. For each percentage of the users, we report the mean and standard deviation of the test accuracy
of each model with and without the use of IP.

%TR WESAD HHAR
w/o IP w/ IP w/o IP w/ IP

25% 72.60± 1.24 78.14± 0.32 61.34± 3.19 68.82± 0.49

50% 72.88± 1.35 76.98± 0.22 58.70± 5.29 66.64± 2.28

75% 77.06± 1.02 78.68± 0.38 71.49± 0.93 70.33± 0.42

100% 79.18± 0.40 78.89± 0.19 71.71± 0.72 70.88± 0.74

Table 5. Results on the centralized, non-stationary baseline. We report the mean and standard deviation of the stream accuracy on the last
experience for each strategy and percentage of training users.

%TR WESAD HHAR
Naı̈ve Replay Joint Naı̈ve Replay Joint

25% 30.23± 1.16 78.37± 1.11 78.64± 0.90 35.65± 4.21 59.56± 1.26 69.44± 0.37

50% 42.55± 8.86 79.91± 0.54 76.42± 0.44 31.78± 0.36 48.01± 1.35 68.40± 2.53

75% 32.13± 6.47 80.27± 0.87 79.22± 0.33 28.08± 0.56 58.93± 1.51 70.26± 0.49

100% 27.43± 0.29 76.19± 1.66 79.28± 0.52 28.7± 0.93 58.52± 1.58 70.46± 0.26

Figure 6. Stream accuracy of the centralized baseline.
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