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Abstract

In supervised machine learning, privileged information (PI) is information that is
unavailable at inference, but is accessible during training time. Research on learning
using privileged information (LUPI) aims to transfer the knowledge captured in PI
onto a model that can perform inference without PI. It seems that this extra bit of
information ought to make the resulting model better. However, finding conclusive
theoretical or empirical evidence that supports the ability to transfer knowledge
using PI has been challenging. In this paper, we critically examine the assumptions
underlying existing theoretical analyses and argue that there is little theoretical
justification for when LUPI should work. We analyze LUPI methods and reveal
that apparent improvements in empirical risk of existing research may not directly
result from PI. Instead, these improvements often stem from dataset anomalies or
modifications in model design misguidedly attributed to PI. Our experiments for a
wide variety of application domains further demonstrate that state-of-the-art LUPI
approaches fail to effectively transfer knowledge from PI.

1 Introduction

In supervised machine learning (ML), we aim to learn the fit between some features x ∈ X and target
y ∈ Y . The information going into x can only be used if it is accessible at the time of inference.
However, there may exist features z ∈ Z that are only available during training due to engineering
complexities or because this information only materializes post-inference. These features z can
present themselves in many forms, including uncompressed features (e.g., images), third-party expert
annotations, non-target post-inference signals (e.g., clicks or dwell time), and metadata about the
annotator/label provider.

For this reason, Vapnik and Vashist [23] introduced the paradigm of learning using privileged
information (LUPI). The key intuition behind LUPI is that privileged information should be addressed
via knowledge transfer – transferring knowledge from the space of privileged information (PI
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model) to the space where the decision rule is constructed (no-PI model) [21]. State-of-the-art
approaches for LUPI are largely based on two knowledge transfer techniques: knowledge distillation
[12, 14, 11, 25, 27] and marginalization with weight sharing [10, 5, 17]. In this work, we analyze
these two popular knowledge transfer techniques for LUPI.

Recent research suggests that incorporating PI is crucial for enhancing sample efficiency and gener-
alization performance [10, 27, 5]. These studies attempt to explain under what conditions LUPI is
beneficial. However, theoretical analyses often either assume knowledge transfer occurs or demon-
strate it takes place for extreme cases under assumptions that are difficult to verify. Additionally,
empirical analyses in existing studies frequently rely on stylized examples [5, 17], specific experi-
mental settings [12, 25, 5], or low-data regimes [21, 14, 12, 10]. Therefore, conclusively identifying
whether knowledge transfer happens and if it is induced by PI is non-trivial and remains a gap.

In this paper, we investigate whether knowledge transfer truly takes place in knowledge distillation
and marginalization with weight sharing. We conduct an elaborate ablation study and demonstrate
the apparent improvements often result from factors unrelated to PI. We reveal that previous studies
tend to misinterpret the observed gains in empirical performance and mistakenly attribute them to
PI. Interestingly, when focusing on the mechanisms that disclose PI models’ better performance, we
observe that the gap between PI and no-PI models can be bridged by simply training models longer
or replacing PI with a constant.

Back to the real world, we validate the existing methods on four real-life datasets from various
application domains. Our results demonstrate that the state-of-the-art approaches fail to outperform a
model that does not use PI, which adds evidence to the limited contributions of LUPI in practical
applications. Overall, our study highlights that, in the current state of research, there is no solid
empirical or theoretical evidence that knowledge transfer takes place in the LUPI paradigm.

Our contribution Our key contributions can be summarized as follows:

• We revisit empirical studies that claim performance improvements due to PI and highlight
that these improvements can be explained through mechanisms unrelated to PI.

• We conduct experiments on four real-world datasets from various application domains and
find out that no improvement from PI model is observed, which adds evidence to the limited
contribution of LUPI in practical applications.

2 Knowledge transfer in LUPI
Knowledge distillation Distillation introduced by [7] forms the basis for knowledge distillation
methods using PI [12, 14, 6, 11, 25, 27]. Lopez-Paz et al. [12] unifies LUPI with distillation [7] for
supervised learning and suggested that the representation learned by the PI model can be effectively
distilled to a no-PI model. Their method, called Generalized distillation, proceeds in two stages.
First, train a teacher model that takes both x and z as input to predict y. With a slight abuse of
notation, we assume that y is represented by a one-hot encoded vector, i.e., y ∈ ∆c, where ∆c is a
set of c-dimensional probability vectors. The teacher’s goal is to learn the representation

gt = argmin
g∈Gt

1

n

n∑
i=1

ℓ (yi, σ(g(xi, zi))) , (1)

where ℓ : ∆c ×∆c → R+ is a loss function, and σ : Rc → ∆c is the softmax operation.

In the second stage, a student model distills the learned representation gt into

gs = argmin
g∈Gs

1

n

n∑
i=1

[(1− λ)ℓ (yi, σ(g(xi))) + λℓ (si, σ(g(xi)))] , (2)

where si = σ(gt(xi, zi)/T ) ∈ ∆c is a soft label with temperature T provided by the teacher model
and λ ∈ [0, 1] is the imitation parameter, which balances the importance between imitating the soft
predictions si and predicting the true hard labels yi.

Intuitively, the teacher reveals the label dependencies to the privileged information by softening
the class-probability predictions in si, and the student distills this knowledge by training using the
input-output pairs {(xi, yi)}ni=1, {(xi, si)}ni=1. The soft labels si provided by the teacher assumed
to contain more information than hard labels yi and allow faster learning [12]. After distilling the
privileged information, we can use the student model gs ∈ Gs for prediction at test time.
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Marginalization and weight sharing Another popular approach of incorporating privileged in-
formation is based on marginal distribution p(y|x) =

∫
p(y|x, z)p(z|x)dz [10, 5, 17]. Consider a

classical supervised learning problem defined over the privileged space X × Z . In order to solve the
inference problem, we can consider the following marginal distribution

gs(x) = Ez∼p(z|x) [gt(x, z)] . (3)
However, the major problem in this formulation is the intractability of computing the expectation in
Eq. (3), as p(z|x) is unknown. As such, Collier et al. [5] propose a knowledge transfer technique
based on weight sharing to approximate Eq. (3).

TRAM is based on a two-headed model in which one head has access to PI, and the other one does not.
Specifically, they propose a neural network architecture which consists of three parts: shared feature
extractor ϕ(x), No PI head gs(x

′), and PI head gt(x
′, z), where ϕ : X → X ′ learns representation x′

of features x for some representation space X ′. Then, they consider the following two-step approach:
ϕ∗, gt = argming∈Gt,ϕ

1
n

∑n
i=1 ℓ (yi, g(ϕ(xi), zi)) , (4)

gs = argming∈Gs

1
n

∑n
i=1 ℓ (yi, g(ϕ

∗(xi))) . (5)
Crucially, feature extractor ϕ∗ is learned in Eq. (4) with access to PI. This weight sharing assumed to
enable knowledge transfer to the network trained without PI in Eq. (5). At test time, only the No PI
head is used for prediction.

3 What does existing empirical evidence show?

In this section, we revisit the original experiments conducted with the introduction of Generalised
distillation and TRAM. In Section 3.1, we revisit three experiments from [12] to highlight potential
limitations and misinterpretations from the aforementioned work. In Section 3.2, we revisit the
experiments by [5] to demonstrate that TRAM fails to explain the annotators’ noise, and the observed
improvements in empirical risk can be explained by the architecture of TRAM.

3.1 Generalized distillation

Synthetic experiments from [12] Lopez-Paz et al. ran four experiments to demonstrate the ability of
Generalized distillation to transfer knowledge. These are simulations of logistic regression models
repeated over 100 random partitions. For the two experiments that see positive effects of using
Generalised distillation, the triplets (xi, zi, yi) are sampled from one of two generating processes:

Experiment 1: Clean labels as PI
xi ∼ N (0, Id)

zi ← ⟨α, xi⟩
ϵi ∼ N (0, 1)

yi ← I {(zi + ϵi) > 0}

Experiment 3: Relevant features as PI
xi ∼ N (0, Id)

zi ← xi,J

yi ← I {⟨α, zi⟩ > 0} ,
where d is dimensionality of regular features, d = 50, α ∈ Rd is the separating hyperplane, and
set J , J = 3, is a subset of the variable indices {1, . . . , d} chosen at random but common for all
samples. Both Generalized distillation and no-PI models are trained on 200 samples (n = 200), and
the authors report a substantial improvement in accuracy (88% vs. 95% for Clean labels as PI and
89% vs. 97% for Relevant features as PI) testing models on 10000 test samples.
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(a) MNIST: 300 samples
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(b) MNIST: 500 samples

Figure 1: The effect of sufficient training epochs on
the MNIST Generalised distillation experiment.

In both experiments, PI contains (almost) per-
fect information about the distance of each sam-
ple to the decision boundary. In Experiment 1,
PI encodes the exact distance, while in Exper-
iment 3, PI encodes the relevant features used
to calculate distance. Both cases align with
the perfect knowledge of the slack variables in
[22]. However, from a practical perspective,
obtaining such high-quality PI is improbable.
Furthermore, the knowledge transfer aids per-
formance only in low data regimes, and the
effect quickly diminishes as the sample size increases with respect to the dimensionality of x (refer
to Table 2 for Experiment 1 and Table 3 for Experiment 3).
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MNIST experiment from [12] The authors further demonstrate PI-induced knowledge transfer
using an experiment with the MNIST dataset. In this experiment, the teacher learns from full 28x28
images while the student learns from downscaled 7x7 images. They conduct two experiments with
300 and 500 training samples, reporting significant improvement in classification accuracy compared
to a model without PI. When revisiting these experiments, we found that the original experiment
limited training epochs to 50. In Figure 1, we show that the reported effects are indeed visible around
50 epochs but quickly disappear when we allow all models to continue training.

Important to note, is that given the teacher-student setup, when the no-PI and student model perfor-
mances are reported at 50 epochs in Figure 1, the student model actually requires a teacher model
that had already completed 50 epochs, thus combined requiring 100 training epochs. Taking this into
consideration, there is no evidence of either improved sample efficiency or computational efficiency
by using Generalised distillation in this setting.

3.2 Revisiting TRAM
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(a) Undertrained
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(b) Sufficiently trained

Figure 2: TRAM zeros, TRAM, and no-PI for (2a) insuffi-
cient training and (2b) sufficient training. The numbers in the
legend indicate MSE loss w.r.t. the noise-free function.

The authors of [5, 17] argue that PI
can be used to “explain away” la-
bel noise. To demonstrate TRAM
having this capability, Collier et al.
[5] consider the following synthetic
experiment: A noisy annotator z is
simulated by binary indicator z ∼
Ber(0.3), such that z = 1 represents
the case where the noisy annotator
provides a random label

y = (1−z)·sin(2πx)+z ·v+ϵ, (6)

where x ∈ [0, 1], v ∼ Unif(−1, 1),
and ϵ ∼ N (0, 0.1).

The authors train TRAM and no-PI models on n = 2500 training samples using a 2-layer fully
connected neural network with a tanh activation function. They observe results from Figure (2a) and
state “We see that the representations learned by the model with access to PI in step #1 1 enable a near
perfect fit to the true expected marginal distribution, E(z,y)∼p(z,y|x)[y], over X . However, without
access to PI, the noise term a · v cannot be explained away.”
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Figure 3: TRAM and no-PI training dynam-
ics for the synthetic experiment from Eq. (6).
(Left) presents training dynamics over 200 epochs.
(Right) shows the resulting models’ performances
across varying sample sizes trained for 200 epochs.
“Uncorrupted” corresponds to a regular model fitted
to uncorrupted data y = sin(2πx) + ϵ.

We regard the expression “explaining away the
noise term” as cumbersome in this context: as
one can see, neither TRAM nor no-PI effec-
tively explains the noise term z · v away. The
task of explaining noise term would ideally
correspond to learning the noise-free function
E[y|x, z = 0] = sin(2πx); however, as de-
picted in Figure (2b), after sufficient training,
TRAM and no-PI converge to a biased function.
This effect is more clearly visible in Figure (3),
where we compare the TRAM performance to
an uncorrupted model (a regular model that is
fitted to data without the corrupted labels com-
ing from v). Thus, we can conclude that TRAM
does not “average out” or “explain away” label
noise; rather, similarly to the no-PI model, it
completes the average E[y|x].
Next, we consider the training dynamics of TRAM against no-PI model. Although, which was
already observed in Figure (2b), both TRAM and no-PI models eventually converge to similar
performance levels, some disparity is observed in their trajectories (refer to Figure (3) (left)), with
TRAM achieving optimal performance generally faster. However, from Figure (3) (right), we can see
that both models enjoy the same performance after sufficient training, which suggests that TRAM

1step #1 corresponds to learning feature extractor ϕ∗ in Eq. (4).
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Figure 4: Training dynamics of No PI, TRAM, Gen. dist., and Teacher for 4 real-world datasets
averaged over 10 runs. (Top row) shows the performance metric on the test set. (Bottom row) shows
cross-entropy loss on the test set.

is not more sample efficient than no-PI model. Thus, similar to the MNIST experiment, increasing
the number of epochs for no-PI model achieves identical performance to TRAM, resulting in both
models fitting the expected marginal distribution almost perfectly.

Why TRAM does not leverage PI In order to understand by which mechanisms TRAM enables
a faster convergence rate, we consider a modification of TRAM, where instead of PI z, we plug
in a zero vector (TRAM zeros). Figure (2a)-(2b) shows that the performance of TRAM zeros is
identical to the performance of TRAM using PI. This suggests that the benefit of TRAM stems from
architectural changes rather than PI-induced knowledge transfer.

4 Real-world applications

To further validate the described methodologies, we conduct experiments on four real-world datasets
from a variety of application domains, including e-commerce, healthcare, and aeronautics. Due to the
space limit, dataset descriptions and all experimental details are deferred to Appendix F. The source
code for the experiments is available at https://github.com/danilprov/rethinking_lupi.

Figure 4 shows the training dynamics for TRAM, Generalized distillation, and no-PI models across
four datasets. As we can see, there is no benefit from using TRAM or Generalized distillation over
no-PI model for all datasets. Therefore, there is no evidence that TRAM and Generalized distillation
transfer knowledge from privileged information, and there is no added value in a real-world setting.

5 Conclusion

LUPI is an attractive paradigm that is potentially applicable to many real-life problems. However,
we identified common fallacies of misinterpreting gains in empirical performance as knowledge
transfer induced by PI. Our theoretical overview of recent developments on LUPI argues that the
existing theory does not provide a sufficient basis for claiming that knowledge transfer occurs and
highlights the need for a more solid theoretical justification. While this observation only applies
to the theoretical analyses discussed in our study, we are also not aware of other prior work that
compellingly shows when knowledge transfer is possible and effective in LUPI.

In our experiments, we demonstrate that after adequate training, state-of-the-art LUPI methods fail to
outperform no-PI model. Surprisingly, we observe that low data regimes and undertrained models
(low training epoch regimes) often seem to be confused. While PI is beneficial in low data regimes in
highly stylized examples, it has yet to be verified that this can be extended to realistic settings. So far,
existing methods benefit from other factors unrelated to PI.
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A When is knowledge transfer in LUPI proven theoretically?

LUPI was introduced as a technique that can leverage PI to distinguish between easy and hard
examples, a concept closely tied to SVMs, where the difficulty of an example can be quantified
by the slack variable [23]. For the case of SVMs, Vapnik and Izmailov [21] show that utilizing
slack variables as privileged information can result in a smaller generalization error bound, with rate
O( 1n ) instead of O( 1√

n
). The motivation behind this is that SVM classification becomes separable

after we correct for the slack values, which measure the degree of misclassification of training data
points. Since it is unlikely that the teacher is able to provide true slack variables, the idea of the
SVM+ algorithm is to estimate slack variables and represent them by the teacher’s decision rule gt.
Technically, the improved convergence rate holds under two conditions: (i) function class Gt has a
smaller capacity than student’s function class Gs and (ii) teachers’ explanations p(z|x) engender a
convergence that is faster than O( 1√

n
). However, the sets of functions satisfying these conditions are

confined to Reproducing Kernel Hilbert Space (RKHS) [21], and their theoretical justifications does
not generalize beyond SVMs with decision rules defined in RKHS.

On the last point, Lopez-Paz et al. [12] argue that in Generalized distillation, the rate at which
the student learns from the teacher’s soft labels is faster than O( 1√

n
), since soft labels contain

more information than hard labels per example, and should allow for faster learning. However, this
requirement on the learning rate is rather strong and hard to satisfy in a general setting.

Generalized distillation was also analyzed in the semi-supervised learning setting [27]. The authors
consider a problem where two datasets are available: Dlabel := {(xi, zi, yi)}ni=1 and Dunlabel :=
{(xi, zi)}mi=1. Their distillation algorithm trains the teacher model using labeled datasetDlabel, which
provides pseudo-labels for both the labeled and unlabeled datasets, Dlabel and Dunlabel, respectively.
Then, the student model is trained on the combined dataset Dlabel ∪ Dunlabel using the imputed
pseudo-labels as targets. They theoretically demonstrate that their algorithm reduces estimation
variance in the case of linear models with independent regular and privileged features and report
improved empirical performance. However, the improvement appears to largely come from the
semi-supervised aspect rather than PI-induced knowledge transfer. In Appendix C, we show that
when we have no unlabelled data, the estimation variance of distillation actually slightly increases.

Meanwhile, Collier et al. [5] formulate two conditions under which marginalization can achieve a
lower empirical risk for a linear regression y = x⊤w+z⊤v+ ϵ, where z ∼ p(z|x), (i) the regression
coefficients v have a large variance when explained only by the features x and (ii) privileged features
z have a significant average component outside of the subspace spanned by the features x. However,
their analysis is intractable beyond this simple case, and hence, we cannot quantify such conditions
in the general setting.

Overall, the recent work attempts to explain when LUPI is beneficial, but finding conclusive theoretical
evidence for knowledge transfer using PI remains challenging. These theoretical analyses often
depend on strong assumptions and lack discussion on when these are satisfied or violated.

B Real-world applications

To further validate the described methodologies, we conduct experiments on four real-world datasets
from a variety of application domains, including e-commerce, healthcare, and aeronautics:

• Repeat Buyers [1] Motivated by our use-case example, we consider the Repeat
Buyers dataset, a large-scale public dataset from the IJCAI-15 competition. The data
provides users’ activity logs of an online retail platform, including user-related features,
information about items at sale, and implicit multi-behavioral feedback such as click, add to
cart, and purchase. We assign user-item features to x, intermediate signals click and add to
cart to z, and purchase to y.

• Heart Disease [3] This dataset is derived from the 2015 Behavioral Risk Factor Surveil-
lance System, and it contains∼ 260k cleaned responses, focusing on the binary classification
of heart disease. We use social-demographic features (such as age and income) as privileged
information z and medical data as regular features x.

• NASA-NEO [16] NASA nearthest earth object dataset compiles the list of NASA-certified
asteroids. It contains ∼ 90k samples with various properties of asteroids, and the task is to
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Table 1: Comparison of models’ performance on test data. Results represent MEAN ± STD. DEV. and are
averaged over 10 random seeds. We use normalized roc auc score for Repeat Buyers and Heart
Disease datasets and accuracy for NASA-NEO and Smoker or Drinker datasets.

Dataset Method ↓ Cross-entropy loss ↑Metric

Repeat Buyers

no-PI 0.2189 ± 0.0015 63.13 ± 0.25

no
rm

.r
oc

au
cTRAM 0.2194 ± 0.0013 62.89 ± 0.42

Gen. dist. 0.2183 ± 0.0017 62.88 ± 0.56

Teacher 0.1938 ± 0.0019 73.23 ± 0.38

Heart Disease

no-PI 0.2557 ± 0.0020 61.64 ± 0.47

TRAM 0.2555 ± 0.0018 61.62 ± 0.30

Gen. dist. 0.2543 ± 0.0013 61.11 ± 0.42

Teacher 0.2422 ± 0.0018 67.38 ± 0.31

NASA-NEO

no-PI 0.1945 ± 0.0009 90.28 ± 0.07

ac
cu

ra
cy

TRAM 0.1948 ± 0.0009 90.26 ± 0.09

Gen. dist. 0.1951 ± 0.0010 90.29 ± 0.09

Teacher 0.1818 ± 0.0011 91.35 ± 0.10

Drinker or Smoker

no-PI 0.5823 ± 0.0017 69.05 ± 0.15

TRAM 0.6125 ± 0.0031 66.54 ± 0.44

Gen. dist. 0.5820 ± 0.0009 69.09 ± 0.15

Teacher 0.5157 ± 0.0011 73.08 ± 0.11

predict if an asteroid is hazardous. For the purpose of our study, we treat a subset of original
features as privileged information.

• Smoker or Drinker [19] This dataset was collected from the National Health Insurance
Service in Korea. It compiles medical histories of ∼ 900k patients, focusing on their
smoking and drinking status. For the purpose of our study, we treat a subset of original
features as privileged information.

We consider Generalized distillation, TRAM, and no-PI models, which are 2-layer fully-connected
neural networks for all datasets. For reference, we report the teacher’s performance for all datasets
to indicate that PI could be useful in all cases. We perform a timestamp-based train test split and
use 70% of data for training each model and 30% of data for reporting performance. We train all
models 10 times with the random initialization, and for all models, we report the cross-entropy loss
value and performance metric on the test data – normalized ROC AUC scaled between 0 and 1 (2
* ROC AUC - 1) for Repeat Buyers and Heart Disease datasets and accuracy for NASA-NEO
and Smoker or Drinker datasets (refer to Table 1). Additionally, we report the training dynamics
of the cross-entropy loss value and performance metric on the test data in Figure 4. The teacher’s
performance is provided as a reference to demonstrate that PI is indeed useful information.

Figure 4 shows the training dynamics for TRAM, Generalized distillation, and no-PI models across
the four datasets, and Table 1 reports the resulting performance metric. We use normalized roc
auc2 for Repeat Buyers and Heart Disease datasets and accuracy for NASA-NEO and Smoker
or Drinker datasets. As we can see, there is no benefit from using TRAM or Generalized distilla-
tion over no-PI model for all datasets, with TRAM performing substantially worse in Smoker or
Drinker dataset. Therefore, there is no evidence that TRAM and Generalized distillation transfer
knowledge from privileged information, and there is no added value in a real-world setting with
moderate to large data sizes and properly tuned and trained models.

C Theoretical analysis of independent features

We follow the proof by [27] for the special case that m = 0 (no unlabelled instances)

Assuming a linear model generating the label y as follows:

2normalized roc auc = 2 * roc auc - 1

9



y = x⊺w∗ + z⊺v∗ + ϵ, ϵ ∼ N (0, σ2), (7)

where w∗ ∈ Rd
x and v∗ ∈ Rd

z the unknown parameters, the regular features x ∼ N (0, Idx), the
privileged features z ∼ N (0, Idz

). and ϵ represents label noise. The solution of the standard linear
regression is

ŵreg = X†y = X†(Xw∗ + Zv∗ +N) = w∗ +X†(Zv∗ +N), (8)

where N ∈ Rn×1 the label noise vector. Therefore, we have

EX∥ŵreg −w∗∥2
2
= EX∥(Zv∗ +N)⊺X†⊺X†(Zv∗ +N)∥22

=
dx · (σ2 + ∥v∗∥2)

n− dx − 1

The last equality holds because X†⊺X† = (X⊺X)
−1 follows the inverse-Wishart distribution, whose

expectation is Idx
n−dx−1 .

For generalised distillation, the teacher θ̂ ∈ Rdx+dz , we have

θ̂ = [X;Z]
†
[Xw∗ + Zv∗ +N)]

= [w∗⊺;w∗⊺]
⊺
+ [(XZ,⊥N)

⊺
; (ZX,⊥N)

⊺
]
⊺
,

where XZ,⊥ is the pseudo inverse of the projection of X to the column space orthogonal to Z, and
ZX,⊥ is defined similarly. After distillation, we have that

ŵpri = X† [X;Z] θ̂

= ŵ∗ +X†Zv̂∗ +X†
Z,⊥N+X†ZZ†

X,⊥N.

We note that Z†
X,⊥N has variance of order O

(
1
n2

)
, which is a non dominating term. For the other

two terms we have

EX,Z∥ŵpri −w∗∥2
2
= EX,Z∥X†Zv∗ +X†

Z,⊥N∥
2

2

=
dx · ∥v∗∥2

n− dx − 1
+

dx · σ2

n− dx − dz − 1

≥ EX∥ŵreg −w∗∥2
2
.

D Experiments for Generalized distillation

D.1 SARCOS experiment

The last experiment provided by [12] is based on the SARCOS dataset [24]. This dataset characterizes
the 7 joint torques of a robotic arm given 21 real-valued features. [12] learns a teacher on 300 samples
to predict each of the 7 torques given the other 6, and then distills this knowledge into a student who
uses as her regular input space the 21 real-valued features. They report improvement in mean squared
error when using Generalized distillation and conclude, “when distilling at the proper temperature,
distillation allowed the student to match her teacher performance.”

However, there is a misalignment between the experiment setup and the conclusion drawn by the
authors. It is observed that as the teacher labels approach 0, the student’s performance improves.
In fact, in Figure (5), we demonstrate that, due to the experiment setup, plugging in all zeros as a

10



0.0 0.2 0.4 0.6 0.8 1.0
imitation parameter 

1.0

1.2

1.4

1.6

1.8

m
ea

n 
sq

ua
re

d 
er

ro
r

temperature 1
temperature 2
temperature 5
temperature 10
temperature 20
temperature 50
Avg student
Avg pred_zero

Figure 5: Reproducing the SARCOS experiment with the teacher replaced with gt = 0.

target for the student model corresponds to the best student’s performance. In their code, instead of
applying T as a softmax temperature to the labels, the authors divide the soft label by T . This means
that by increasing the temperature T and the imitation parameter λ in the original experiment, the
authors force the teacher labels closer to 0 and report the observed improvement. Given that this
is not reported in the paper, we believe this to be unintended by the authors. However, this means
that the performance improvement can fully be attributed to the temperature scaling and not to a
successful knowledge transfer of PI.

D.2 Experiments 1 and 3

In this section we provide results for Experiments 1 and 3 described in Section 3.

Table 2: Expanding the training size of Experiment 1 (Clean Labels) from [12]. The effect of
Generalized distillation wears off when the training size surpasses 1000 samples.

Training size Privileged Generalized distillation no-PI
200 0.95 ±0.01 0.95 ±0.01 0.87 ±0.02

500 0.95 ±0.01 0.95 ±0.01 0.92 ±0.01

1000 0.95 ±0.01 0.95 ±0.01 0.94 ±0.01

2000 0.95 ±0.01 0.95 ±0.01 0.95 ±0.01

Table 3: Expanding the training size of Experiment 3 (Relevant features as privileged information)
from [12]. The effect of Generalized distillation wears off when the training size surpasses 2000
samples.

Training size Privileged Generalized distillation no-PI
200 0.97 ±0.02 0.96 ±0.02 0.84 ±0.03

500 0.97 ±0.02 0.97 ±0.01 0.92 ±0.02

1000 0.98 ±0.02 0.97 ±0.01 0.95 ±0.01

2000 0.98 ±0.02 0.97 ±0.01 0.96 ±0.01

5000 0.98 ±0.02 0.97 ±0.01 0.97 ±0.01

E Extending the TRAM experiment to classification tasks

Synthetic experiments for classification task To further demonstrate that explaining away harmful
noise is non-trivial, extend the setting above to a classification task to make it more suitable for
our use-case example. As such, y is a binary label that represents conversion, and z is PI, which
represents the nature of the click.
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(b) Bernoulli (U)
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(d) Cosine (U)
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(e) Deterministic (S)
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(f) Bernoulli (S)
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Figure 6: Example of TRAM and no-PI for 4 classification tasks. The models are trained for 50
epochs and 2500 samples in the top row and for 200 epochs and 10000 samples in the bottom row.
The numbers in the legend indicate MSE loss with respect to the noise-free function. (U) corresponds
to an undertrained regime, (S) corresponds to a sufficiently trained regime.

Similarly to [5], z ∼ Ber(0.3), and the data generating process is as follows:

yscore = (1− z) · sin(2πx) + z · v, (9)
y ∼ Ber(yscore),

where x ∈ [0, 1] and v represents the nature of the click. We consider four scenarios of PI impact on
the label: Deterministic – v = 1, Bernoulli – v ∼ Ber(0.7), Uniform – v ∼ Unif [−1, 1], Cosine –
v = cos(2πx). The examples of these scenarios and trained TRAM and no-PI models are represented
in Figure 6, with Figure (6a)-(6d) representing models trained for 50 epochs with 2500 samples and
Figure (6e)-(6h) representing models trained for 200 epochs with 10000 samples.

Intuitively, Uniform resembles the original setup of [5] but for the classification task. In our setting, it
can be motivated by a bot or users that just randomly click on banners. Deterministic might correspond
to an adversary that, for example, always clicks and never makes a purchase. Intuitively, explaining
the noise for Deterministic regime should be more difficult than for Uniform regime because there is
no randomness. Bernoulli regime is a middle point between Uniform and Deterministic regimes –
there is still corruption but with some randomness. Finally, Cosine corresponds to a scenario when
there are two types of users with different click behavior (according to sin for part of the population
and to cos for the rest of the population).

Taking a closer look at Figure (6a)-(6d), we can see that TRAM enables a faster convergence
rate. However, from Figure (6e)-(6h), it is apparent that both models No PI and TRAM eventually
converged to the same functions, which do not correspond to the noise-free function sin(2πx).

Finally, we empirically analyze the sample efficiency of TRAM compared to the no-PI model.We
train TRAM and No PI models for various values of n, from 100 to 10000. Both models are trained
for 200 epochs for each generated dataset. Figure (7) (right) presents MSE loss across different values
of n. We can see that both models converge to roughly the same value of all data regimes and all
values of n, which suggests that TRAM doesn’t enhance the sample efficiency.

F Experimental details

This section describes experimental details for sections 3.1, 3.2, and B. The source code for all
experiments is attached in supplementary materials and will be available publicly upon acceptance of
the article. We distribute all runs across 6 CPU nodes (Intel(R) CPU i7-10750H) and 1 GPU Nvidia
Quadro T1000 per run for experiments.
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Figure 7: TRAM and no-PI training dynamics for 4 data regimes.

Generalized distillation experiments We follow the original setup of [12]. For both Experiment 1
and Experiment 3, as a no-PI, student, and teacher models, we use 1 linear layer of dimension 50,
with softmax activation. The networks were trained using an rmsprop optimizer with a mean squared
error loss function. The temperature and imitation parameters for Generalized distillation were set to
1.

For MNIST and SARCOS experiments, we use two-layer fully connected neural networks of dimen-
sion 20, with ReLU hidden activations and softmax output activation for the no-PI, student, and
teacher models. The networks were trained using an rmsprop optimizer with a mean squared error
loss function. The temperature and imitation parameters for Generalized distillation in the MNIST
experiment were set to 10 and 1, respectively, as the best parameter set from the original paper [12].

TRAM experiments For both regression and classification tasks, as a no-PI model, we use two-
layer fully connected neural networks of dimension 64, with tanh hidden activations and linear output
activation for regression and sigmoid for classification. TRAM model has an extra hidden layer of
size 64 with tanh activation function in the PI head. Both TRAM and no-PI networks are fit using the
Adam optimizer [9] with mean squared error loss function. The numbers of epochs are specified in
figure captions for each experiment.

G Other related work

Multi-task learning While not strictly focused on the concept of PI, indications of successful
knowledge transfer can be found in the field of multi-task [4] and multi-objective learning [15, 18].
The primary goal of this type of research is to find some joint- or Pareto optimal solution for multiple
tasks or objectives simultaneously. These techniques could also be interpreted as a case of LUPI by
predicting each privileged feature with an additional task. However, while instances of successful
knowledge transfer have been reported in the literature, the quality of predictions is often observed to
suffer with making multiple predictions due to a phenomenon called negative transfer [20].

Different from multi-task learning, LUPI mainly focuses on improving the learning of the target task
rather than ensuring the performance of all the tasks [8]. From the practical point of view, when using
dozens of privileged features at once or when estimating the privileged features is more complicated
than the original problem, it would be a challenge to tune all the tasks [25]. For this reason, we focus
on methods that can generalize to any type of PI and are not exclusive to auxiliary tasks.

Surrogate signals In a similar spirit to LUPI, the proxy or surrogate signals literature [2, 13, 26]
studies how short-term outcomes can be used for estimating the long-term target outcome (e.g., in
cancer studies). In this setting, the materialization of the target outcome is generally delayed to such
an extent that it is unfeasible to use for decision-making. By using a short-term proxy or surrogate,
existing work is able to construct a best-effort estimation of the primary signal before it has fully
matured. In contrast to the PI setting, the issue of knowledge transfer is not presented. Additionally,
we assume that the primary outcome has fully matured, hence the use of such proxies is not desirable.
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