
Everything Everywhere All at Once:
LLMs can In-Context Learn Multiple Tasks in Superposition

Zheyang Xiong 1 Ziyang Cai 1 John Cooper 1 Albert Ge 1 Vasilis Papageorgiou 1 Zack Sifakis 1

Angeliki Giannou 1 Ziqian Lin 1 Liu Yang 1 Saurabh Agarwal 2 Grigorios G Chrysos 1 Samet Oymak 3

Kangwook Lee 1 Dimitris Papailiopoulos 1 4

Abstract
Large Language Models (LLMs) have demon-
strated remarkable in-context learning (ICL) ca-
pabilities. In this study, we explore a surprising
phenomenon related to ICL: LLMs can perform
multiple, computationally distinct ICL tasks si-
multaneously, during a single inference call, a ca-
pability we term “task superposition”. We provide
empirical evidence of this phenomenon across var-
ious LLM families and scales and show that this
phenomenon emerges even if we train the model
to in-context learn one task at a time. We of-
fer theoretical explanations that this capability is
well within the expressive power of transformers.
We also explore how LLMs internally compose
task vectors during superposition. Furthermore,
we show that larger models can solve more ICL
tasks in parallel, and better calibrate their output
distribution. Our findings offer insights into the la-
tent capabilities of LLMs, further substantiate the
perspective of “LLMs as superposition of simula-
tors”, and raise questions about the mechanisms
enabling simultaneous task execution.

1. Introduction
Large Language Models (LLMs) have demonstrated remark-
able capabilities across various domains, with one of the
most intriguing being in-context learning (ICL) (Brown
et al., 2020; Xie et al., 2022a). ICL enables LLMs to per-
form tasks during inference without the need to fine-tune
for that particular task, simply by providing a few examples
within the input prompt. This ability has sparked significant

1University of Wisconsin-Madison 2University of Texas at
Austin 3University of Michigan 4Microsoft Research. Correspon-
dence to: Zheyang Xiong <zheyang@cs.wisc.edu>, Dimitris Pa-
pailiopoulos <dimitris@papail.io>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

interest in the research community, as it suggests that LLMs
can adapt to novel tasks on-the-fly, using the capabilities that
they acquired during pretraining, and the context provided.

While ICL has been extensively studied from both theoreti-
cal and empirical perspectives (Xie et al., 2022a; Agarwal
et al., 2024), many aspects of its underlying mechanisms
remain elusive. In this work, we study a surprising phe-
nomenon related to ICL that, to the best of our knowledge,
has not been thoroughly studied before: LLMs can perform
multiple distinct ICL tasks simultaneously, in a single infer-
ence call, a capability we refer to as “task superposition”.

Our study suggests that pretrained autoregressive LLMs
such as Llama (Touvron et al., 2023) or GPT-3.51 (Brown
et al., 2020) display superposition of tasks purely in-
context2. When presented with multiple in-context examples
from different tasks, in the same prompt, the models can
generate outputs that correspond to solutions for all these
individual tasks. For instance, given examples of addition
and translation, the model can concurrently produce cor-
rect answers for both tasks, as well as the composition of
these tasks (e.g., the result of addition translated into another
language).

Figure 1 illustrates this phenomenon. In Figure 1a (left),
given in-context examples of addition in different languages
and the query “91 + 83→”, the model generates probabili-
ties for the correct sum in various languages, demonstrating
its ability to perform addition and translation concurrently.

This discovery aligns and lends further support to the view
of LLMs as superposition of simulators (Janus, 2022; Shana-
han et al., 2023; Nardo, 2023) and the Bayesian perspective
of ICL proposed by Xie et al. (2022a). While not a math-
ematically rigorous formulation, we can conceptualize the
output of an LLM as a weighted sum of conditional proba-
bilities across possible tasks:

P(output|prompt) ≈
∑
task

P(output|task, prompt)P(task|prompt).

1In particular, gpt-3.5-turbo-instruct.
2For other definitions of superposition, please see Section 2.

1



LLMs can In-Context Learn Multiple Tasks in Superposition

(20x) Task 1: 


(20x) Task 2:


(20x) Task 3: 


(20x) Task 4:  

Numerical addition


Addition in English


Addition in French


Addition in Spanish 

Andorra la Vella:


Europe:


ANDORRA:

23.10%


23.07%


37.92%

174:


one hundred and seventy-four


cent soixante-quatorze:


ciento setenta y cuatro:	

52.17%


13.16%


11.10%


21.69%

Output Probabilities (Llama-3)

11 + 26 ->

33 + 13 ->

62 + 54 ->

74 + 59 ->

69 + 10 ->

40 + 43 ->

24 + 40 ->



30 + 25 ->

91 + 83 ->

37

quarante-six

one hundred and sixteen

133

setenta y nueve

ochenta y tres

soixante-quatre



fifty-five

Prompt

Capital name


Continent name


Capitalization

(20x) Task 1: 


(20x) Task 2:


(20x) Task 3:   

Dominica    ->

New Zealand ->

Nauru       ->

Zimbabwe    ->

Latvia      ->

Spain       ->

Lebanon     ->



Montenegro  ->

Andorra     ->

Roseau

Wellington

NAURU

Africa

Europe

SPAIN

Asia



MONTENEGRO

Prompt

Output Probabilities (Llama-3)

(a) (left) Two-digit addition in a variety of languages. (right) Naming the capital of a given country name, naming the continent of a given
country name or capitalizing the country name.

(20x) Task 1: 


(20x) Task 2:


(20x) Task 3:   

Copy the first operand


Copy the second operand


Add two operands

t:


a:


T:


A:

10.78%


20.10%


35.60%


7.84%

Output Probabilities (GPT-3.5)

52:


17:


69:

32.91%


36.88%


28.70%

Output Probabilities (GPT-3.5)

First letter in lower case


Last letter in lower case


First letter in upper case


Last letter in upper case

(20x) Task 1: 


(20x) Task 2:


(20x) Task 3:


(20x) Task 4:

vacillant-> 
aftercure-> 
viggle   -> 
megatypy -> 
berceuses-> 
institue -> 
impleach ->



quaddle  ->

tunga    ->

V

E

e

m

s

I

i



q

Prompt

67 @ 88 = 
73 @ 95 = 
68 @ 20 = 
60 @ 79 = 
71 @ 73 = 
51 @ 81 = 
25 @ 17 =



10 @ 29 = 
52 @ 17 =

155 
95 
88 
79 
73 
132 
17



10

Prompt

(b) (left) Tasks copy(op1), copy(op2) and op1+op2. (right) First or last letter in upper or lower casea.

aIn the actual prompt we use space to separate each letter in a word so that each letter is a separate token after tokenization.

Figure 1: LLMs can perform task superposition. (a) Llama-3 70B and (b) GPT-3.5 Turbo are each presented with two sets
of tasks. For each set of tasks, we show an example prompt such that all except the last row are in-context examples of one
of the tasks and the last row is the query. We provide 20 in-context task examples for each task in the prompt with order
randomized and provide the probabilities of outputs when correctly performing each task on the query.

In this conceptual model, P(output|prompt) represents the
probability distribution over possible outputs given the
input prompt, a task can be thought of as a latent vari-
able representing different capabilities the model might
possess (e.g., arithmetic, translation, sentiment analysis),
P(output|task, prompt) represents the output probability
distribution if the model was specifically attempting to solve
a single task, based on the test example in the prompt, and
P(task|prompt) represents the model’s inferred probability
that the prompt specifies a particular task.

While this mental model is a simplification of how an LLM
operates, it provides an intuitive way to support the task
superposition phenomenon we observe. Our findings lend
support to the idea that LLMs can simultaneously maintain

and utilize multiple task distributions, resulting in outputs
that reflect a combination of relevant tasks.

Our Contributions: Our study makes several key contri-
butions:

1. Through extensive empirical investigation and theo-
retical results, we demonstrate that task superposition
is prevalent across various pretrained LLM families
(GPT3.5, LLama-3, Qwen).

2. We empirically show that task superposition emerges
as we train on one task at a time.

3. We provide a theoretical construction showing that
Transformers models are indeed capable of task super-

2



LLMs can In-Context Learn Multiple Tasks in Superposition

position, and have the capacity to implement multiple
tasks in parallel.

4. We explore how LLMs internally compose task vectors
(Hendel et al., 2023) during superposition, and show
how convex combinations of task vectors can reproduce
the superposition effect.

5. We show that larger models can solve more tasks in
parallel and more accurately reflect the distribution of
in-context tasks.

We believe that our findings offer new insights into the latent
capabilities of LLMs and raise questions about the mecha-
nisms enabling simultaneous task execution. We believe this
work sheds more light on the ICL capabilities of frontier lan-
guage models, and offers a glimpse on potential applications
of task superposition in practical settings.

2. Related Work
Theory and practice of in-context learning. There is rich
literature which formalizes in-context learning under diverse
definitions. For example, prior works study in-context learn-
ing through a Bayesian framework for task retrieval (Xie
et al., 2022a; Panwar et al., 2023; Zhang et al., 2023), martin-
gales (Falck et al., 2024), optimizers (Akyürek et al., 2023;
Oswald et al., 2023; Dai et al., 2022) and more (Reddy,
2024; Olsson et al., 2022). Other works confirm the theoret-
ical framing of in-context learning by using it to implement
a variety of algorithms and methods (Zhou et al., 2023; Ahn
et al., 2023; Giannou et al., 2023; Wu et al., 2024; Laskin
et al., 2022; Zhou et al., 2022), or to approximate general-
purpose computing machines (Giannou et al., 2023; Wei
et al., 2022).

To bridge the gap between theory and practice, many works
have used these theoretical insights to study in-context learn-
ing behaviors (Agarwal et al., 2024; Li et al., 2024; Choi &
Li, 2024). Bai et al. (2023b) shows transformers are capable
of in-context algorithm selection. We would like to note
here that while one can think of superposition as an algo-
rithm that outputs probability distribution that calibrates
to in-context examples, the setting in Bai et al. (2023b)
requires training on all such algorithm that calibrates the
output distribution to in-context examples, which is likely
not the case for pretrained LLMs since labels during LLMs
training are in one-hot format. Therefore, while related,
superposition cannot be explain by the framework from Bai
et al. (2023b).

Other works study the factors that influence how well mod-
els can learn through context (Raventos et al., 2023; Chan
et al., 2022; Wei et al., 2023; Lin & Lee, 2024; Min et al.,
2022; Lyu et al., 2022; Lampinen et al., 2022; Dinh et al.,
2022).

The development of new architectures such as state space
models (Gu & Dao, 2023) has further motivated studying
whether in-context learning is prevalent in alternative ar-
chitectures such as Mamba (Park et al., 2024; Grazzi et al.,
2024; Zeng et al., 2024) or in looped transformers (Yang
et al., 2023).

Steering models through in-context learning has been a
growing area of interest. Recent work has hypothesized
that in-context learning can be encapsulated by a high-
dimensional description of a task, which can be used to
replace, (Hendel et al., 2023) compose (Todd et al., 2024)
or augment (Liu et al., 2024) the latent states of a model, in
order to alter its default behavior. Task vectors can be com-
bined via arithmetic operations to solve a variety of tasks
(Ilharco et al., 2023). Prior work has also been investigating
the power of tokens in defining a task (Bai et al., 2024).

Other definitions of superposition. Our findings on su-
perposition are inspired by notions of language models as
multiverse generators (Reynolds & McDonell, 2021; moire,
2021). One consequence of LLMs as a superposition of
tasks is that the outputs may collapse to unintended sim-
ulacra, a behavior known as the “Waluigi effect” (Nardo,
2023).

Superposition has been defined in various related contexts of
learning models. Feature superposition (Elhage et al., 2022)
refers to a neural network’s ability to represent multiple
learned concept in a single neuron. Though our discovery
of task superposition describes the same abstract idea, we
stress that it is distinct from feature superposition because
task superposition is most apparent in the final output of a
model.

Superposition is also described as a way to store multi-
ple models in a single set of parameters (Cheung et al.,
2019), processing multiple inputs simultaneously (Shen
et al., 2024a; Murahari et al., 2022). In our work, we demon-
strate task superposition directly as a result of language
pre-training, without the necessity of additional adapters or
decoding strategies.

3. Problem Setup
Notation. Let X be the input space, x ∈ X , and Y be the
output space. We define a task as a function g : X → Y;
we denote a task answer as g(x), and (x, g(x)) as a task
example of the task g.

In-context learning setting. Let prompt = sm ⊕
x(m+1) = [x(1), g(x(1)), ...,x(m), g(x(m)),x(m+1)] be a
prompt consisting of m task examples and a query x(m+1).
M is a model that predicts M(prompt) ∈ Y . We say M
learns the task g in-context if M(prompt) = g(x(m+1)),
i.e., M learns g and performs the mapping on the query
x(m+1).

3



LLMs can In-Context Learn Multiple Tasks in Superposition

Let LM be a language model and let V be the vo-
cabulary space (token space). Given a prompt, in-
stead of outputing a y ∈ Y directly, LM outputs a
probability distribution over Y , i.e., LM(prompt) =
[P(y1|prompt), ...,P(y|Y||prompt)] for yj ∈ Y, j =
1, ..., |Y| 3. In previous works (Brown et al., 2020; Xie
et al., 2022b) all task examples in a prompt are from a
single task g; LM would put most of the probability mass on
a single task answer.

We are the first to study a setting that task exam-
ples in a single prompt are from K different tasks,
i.e., we have tasks g1, ...gK which form prompt =
[x(1), g(1)(x(1)), ...,x(m), g(m)(x(m)),x(m+1)]
where g(j) ∈ {g1, ..., gK}. Since LM outputs a
probability distribution over Y , we calculate the
probability mass it assigns to each task answer
g1(x

(m+1)), ..., gK(x(m+1)). In Figure 1 we depict
[P(g1(x(m+1))|prompt), ...,P(gK(x(m+1))|prompt)]
and find that LM assigns non-negligible probability on
multiple task answers. We term this phenomenon task
superposition.

4. LLMs Are Superpositions of Multiple
In-Context Learners

In this section, we want to investigate if existing pre-trained
models exhibit superposition of multiple tasks and whether
this phenomenon is common.

Finding 1: LLMs can in-context learn multiple
tasks in superposition when provided with prompts
of a mixture of task examples.

We consider four different settings of task mixtures.

1. Numerical addition and addition in English, French or
Spanish (K = 4). Example prompt is shown in Figure
1a (left).

2. Given a name of a country, name the capital, continent
or capitalize the country name (K = 3). Example
prompt is shown in Figure 1a (right).

3. Given input “{op1}@{op2}”, copy op1, op2 or add
op1 and op2 (K = 3). Example prompt is shown in
Figure 1b (left).

4. Given a word (with each letter separated by a space),
output first letter or last letter in lower or upper cases
(K = 4). Example prompt is shown in Figure 1b
(right).

3In practice LM outputs a distribution over V but for simplicity
here we assume inputs and outputs are single-tokens, i.e., X =
V = Y , and it naturally generalizes to the case when outputs are
multi-tokens using a probability chain rule.

We provide GPT-3.5 (Brown et al., 2020), Llama-3 70B
(AI@Meta, 2024) and Qwen-2.5 72B (Bai et al., 2023a)
with prompts of uniform mixture of tasks (each task has 20
examples in the prompt ordered randomly). For each prompt
consisting of in-context task examples (e.g., “11 + 26 →
37” for the first task in the first setting) and a query (e.g.,
“91+83→”), we calculate the probabilities of outputs when
correctly performing each task on the query and plot the
distribution of probabilities for each task in Figure 2. Details
on calculating the probabilities is in Appendix C.

Figure 2 reveals that in all four sets of tasks, all models have
non-negligible median values of probabilities for at least
two tasks. This indicates that the models can in-context
learn multiple tasks in superposition when provided with
prompts of a mixture of task examples.

We can also observe that, even though every task in a prompt
has an equal number of in-context examples (20 examples),
LLMs do not calibrate their output distribution perfectly
with the in-context task example distribution and they still
have bias on what task to perform. For example, Figure
2a(left) shows that Llama-3 70B prefers performing numer-
ical addition over addition in other languages, Qwen-2.5
72B is not good at addition in Spanish while GPT-3.5 does
not have a strong preference over a single task. On the other
hand, in Figure 2a(right) GPT-3.5 has a strong preference
over the capital task.

Additionally, some tasks are “harder” than other tasks. For
example, in Figure 2b(right), all models assign low probabil-
ities for task answers of last letter cap. The category
other has relatively high values for all models, indicating
a high noise when prompted with in-context examples of
this setting. In contrast, in Figure 2b(left), category other
has very small values, indicating that all models most of the
time would correctly assign the output probabilities to the
correct answers.

In Appendix B, we further show that, within the same LLM
family, larger models can solve more tasks in parallel and
better calibrate the output distribution to the in-context task
examples distribution.

5. Task Superposition in Models Trained from
Scratch

In Section 4 we investigated task superposition in pre-
trained LLMs at inference time. We further investigate how
task superposition emerges in LLMs during training. Specif-
ically, if we train the model to in-context learn one task at a
time, can it perform task superposition when provided with
prompts containing examples of multiple tasks?

To answer this question, we train a small GPT-
2 model (6 heads, 6 layers, ∼14million param-

4



LLMs can In-Context Learn Multiple Tasks in Superposition

add add
in en

add
in fr

add
in es

other
0.0

0.2

0.4

0.6

0.8
pr

ob
ab

ilit
y

capital continent capi-
talization

other
0.0

0.2

0.4

0.6

0.8
gpt-3.5-turbo-instruct Meta-Llama-3-70B Qwen2.5-72B

(a) (left) Addition in original numerical form and in different languages as in Figure 1a (left); (right) Capital name, continent name and
capitalization as in Figure 1a (right)

copy(op1) copy(op2) op1+op2 other
0.0

0.2

0.4

0.6

pr
ob

ab
ilit

y

first letter last letter first letter cap. last letter cap. other
0.0

0.2

0.4

0.6

0.8

(b) (left) copy(op1), copy(op2), and op1+op2 as in Figure 1b (left); (right) First or last letter in upper or lower cases as in
Figure 1b (right).

Figure 2: Distributions (0/25/50/75/100-percentiles) of probabilities for correct outputs of each task. For every set of tasks,
we tested with 100 prompts and for each prompt, every task has 20 random in-context task examples with order randomized
like in Figure 1. Category other is the sum of probabilities of all other outputs. Gray dashed line in each figure is the ideal
probability if we assume the model perfectly calibrates its output distribution to the distribution of in-context task examples.
With uniform distribution of task examples, the dashed lines are at 0.25 (4 tasks setting) and 0.33 (3 tasks setting).

eters) (Radford et al., 2019) to learn a fam-
ily of retrieval tasks. The input has the form
“{ch1}{ch2}{ch3}{ch4}{ch5}{ch6}{ch7}{ch8}→”
where ch1, ..., ch8 are distinct single characters. We
consider 8 retrieval tasks – ret1, ..., ret8 – where
ret1 is to output ch1 and so on. The model is trained to
in-context learn one task (retrieve one of {ch1, ...,ch8})
at a time in training. Namely, during training, the model
is only provided with text data such that each prompt only
contains in-context examples of a single randomly chosen
task (and different prompts can correspond to different
tasks).

Concretely, for each sample, we randomly select task t ∈
{ret1, ...,ret8} and inputs x(1), ...,x(m), where each
x(j) is an eight-character long string. We train the model
LMθ parametrized by θ using ICL training by minimizing
the following objective:

min
θ

Es

 1

m− 1

m−1∑
j=1

CE(LMθ(sj ⊕ x(j+1)), gt(x
(j+1)))

 ,

(1)
where CE is the cross-entropy loss and sj ⊕ x(j+1) ≡
[x(1), gt(x

(1)), ...,x(j), gt(x
(j)),x(j+1)].

After training, we provide the model with prompts con-
taining in-context examples of two tasks (in particular, we

choose ret2 and ret6) and see if the model performs
task superposition. We vary the proportion of in-context
examples of two tasks and plot the output distributions in
Figure 3a.

Similarly, we consider a second setting involving 10 tasks.
Given a two digit integer input num, task plus0 outputs
num, task plus1 outputs num + 1 and so on, up to task
plus9. The model is trained to in-context learn one of
plus0,..., plus9 at a time, following the procedure above.
During inference time, the model is tested with prompts
containing a mixture of in-context examples from tasks
plus2 and plus6. We vary the mixture ratio and show
the output distributions in Figure 3b.

Finding 2: Transformers can in-context learn
multiple tasks in superposition even if trained to
in-context learn one task at a time.

Remarkably, from Figure 3a and 3b, GPT-2 trained from
scratch to in-context learn one task at a time can generalize
to simultaneously performing multiple tasks and calibrate
the output probabilities according to the in-context task
example distribution when provided with a mixture of in-
context examples. For example, in Figure 3a at the mixture
ratio λ = 0.5, meaning that 50 percent of the examples in
the prompt is from task ret2 and the other 50% comes
from task ret6, we can see the output probabilities for task

5



LLMs can In-Context Learn Multiple Tasks in Superposition

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Pr

ob
ab

ilit
ie

s

ret2
ret6
other

(a) Trained on retrieval tasks and tested on prompts with
mixture of in-context examples of ret2 and ret6.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

ie
s

plus2
plus6
other

(b) Trained on addition tasks and tested on prompts with
mixture of in-context examples of plus2 and plus6.

Figure 3: We consider two different settings of tasks: (a)
given an eight-character length string as input, consider
ret1, ..., ret8 where ret1 is to retrieve the first charac-
ter and so on; and (b) given a two-digit integer as an input,
consider plus0, ..., plus9 where plus0 is to add 0 on
the input and so on. After training, for each setting, we
select two tasks ad we provide the model with prompts con-
taining in-context examples from these two tasks and vary
the mixture ratio λ such that the in-context task example
distribution for two tasks is [λ, 1− λ]. We plot λ on x-axis
and the output probabilities of task answers for each task on
y-axis.

answers of ret2 and ret6 being roughly [0.5, 0.5]. We
can observe similar behavior in Figure 3b.

6. Transformers Have the Capacity to Perform
Task Superposition

In this section, we explore whether Transformers have the
inherent expressivity to perform multiple tasks in superposi-
tion with a single inference call. To this end, we provide a
theoretical construction of a Transformer which, given the
ability to implement multiple tasks, performs task superpo-
sition depending on the examples given in-context.

Theorem 1. A seven layer transformer with embedding di-
mension O(d+ log(mn)) with K heads per attention layer
can perform K tasks on vectors of dimension d in super-
position, with weighting based on m different in-context
examples each of length n .

The proof of Theorem 1 is provided in Appendix E.4. Note
that while this does not guarantee that training a Trans-
former will actually find these parameters, it does indicate
that Transformers are expressive enough to perform task

superposition at test time. Below we outline the main ideas
used in the proof.

Prediction based on multiple tasks. Assume that we are
given m in-context samples (x(j)

1 , . . . ,x
(j)
n−2, ‘=’,y(j))mj=1

where ‘=’ represents a specific value used only for preceding
the label, and a set of k different Transformers TFi which
can implement the T different desired tasks, where each
deterministic task is denoted as gi(x(j)) with i ∈ [k] and
j ∈ [m], i.e. y(j) = gi(x

(j)) for some task i dependent on
sample j. Using the weights of each TFi, we can compute
outputs of the following form:


. . . x

(j)
1 . . . x

(j)
n−2 = y(j) . . .

. . . 0 . . . 0 0 0 . . .
...

...
...

...
. . . 0 . . . 0 0 0 . . .

→

. . . x

(j)
1 . . . x

(j)
n−2 = y(j) . . .

. . . 0 . . . 0 0 ∥g1(x(j))− y(j)∥1 . . .
...

...
...

...
. . . 0 . . . 0 0 ∥gT (x(j))− y(j)∥1 . . .



We use the l1 norm to aggregate the prediction, in case that
the task is multi-dimensional. These differences are used to
identify tasks, as ∥gi(x(j)) − y(j)∥1 ≈ 0 for y(j) coming
from task i. Different heads at each layer in the model
are used to execute each of the tasks in parallel using the
weights from TFi. In Appendix E we construct tasks where
an arbitrary function gi(x

(j)
l ) is implemented using ReLUs

for some fixed l that is task-specific.

Creating task identifiers. Having the differences
between the implemented function and the label, we first
use the ReLUs to clean up the vectors vk so that only the
positions in each vector that are associated with a task
are maintained and the rest are set to 14. We thus create
the vectors (v′

k)i = ∥gk(x
(j)
1:l−1) − x

(j)
l ∥1 and (v′

∗)∗ = 1
otherwise. Now we use ReLUs to threshold and create an
indicator vectors 1{∥gk(x

(j)
1:l−1)−x

(j)
l ∥1≈0} which identify

the task, i.e.,these are task identifiers. Notice that if the task
is correctly predicted then the difference should be close
to 0 (up to some error), while if the task is not identified
the corresponding value would not be 0; the rest of the
rows would be 1. We have created one vector for each task,
which has 1 in the position of the corresponding task if the
task was identified in the context.

Averaging and task superposition. As a last step, we
average all the task identifiers and place the result in the last
column, in which the next prediction will happen. We then
use the averaged task identifier to weight the prediction of
each task based on it, as in task superposition. If the task
has been identified multiple times in the context, it would
be assigned a higher weight/probability.

4This step is not mandatory, but it ensures that we have no
values over which we have no control. We leave as future work an
error analysis on how these values could affect the task identifiers.

6



LLMs can In-Context Learn Multiple Tasks in Superposition

20 10 0 10 20
Component 1

15

10

5

0

5

10

15

20

Co
m

po
ne

nt
 2

1/0/0
0/1/0
0/0/1
0.50/0.50/0.00
0.50/0.00/0.50
0.00/0.50/0.50
0.33/0.33/0.33

(a) copy(op1) / copy(op2) / op1+op2

10 5 0 5
Component 1

2

0

2

4

6

8

10

12

Co
m

po
ne

nt
 2

1/0/0
0/1/0
0/0/1
0.50/0.50/0.00
0.50/0.00/0.50
0.00/0.50/0.50
0.33/0.33/0.33

(b) to fr / to de / to it

Figure 4: Task vectors of Llama-3 8B projected
onto two axes chosen by LDA for two sets of tasks:
(a) copy(op1), copy(op2) and op1+op2 and (b)
to fr, to de and to it. For tasks t1, t2, t3, we use
“P(t1)/P(t2)/P(t3)” to denote different levels of task mix-
tures, e.g., “0.50/0.50/0.00” represents the case where the
in-context task examples are 50% t1, 50% t2 and 0% t3.

7. Task Superposition Through the Lens of
Task Vectors

While in Section 6 we provide an existential result by con-
structing a Transformer that performs task superposition and
shows that task superposition is well within the expressive
power of Transformers, we would like to further investigate
how task superposition manifest in pretrained LLMs inter-
nally. In this section we explore the underlying mechanisms
that LLMs employ during task superposition. In particular,
we focus our empirical study on task vectors (Hendel et al.,
2023) where the detailed implementation is in Appendix
D. Task vectors are vectors in the embedding space and
are found to encode the algorithm that a model internally
implements to solve a task given in-context demonstrations.

We want to investigate if there is any relation between the
task vectors of each individual task and the task vectors of
a mixture of task examples in the prompt. To this end, we
consider two sets of tasks:

(a) copy(op1), copy(op2) and op1+op2 as in Fig-
ure 1b (left).

(b) Given a two-digit integer, task to fr translates it to
French, task to de translates it to German and task
to it translates it to Italian.

For each set of tasks, we collect the task vectors for each
individual task and task vectors extracted from prompts that
contain examples of different tasks. In Figure 4, we project
task vectors along two axes chosen by linear discriminant
analysis (LDA).

Finding 3: LLMs internally combine task vectors
during task superposition.

Interestingly, we observe that the locations of task vectors
of a mixture of tasks strongly correlate with the locations
of task vectors for each individual task and the in-context
task example distribution (the mixture ratio for examples
of different tasks). For example, if the prompt includes
an equal number of in-context examples from each task,
the task vectors are roughly centered in the middle; if the
prompt only contains in-context examples of two tasks, then
the task vectors roughly lie on the connecting line between
task vectors of two individual tasks. We argue that this
observation is indicative of the fact that, when prompted
with a mixture of in-context task examples, LLMs internally
combine task vectors.

As we observe signs that LLMs internally compose task
vectors, we want to further investigate whether we can re-
produce the task superposition phenomenon by patching
in a convex combination of task vectors. For example, for
tasks copy(op1) and copy(op2), we first extract the
corresponding task vectors Vcopy(op1) and Vcopy(op2) on
Llama-3 8B using the method described in Appendix D. We
then make a convex combination of the two task vectors
with parameter λ that controls the ratio:

Vinterpolate,λ = λ · Vcopy(op1) + (1− λ) · Vcopy(op2).

Finding 4: Convex combinations of task vectors
produce task superposition.

For a new query (in this scenario in the form
“{op1}@{op2}=”), we patch the vector Vinterpolate,λ into
the model at the task vector layer. We calculate the model
output probabilities that correspond to each task while we
vary λ. For each λ, we use 100 different queries and plot
the average probabilities in the top row of Figure 5. As a
comparison, in the bottom rows of Figure 5, we plot the cor-
responding output probabilities when providing the models

7



LLMs can In-Context Learn Multiple Tasks in Superposition
in

te
rp

ol
at

io
n

in
-c

on
te

xt

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00
P(

an
s)

copy(op1) copy(op2) other

0.00 0.25 0.50 0.75 1.00
lambda

0.00

0.25

0.50

0.75

1.00

P(
an

s)

(a) Tasks: copy(op1) and copy(op2)

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

P(
an

s)

to_de to_it other

0.00 0.25 0.50 0.75 1.00
lambda

0.00

0.25

0.50

0.75

1.00

P(
an

s)
(b) Tasks: translate to de and to it

Figure 5: On Llama-3 8B, we vary the proportion, λ, between two tasks and observe how the output probabilities for the
correct answers change. The proportion λ is varied in two ways: (1) in the top row, we plot the output from patching in a
convex combination of task vectors for two tasks. (2) in the bottom row, we plot the output from a mixed proportion of
in-context examples for the two tasks. Subplot (a) shows the output probabilities from mixing two copy tasks and (b) shows
the probabilities from mixing two translate tasks.

with prompts containing mixture of task examples where
the mixture ratio is controlled by λ.

In top row of Figure 5, we observe that patching convex
combinations of task vectors into the model produces task
superposition. We would also like to point out that in Figure
5b, although irrelevant outputs sum up to a large probability,
the task answers for two tasks to de and to it in most
cases will still be the top-2 answers.

Comparing the top rows and the bottom rows, we can see
that top rows (the scenario of interpolating task vectors of in-
dividual tasks) have larger probabilities of irrelevant output
(category other). Task vector interpolation also produces
less of a linear relationship between λ and the output proba-
bilities. This shows that while convex combinations of task
vectors are sufficient for producing task superposition, this
does not fully explain task superposition. We leave it to
future work to investigate other mechanistic explanations of
task superposition.

8. Limitations and Future Directions
One limitation of our work is the current gap between the
demonstrated capability of LLMs to perform task superpo-
sition and its practical application in real-world scenarios.
While we have shown that LLMs possess the capacity to ex-
ecute multiple tasks simultaneously, conventional decoding
algorithms are not equipped to fully leverage this capabil-
ity. This limitation stems from what we term “generation

collapse,” a phenomenon where, after the first token is gen-
erated, the model tends to converge on predicting tokens for
a single task, effectively negating its ability for multi-task
execution.

This collapse presents a substantial challenge in harnessing
the full power of task superposition. It highlights a critical
area for future research: developing decoding strategies that
can maintain the model’s multi-task state throughout the gen-
eration process. Recent work by Shen et al. (2024b) offers
some hope that this direction may be fruitful, by proposing a
“superposed decoding” algorithm. Their method efficiently
generates multiple streams of tokens from a single infer-
ence pass by utilizing superposed token embeddings. While
this approach represents a significant step forward, it also
highlights the potential for further innovation in this area.

9. Conclusion
We report on the discovery of task superposition, which is
the ability of LLMs to simultaneously solve distinct tasks
from in-context examples. Task superposition is present
in a variety of pretrained models, and becomes more ac-
curate at predicting the distribution of tasks as the model
size increases (Appendix B). We also find evidence that
while displaying task superposition, models internally mix
the task vectors of each individual task. We hope that our
findings will contribute to understanding in-context learning
mechanisms and enhance our knowledge of LLMs overall.

8



LLMs can In-Context Learn Multiple Tasks in Superposition

Acknowledgment
K.L. is supported by NSF Award DMS-2023239, NSF CA-
REER Award CCF-2339978, Amazon Research Award, and
a grant from FuriosaAI. D.P. is supported by NSF Medium
award No. 2403074, ONR Grant No. N00014-21-1-2806
and No. N00014-23-1-2848.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Agarwal, R., Singh, A., Zhang, L. M., Bohnet, B., Chan, S.,

Anand, A., Abbas, Z., Nova, A., Co-Reyes, J. D., Chu, E.,
Behbahani, F., Faust, A., and Larochelle, H. Many-shot
in-context learning, 2024.

Ahn, K., Cheng, X., Daneshmand, H., and Sra, S.
Transformers learn to implement preconditioned gra-
dient descent for in-context learning. arXiv preprint
arXiv:2306.00297, 2023.

AI@Meta. Llama 3 model card. 2024. URL
https://github.com/meta-llama/llama3/
blob/main/MODEL_CARD.md.

Akyürek, E., Schuurmans, D., Andreas, J., Ma, T., and Zhou,
D. What learning algorithm is in-context learning? Inves-
tigations with linear models, May 2023. URL http://
arxiv.org/abs/2211.15661. arXiv:2211.15661
[cs].

Bai, J., Bai, S., Chu, Y., Cui, Z., Dang, K., Deng, X., Fan,
Y., Ge, W., Han, Y., Huang, F., Hui, B., Ji, L., Li, M.,
Lin, J., Lin, R., Liu, D., Liu, G., Lu, C., Lu, K., Ma, J.,
Men, R., Ren, X., Ren, X., Tan, C., Tan, S., Tu, J., Wang,
P., Wang, S., Wang, W., Wu, S., Xu, B., Xu, J., Yang,
A., Yang, H., Yang, J., Yang, S., Yao, Y., Yu, B., Yuan,
H., Yuan, Z., Zhang, J., Zhang, X., Zhang, Y., Zhang, Z.,
Zhou, C., Zhou, J., Zhou, X., and Zhu, T. Qwen technical
report. arXiv preprint arXiv:2309.16609, 2023a.

Bai, Y., Chen, F., Wang, H., Xiong, C., and Mei, S. Trans-
formers as statisticians: Provable in-context learning with
in-context algorithm selection, 2023b.

Bai, Y., Huang, H., Piano, C. S.-D., Rondeau, M.-A.,
Chen, S., Gao, Y., and Cheung, J. C. K. Identify-
ing and analyzing task-encoding tokens in large lan-
guage models. (arXiv:2401.11323), February 2024. doi:
10.48550/arXiv.2401.11323. URL http://arxiv.
org/abs/2401.11323. arXiv:2401.11323 [cs].

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry,
G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger,
G., Henighan, T., Child, R., Ramesh, A., Ziegler, D.,
Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E.,
Litwin, M., Gray, S., Chess, B., Clark, J., Berner,
C., McCandlish, S., Radford, A., Sutskever, I., and
Amodei, D. Language Models are Few-Shot Learners.
In Advances in Neural Information Processing Systems,
volume 33, pp. 1877–1901. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.
html.

Chan, S., Santoro, A., Lampinen, A., Wang, J., Singh, A.,
Richemond, P., McClelland, J., and Hill, F. Data distri-
butional properties drive emergent in-context learning in
transformers. Advances in Neural Information Processing
Systems, 35:18878–18891, 2022.

Cheung, B., Terekhov, A., Chen, Y., Agrawal, P., and Ol-
shausen, B. Superposition of many models into one,
June 2019. URL http://arxiv.org/abs/1902.
05522. arXiv:1902.05522 [cs].

Choi, H. K. and Li, Y. Picle: Eliciting diverse behaviors
from large language models with persona in-context learn-
ing. (arXiv:2405.02501), May 2024. doi: 10.48550/arXiv.
2405.02501. URL http://arxiv.org/abs/2405.
02501. arXiv:2405.02501 [cs].

Dai, D., Sun, Y., Dong, L., Hao, Y., Sui, Z., and Wei, F. Why
can gpt learn in-context? language models secretly per-
form gradient descent as meta optimizers. arXiv preprint
arXiv:2212.10559, 2022.

Dinh, T., Zeng, Y., Zhang, R., Lin, Z., Rajput, S., Gira,
M., Sohn, J.-y., Papailiopoulos, D., and Lee, K. Lift:
Language-interfaced fine-tuning for non-language ma-
chine learning tasks. arXiv preprint arXiv:2206.06565,
2022.

Elhage, N., Hume, T., Olsson, C., Schiefer, N., Henighan,
T., Kravec, S., Hatfield-Dodds, Z., Lasenby, R., Drain,
D., Chen, C., Grosse, R., McCandlish, S., Kaplan, J.,
Amodei, D., Wattenberg, M., and Olah, C. Toy Models of
Superposition, September 2022. URL http://arxiv.
org/abs/2209.10652. arXiv:2209.10652 [cs].

Falck, F., Wang, Z., and Holmes, C. Is in-context learning
in large language models bayesian? a martingale perspec-
tive. (arXiv:2406.00793), June 2024. URL http://
arxiv.org/abs/2406.00793. arXiv:2406.00793
[cs, stat].

9

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
http://arxiv.org/abs/2211.15661
http://arxiv.org/abs/2211.15661
http://arxiv.org/abs/2401.11323
http://arxiv.org/abs/2401.11323
https://proceedings.neurips.cc/paper_files/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
http://arxiv.org/abs/1902.05522
http://arxiv.org/abs/1902.05522
http://arxiv.org/abs/2405.02501
http://arxiv.org/abs/2405.02501
http://arxiv.org/abs/2209.10652
http://arxiv.org/abs/2209.10652
http://arxiv.org/abs/2406.00793
http://arxiv.org/abs/2406.00793


LLMs can In-Context Learn Multiple Tasks in Superposition

Giannou, A., Rajput, S., Sohn, J.-y., Lee, K., Lee, J. D.,
and Papailiopoulos, D. Looped transformers as pro-
grammable computers, 2023.

Grazzi, R., Siems, J., Schrodi, S., Brox, T., and Hut-
ter, F. Is mamba capable of in-context learning?
(arXiv:2402.03170), April 2024. doi: 10.48550/arXiv.
2402.03170. URL http://arxiv.org/abs/2402.
03170. arXiv:2402.03170 [cs].

Gu, A. and Dao, T. Mamba: Linear-time se-
quence modeling with selective state spaces.
(arXiv:2312.00752), December 2023. doi: 10.48550/
arXiv.2312.00752. URL http://arxiv.org/abs/
2312.00752. arXiv:2312.00752 [cs].

Hendel, R., Geva, M., and Globerson, A. In-Context Learn-
ing Creates Task Vectors, October 2023. URL http://
arxiv.org/abs/2310.15916. arXiv:2310.15916
[cs].

Ilharco, G., Ribeiro, M. T., Wortsman, M., Gururangan, S.,
Schmidt, L., Hajishirzi, H., and Farhadi, A. Editing Mod-
els with Task Arithmetic, March 2023. URL http://
arxiv.org/abs/2212.04089. arXiv:2212.04089
[cs].

Janus. Simulators, 2022. URL https:
//www.lesswrong.com/posts/
vJFdjigzmcXMhNTsx/.

Lampinen, A. K., Dasgupta, I., Chan, S. C., Matthewson,
K., Tessler, M. H., Creswell, A., McClelland, J. L., Wang,
J. X., and Hill, F. Can language models learn from ex-
planations in context? arXiv preprint arXiv:2204.02329,
2022.

Laskin, M., Wang, L., Oh, J., Parisotto, E., Spencer, S.,
Steigerwald, R., Strouse, D., Hansen, S., Filos, A.,
Brooks, E., et al. In-context reinforcement learning with
algorithm distillation. arXiv preprint arXiv:2210.14215,
2022.

Li, T., Zhang, G., Do, Q. D., Yue, X., and Chen, W. Long-
context llms struggle with long in-context learning.
(arXiv:2404.02060), April 2024. doi: 10.48550/arXiv.
2404.02060. URL http://arxiv.org/abs/2404.
02060. arXiv:2404.02060 [cs].

Lin, Z. and Lee, K. Dual Operating Modes of In-Context
Learning, February 2024. URL http://arxiv.org/
abs/2402.18819. arXiv:2402.18819 [cs].

Liu, S., Ye, H., Xing, L., and Zou, J. In-context
vectors: Making in context learning more effective
and controllable through latent space steering.
(arXiv:2311.06668), February 2024. doi: 10.48550/arXiv.
2311.06668. URL http://arxiv.org/abs/2311.
06668. arXiv:2311.06668 [cs].

Lyu, X., Min, S., Beltagy, I., Zettlemoyer, L., and Hajishirzi,
H. Z-icl: Zero-shot in-context learning with pseudo-
demonstrations. arXiv preprint arXiv:2212.09865, 2022.

Min, S., Lyu, X., Holtzman, A., Artetxe, M., Lewis, M.,
Hajishirzi, H., and Zettlemoyer, L. Rethinking the role of
demonstrations: What makes in-context learning work?
(arXiv:2202.12837), October 2022. doi: 10.48550/arXiv.
2202.12837. URL http://arxiv.org/abs/2202.
12837. arXiv:2202.12837 [cs].

moire. Language models are multiverse generators, January
2021. URL https://generative.ink/posts/
language-models-are-multiverse-generators/.

Murahari, V., Jimenez, C. E., Yang, R., and Narasimhan,
K. Datamux: Data multiplexing for neural networks.
(arXiv:2202.09318), November 2022. doi: 10.48550/
arXiv.2202.09318. URL http://arxiv.org/abs/
2202.09318. arXiv:2202.09318 [cs].

Nardo, C. The waluigi effect (mega-post),
2023. URL https://www.lesswrong.
com/posts/D7PumeYTDPfBTp3i7/
the-waluigi-effect-mega-post.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma,
N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen,
A., et al. In-context learning and induction heads. arXiv
preprint arXiv:2209.11895, 2022.

Oswald, J. V., Niklasson, E., Randazzo, E., Sacramento,
J., Mordvintsev, A., Zhmoginov, A., and Vladymyrov,
M. Transformers Learn In-Context by Gradient Descent.
In Proceedings of the 40th International Conference
on Machine Learning, pp. 35151–35174. PMLR, July
2023. URL https://proceedings.mlr.press/
v202/von-oswald23a.html. ISSN: 2640-3498.

Panwar, M., Ahuja, K., and Goyal, N. In-context learning
through the bayesian prism, June 2023. URL https:
//arxiv.org/abs/2306.04891v2.

Park, J., Park, J., Xiong, Z., Lee, N., Cho, J., Oymak, S.,
Lee, K., and Papailiopoulos, D. Can mamba learn how to
learn? a comparative study on in-context learning tasks.
(arXiv:2402.04248), April 2024. doi: 10.48550/arXiv.
2402.04248. URL http://arxiv.org/abs/2402.
04248. arXiv:2402.04248 [cs].

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Raventos, A., Paul, M., Chen, F., and Ganguli, S. The
effects of pretraining task diversity on in-context learning
of ridge regression. In ICLR Workshop on Mathematical
and Empirical Understanding of Foundation Models (ME-
FoMo), 2023.

10

http://arxiv.org/abs/2402.03170
http://arxiv.org/abs/2402.03170
http://arxiv.org/abs/2312.00752
http://arxiv.org/abs/2312.00752
http://arxiv.org/abs/2310.15916
http://arxiv.org/abs/2310.15916
http://arxiv.org/abs/2212.04089
http://arxiv.org/abs/2212.04089
https://www.lesswrong.com/posts/vJFdjigzmcXMhNTsx/
https://www.lesswrong.com/posts/vJFdjigzmcXMhNTsx/
https://www.lesswrong.com/posts/vJFdjigzmcXMhNTsx/
http://arxiv.org/abs/2404.02060
http://arxiv.org/abs/2404.02060
http://arxiv.org/abs/2402.18819
http://arxiv.org/abs/2402.18819
http://arxiv.org/abs/2311.06668
http://arxiv.org/abs/2311.06668
http://arxiv.org/abs/2202.12837
http://arxiv.org/abs/2202.12837
https://generative.ink/posts/language-models-are-multiverse-generators/
https://generative.ink/posts/language-models-are-multiverse-generators/
http://arxiv.org/abs/2202.09318
http://arxiv.org/abs/2202.09318
https://www.lesswrong.com/posts/D7PumeYTDPfBTp3i7/the-waluigi-effect-mega-post
https://www.lesswrong.com/posts/D7PumeYTDPfBTp3i7/the-waluigi-effect-mega-post
https://www.lesswrong.com/posts/D7PumeYTDPfBTp3i7/the-waluigi-effect-mega-post
https://proceedings.mlr.press/v202/von-oswald23a.html
https://proceedings.mlr.press/v202/von-oswald23a.html
https://arxiv.org/abs/2306.04891v2
https://arxiv.org/abs/2306.04891v2
http://arxiv.org/abs/2402.04248
http://arxiv.org/abs/2402.04248


LLMs can In-Context Learn Multiple Tasks in Superposition

Reddy, G. The mechanistic basis of data dependence and
abrupt learning in an in-context classification task. In The
Twelfth International Conference on Learning Represen-
tations, 2024. URL https://openreview.net/
forum?id=aN4Jf6Cx69.

Reynolds, L. and McDonell, K. Multiversal views on lan-
guage models, February 2021. URL http://arxiv.
org/abs/2102.06391. arXiv:2102.06391 [cs].

Shanahan, M., McDonell, K., and Reynolds, L. Role play
with large language models. Nature, 623(7987):493–498,
2023.

Shen, E., Fan, A., Pratt, S. M., Park, J. S., Wallingford,
M., Kakade, S. M., Holtzman, A., Krishna, R., Farhadi,
A., and Kusupati, A. Superposed decoding: Multiple
generations from a single autoregressive inference pass.
(arXiv:2405.18400), May 2024a. doi: 10.48550/arXiv.
2405.18400. URL http://arxiv.org/abs/2405.
18400. arXiv:2405.18400 [cs].

Shen, E., Fan, A., Pratt, S. M., Park, J. S., Wallingford,
M., Kakade, S. M., Holtzman, A., Krishna, R., Farhadi,
A., and Kusupati, A. Superposed decoding: Multiple
generations from a single autoregressive inference pass.
arXiv preprint arXiv:2405.18400, 2024b.

Todd, E., Li, M. L., Sharma, A. S., Mueller, A., Wallace,
B. C., and Bau, D. Function vectors in large language
models. (arXiv:2310.15213), February 2024. doi: 10.
48550/arXiv.2310.15213. URL http://arxiv.org/
abs/2310.15213. arXiv:2310.15213 [cs].

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Wei, C., Chen, Y., and Ma, T. Statistically meaningful
approximation: a case study on approximating turing
machines with transformers. Advances in Neural Infor-
mation Processing Systems, 35:12071–12083, 2022.

Wei, J., Wei, J., Tay, Y., Tran, D., Webson, A., Lu, Y., Chen,
X., Liu, H., Huang, D., Zhou, D., et al. Larger language
models do in-context learning differently. arXiv preprint
arXiv:2303.03846, 2023.

Wu, J., Zou, D., Chen, Z., Braverman, V., Gu, Q., and
Bartlett, P. L. How many pretraining tasks are needed for
in-context learning of linear regression? In International
Conference on Learning Representations (ICLR), 2024.

Xie, S. M., Raghunathan, A., Liang, P., and Ma, T. An
explanation of in-context learning as implicit bayesian
inference. (arXiv:2111.02080), July 2022a. doi: 10.

48550/arXiv.2111.02080. URL http://arxiv.org/
abs/2111.02080. arXiv:2111.02080 [cs].

Xie, S. M., Raghunathan, A., Liang, P., and Ma, T. An
Explanation of In-context Learning as Implicit Bayesian
Inference, July 2022b. URL http://arxiv.org/
abs/2111.02080. arXiv:2111.02080 [cs].

Yang, L., Lee, K., Nowak, R., and Papailiopoulos, D.
Looped transformers are better at learning learning al-
gorithms. arXiv preprint arXiv:2311.12424, 2023.

Zeng, Y., Kang, W., Chen, Y., Koo, H. I., and Lee, K.
Can mllms perform text-to-image in-context learning?
(arXiv:2402.01293), April 2024. doi: 10.48550/arXiv.
2402.01293. URL http://arxiv.org/abs/2402.
01293. arXiv:2402.01293 [cs].

Zhang, Y., Zhang, F., Yang, Z., and Wang, Z. What
and how does in-context learning learn? bayesian
model averaging, parameterization, and generalization.
(arXiv:2305.19420), October 2023. doi: 10.48550/arXiv.
2305.19420. URL http://arxiv.org/abs/2305.
19420. arXiv:2305.19420 [cs, stat].

Zhou, H., Nova, A., Larochelle, H., Courville, A.,
Neyshabur, B., and Sedghi, H. Teaching algorith-
mic reasoning via in-context learning. arXiv preprint
arXiv:2211.09066, 2022.

Zhou, H., Bradley, A., Littwin, E., Razin, N., Saremi, O.,
Susskind, J., Bengio, S., and Nakkiran, P. What algo-
rithms can transformers learn? a study in length general-
ization. arXiv preprint arXiv:2310.16028, 2023.

11

https://openreview.net/forum?id=aN4Jf6Cx69
https://openreview.net/forum?id=aN4Jf6Cx69
http://arxiv.org/abs/2102.06391
http://arxiv.org/abs/2102.06391
http://arxiv.org/abs/2405.18400
http://arxiv.org/abs/2405.18400
http://arxiv.org/abs/2310.15213
http://arxiv.org/abs/2310.15213
http://arxiv.org/abs/2111.02080
http://arxiv.org/abs/2111.02080
http://arxiv.org/abs/2111.02080
http://arxiv.org/abs/2111.02080
http://arxiv.org/abs/2402.01293
http://arxiv.org/abs/2402.01293
http://arxiv.org/abs/2305.19420
http://arxiv.org/abs/2305.19420


LLMs can In-Context Learn Multiple Tasks in Superposition

A. Notations

Notation Description
K Number of tasks
l Length of a task’s output
ℓ layer ℓ for a model
m Number of in-context examples
n Length of each in-context example
V Token vocabulary

gi(·) Operation performed by Task i
x(j) Data for example j
y(j) Label for example j
sm m in-context examples
f(·) Model (predictor)
p Positional encodings

12



LLMs can In-Context Learn Multiple Tasks in Superposition

B. Task superposition capabilities as the model scales

Finding 5: Within the same LLM family, bigger models can solve more tasks in parallel and better calibrate to
ICL distribution.

We want to further investigate how models’ task superposition capabilities changes as the model size scales. In particular,
we investigate two questions: 1) whether larger models can perform more tasks in-context and 2) whether larger models can
align their output distribution more closely with the distribution of task examples provided in the prompt. We chose the
Qwen-2.5 model family since it contains several model sizes ranging from 0.5B to 14B parameters.

We first introduce a quantity which captures the capability of a model to perform multiple tasks. Given a prompt that
contains examples of K tasks, we define r to be the number of these tasks whose correct answers appear among the model’s
top-K most likely outputs. Note that r ≤ K.

To see how close the model align the output distribution with the distribution of task examples, we use KL-divergence
defined below:

KL(P||D) =
∑
x∈X

P(x) log
(
P(x)
D(x)

)
, (2)

where P is the models’ probabilities on the outputs when correctly performing each task on the query andD is the in-context
task example distribution. For example the prompt in Figure 1a (left) gives P = [0.5217, 0.1316, 0.1110, 0.2169, ...] and
D = [0.25, 0.25, 0.25, 0.25, 0, ...].

We consider the setting of K = 6 different tasks: given an input of the form “{num}→” where num is a two-digit integer,
we consider 6 tasks that output (1) num itself, (2) negation of num, (3) num+ 1, (4) num− 1, (5) num× 2 and (6) num2.

We choose the number of in-context examples m = 60 (each task has 10 examples) and configure the prompt with
three different in-context task example distributions D1,D2 and D3. In particular, D1 is the uniform distribution, D2 has
probability 0.5 on the third task and 0.1 on other tasks, and D3 is a distribution with probabilities alternating between 0.25
and 0.083.

For each in-context task examples distributionDi, we generate 100 prompts and for each prompt we calculate the probabilities
of outputs when correctly performing each task. The average values of r and KL-divergence under three distributions are
shown in Figure 6.

0.5B 1.5B 3B 7B 14B
0
1
2
3
4
5
6

r

D1
D2
D3

(a) r (the number of tasks whose correct answers appear in
top-K most likely outputs).

0.5B 1.5B 3B 7B 14B
0

1

2

3

KL
 d

iv
er

ge
nc

e

D1
D2
D3

(b) KL divergence.

Figure 6: (a) Average number of tasks completed, r, and (b) KL divergence for Qwen-2.5 model family under ICL
distributions D1,D2 and D3 where D1 is the uniform distribution, D2 has probability 0.5 on the third task and 0.1 on other
tasks, and D3 is a distribution with probabilities alternating between 0.25 and 0.083.

In Figure 6a, we can observe that in general bigger models have higher r values. This shows bigger models will have more
correct answers of tasks show up in their top-K probable outputs and therefore they can solve more tasks at the same time.
In Figure 6b, we can see that for larger models like Qwen-2.5 7B and Qwen-2.5 14B, the KL-divergence values are small,
and for each model, the differences between KL-divergence values under in-context task example distributions D1, D2 and
D3 are small. This indicates that bigger models can better calibrate their output distribution to the in-context task example
distribution.

13



LLMs can In-Context Learn Multiple Tasks in Superposition

C. Implementation details on calculating probabilities
In this section we provide details on how we calculate probabilities of different outputs given a prompt in our setting.

Notations. Let V be the token vocabulary, LM be an LLM, T be the tokenizer. We use “...” to represent a string, <...> to
represent a single token where the content within the angle brackets is an integer representing token’s index in vocabulary.
For example, token <266> corresponds to “at”. We use [<...>, ..., <...>] to represent a sequence of tokens.
Given a tokenizer, we use two functions tok(·) and detok(·) to tokenize strings and detokenize tokens. For example
tok(“superposition”) = [<9712>,<3571>] and detok([<16>,<10>,<16>,<28>,<17>]) = “1+1=2”.

In our in-context learning setting, an input string consists of in-context examples (separated by the delimiter “\n”) and a
query. For example, an example prompt can be “1+1=2\n2+2=4\n3+3=”.

We view an LLM as a next-token predictor that outputs a probability distribution over the token space given input and there
is a corresponding P(·|·) such that given a sequence of tokens [v1, ..., vM ] where vj ∈ V , P(u | [v1, ..., vM ]) measures the
probability of the next token being u where u ∈ V .

Measuring the probabilities of task answers. Let I be the input prompt. For example, in the example in Figure 1a
(left), the prompt is “11+26->37\n33+13->quarante-six\n ...30+25->fifty-five\n91+83->”. We consider four tasks: 1)
numerical addition, 2) addition in English, 3) addition in French and 4) addition in Spanish. The corresponding task answers
(the output of correctly performing task on the query) are “174”, “one hundred and seventy-four”, “cent soixante-quatorze”
and “ciento setenta y cuatro”, respectively. We want to measure the probability of each task answer.

Let o be a task answer in string. Let [v1, ..., vM ] := tok(I) and let [u1, ..., uN ] := tok(o). Then the probability of the
task answer o given prompt I can be calculated as

P(u1 | [v1, ..., vM ])

N∏
j=2

P(uj | [v1, ..., vM , u1, ..., uj−1]). (3)

14



LLMs can In-Context Learn Multiple Tasks in Superposition

D. Implementation details on task vectors
We use the task vector definition from Hendel et al. (2023). For example, for task copy(op1) in Figure 1b (left), the
procedure to collect the task vector consists of

1. Collect a dataset of 100 ICL sample prompts. Each prompt consists of m = 60 in-context examples of a particular task
and a query x(m+1). Each task example (x(j),y(j)) follows the form “{op1}@{op2}={op1}”, where x(j) has the
form “{op1}@{op2}=” and y(j) is performing task copy(op1) on x(j), namely op1.

2. For each prompt ≡ s = [x(1),y(1), ...,x(m),y(m),x(m+1)] in the dataset, we feed s into the transformer model f ,
and extract the feature (which is a vector) at the last “=” token in layer ℓ. Call this vector f(s; ℓ). Then we average
f(s; ℓ) across all prompt s to get v(ℓ) for layer ℓ.

3. Now for each layer ℓ we have a vector v(ℓ). We run a forward pass with one query x in the form “{op1}@{op2}=”
and we patch in v(ℓ) at the “=” token position in layer ℓ, simulating the effect of a complete context. We repeat this
process 100 times for different query x and get an accuracy accℓ of performing task copy(op1) with vector v(ℓ).

4. The task vector layer ℓ∗ is selected by
ℓ∗ = argmax

ℓ
accℓ,

and we define the task vector Vcopy(op1) := v = v(ℓ∗).

Here we record the task vector layer where task vectors are extracted in Section 7.

Task Task vector layer
copy(op1), copy(op2), op1+op2 14

to de(op1), to fr(op1), to it(op1) 19

Table 1: Task vector layer for various tasks considered in Section 7.

15



LLMs can In-Context Learn Multiple Tasks in Superposition

E. Construction displaying superposition
In this section we construct a Transformer that is performing superposition of multiple tasks at inference. For this purpose,
we first construct a Transformer that copies from n-tuple in-context examples the i-th one, as well as any function using the
ReLU layers. We then create indicator vectors, for each task, which show whether a specific task is present in-context or not.
As a last step, we combine these indicator vectors to create the superposition of different tasks. Notice that using the parallel
heads of the transformer architecture we can process each task independently until the last step in which the predictions are
combined.

E.1. Overview

Here we provide a brief overview of how the construction is implemented, while latter we provide the corresponding details.

Prediction based on multiple tasks. Assume that we are given m in-context samples (x
(j)
1 , . . . ,x

(j)
n−2, ‘=’,y(j))mj=1

where ‘=’ represents a specific value used only for preceding the label, and a set of k different Transformers TFi which can
implement the T different desired tasks, where each deterministic task is denoted as gi(x(j)) with i ∈ [k] and j ∈ [m], i.e.
y(j) = gi(x

(j)) for some task i dependent on sample j. Using the weights of each TFi, we can compute outputs of the
following form:

. . . x
(j)
1 . . . x

(j)
n−2 = y(j) . . .

. . . 0 . . . 0 0 0 . . .
...

...
...

...
. . . 0 . . . 0 0 0 . . .

→

. . . x

(j)
1 . . . x

(j)
n−2 = y(j) . . .

. . . 0 . . . 0 0 ∥g1(x(j))− y(j)∥1 . . .
...

...
...

...
. . . 0 . . . 0 0 ∥gT (x(j))− y(j)∥1 . . .


We use the l1 norm to aggregate the prediction, in case that the task is multi-dimensional. These differences are used to
identify tasks, as ∥gi(x(j))− y(j)∥1 ≈ 0 for y(j) coming from task i. Different heads at each layer in the model are used
to execute each of the tasks in parallel using the weights from TFi. In Appendix E we construct tasks where an arbitrary
function gi(x

(j)
l ) is implemented using ReLUs for some fixed l that is task-specific.

Creating task identifiers. Having the differences between the implemented function and the label, we first use the ReLUs
to clean up the vectors vk so that only the positions in each vector that are associated with a task are maintained and the
rest are set to 15. We thus create the vectors (v′

k)i = ∥gk(x
(j)
1:l−1)− x

(j)
l ∥1 and (v′

∗)∗ = 1 otherwise. Now we use ReLUs
to threshold and create an indicator vectors 1{∥gk(x

(j)
1:l−1)−x

(j)
l ∥1≈0} which identify the task, i.e. these are task identifiers.

Notice that if the task is correctly predicted then the difference should be close to 0 (up to some error), while if the task
is not identified the corresponding value would not be 0; the rest of the rows would be 1. We have created one vector for
each task, which has 1 in the position of the corresponding task if the task was identified in the context.

Averaging and task superposition. As a last step, we average all the task identifiers and place the result in the last column,
in which the next prediction will happen. We then use the averaged task identifier to weight the prediction of each task based
on it, as in task superposition. If the task has been identified multiple times in the context, it would be assigned a higher
weight/probability.

E.2. Task Identification

The first task for performing task superposition based on in-context examples is to define a set of tasks that the model is able
to implement.

First, the outputs of tasks need to be identified.
Lemma 1. Consider the following input

X =

x(1)
1 . . . y(j−1) x

(j)
1 . . . x

(j)
n−2 = y(j) x

(j+1)
1 . . .

0 . . . 0 0 . . . 0 1 0 0 . . .
0 . . . 0 0 . . . 0 0 0 0 . . .

 ,

5This step is not mandatory, but it ensures that we have no values over which we have no control. We leave as future work an error
analysis on how these values could affect the task identifiers

16



LLMs can In-Context Learn Multiple Tasks in Superposition

where x
(j)
i ∈ Rd−1 before the positional encodings are added, with one additional dimension that represents if the symbol

is an ‘equals’ symbol. Then, a 1-layer transformer with a single attention head and embedding dimension O(d+ log(mn))
can output

X =

[
x
(1)
1 . . . y(j−1) x

(j)
1 . . . x

(j)
n−2 = y(j) x

(j+1)
1 . . .

0 . . . 1 0 . . . 0 0 1 0 . . .

]
Proof. With positional encodings appended, let the input have the following structure:

X =


x
(1)
1 . . . x

(j)
1 x

(j)
2 . . . x

(j)
n−2 = y(j) x

(j+1)
1 . . .

0 . . . 0 0 . . . 0 1 0 0 . . .
pn+1 . . . pjn+1 pjn+2 . . . pjn+n−2 pjn+n−1 pjn+n p(j+1)n+1 . . .
pn . . . pjn pjn+1 . . . pjn+n−3 pjn+n−2 pjn+n−1 p(j+1)n . . .

 (4)

To rotate the second row one position to the right, use the following matrices.

WQ =
[
0 0 0 I

]
WK =

[
0 0 CI 0

]
WV =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


The pair WQ and WK attend tokens to the token directly to the right. The value matrix simply filters only the second row
in-place. A second head can used to clear the original 1s, resulting in

X =


x
(1)
1 . . . x

(j)
1 x

(j)
2 . . . x

(j)
n−2 = y(j) x

(j+1)
1 . . .

0 . . . 0 0 . . . 0 0 1 0 . . .
pn+1 . . . pjn+1 pjn+2 . . . pjn+n−2 pjn+n−1 pjn+n p(j+1)n+1 . . .
pn . . . pjn pjn+1 . . . pjn+n−3 pjn+n−2 pjn+n−1 p(j+1)n . . .

 , (5)

as desired.

Implementation of functions. To illustrate a set of operations that could be implemented with a transformer, we consider
approximating functions as sums of ReLUs; we use a result from Bai et al. (2023b), which we present below.

Definition 1 (Definition 12 in (Bai et al., 2023b)). A function g : Rk → R is (ϵ, R,M,C)-approximable by sum of ReLUs,
if there exists an ”(M,C)-sum of ReLUs” function

fM,C(x) =

M∑
m=1

cmReLU(a⊤
m[x; 1]) with

M∑
m=1

|cm| ≤ C, max
m∈[M ]

∥am∥1 ≤ 1, am ∈ Rk+1, cm ∈ R

such that supx∈[−R,R]k]

∣∣g(x)− f(M,C)(x)
∣∣ ≤ ϵ.

Definition 2 (Definition A.1 in (Bai et al., 2023b)). We say a function g : Rk → R is (R,Cl)-smooth if for s =
⌈(k − 1)/2⌉+ 2, g ∈ C26 on [−R,R]k and

sup
x∈[−R,R]k

∥∥∇ig(x)
∥∥
∞ = sup

x∈[−R,R]k
max

j1,...,ji∈[k]

∣∣∂xj1,...,xji
g(x)

∣∣ ≤ Li

for all i = 0, 1, 2 with max0≤i≤s LiR
i ≤ Cl.

Proposition 1 (Proposition A.1 in (Bai et al., 2023b)). For any ϵ > 0, R ≥ 1, Cl > 0, we have that: Any (R,Cl)-smooth
function, g : R→ R is (ϵ, R,M,C)-approximable by sum of ReLUs (Definition 1) with M ≤ C(k)C2

l log(1 + Clϵ)/ϵ
2.

6Ci denotes that a function is i times differentiable with continuous i-th derivative.

17



LLMs can In-Context Learn Multiple Tasks in Superposition

Lemma 2. For any function g : Rk → R that is (R,Cl)-smooth, there exists a transformer with two layers, one head and
width O(log(n) + d), where d satisfies the requirements of Prop. 1, such that given as input

X =

x(1)
1 . . . y(j−1) x

(j)
1 . . . x

(j)
n−2 = y(j) x

(j+1)
1 . . .

0 . . . 1 0 . . . 0 0 1 0 . . .
0 . . . 0 0 . . . 0 0 0 0 . . .

 ,

it outputs

X =

x(1)
1 . . . y(j−1) x

(j)
1 . . . x

(j)
n−2 = y(j) x

(j+1)
1 . . .

∗ . . . ∗ ∗ . . . ∗ ∗ ∗ ∗ . . .

0 . . . g̃(x
(j−1)
i )− y(j−1) ∗ . . . ∗ ∗ g̃(x

(j)
i )− y(j) ∗ . . .


where |g̃(x)− g(x)| ≤ ϵ and for some i ∈ [1, . . . , n− 2].

Proof. We consider that the positional encodings are added in the input and we have

X =


x
(1)
1 . . . x

(j)
1 x

(j)
2 . . . x

(j)
n−2 = y(j) x

(j+1)
1 . . .

0 . . . 0 0 . . . 0 0 1 0 . . .
0 . . . 0 0 . . . 0 0 0 0 . . .
1 . . . 1 1 . . . 1 1 1 1 . . .

pn+1 . . . pjn+1 pjn+2 . . . pjn+n−2 pjn+n−1 pjn+n p(j+1)n+1 . . .
pn+1−s . . . pjn+1−s pjn+2−s . . . pjn+n−2−s pjn+n−1−s pjn+n−s p(j+1)n+1−s . . .

 (6)

where we fix some positional encodings pk where p⊤
k pk is larger than p⊤

k pl by some threshold for k ̸= l. The encodings
used here are the binary representations of k ∈ {−1, 1}log(mn). Further, we consider 1s in the positions with the results of
the task to differentiate the context of the task and the result of the task. Define s = n− i, the distance between the result
and the associated value in the context.

In the first layer, we use the MLP’s to create g̃ according to Proposition 1

X =



x
(1)
1 . . . x

(j)
1 x

(j)
2 . . . x

(j)
n−2 = y(j) x

(j+1)
1 . . .

0 . . . 0 0 . . . 0 0 1 0 . . .

g̃(x
(1)
1 ) . . . g̃(x

(j)
1 ) g̃(x

(j)
2 ) . . . g̃(x

(j)
n−2) g̃(=) g̃(y(j)) g̃(x

(j+1)
1 ) . . .

0 . . . 0 0 . . . 0 0 0 0 . . .
1 . . . 1 1 . . . 1 1 1 1 . . .

pn+1 . . . pjn+1 pjn+2 . . . pjn+n−2 pjn+n−1 pjn+n p(j+1)n+1 . . .
pn+1−s . . . pjn+1−s pjn+2−s . . . pjn+n−2−s pjn+n−1−s pjn+n−s p(j+1)n+1−s . . .


(7)

The next operation is a shift of the sequence of g̃(·)’s to the right by s. This will align the desired output g̃(x(j)
i ) with the

observed output y(j). Consider the following weight matrices

WQ =
[
. . . 0 0 I

]
(8)

WK =
[
. . . 0 CI 0

]
(9)

WV =


0 0 0 . . . 0
0 0 0 . . . 0
0 0 I . . . 0
...

...
...

...
0 0 0 . . . 0

 (10)

for some large constant C to decrease error from the softmax attending to the incorrect tokens. This produces (within a
small error induced by using a softmax)

18



LLMs can In-Context Learn Multiple Tasks in Superposition

(X⊤W⊤
KWQX)i,j = p⊤

n+ipn−s+j (11)

σS(X
⊤W⊤

KWQX)i,j = 1{n+i=n−s+j} = 1{i=j−s} (12)

WV X =


. . . 0 0 . . . 0 0 0 . . .
. . . 0 0 . . . 0 0 0 . . .

. . . g̃(x
(j)
1 ) g̃(x

(j)
2 ) . . . g̃(x

(j)
n−2) g̃(=) g̃(y(j)) . . .

...
...

...
...

...
. . . 0 0 . . . 0 0 0 . . .

 (13)

WV XσS(X
⊤W⊤

KWQX) =


. . . 0 0 . . . 0 0 0 . . .
. . . 0 0 . . . 0 0 0 . . .

. . . ∗ ∗ . . . ∗ ∗ g̃(x
(j)
i ) . . .

...
...

...
...

...
. . . 0 0 . . . 0 0 0 . . .

 (14)

X +WV XσS(X
⊤W⊤

KWQX) =



. . . x
(j)
1 x

(j)
2 . . . x

(j)
n−1 = y(j) . . .

. . . 0 0 . . . 0 0 1 . . .

. . . ∗ ∗ . . . ∗ ∗ g̃(x
(j)
i ) . . .

. . . 0 0 . . . 0 0 0 . . .

. . . 1 1 . . . 1 1 1 . . .

. . . pjn+1 pjn+2 . . . pjn+n−2 pjn+n−1 pjn+n . . .

. . . pjn+1−s pjn+2−s . . . pjn+n−2−s pjn+n−1−s pjn+n−s . . .


(15)

(16)

Each matrix above only shows the slice that contains the j-th in-context example. This is repeated for each of the other
in-context examples.

As a final step with an MLP, subtract row 1 from row 3 to achieve the following output:

. . . x
(j)
1 x

(j)
2 . . . x

(j)
n−1 = y(j) . . .

. . . 0 0 . . . 0 0 1 . . .

. . . ∗ ∗ . . . ∗ ∗ g̃(x
(j)
i )− y(j) . . .

. . . 0 0 . . . 0 0 0 . . .

. . . 1 1 . . . 1 1 1 . . .

. . . pjn+1 pjn+2 . . . pjn+n−2 pjn+n−1 pjn+n . . .

. . . pjn+1−s pjn+2−s . . . pjn+n−2−s pjn+n−1−s pjn+n−s . . .


(17)

Copy Tasks As has been experimentally investigated, the situation where a specific position within the context is copied
as the label can be easily implemented by setting g(x) = x. The dependence on the subscript i within the construction is
what allows the position copied to vary.

E.2.1. IDENTIFYING IF TASK’S OUTPUT MATCHES THE IN-CONTEXT EXAMPLE

Lemma 3. A three layer transformer with ReLU MLPs and embedding dimension O(d + log(mn)) can calculate the
proportion of in context examples that come from a specific task, where m is the number of in-context examples, each of
length n and dimension d.

19



LLMs can In-Context Learn Multiple Tasks in Superposition

Proof. We now have a matrix of the following form.



. . . x
(j)
1 x

(j)
2 . . . = y(j) . . .

. . . 0 0 . . . 0 1 . . .

. . . ∗ ∗ . . . ∗ f(x
(j)
· )− y(j) . . .

. . . 0 0 . . . 0 0 . . .

. . . 1 1 . . . 1 1 . . .

. . . pjn+1 pjn+2 . . . pjn+n−1 pjn+n . . .

. . . pjn+1−s pjn+2−s . . . pjn+n−1−s pjn+n−s . . .


(18)

If the task is correct, than f(x
(j)
· )− y(j) ≈ 0, with some small error coming from softmaxs and function approximation

error. First, we find the L1-norm of f(x(j)
· )− y(j) using an MLP. For calculating ∥z∥1 for arbitrary z, we can use

∥z∥1 =

d∑
i=1

ReLU(zi)− ReLU(−zi) (19)

which can be done in a single 1-layer MLP. Thus, we have

. . . x
(j)
1 x

(j)
2 . . . = y(j) . . .

. . . 0 0 . . . 0 1 . . .

. . . ∗ ∗ . . . ∗ f(x
(j)
· )− y(j) . . .

. . . ∗ ∗ . . . ∗ ∥f(x(j)
· )− y(j)∥1 . . .

. . . 0 0 . . . 0 0 . . .

. . . 1 1 . . . 1 1 . . .

. . . pjn+1 pjn+2 . . . pjn+n−1 pjn+n . . .

. . . pjn+1−s pjn+2−s . . . pjn+n−1−s pjn+n−s . . .


(20)

Notice that if some task has different dimension than another task, the “extra” rows would be zero and will not affect the
result.

For clarity, we set all ∗ values in the ∥ · ∥1 row to 1s. These will cause the following δ̂ in the following set these to 0. This
operation can be omitted as the construction handles these trash values at a later layer.

Let b represent the value of the flag in the second row marking the y vectors and let x represent the values in the row with
∥f(x(j))− y(j)∥1. The following ReLUs set the * values to 1.

x←− x+ 1− ReLU(x− Cb)− ReLU(Cb− C + 1) (21)

for some large constant C. When b = 0, this reduces to x+ 1− x = 1, and when b = 1, this reduces to x+ 1− 1 = x, as
desired.



. . . x
(j)
1 x

(j)
2 . . . = y(j) . . .

. . . 0 0 . . . 0 1 . . .

. . . ∗ ∗ . . . ∗ f(x
(j)
· )− y(j) . . .

. . . 1 1 . . . 1 ∥f(x(j)
· )− y(j)∥1 . . .

. . . 0 0 . . . 0 0 . . .

. . . 1 1 . . . 1 1 . . .

. . . pjn+1 pjn+2 . . . pjn+n−1 pjn+n . . .

. . . pjn+1−s pjn+2−s . . . pjn+n−1−s pjn+n−s . . .


(22)

Now define a thresholding function δ̂(z) that satisfies δ̂(0) = 1 and δ̂(z) = 0 for z >> 0. One such function used here is

20



LLMs can In-Context Learn Multiple Tasks in Superposition

δ̂C(z) = ReLU(1− Cz) (23)

for some constant C, where larger C captures a narrower neighborhood of 0.

However, a slight change needs to be added to δ̂C . In the same row as ∥f(x(j))− y(j)∥ are many values that need to be
discarded. Let b be the bit for the current column marking if the column contains an x or a y. We use instead

δ̂C(b, z) = ReLU(b− Cz) (24)

This will be zero whenever b = 0 and z ≥ 0. We then have as output



. . . x
(j)
1 x

(j)
2 . . . = y(j) . . .

. . . 0 0 . . . 0 1 . . .

. . . ∗ ∗ . . . ∗ f(x
(j)
· )− y(j) . . .

. . . 1 1 . . . 1 ∥f(x(j)
· )− y(j)∥1 . . .

. . . 0 0 . . . 0 δ̂C(∥f(x(j)
· )− y(j)∥1) . . .

. . . 0 0 . . . 0 0 . . .

. . . 1 1 . . . 1 1 . . .

. . . pjn+1 pjn+2 . . . pjn+n−1 pjn+n . . .

. . . pjn+1−s pjn+2−s . . . pjn+n−1−s pjn+n−s . . .


(25)

Importantly, δ̂C(∥f(x(j)
· )− y(j)∥1) = 1 when f(·) is the correct task and δ̂C(∥f(x(j)

· )− y(j)∥1) = 0 when f(·) disagrees
by more than 1

C in L1-norm.

Lastly, for the next step in the construction, we need to average these soft indicators δ̂ to see how common f is within the
context. This is done with an attention layer. Let WQ select the row with all 1s multiplied by some large constant C, and let
WK select the row with flags for results y. Then

X⊤W⊤
KWQX =



...
...

...
...

0 0 . . . 0 0
0 0 . . . 0 0
...

...
...

...
0 0 . . . 0 0
C C . . . C C
...

...
...

...


(26)

σS(X
⊤W⊤

KWQX) ≈



...
...

...
...

0 0 . . . 0 0
0 0 . . . 0 0
...

...
...

...
0 0 . . . 0 0

1/m 1/m . . . 1/m 1/m
...

...
...

...


(27)

where a 1/m will appear in every row corresponding to a result y. Let the value matrix select the row containing
δ̂(∥f(x(j) − y(j))∥1). Denote p = 1

m

∑m
j=1 δ̂(∥f(x(j) − y(j))∥1). Without causal masking, we would have as output

21



LLMs can In-Context Learn Multiple Tasks in Superposition



. . . x
(j)
1 x

(j)
2 . . . = y(j) . . .

. . . 0 0 . . . 0 1 . . .

. . . ∗ ∗ . . . ∗ f(x
(j)
· )− y(j) . . .

. . . 1 1 . . . 1 ∥f(x(j)
· )− y(j)∥1 . . .

. . . 0 0 . . . 0 δ̂C(∥f(x(j)
· )− y(j)∥1) . . .

. . . p p . . . p p . . .

. . . 0 0 . . . 0 0 . . .

. . . 1 1 . . . 1 1 . . .

. . . pjn+1 pjn+2 . . . pjn+n−1 pjn+n . . .

. . . pjn+1−s pjn+2−s . . . pjn+n−1−s pjn+n−s . . .


(28)

However, with causal masking, we can only guarantee that p will appear in the columns containing the most recent example
being queried. Thankfully, this is all that is needed.

E.3. Task Execution

Lemma 4. A two layer transformer, with embedding dimension O(d+ log(mn)) can perform a task and weight its output
by the proportion of examples of that task seen within the context.

Now that the proportions of each task have been identified in the context, the task itself needs to be executed for the new
example being queried. To simplify notation, let the input to this step be

X =


. . . x

(m)
1 x

(m)
2 . . . x

(m)
n−2 =

. . . ∗ ∗ . . . ∗ ∗

. . . p p . . . p p

. . . 0 0 . . . 0 0

. . . ∗ ∗ . . . ∗ ∗

. . . 1 1 . . . 1 1

 (29)

Following the same process as outlined above, although with slightly different positional encodings, calculate f(x(m)) and
place that result in the final column being decoded. These need to be added at the beginning of the construction, but are only
introduced here for clarity.



. . . x
(m)
1 x

(m)
2 . . . x

(m)
n−2 x

(m)
n−1

. . . ∗ ∗ . . . ∗ ∗

. . . p p . . . p p

. . . ∗ ∗ . . . ∗ f(x(m))

. . . 0 0 . . . 0 0

. . . ∗ ∗ . . . ∗ ∗

. . . 1 1 . . . 1 1

. . . 0 0 . . . 0 1

. . . 0 0 . . . 1 0


(30)

We will transform the row containing all p to be able to approximately multiply p by f(x(m)). Using the second to last row,
perform p −→ 1− p. Using the last two rows, clear out the rest of that row and fill it with −C for some large constant C. We
then have

22



LLMs can In-Context Learn Multiple Tasks in Superposition



. . . x
(m)
1 x

(m)
2 . . . x

(m)
n−2 x

(m)
n−1

. . . ∗ ∗ . . . ∗ ∗

. . . −C −C . . . p 1− p

. . . ∗ ∗ . . . ∗ f(x(m))

. . . 0 0 . . . 0 0

. . . ∗ ∗ . . . ∗ ∗

. . . 1 1 . . . 1 1

. . . 0 0 . . . 0 1

. . . 0 0 . . . 1 0


(31)

Further, use the second-to-last row to clear out all ∗ in the rows below.



. . . x
(m)
1 x

(m)
2 . . . x

(m)
n−2 x

(m)
n−1

. . . ∗ ∗ . . . ∗ ∗

. . . −C −C . . . p 1− p

. . . 0 0 . . . 0 f(x(m))

. . . 0 0 . . . 0 0

. . . ∗ ∗ . . . ∗ ∗

. . . 1 1 . . . 1 1

. . . 0 0 . . . 0 1

. . . 0 0 . . . 1 0


(32)

These previous operations can all be done in a single MLP.

Lastly, use an attention layer where WK selects the row with the −Cs, WQ selects the row with all 1s, and WV selects the
f(x(m)). For the last token xL,

X⊤W⊤
KWQxL =



...
−C
−C

...
p

1− p


[1] =



...
−C
−C

...
p

1− p


(33)

σS(X
⊤W⊤

KWQxL) ≈



...
−∞
−∞

...
p

1− p


=



...
0
0
...
1

1+e1−2p

1− 1
1+e1−2p


(34)

23



LLMs can In-Context Learn Multiple Tasks in Superposition

WV xLσS(X
⊤W⊤

KWQxL) =



...
0

1
1+e1−2p0+ (1− 1

1+e1−2p )f(x
(m))

0
...

 (35)

xL +WV xLσS(X
⊤W⊤

KWQxL) =



x
(m)
n−1

∗
1− p

1
1+e1−2p f(x

(m))

0
∗
1
1
0


(36)

Importantly, we are left with 1
1+e1−2p f(x

(m)). The factor 1
1+e1−2p is approximately p, especially around 1

2 . This multiplica-
tion can also be calculated more accurately with approximations using ReLUs or sigmoids, but for brevity and following
experimental evidence of a sigmoid shape in task superpositions, these options are ommited.

E.4. Superposed Tasks with Parallel Heads

The above construction works for a single task, where the output is weighted by the proportions of the task within the
context. To complete the construction of a transformer that does superposition of tasks, each of these models needs to be
placed within the same overall transformer. This is described here.

Let there be a collection of tasks {ti}Ti=1 which can be executed by transformers with model weights represented by
subscripts (·i). With the input to each transformer being X(i), the overall input matrix is given by vertically stacking these
matrices.

X =


X1

X2

...
XT−1

XT

 (37)

Similarly, define each MLP’s weights and biases as

W = diag(W1, . . . ,WT ) b =

b1
...
bT

 (38)

This puts every MLP to be independent of each other. Lastly, we need to change the attention layers. This requires the use
of one head per task. In each of the following, W (i) is a weight matrix for head i, (W )i is the weight matrix for task i in its
individual transformer, and each matrix below is in the i-th block.

24



LLMs can In-Context Learn Multiple Tasks in Superposition

W
(i)
V =



...
0

(WV )i
0
...



⊤

W
(i)
K =



...
0

(WK)i
0
...



⊤

W
(i)
Q =



...
0

(WQ)i
0
...



⊤

(39)

In all, this model executes multiple tasks in superposition by using parallel streams of heads that each performs a single task.
Task identification can happen through the same mechanism as task execution by comparing the output of the task on each
in context example with the true output.

For context related tasks, there needs to be positional encodings that allow for looking back a fixed number of tokens. For
context agnostic tasks, a wide MLP can be used to approximate arbitrary non-linear transformations of the input. Each of
these tasks only require a small number of layers, significantly smaller than those of modern LLMs. It may be possible that
LLMs do certain tasks with different combinations of layers.

Also, if we take the feature p from each parallel stream, this creates the following task identifier.

v =


p1
p2
...
pT

 (40)

Interpolating between the pure tasks, represented by unit vectors, different amounts of each task will appear in the
superposition in roughly equal proportions to those found in v.

Lastly, we restate this construction formally.

Theorem 1. A seven layer transformer with embedding dimension O(d+ log(mn)) with K heads per attention layer can
perform k tasks on vectors of dimension d in superposition, with weighting based on m different in-context examples each of
length n .

Proof. Using in succession each of Lemma 1, Lemma 2, Lemma 3, and Lemma 4, a transformer with the desired properties
can execute k tasks in parallel. Lemma 1 identifies positions within the context that contain the labels y. Lemma 2 then uses
function approximation to perform arbitrary tasks within the architecture, which are then used by 3 to find the proportions of
each task and aggregate them into a single task identifier. Lastly, Lemma 4 uses this task identifier to create a weighted sum
of outputs from the different tasks based on their in-context proportions.

Remark. Transformers of greater depth than seven layers can also represent this construction by setting the weights in all
other layers for the non residual part to zero.

25



LLMs can In-Context Learn Multiple Tasks in Superposition

F. Additional experiment and analysis of task superposition in pretrained models

add add in en other
0.0

0.5

1.0

Pr
ob

ab
ilit

y

1.001.001.00

0.000.000.00 0.000.000.00

add add in en other

0.33
0.500.53

0.65
0.500.44

0.010.010.01

GPT-3.5 Llama-3 70B Qwen-2.5 72B

(a) (left) All task examples from task add; (right) equal number of task examples from add and add in en.

capital continent other
0.0

0.5

1.0

Pr
ob

ab
ilit

y

1.000.991.00

0.000.000.00 0.000.010.00

capital continent other

0.90

0.420.46

0.05

0.520.45

0.010.040.03

(b) (left) All task examples from task capital; (right) equal number of task examples from capital and continent.

copy(op1) copy(op2) other
0.0

0.5

1.0

Pr
ob

ab
ilit

y

1.001.000.99

0.000.000.01 0.00-0.000.00

copy(op1) copy(op2) other

0.67
0.560.47

0.340.440.53

0.000.000.00

(c) (left) All task examples from task copy(op1); (right) equal number of task examples from copy(op1) and copy(op2).

first letter first letter cap other
0.0

0.5

1.0

Pr
ob

ab
ilit

y

1.001.001.00

0.000.000.00 0.00-0.00-0.00

first letter first letter cap other

0.77

0.50
0.65

0.23

0.50
0.35

0.000.000.00

(d) (left) All task examples from task first letter; (right) equal number of task examples from first letter and
first letter cap.

Figure 7: For each subplot, we consider two tasks task1 and task2 and on the left side we plot the median probability
for task answers where all task examples in prompts are from task1; on the right side we plot the median probability for
task answer where task examples from task1 and from task2 in prompts are equal.

F.1. Is superposition really happening?

In Figure 2 we plot distributions of probabilities for each task in four settings. Note that in setting 3 (corresponds to Figure
2b(left)), the other category has low probabilities for all models but for settings 1, 2 and 4 (correspond to Figure 2a(left),
2a(right) and 2b(right) respectively), the other category is not always low. A natural question to ask is:

For the non-zero probabilities we observe on each task answer, are they indications of task superposition or
by-products of prediction noise?

26



LLMs can In-Context Learn Multiple Tasks in Superposition

We set up an experiment to investigate this. For each setting, we select two tasks task1 and task2; then we consider two
scenarios: (1) we provide prompts where all task examples come from task1 and (2) we provide prompts where half of the
task examples come from task1 and the other half of task examples come from task2; in both scenarios we measure the
probabilities for task answers of task1 and task2 and see how these probabilities change between scenario (1) and (2).
For each scenario, we test it on 300 prompts (each task has 10 in-context examples) and plot the median of task answers in
Figure 7. As is shown in Figure 7 left side, where there is no task example from task2 in the prompt, the probabilities for
task answers of task2 are near 0 for all models; on the right side, where there is an equal number of task examples that
are from task1 and task2, the probabilities for task answers of task2 increase significantly. This indicates that when
we provide prompts that mix task examples from different tasks, the prediction on each task answer is more than just pure
prediction noise.

F.2. Measuring accuracy in task superposition

We further investigate how task superposition affect task performance. In particular, for a prompt consisting examples of K
tasks (each task has an equal number of task examples), we define a task being correctly performed if its task answer lies in
the top-K answers (that we use beam search to find). We compare the accuracy against individual task accuracy where we
provide prompts consisting of task examples of only 1 task and define the task being correctly performed if the task answer
is the top-1 answer.

We calculate accuracy in K = 1 case and K > 1 case using 300 prompts and show the result in Table 2. We find that as we
increase the number of tasks, all models exhibit an accuracy decrease in correctly performing each individual task.

27



LLMs can In-Context Learn Multiple Tasks in Superposition

Model K = 1 K = 4

t1 t2 t3 t4 t1 t2 t3 t4

GPT-3.5 100 99.7 90 95 97.3 (−2.7) 90.7 (−9) 80 (−10) 80.3 (−14.7)
Llama-3 70B 100 100 97 99 100 (0) 99 (−1) 95.7 (−1.3) 93 (−6)
Qwen-2.5 72B 100 100 87 96.7 99.7 (−0.3) 87.7 (−12.3) 87.7 (+0.7) 63.7 (−33)

(a) Setting 1: Addition in original numerical form and in different languages where t1 = add, t2 = add in en, t3 = add in fr,
t4 = add in es.

Model K = 1 K = 3

t1 t2 t3 t1 t2 t3

GPT-3.5 97.7 100 100 93 (−4.7) 61.7 (−38.3) 42 (−58)
Llama-3 70B 98.3 100 100 85.3 (−13) 79 (−21) 75 (−25)
Qwen-2.5 72B 98.3 100 100 87.7 (−10.6) 78.3 (−21.7) 30 (−70)

(b) Setting 2: Naming the capital, continent and capitalize the country name where t1 = capital, t2 = continent, t3 =
capitalization.

Model K = 1 K = 3

t1 t2 t3 t1 t2 t3

GPT-3.5 100 100 100 100 (0) 98.3 (−1.7) 97.3 (−2.7)
Llama-3 70B 100 100 99.7 99.7 (−0.3) 99.7 (−0.3) 99.3 (−0.4)
Qwen-2.5 72B 100 100 100 100 (0) 100 (0) 99 (−1)

(c) Setting 3: t1 = copy(op1), t2 = copy(op2) and t3 = op1+op2.

Model K = 1 K = 4

t1 t2 t3 t4 t1 t2 t3 t4

GPT-3.5 100 100 100 97 62 (−38) 79.7 (−20.3) 79 (−21) 24.3 (−72.7)
Llama-3 70B 100 85 100 59.3 85 (−15) 52.7 (−32.3) 95.3 (−4.7) 39 (−20.3)
Qwen-2.5 72B 100 98.7 100 97 53.3 (−46.7) 98.3 (−0.4) 42 (−58) 84 (−13)

(d) Setting 4: First or last letter in upper or lower cases where t1 = first letter, t2 = last letter, t3 =
first letter cap, t4 = last letter cap.

Table 2: Accuracy for each task in percentage, with the delta change given in parenthesis. For each setting we calculate the
accuracy with prompts consisting of task examples of only one task (K = 1 case) and with prompts consisting of examples
from multiple tasks (K > 1 case).

28


