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ABSTRACT

Speculative decoding (SD) has emerged as a promising approach to accelerate
inference in large language models (LLMs). This method drafts potential future
tokens by leveraging a smaller model, while these tokens are concurrently verified
by the target LLM, ensuring only outputs aligned with the target LLM’s predic-
tions are accepted. However, the inherent limitations of individual drafters, es-
pecially when trained on specific tasks or domains, can hinder their effectiveness
across diverse applications. In this paper, we introduce a simple yet efficient uni-
fied framework, termed MetaSD, that incorporates multiple drafters into the spec-
ulative decoding process to address this limitation. Our approach employs multi-
armed bandit sampling to dynamically allocate computational resources across
various drafters, thereby improving overall generation performance. Through ex-
tensive experiments, we demonstrate that our unified framework achieves superior
results compared to traditional single-drafter approaches.

1 INTRODUCTION

Large language models (LLMs) such as GPT-4 (Achiam et al., 2023), Gemini (Google et al., 2023),
and Llama (Touvron et al., 2023) have revolutionized real-world applications such as search engine
(Reid et al., 2024), coding assistance, and virtual assistants. However, the token-by-token generation
process inherent to LLMs often leads to substantial inference times, primarily due to its memory
bandwidth bound nature (Patterson, 2004; Shazeer, 2019). Speculative decoding (SD) has emerged
as a promising avenue to address this challenge (Leviathan et al., 2023; Chen et al., 2023). Precisely,
SD employs a smaller draft model (i.e., drafter) to predict potential future tokens. These tokens are
verified concurrently by the target LLM, ensuring only outputs aligned with the LLM’s predictions
are accepted. This parallel process significantly accelerates the generation process, enabling faster
and more efficient text generation.

Recent advancements in SD have primarily focused on architectural and training improvements to
enhance the acceptance rate of drafted tokens (Liu et al., 2023; Zhou et al., 2023; Cai et al., 2024;
Miao et al., 2024; Sun et al., 2023). Notably, techniques such as batched inference and tree verifi-
cation (Sun et al., 2023; Miao et al., 2024; Cai et al., 2024) aim to increase the number of accepted
tokens by exploring more decoding paths at one step, while training recipes with knowledge distilla-
tion (Zhou et al., 2023; Liu et al., 2023) seek to better align the drafter’s distribution with that of the
target model. However, despite their efficacy in certain tasks, these methods often lack the versatil-
ity required to comprehensively cover a wide range of tasks (Liu et al., 2023; Yi et al., 2024). The
inherent limitations of relying on a single drafter, with its specific architectural biases and training
data, can hinder performance in scenarios with held-out tasks (Detailed motivation is in Section 2.1).

To mitigate the limitations of single-drafter SD, we propose a novel framework that integrates mul-
tiple drafters into the process. Our high level idea is to meta-draft the optimal drafter among multi-
ple drafters at test-time utilizing the concept of the exploration-exploitation tradeoff (Gittins et al.,
2011). Effectively utilizing multiple drafters in a real-world serving system presents several chal-
lenges. For instance, imagine a scenario where you have several drafters, each specialized for a
different task like translation, summarization, or question answering. Determining which drafter
will perform best for a given user query is not always straightforward, especially when the query
involves multiple tasks or when the topic evolves during the conversation. Furthermore, the sys-
tem needs to be efficient and adaptable to varying user loads and traffic patterns, without requiring
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Compose an engaging travel blog post about 
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Wonders\"\n\nIntroduction:\n\nHawaii
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1 2 3Speculative decoding with a selected drafter Update estimated reward, KV cache, and generation. Select a drafter and its KV cache.

Figure 1: Overview of speculative decoding with multiple drafters in multi-armed bandit (MAB)
framework. The example in this figure is from an instance in MT-Bench dataset (Zheng et al., 2024).

constant manual intervention and parameter tuning. Therefore, an ideal system should have low
overhead, meaning it should be robust to variations in user scale or network traffic. It must also
be scalable at test time, accurately identifying the optimal drafter for a given query, which is of-
ten infeasible in advance, as factors like topic can evolve during inference, making pre-selection
unreliable. This dynamic nature of language generation necessitates an adaptive approach.

(a) Black-box SD (b) White-box SD

Avg. speedup of specialized LM drafters

Lade (Fu et al., 2024)

Ours with specialized LM drafters

Avg. speedup of specialized Eagle drafters

Medusa (Cai et al., 2024)

Rescored Medusa (Kim et al., 2024)

Ours with specialized Eagle drafters

Figure 2: Comparison of average speedup ratios achieved by
various SD methods relative to standard autoregressive greedy
decoding on a single NVIDIA A100 GPU. The target model
is Vicuna 7B v1.3. (a) Results for black-box methods. (b)
Results for white-box methods. Detailed description for ex-
perimental settings are in Section 4.

In the domain of recommenda-
tion systems, a similar challenge
arises where the optimal set of
items to present to a user can
change based on their evolving in-
terests and interactions (Silva et al.,
2022). These systems have success-
fully employed multi-armed bandit
(MAB) algorithms to dynamically
adjust recommendations at test
time, learning from user feedback
to optimize the selection process.
Inspired by this approach, we pro-
pose a MetaSD framework lever-
aging MAB algorithms to dynam-
ically allocate the optimal drafter
among multiple drafters during in-
ference time (Figure 1). This ap-
proach enables the system to learn
and adapt to the relative perfor-
mance of each drafter on-the-fly,
enabling faster inference. Our key
contributions include:

• We introduce a simple yet efficient framework, termed MetaSD, for incorporating multiple
drafters into SD, exploring both black-box approaches where drafters operate indepen-
dently with access only to the target LLM’s predictions and white-box approaches where
drafters leverage internal latent features of the target LLM (Section 2).

• We establish theoretical upper bounds on the performance of our proposed framework,
providing insights into its convergence properties and potential benefits (Section 3).

• We demonstrate through extensive experiments that our framework achieves superior in-
ference speed compared to existing single-drafter methods (Figure 2; Section 4).
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2 PROBLEM STATEMENT

2.1 MOTIVATION

Speculative decoding (SD) employs a draft-verify-accept paradigm for faster inference. A drafter
Mq , which is smaller than the target LLM Mp, drafts the future tokens {xl+1:l+Nmax} based on
the input sequence x1:l. The target LLM assesses each token xl+j (j = 1, . . . , Nmax) to determine
whether p(·|x1:l+j−1) is aligned with its own predictions q(·|x1:l+j−1). Only the tokens aligned with
the LLM’s own predictions are accepted, ensuring the lossless generation (Details in Appendix D).

Table 1: Speedup ratio relative to the stan-
dard autoregressive greedy decoding on various
multilingual datasets following Yi et al. (2024)
where target model is Vicuna 7B v1.3 and the
drafter is decoder-only 68M language model:
Japanese (Ja)→English (En) (Morishita et al.,
2022), Russian (Ru)→En, German (De)→En
(Bojar et al., 2016), French (Fr)→En (Bojar
et al., 2014), and Chinese (Zh)→En (Barrault
et al., 2019). Evaluations are conducted with a
NVIDIA A5000 GPU.

Dataset Ja-drafter Ru-drafter De-drafter Fr-drafter Zh-drafter

Ja →En 1.757  1.109 1.012 1.018 1.154
Ru →En 1.055 1.817  0.995 0.963 1.036
De →En 1.098 1.369 2.360  1.036 1.099
Fr →En 1.106 1.445 1.108 2.135  1.122
Zh →En 1.198 1.086 1.021 1.023 1.516  

Despite its advancements, existing works often
rely on a single drafter. This reliance can limit
the effectiveness of SD, as the drafter’s perfor-
mance is inherently tied to its training data (Yi
et al., 2024; Liu et al., 2023). In scenarios where
the drafter’s strengths do not align well with the
task at hand, its predictions may be less accu-
rate, leading to fewer accepted tokens and dimin-
ished speedup benefits of SD. As Table 1 shows, a
drafter trained on a specific language pair exhibits
significantly higher speedup on that pair com-
pared to others, highlighting the need for a more
adaptive approach. Therefore, integrating multi-
ple heterogeneous drafters into the SD framework
can potentially address this limitation. By lever-
aging a pool of drafters, the system can dynam-
ically adapt to varying tasks and input contexts,
selecting the most suitable drafter for each situation.1 From a theoretical and practical viewpoint,
the integration of multiple drafters into SD raises several research questions:

1. How to design an efficient and adaptive mechanism for selecting the best drafter at each
generation step, considering the exploration-exploitation tradeoff?

2. How to seamlessly incorporate multiple drafters for meta-drafting while minimizing any
additional computational overhead?

3. Can we provide theoretical guarantees on the performance of a multi-drafter SD system,
ensuring comparable speedup to using single optimal drafter?

To address these challenges, we draw inspiration from the field of multi-armed bandits (MAB). In
the MAB framework, an agent repeatedly chooses an action among different choices (arms), each
with an unknown reward distribution, aiming to maximize its cumulative reward over time. This
closely parallels our problem, where each drafter can be seen as an arm, and the reward is related
to the number of accepted tokens or the overall speedup achieved (Algorithm 1). MAB’s inherent
efficiency and online learning capabilities align well with the requirements of a robust and adaptive
multi-drafter SD system. MAB algorithms offer a principled way to balance exploration (trying out
different drafters) and exploitation (using the seemingly best drafter) to identify the optimal drafter
for each generation step, adapting to the changing context with minimal additional compute costs.

2.2 PROBLEM FORMULATION

Multi-armed bandit (MAB) MAB framework addresses an online learning scenario where, at
each round t, an agent takes an action by choosing an arm at ∈ [K] and receives a reward rt from
the environment. The goal of MAB is to design an algorithm that maximizes the expectation of
cumulative reward E[

∑T
t=1 rt] throughout a total of T rounds. To achieve this, one can aim to design

an optimal policy π⋆ to minimize the pseudo-regret, defined as: REG(π, T ) =
∑T

t=1 E[ra⋆
t
]−E[rat

].
Here, at denotes the action chosen in round t by the policy π and a⋆t represents the optimal action in
round t which yields the highest expected reward. For a more comprehensive review, we refer the
reader to Lattimore & Szepesvári (2020).

1Further motivation can be found in the Appendix B.
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Algorithm 1: MetaSD

INPUT : Drafter pool [K], target model, initial prompt sequence x1:l, target sequence length B.
1: t← 0
2: while l < B do
3: Meta-draft the drafter i in drafter pool [K] following the bandit
4: Execute one SD step with drafter i and target model given x1:l

5: Compute the block divergence between drafter i’s predictions and target model’s predictions
as the reward (Section 2.3)

6: Update the sequence length with the number of accepted tokens from the draft Nacc(i, t):
l, t← l +Nacc(i, t) + 1, t+ 1

7: Update the bandit
8: end while

MetaSD: SD with multiple drafters as a MAB problem We formalize the integration of multi-
ple drafters into SD as a MAB problem, termed as MetaSD framework. Each SD process, consisting
of drafting, verifying, and accepting tokens, corresponds to one round in the MAB setting (Algo-
rithm 1). At round t, a drafter at is selected from a pool of heterogeneous drafters [K]. The round
concludes when all B tokens have been generated. While inspired by classical bandit problems,
our MetaSD framework exhibits key distinctions. Unlike classical bandits with a fixed number of
rounds, MetaSD operates under a fixed target sequence length B and the number of total rounds
T is stochastic which depends on the policy. Although switching between drafters may incur costs
such as prefill cost for tokens and KV cache I/O, we empirically observe that it is negligible in the
most of our experiments. Furthermore, for the large scale scenario where switching cost might not
be negligible anymore, we provide a detailed discussion with a practical algorithm in Section H.2.
While the generated tokens can follow a non-stationary distribution, we assume stationarity within
a single turn between the user and the LLM for theoretical analysis. This assumption is reasonable
as it allows our framework to be applied with re-intialization for each new query, even in a multi-
turn conversation, effectively handling the potential non-stationarity across different queries. In the
experiments, MetaSD is implemented with re-initialization for every query.

2.3 REWARD DESIGN

Ideally, the reward in the MetaSD framework should be informative enough to effectively guide the
bandit algorithm towards optimal speedup. One straightforward and readily available choice is the
block efficiency (BE), which quantifies the number of mean accepted tokens until a given round
(Sun et al., 2023; Chen et al., 2023; Kim et al., 2024). Formally, we define the BE reward for drafter
i in round t as: rBE

i,t := Nacc(i, t)/Nmax, where Nmax is predefined maximum draft length and
Nacc(i, t) is number of accepted tokens in the t-th verification stage. While the BE reward provides
a direct measure of a drafter’s immediate success, it depends on the underlying acceptance rate,
denoted as αi. As shown in Leviathan et al. (2023), this acceptance rate is intrinsically linked to the
distance between two probability distributions p and qi. This implies that by estimating αi, we can
potentially obtain more informative feedback at each round. To leverage this insight, we propose
a new reward, coined as block divergence (BD) reward, which estimates the normalized expected
number of accepted tokens by utilizing empirical mean of the acceptance rate.

Definition 1 (Block divergence reward). Let t be the current round, i be the drafter index, and
l(t) be the number of input tokens for the target model at round t. Denote dTV (p

l(t), q
l(t)
i ) =

1
2∥p

l(t) − q
l(t)
i ∥1 as the total variation (TV) of two probability measures pl(t) and q

l(t)
i from the

target model and the drafter i given x1:l(t), respectively. Then, BD reward is defined as follows:

rBD
i,t =

1

Nmax

Nmax−1∑
j=0

(
1− dTV

(
pl(t)+j , q

l(t)+j
i

))
. (1)

While Leviathan et al. (2023) assume a fixed acceptance rate for the j-th candidate in their analysis,
we relax this assumption and consider a more general scenario where the acceptance rate for each
token follows stationary distribution with mean αi ∈ (0, 1) for each drafter i ∈ [K]. Then, one can
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Table 2: Reward statistics for BE and BD rewards, collected using autoregressive decoding with the
same Japanese dataset and drafter configurations as in Table 1.

Reward statistics BE reward BD reward

Ja-drafter Ru-drafter De-drafter Fr-drafter Zh-drafter Ja-drafter Ru-drafter De-drafter Fr-drafter Zh-drafter

Ratio of the number of zero rewards 0.503 0.678 0.721 0.743 0.681 - - - - -

Mean of rewards 0.232 0.099 0.081 0.074 0.106 0.488 0.294 0.317 0.288 0.326
Variance of rewards 0.093 0.032 0.024 0.023 0.037 0.044 0.026 0.032 0.029 0.034

observe two reward designs are linked by E[rBE
i,t ] =

1−αNmax
i

Nmax(1−αi)
E[rBD

i,t ] (proof in Lemma 5). As
both E[rBD

i,t ] and E[rBE
i,t ] is monotonically increasing with respect to αi, maximizing the BD reward

aligns with the goal of SD, which is to maximize the number of accepted of tokens. We demonstrate
that the BD reward empirically and theoretically facilitates the generalization of the MetaSD frame-
work compared to the BE reward, particularly in terms of bandit algorithm performance. To begin,
we compare the BD and BE rewards using the following theorem.
Theorem 1 (Informal). Under the stationary environment, for any reward design ri with µi = E[ri],
i⋆ = argmaxαi, and ∆i = µ⋆

i − µi, we define the feedback signal for each suboptimal arm i ̸= i⋆

as

R(ri) :=
max(Var[ri],Var[ri⋆ ])

∆2
i

. (2)

Then, for most of the scenarios, R(rBD
i ) < R(rBE

i ).

Theorem 1 demonstrates that the BD reward provides a more informative feedback signal than the
BE reward. This signal, defined in eq. 2, plays a crucial role in determining the performance of
bandit algorithms. Intuitively, distinguishing two distributions is easier when their expectations
are further apart or their variances are smaller. In the context of bandit algorithms, this translates
to a smaller regret due to decreased exploration costs. A less noisy feedback signal allows the
algorithm to more quickly and accurately identify the optimal arm, reducing the need for extensive
exploration of suboptimal arms, as it provides a clearer and more reliable signal for decision-making.
Consequently, Theorem 1 implies that we can achieve better performance with bandit algorithms by
using the BD reward. In Section G.2, we provide the formal statement of Theorem 1 along with two
lemmas providing statistics of the BE reward (Lemma 3) and the BD reward (Lemma 4).

We empirically validate our theoretical analysis regarding the effectiveness of the BD reward com-
pared to the BE reward. For the experiment, we use the same Japanese dataset and drafter config-
urations as in Table 1, employing autoregressive decoding to collect BE and BD rewards at each
step without actual speculative execution. Table 2 reveals striking differences. The BD reward
exhibits larger gaps between the expected rewards of the best and suboptimal drafters (∆i), while
also demonstrating consistently lower variance across all drafters. Consequently, the BD reward has
smaller feedback signal R and we can expect using the BD reward leads to more stable learning
and faster convergence of the MAB algorithm, enabling faster identification of the optimal drafter.
Further explanation is in Section F.6 with Figure 5.

3 METHOD

This section presents our main method, MetaSD-UCB, which is designed to guarantee the optimal
policy for MetaSD. The main challenge arises from the fact that existing regret bounds does not fit
into the objective of SD anymore. Moreover, we have to consider stochastic nature of total number
of rounds T with the fixed target sequence length B, as opposed to the classical bandit settings
where T is fixed. This necessitates us to design a new regret objective and we establish strong regret
bounds can still be achieved under this new objective. At the end of this section, we briefly discuss
potential extensions, incorporating switching costs between drafters and addressing non-stationary
reward distributions.

3.1 ALGORITHM

MetaSD-UCB We introduce MetaSD-UCB in Algorithm 2, where we combine UCB algo-
rithm (Auer, 2002) in conjunction with the BD reward design to minimize regret. Under the
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Algorithm 2: MetaSD-UCB

INPUT Drafter pool [K], initial prompt sequence x1:l, target sequence length B, exploration
strength hyperparameter β.

1: t← 0
/* Phase 1: Meta-draft each drafter in [K] once and do one round of speculative decoding. */

2: for i ∈ [K] do
3: Do one round of SD with drafter i and obtain Nacc(i, t), ri,t (by eq. 1)
4: µ̂i,t, ni, l, t← ri,t, 1, l +Nacc(i, t) + 1, t+ 1
5: end for

/* Phase 2: Meta-draft the draft following the UCB bandit until target sequence length B */
6: while l < B do
7: at ← argmaxi∈[K] µ̂i,t + β

√
2 ln t
ni

8: Do one round of SD with drafter at and obtain Nacc(at, t), rat,t (by eq. 1)
9: µ̂at,t, nat

, l, t← µ̂at,t∗nat+rat,t

nat+1 , nat
+ 1, l +Nacc(at, t) + 1, t+ 1

10: end while

stationary environments, UCB achieves optimal log-linear regret (Lattimore & Szepesvári, 2020).
However, our problem has two key distinctions which prevent direct application of prior analysis.
First, the total number rounds required to generate all tokens (i.e., target sequence length) becomes
stochastic. Secondly, minimizing naive regret objective does not guarantee the optimal performance
(Section G.3). This arises due to the nature of SD, where the performance of the algorithm is deter-
mined by total number of rounds until EOS token (or reaching the maximum token length supported
by the target LLM). In order to better representing actual speedup, we introduce a novel regret
objective for MetaSD, defined as follows.
Definition 2. Denote τ(π,B) as the number of total rounds of bandit policy π with target sequence
length B and π⋆ as the optimal policy which satisfies π⋆ = argminπ E[τ(π,B)]. Then, regret
objective of MetaSD with policy π becomes:

REG(π,B) = E [τ(π,B)]− E[τ(π⋆, B)] . (3)

Minimizing eq. 3 is equivalent to maximizing expected number of accepted tokens. This can be seen
by observing that the target sequence length B is consumed by the total number of rounds τ(π,B)

plus the total number of accepted tokens across all rounds: B = τ(π,B) +
∑τ(π,B)

t=1 Nacc(i, t).
Consequently, minimizing the regret (eq. 3) is directly proportional to maximizing the expected
number of accepted tokens, which aligns with the objective of SD.

3.2 REGRET UPPER BOUND FOR METASD-UCB

We establish that MetaSD-UCB achieves the same level of optimality as the standard UCB (Auer,
2002) by proving that the regret in eq. 3 exhibits a logarithmic growth with respect to the target
sequence length B, which is stated in the following theorem.
Theorem 2 (Regret upper bound on MetaSD-UCB). Denote ∆(αi) = αi⋆−αi, where i⋆ is the index
of the drafter with the largest αi. Then, under i.i.d assumption of αi,t (details in Assumption 1) and
using the BD reward, there exists a constant C,C ′ > 0 such that following bound holds:

REG(π,B) <
∑
i ̸=i⋆

8

(Nmax)∆(αi)2
(lnB + ln (ln(

∑
i̸=i⋆

1

∆(αi)2
)) + C ′) + C. (4)

In Section G.4, we prove the log-linear regret upper bound holds with general reward design but
with the higher constant factor 8/∆(αi)

2. The improvement in eq. 4 stems directly from using the
BD reward in Algorithm 2. Since the number of observations within each round grows with Nmax,
the variance of the BD reward is effectively reduced by a factor of Nmax. This, in turn, leads to a
smaller constant term in the regret upper bound compared to using the BE reward. The following
corollary captures this observation:
Corollary 1 (Informal). In most scenarios, the regret upper bound in eq. 4 is tighter than the regret
upper bound obtained when using the BE reward with MetaSD-UCB.
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A complete proof of Theorem 2 and a formal statement of Collorary 1 with the proof are in Sec-
tion G.5.

3.3 EXTENSIONS OF METASD FRAMEWORK

Switching costs In practical implementations, switching between drafters at each round incurs a
computational cost due to the need to recalculate previous KV-cache values for the new drafter. This
aligns with the concept of bandits with switching costs (Banks & Sundaram, 1994). However, unlike
traditional settings where a fixed cost is incurred per switch, the cost in MetaSD is proportional to the
number of unprocessed tokens in the current block. To address this, we propose Algorithm 4 with
Sequential Halving (SH) (Karnin et al., 2013), designed specifically for this scenario. A detailed
analysis along with theoretical guarantees on its performance is provided in Section H.1.

Non-stationary environment Our prior analysis assumes stationary reward distributions, where
the reward feedback for each drafter follows a fixed distribution. However, in certain scenarios,
the reward distribution can be non-stationary. For instance, in long-context generation, the optimal
drafter might change as the topic or style of the generated text evolves. Despite this challenge, our
MetaSD framework remains applicable by leveraging non-stationary bandit algorithms. These algo-
rithms are designed to adapt to changing reward distributions, enabling the system to continuously
learn and adjust its drafter selection strategy. Detailed discussions for non-stationary algorithms
within the context of MetaSD are in Section H.2.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Models We adopt Vicuna 7B (Chiang et al., 2023) as our target LLM for both black-box and
white-box SD. The distinction between two paradigms lies in the drafter’s access to the target LLM’s
internal representations. Black-box drafters operate independently, with access only to the final logit
of the target LLM. In contrast, white-box drafters can leverage intermediate activations and hidden
states within the target LLM. For black-box SD, we utilize Vicuna 68M (Yang et al., 2024) as the
base architecture for our independent drafters. Each drafter is trained on a distinct task-specific
dataset to ensure heterogeneity. Following established practices (Kim & Rush, 2016; Zhou et al.,
2023; Cai et al., 2024; Yi et al., 2024), the training data for these drafters is generated via self-
distillation from the target LLM. For white-box SD, we integrate Eagle (Li et al., 2024) into the
target Vicuna 7B to enable white-box SD. Similar to the black-box setting, multiple Eagle drafters
share the same underlying architecture but are fine-tuned on distinct task-specific datasets generated
via self-distillation from the target LLM. To ensure a fair comparison for the baseline, we introduce
the One-size Fits All (OFA) drafter, which is trained on a mixed dataset spanning all tasks. Further
details on the training procedures and datasets used for both black-box and white-box drafters are
provided in Appendix F.

Number of drafts Nmax For black-box SD, we employ speculative sampling (SpS) (Chen et al.,
2023), generating one draft candidate per drafter, termed as MetaSpS. For multi-draft methods like
Medusa (Cai et al., 2024) and Eagle (Li et al., 2024), we adhere to their original settings with a
tree-attention mechanism. We employ the same tree structure for multiple Eagle drafters described
in Li et al. (2024), termed as MetaEagle. Unless explicitly stated otherwise, all approaches utilize a
maximum of 5 drafts (Nmax = 5).

Evaluation We conduct evaluations using a NVIDIA A5000, A6000, and A100 GPU under greedy
decoding settings. We re-initialize the bandit for each new query, even within multi-turn conversa-
tions. Two types of scenarios are evaluated:

1. Diverse task: We evaluate on a diverse range of tasks, including coding (Code) from MT-
Bench (Zheng et al., 2024), summarization (Sum) on CNN/Daily (Hermann et al., 2015),
De-En translation (Trans) on WMT16 (Bojar et al., 2016), natural question answering (QA)
(Kwiatkowski et al., 2019), and mathematical reasoning (Math) on GSM8K (Cobbe et al.,
2021). The datasets are randomly shuffled to create a non-stationary environment.
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Table 3: (Black-box SD) Speedup ratio relative to standard autoregressive greedy decoding on vari-
ous datasets, comparing single specialized independent drafters, other methods (PLD (Saxena, 2023)
and Lookahead (Fu et al., 2024)), and bandit-based drafter selection (Rand (uniformly random),
EXP3 (Auer et al., 2002), SH (Karnin et al., 2013), UCB). Evaluations are conducted with a single
NVIDIA A6000 GPU under greedy decoding settings. Drafter specializations: 1: Code, 2: Transla-
tion, 3: Summarization, 4: QA, 5: Math.

Speedup SpS with specialized drafters SpS Other methods Bandit in MetaSpS

Drafter1 Drafter2 Drafter3 Drafter4 Drafter5 OFA PLD Lookahead Rand EXP3 SH UCB

Code 2.437  1.224 1.565 1.814 1.687 2.435  1.923 1.542 1.640 1.919 2.148 2.300
Trans 0.991 2.076  1.000 1.019 0.950 1.032 1.076 1.133 1.150 1.217 1.422 1.587  
Sum 1.513 1.087 2.133  1.510 1.387 1.526 2.501  1.275 1.429 1.606 1.812 1.971
QA 1.332 1.200 1.343 1.960  1.252 1.267 1.178 1.208 1.294 1.437 1.599 1.711  

Math 1.483 1.228 1.378 1.486 2.454  1.571 1.653 1.533 1.471 1.690 2.144 2.280  

Table 4: (White-box SD) Speedup ratio relative to standard autoregressive greedy decoding on var-
ious datasets, comparing single specialized drafters, other methods (blockwise parallel decoding
(BPD) (Stern et al., 2018), Medusa, Rescored-BPD (R-BPD) and Rescored-Medusa (Kim et al.,
2024)), and bandit-based drafter selection. Evaluations are conducted with a single NVIDIA A100
GPU under greedy decoding settings.

Speedup Specialized Eagle drafters Eagle Other methods Bandit in MetaEagle

Eagle1 Eagle2 Eagle3 Eagle4 Eagle5 OFA BPD R-BPD Medusa R-Medusa Rand EXP3 SH UCB

Code 3.934  1.303 1.776 2.150 2.427 3.776  1.963 2.146 2.661 2.822 2.310 2.858 3.650 3.724
Trans 1.750 2.496  2.281 2.131 1.714 2.143 1.626 1.442 1.909 2.056 2.036 2.171 2.225 2.318  
Sum 1.707 1.507 3.382  2.005 1.589 2.640 1.509 1.455 1.723 2.136 2.261 2.261 2.801 3.057  
QA 1.842 1.579 2.181 2.916  1.783 2.446 1.489 1.468 1.817 2.154 2.006 2.128 2.466 2.641  

Math 2.584 1.618 2.337 2.433 3.903  3.049 1.696 1.696 2.142 2.519 2.449 2.811 3.339 3.520  

2. Multilingual task: We assess the effectiveness in handling multilingual scenarios by evalu-
ating on the multilingual tasks presented in Table 1, following the Yi et al. (2024).

The chosen tasks represent a diverse range of applications. Code involves generating text within the
constraints of a formal programming language, while Math often requires manipulating symbolic
expressions and numerical values. Multilingual tasks introduce challenges related to vocabulary
space and token distribution, necessitating drafters tailored to specific language pairs. Summariza-
tion highlights the dependency of generation on the input space, where drafters must effectively
capture and condense information from diverse articles. Finally, QA represents a core natural lan-
guage understanding task, requiring drafters to comprehend and extract information from complex
contexts. For both settings, we utilize a pool of 5 heterogeneous drafters in the MetaSD framework.

4.2 MAIN RESULT

Diverse task (black-box SD) Table 3 presents the speedup ratios achieved by various methods on
a diverse set of tasks using black-box SD. As expected, specialized drafters excel on their respective
tasks, as indicated by the highlighted best results. However, their performance suffers significantly
on unrelated tasks, demonstrating the limitations of relying on a single drafter. Our MetaSpS-UCB
consistently achieves competitive speedup compared to both specialized drafters and other state-
of-the-art techniques across most tasks. While the OFA drafter/Eagle perform well, our MetaSD
framework mostly outperforms OFA. This highlights the effectiveness of our adaptive selection
mechanism in leveraging the strengths of multiple drafters to optimize performance across diverse
scenarios. Notably, MetaSpS-UCB reaches the near-optimal performance of the corresponding spe-
cialized drafter on several tasks, demonstrating its ability to dynamically identify and utilize the
most suitable drafter for the given context. Furthermore, when comparing MetaSpS-UCB to other
bandit such as SH and EXP3, considering switching costs and non-stationarity, we observe that
MetaSpS-UCB consistently outperforms others. This supports the theoretical advantages of UCB.

Diverse task (white-box SD) Table 4 presents the results for white-box SD with MetaEagle, uti-
lizing EAGLE drafters integrated into the target LLM. Similar to the black-box setting, specialized
drafters excel on their designated tasks but struggle on others. MetaEagle-UCB again demonstrates
competitive performance, consistently achieving high speedup ratios across all tasks and often out-
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performing other bandit-based selection strategies. This highlights the adaptability and effectiveness
of our proposed framework in both black-box and white-box SD scenarios.

Multilingual task (black-box SD) Ta-
ble 5 shows the speedup ratios on mul-
tilingual tasks. Consistent with the
observations in diverse tasks, special-
ized drafters demonstrate superior perfor-
mance on their matched language pairs.
MetaSps-UCB consistently outperforms
other bandit-based selection strategies
(EXP3, SH) and remains competitive even
with specialized drafters, showcasing its
ability to adapt effectively to varying lan-
guage pairs and achieve notable speedup
gains in multilingual scenarios.

Table 5: Speedup ratio relative to standard autoregres-
sive greedy decoding on various multilingual datasets,
comparing single specialized drafters to bandit-based
drafter selection (EXP3, SH, UCB). Evaluations are
conducted with a single NVIDIA A5000 GPU under
greedy decoding settings. Drafter specializations: 1: Ja
→En, 2: Ru →En, 3: De →En, 4: Fr →En, 5: Zh →En.

Speedup SpS with specialized drafters Bandit in MetaSpS

Drafter1 Drafter2 Drafter3 Drafter4 Drafter5 EXP3 SH UCB

Ja → En 1.757  1.109 1.012 1.018 1.154 1.260 1.368  1.161
Ru → En 1.055 1.817  0.995 0.963 1.036 1.259 1.403 1.503  
De → En 1.098 1.369 2.360  1.036 1.099 1.472 1.656 1.693  
Fr → En 1.106 1.445 1.108 2.135  1.122 1.506 1.607 1.775  
Zh → En 1.198 1.086 1.021 1.023 1.516  1.204 1.297 1.369  

2 4 6 8 10 12 14
Nmax

1.0
1.5
2.0
2.5
3.0
3.5
4.0

Va
lu

es

Optimal E[Nacc]
Optimal Speedup

UCB E[Nacc]
UCB Speedup

Figure 3: Ablations on Nmax. ‘Optimal’
represents the optimal drafter and UCB
denotes MetaSps-UCB with BD reward.

Table 6: Average of speedup ratio comparing the BE
and BD rewards for MetaSD-UCB with both SpS and
EAGLE drafters over 3 different runs.

Task MetaSpS-UCB MetaEagle-UCB

BE BD BE BD

Code 2.052±0.004 2.231±0.006  3.590±0.017 3.661±0.003  
Trans 1.465±0.004 1.554±0.001  2.228±0.009  2.201±0.001

Sum 1.770±0.002 1.929±0.001  3.038±0.005 3.043±0.001  
QA 1.591±0.003 1.698±0.001  2.629±0.003  2.608±0.001

Math 1.992±0.003 2.238±0.002  3.461±0.009 3.515±0.001  

4.3 ABLATION STUDY

Draft length To analyze the impact of draft length on the performance of MetaSps-UCB with the
BD reward, we conduct experiments on the Code task using 5 drafters following the same setting in
Table 3. The maximum draft length Nmax is varied to measure the resulting speedup. Figure 3 shows
that increasing the draft length initially leads to higher E[Nacc] and speedup due to the increased
parallelism in token generation. However, beyond a certain threshold, further increasing the draft
length yields diminishing returns and can even decrease performance due to the higher probability
of rejection and the associated overhead.

Reward design To assess the impact of our reward function choice, we compare the performance
of MetaSD using both BE and BD rewards. In the black-box setting, BD consistently outperforms
BE across various tasks, as shown in Table 6. This highlights the importance of utilizing a re-
ward signal that accurately captures the underlying dynamics of the SD process. However, for the
MetaEagle-UCB (white-box) setting, both BE and BD rewards exhibit comparable performance. We
hypothesize that this is due to Eagle’s tree-attention mechanism, which effectively explores multiple
decoding paths and implicitly captures the divergence between the drafter and target LLM distri-
butions. This suggests that in white-box settings with multi-path exploration, the choice of reward
function might have a less significant impact on the overall performance. Nonetheless, the consis-
tent superiority of BD in the black-box setting underscores its potential benefits in scenarios where
such multi-path exploration is not available.

Best arm ratio To further analyze the behavior of MetaSD, we examine the best arm ratio, which
represents the frequency of selecting the optimal drafter for a given task. Figure 4 illustrates how
this ratio evolves over speculative decoding rounds, comparing different reward types (BE and BD)
and bandit algorithms (SH, EXP3, UCB) for both MetaSpS (black-box SD) and MetaEagle (white-
box SD). Across all configurations, UCB consistently identifies the best arm more rapidly than other
bandit algorithms. This trend is particularly pronounced in the MetaSpS setting. Additionally, the
BD reward generally leads to a higher best arm ratio compared to BE, suggesting that BD provides
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Figure 4: Best arm ratio over rounds for various configurations. (Left) MetaSpS (black-box SD)
with BE and BD rewards. (Right) MetaEagle (white-box SD) with BE and BD rewards.

a more informative signal for drafter selection. This observation aligns with our earlier hypothesis
that BD better captures the underlying dynamics of SD. Overall, the combination of UCB with the
BD reward exhibits the most rapid convergence towards the optimal drafter.

Table 7: Speedup ratio with temperature sampling as
temperature is set to 0.7 over a NVIDIA A6000 GPU.

Dataset SpS with specialized drafters Bandit

Drafter1 Drafter2 Drafter3 Drafter4 Drafter5 UCB
Code 2.250 1.215 1.379 1.532 1.513 1.896
Trans 1.086 1.886 1.096 1.130 1.078 1.431
Sum 1.461 1.165 1.874 1.463 1.353 1.744
QA 1.316 1.193 1.324 1.776 1.272 1.534

Math 1.450 1.258 1.355 1.616 2.379 2.046

Temperature sampling We investigate
the impact of temperature sampling on
MetaSpS performance. Table 7 presents
the speedup ratios achieved with tempera-
ture sampling with temperature 0.7 on an
NVIDIA A6000 GPU. Consistent with the
trends observed in our main experiments
with greedy decoding, MetaSD continues
to achieve competitive speedup.

5 DISCUSSION

Regret upper bound for MetaSD-UCB Theorem 2 provides a regret upper bound for MetaSD-
UCB, demonstrating that the number of rounds required to identify the optimal drafter is inversely
proportional to the predefined draft length Nmax. This aligns with the intuition that longer drafts
provide more information about the relative performance of each drafter, leading to faster conver-
gence towards the optimal choice. The logarithmic dependence on the target sequence length B
further highlights the efficiency of MetaSD-UCB in minimizing regret. These theoretical guarantees
are supported by our empirical observations, where MetaSD-UCB consistently demonstrates strong
performance and rapid convergence towards the best-performing drafter.

Memory bandwidth bound A potential concern with our MetaSD framework is the increased
memory bandwidth requirement due to loading multiple drafter models. However, our approach
incurs minimal memory overhead. By storing all drafter weights in GPU DRAM, we avoid frequent
accesses to slower system memory, which are a primary bottleneck for LLMs. For instance, with
a 7B target LLM and float16 precision, our MetaEagle framework utilizes at most 19GB of GPU
DRAM during generation, compared to 17GB for a single Eagle drafter. This represents only a small
increase in memory usage, and importantly, it does not increase the memory bandwidth requirement
during inference since only one drafter is active at a time.

6 CONCLUSION

In this paper, we introduce a unified framework for incorporating multiple drafters into speculative
decoding, addressing the limitations of single-drafter approaches. We formalize this problem as a
multi-armed bandit problem, termed as MetaSD, and proposed MetaSD-UCB, a novel algorithm that
leverages the Upper Confidence Bound (UCB) principle to dynamically select the optimal drafter at
each generation step. We also provide theoretical guarantees on the performance of MetaSD-UCB,
establishing its effectiveness in achieving near-optimal speedup even with a stochastic number of
rounds. Through extensive experiments on diverse and multilingual tasks, we demonstrate the su-
perior performance of MetaSpS and MetaEagle compared to both specialized drafters and other
state-of-the-art methods. Our work opens up new avenues for further research in speculative de-
coding, including exploring more sophisticated reward designs, incorporating switching costs, and
addressing non-stationary environments.
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Aurélien Garivier and Eric Moulines. On upper-confidence bound policies for switching bandit
problems. In International conference on algorithmic learning theory, pp. 174–188. Springer,
2011.

John Gittins. A dynamic allocation index for the sequential design of experiments. Progress in
statistics, pp. 241–266, 1974.

John Gittins, Kevin Glazebrook, and Richard Weber. Multi-armed bandit allocation indices. John
Wiley & Sons, 2011.

12

https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Google, Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui
Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa
Suleyman, and Phil Blunsom. Teaching machines to read and comprehend. Advances in neural
information processing systems, 28, 2015.

Junya Honda and Akimichi Takemura. An asymptotically optimal bandit algorithm for bounded
support models. In COLT, pp. 67–79. Citeseer, 2010.

Jerry Huang, Prasanna Parthasarathi, Mehdi Rezagholizadeh, and Sarath Chandar. Context-aware
assistant selection for improved inference acceleration with large language models. arXiv preprint
arXiv:2408.08470, 2024.

Kevin Jamieson, Matthew Malloy, Robert Nowak, and Sébastien Bubeck. lil’ucb: An optimal ex-
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Yao Zhao, Connor Stephens, Csaba Szepesvári, and Kwang-Sung Jun. Revisiting simple regret: Fast
rates for returning a good arm. In International Conference on Machine Learning, pp. 42110–
42158. PMLR, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2024.

Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat, Aditya Krishna Menon, Afshin Rostamizadeh,
Sanjiv Kumar, Jean-François Kagy, and Rishabh Agarwal. Distillspec: Improving speculative
decoding via knowledge distillation. arXiv preprint arXiv:2310.08461, 2023.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Appendices
A OVERVIEW OF APPENDIX

This appendix provides supplementary material that expands on the main contents. Each section is
designed to complement the research presented:

• Appendix B: Discusses the broader impact and further motivations of our work.

• Appendix C: Acknowledges the limitations of our current approach and outlines promising
directions for future research.

• Appendix D: Provides a prepliminary for speculative sampling (SpS).

• Appendix E: Provides a comprehensive review of related work, situating our contributions
within the broader context of speculative decoding with LLMs and multi-armed bandit
research.

• Appendix F: Details additional experimental setups, offering further insights into the per-
formance, behavior of our proposed method, and additional experimental results includ-
ing long-context experiments, out-of-domain experiments, and evaluations with perturbed
prompts.

• Appendix G: Presents rigorous mathematical proofs for the theoretical guarantees estab-
lished in the main paper.

• Appendix H: Explores extensions to the MetaSD framework, addressing practical consid-
erations such as switching costs and non-stationary environments.

• Appendix I: Offers further discussion and analysis of the results presented in the main
paper, potentially including additional insights, interpretations, or comparisons.

Ethics statement This work primarily focuses on improving the efficiency of LLMs through al-
gorithmic advancements and does not directly involve sensitive data or applications that could raise
immediate ethical concerns.

Reproducibility statement To facilitate reproducibility, we provide a comprehensive exposition
of the materials and experimental configurations within this paper and its accompanying appendices.
The organization is as follows:

• Section 2 - This section presents the problem statement and pseudocode for the MetaSD
framework.

• Section 3 & Section H.3 - This section provide detailed MAB algorithms for the MetaSD
framework under various scenarios.

• Section 4 - This section elaborates on the implementation specifics, including the pre-
trained models, datasets, and evaluation metrics.

• Appendix F - This section delves into additional details of the experimental settings.

B BROADER IMPACT AND FURTHER MOTIVATION

B.1 BROADER IMPACT

Generalized speedup Our MetaSD framework for multi-drafter speculative decoding has the po-
tential to enhance the robust speedup capabilities of LLMs. By dynamically selecting from a diverse
pool of drafters, the system can better adapt to a wider range of tasks and input contexts, poten-
tially leading to reduced latency on unseen or less frequently encountered scenarios. This increased
generalization could benefit various applications, such as machine translation, summarization, and
creative writing, where models are often required to handle diverse and unpredictable inputs.
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Efficiency The primary goal of our framework is to accelerate the inference process of LLMs.
By leveraging speculative decoding with multiple drafters, we aim to achieve significant speedup
gains compared to traditional single-drafter approaches. This improved efficiency could enable the
deployment of large language models in resource-constrained environments or real-time applications
where latency is critical. Faster inference could also facilitate broader accessibility to powerful
language models, making them more practical for a wider range of users and use cases.

Systematic impact Our work remains various potential societal impact. Faster and more efficient
language models could lead to advancements in various domains, such as healthcare, education, and
customer service, where natural language understanding and generation play crucial roles.

B.2 FURTHER MOTIVATION

This subsection provides another line of research motivation in Section 2.1. MetaSD addresses
the practical challenge of managing diverse and heterogeneous drafters often found in real-world
systems (e.g., HuggingFace, Google Cloud, Azure, AWS, etc..). These drafters, pre-trained with
varying objectives and frequently lacking detailed training documentation, pose significant obstacles
to deployment frameworks that assume uniformity or rely on static selection strategies (e.g., rule-
based strategies).

MetaSD provides a robust and adaptive mechanism for optimizing performance in environments
characterized by task variability and drafter heterogeneity. By operating dynamically at the token
level, it ensures task-specific efficacy without requiring retraining or fine-tuning of existing drafters.
This flexibility allows MetaSD to excel in scenarios where traditional methods struggle, such as
managing pre-trained drafters with black-box environment regarding the information for the use of
drafters such as incomplete training histories or handling tasks with unpredictable distributions. Un-
like frameworks that depend on rigid assumptions or predefined similarity metrics, MetaSD makes
serving system particularly well-suited for organizations leveraging public repositories or heteroge-
neous resources.

C LIMITATION & FUTURE WORK

C.1 LIMITATION

Scalability It is important to acknowledge that the scalability of our approach may be challenged
when dealing with an extremely large number of drafters. In such scenarios, the computational
overhead associated with evaluating multiple drafters at each step could potentially outweigh the
speedup benefits. To address this limitation, future work could explore strategies for pre-selecting
a smaller subset of promising drafters based on initial query analysis or other heuristics, before
applying the MetaSD framework. This would help to maintain the efficiency and scalability of our
approach even in the presence of a vast pool of potential drafters.

Diverse target LLMs While our framework is designed to be agnostic to the target LLM archi-
tecture, extensive empirical evaluation across a wider range of LLMs is needed. Future work will
assess the generalizability of our approach across different LLM architectures and sizes.

Batched inference Our current implementation primarily focuses on single-query scenarios.
However, adapting the MetaSD framework to batched inference—where different tasks are mixed
within a single batch—presents an opportunity for significant efficiency gains. Unlike static single-
drafter-based SD, which can suffer from suboptimal performance when handling diverse tasks in a
batch, MetaSD dynamically optimizes drafter selection at the instance level. This ensures consis-
tently high throughput, even in high-throughput batched settings.

C.2 FUTURE WORK

Reward design and exploration-exploitation balance The choice of reward function and the
exploration-exploitation tradeoff significantly impact the performance of MetaSD. Exploring alter-
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native reward designs and adaptive exploration strategies could lead to further improvements in
speedup and adaptability.

Non-stationarity While we briefly discuss handling non-stationarity in Appendix H, more sophis-
ticated techniques could be investigated. This could involve incorporating change detection mecha-
nisms or developing MAB algorithms specifically tailored to the non-stationary nature of language
generation.

Contextual bandits Our current framework primarily relies on observed rewards for drafter selec-
tion. Incorporating additional contextual information, such as the query type, user history, or drafter
metadata, could lead to more informed decisions. Integrating contextual bandit algorithms into the
MetaSD framework is a promising direction for future research.

Reinforcement learning (RL) formulation The MetaSD framework could also be formulated as
an RL problem, where the agent learns to select the optimal drafter based on the current state (input
context and generated text) to maximize a long-term reward (e.g., overall speedup). Exploring RL-
based approaches could potentially uncover novel strategies for adaptive drafter selection.

MAB framework over different SD algorithms Our current work focuses on applying the MAB
framework to select among heterogeneous drafters sharing the same SD algorithm (e.g., SpS or
EAGLE). While this approach demonstrates significant benefits, it is worth noting that the MAB
framework could potentially be extended to encompass a more diverse set of SD algorithms (e.g.,
Sps, PLD, Lookahead, EAGLE, and others). This would involve designing a reward function and
selection strategy that can effectively compare and choose between fundamentally different SD ap-
proaches, each with its own strengths and weaknesses. Exploring this broader application of the
MAB framework in speculative decoding is an interesting direction for future research.

D PRELIMINARY: SPECULATIVE SAMPLING

Speculative decoding accelerates LLM inference by employing a smaller draft model to predict
future tokens, which are then verified by the target LLM. This parallel token generation can signifi-
cantly reduce latency, especially when the draft model’s predictions align well with the target LLM’s
output distribution.

Algorithm 3 outlines the speculative sampling procedure (Leviathan et al., 2023; Chen et al., 2023).
Given an initial prompt sequence, the draft model generates E potential future tokens. Concurrently,
the target LLM computes the probabilities of these tokens, as well as the probability of its own pre-
diction for each subsequent token position. A drafted token is accepted if its probability, according
to the target LLM, exceeds a certain threshold. This threshold is determined by comparing the target
LLM’s probability for the drafted token to both the draft model’s prediction and a random sample,
ensuring only high-confidence drafts are accepted. If a drafted token is rejected, the target LLM
samples a token from the residual distribution, which represents the difference between its own
prediction and the draft model’s. This process iterates until the desired sequence length is reached.

Speculative sampling allows the target LLM to process multiple tokens in parallel by drafting them
in advance, reducing the overall generation time. When the draft model’s predictions are accurate,
a significant portion of the generated tokens are accepted, leading to substantial speedup. The veri-
fication step and residual sampling ensure that the final generated sequence remains consistent with
the target LLM’s distribution, preserving generation quality. Speculative sampling provides a foun-
dation for our proposed framework, where we extend this approach to incorporate multiple drafters
and dynamically select the optimal one using MAB algorithms.

E RELATED WORK

E.1 SPECULATIVE DECODING

Speculative decoding employs a draft-then-verify paradigm to enhance LLM inference speed. This
approach tackles the latency bottleneck in autoregressive decoding, where extensive memory trans-
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Algorithm 3: Speculative sampling (SpS)
INPUT : Target LLMMp, a small drafterMq , initial prompt sequence x1, . . . , xl and target

sequence length B.
1: while l < B do
2: for e← 1, . . . , E do
3: xle ∼Mq(x|x1, . . . , xl, xl1 , . . . , xle−1)
4: end for
5: In parallel, compute E + 1 sets of logits drafts xl1 , . . . , xlE with the target LLMMp:

Mp(x|x1, . . . , xl),Mp(x|x1, . . . , xl, xl1), . . . ,Mp(x|x1, . . . , xl, xl1 , . . . , xlE )
6: for j ← 1, . . . , E do
7: Sample r ∼ U [0, 1] from a uniform distribution
8: if r < min(1,

Mp(x|x1,...,xl+j−1)
Mq(x|x1,...,xl+j−1)

) then
9: Set xl+j ← xlj and l← l + 1

10: else
11: Sample xl+j ∼ (Mp(x|x1, . . . , xl+j−1)−Mq(x|x1, . . . , xl+j−1))+ and exit for loop.
12: end if
13: end for
14: If all tokens xl+1, . . . , xl+E are accepted, sample extra token

xl+E+1 ∼Mp(x|x1, . . . , xl, xl+E) and set l← l + 1
15: end while

fers for each token generation lead to underutilized compute resources (Patterson, 2004). Pioneering
works by Leviathan et al. (2023); Chen et al. (2023) introduced speculative decoding and sampling,
enabling lossless acceleration of diverse sampling methods. These methods leverage smaller mod-
els within the same model family (e.g., T5-small for T5-XXL) without additional training. Recent
advancements have further refined speculative decoding. Models like Eagle (Li et al., 2024) and
Medusa (Cai et al., 2024) integrate lightweight feedforward neural network heads into the LLM
architecture, enabling early drafting of token sequences and improving throughput.

Despite their efficacy, these methods often rely on a single drafter or a fixed set, limiting adaptability
to diverse tasks and input contexts. Yi et al. (2024) propose specialized drafters based on the self-
distilled dataset training, but dynamically selecting among heterogeneous drafters remains an open
challenge. Liu et al. (2023) suggest online training of specialized drafters, but their reliance on
query-based classification and limited speedup gains highlight the need for a more comprehensive
solution.

E.2 BANDIT ALGORITHMS

Multi-armed bandit Multi-armed bandit (MAB) problem has been extensively studied for
decades with various settings. For stochastic MAB setting, Lai & Robbins (1985) and Agrawal
(1995) provided asymptotic optimal regret bounds that is logarithmic to the total round T and Auer
(2002); Audibert et al. (2007) and Honda & Takemura (2010) proved this result also holds when T
is finite. For another variant, EXP3 algorithm (Auer et al., 2002) proves the optimal regret bound
in adversarial environment where reward distribution of each arm can change by adversary in every
round.

Budgeted bandit The budgeted MAB problem address a bandit scenario where each arm pull
yields both a reward and a cost drawn from individual distributions. Here, the goal is to maximize
the cumulative reward until sum of the cost reaches the budget. Then, the optimal arm would be the
one with the highest reward-to-cost ratio. ϵ-First policies (Tran-Thanh et al., 2010) and KUBE (Tran-
Thanh et al., 2012) assumed a non-stochastic fixed cost for each arm pull. Ding et al. (2013) provided
UCB-BV algorithm where cost for each arm is assumed to be a bounded discrete random variable.

Bandits with switching costs In real-world scenarios, a cost may be incurred whenever switching
arms. This is related to the MAB problem with switching costs. (Dekel et al., 2014; Gao et al.,
2019; Rouyer et al., 2021; Esfandiari et al., 2021; Amir et al., 2022). For stochastic MAB, Gao et al.
(2019) and Esfandiari et al. (2021) assume a fixed cost is incurred whenever switching arms. They
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proved an instance-dependent regret bound O(log T ) which does not depend on the unit switching
cost value.

Pure exploration Pure exploration or best arm identification (BAI) problems (Even-Dar et al.,
2002; 2006; Audibert & Bubeck, 2010) aim to explore as much as possible throughout the round to
obtain the best arm at the end of the round. This contrasts with the traditional MAB objective which
is maximizing cumulative reward. Even-Dar et al. (2002); Mannor & Tsitsiklis (2004) and Even-
Dar et al. (2006) investigated pure exploration in MAB under the PAC learning framework. BAI
problems are primarily categorized into two settings. First, in the fixed budget setting (Audibert
& Bubeck, 2010; Karnin et al., 2013; Carpentier & Locatelli, 2016), the goal is to minimize the
chance of selecting sub-optimal arms within a fixed number of rounds. The other problem targets
fixed confidence setting (Karnin et al., 2013; Jamieson et al., 2014; Garivier & Kaufmann, 2016;
Chen et al., 2017) whose objective is to minimize number of rounds required to achieve a desired
confidence level.

Non-stationary bandit Non-stationary bandit problems assume that reward distribution of each
arm changes over time. The goal in non-stationary bandit problems is to find a balance between
exploration and exploitation while carefully managing past information to adapt to the dynamic
environment. Among the earliest works, Gittins (1974) assumed that only the best arm changes over
time. This assumption was later relaxed in Whittle (1988), where the authors allow the mean reward
for each arm to change at every round. Slivkins & Upfal (2008) assumed reward distribution follows
a Brownian motion and established a regret upper bound that grows linear in rounds. Another
line of works quantifies the degree of non-stationarity in the bandit instance by assuming a fixed
value of L which represents a number of times reward distributions change. Auer et al. (2002)
suggested EXP3.S algorithm and proved regret upper bound with given L but slightly worse when
L is not given. Kocsis & Szepesvári (2006) suggested Discounted-UCB, where they obtain reward
estimates with discounting factor over time. Garivier & Moulines (2011) introduced Sliding-window
UCB, where they used fixed-size window to retain information of the rounds within the window for
estimating mean reward. ADSWITCH in Auer et al. (2019) is proven to be nearly minimax optimal,
achieving the state-of-the art regret bound without any prior knowledge of L.

E.3 LARGE LANGUAGE MODELS AND BANDITS

Recently, several works have made connections between LLMs with bandits using the emergent
abilities of LLMs. One side of works utilize LLM as an agent to solve decision making problems
combining with bandit framework (Baheri & Alm, 2023; Felicioni et al., 2024; Xia et al., 2024a;
Park et al., 2024). On the otherside, some of the works use bandit algorithms for improve the
performance guarantee of LLMs with certain tasks such as for efficient prompt optimization (Shi
et al., 2024) and online model selection (Xia et al., 2024c).

Most relevant to ours, several concurrent works investigate how bandit framework can be incorpo-
rated into SD. Liu et al. (2024) used Thomson sampling algorithm (which is one of the most popular
bandit algorithm) to adaptively choose maximum candidate length Nmax combining with early-exit
framework. Huang et al. (2024) assumed existence of multiple drafters and formulate SD as a con-
textual bandit problem. However, they rely on collecting offline samples for the policy learning
which can be costly. Furthermore, their approach is regarded as a classification problem that the
selected drafter is fixed in a single query. To the best of our knowledge, our work is the first to
use MAB framework within every speculation round and provide its theoretical guarantees.

F EXPERIMENT DETAIL

F.1 TRAINING SPECIALIZED DRAFTERS WITH SELF-DISTILLED DATA

Following the Yi et al. (2024), we use their training strategy consisting of two steps:

1. Pretraining drafters on a portion of C4 dataset (Raffel et al., 2019) and ShareGPT dataset
(ShareGPT, 2023).

2. Finetuning the models with self distilled data having the target task with templates.
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Self-distilled data Following prior work (Kim & Rush, 2016; Zhou et al., 2023; Cai et al., 2024;
Yi et al., 2024), we generate the training data for specialized drafters through self-distillation from
the target LLM. To capture the full spectrum of its output variability, we generate multiple responses
at various temperatures—{0.0, 0.3, 0.7, 1.0}. We utilize this self-distilled dataset for training both
independent small drafter models and dependent Eagle drafters. For Eagle-specific training details,
we adhere to the settings outlined in the original Eagle paper (Li et al., 2024).

F.2 DRAFTER DETAILS

All independent drafters are based on a decoder-only Llama transformer model with 68M param-
eters. The model configuration includes 2 hidden layers, 768 hidden size, 12 attention heads, and
a vocabulary size of 32,000. Other key settings are: silu activation function, 0.0 attention dropout,
and no weight decay. The training recipe involves pretraining on a subset of the C4 and ShareGPT
datasets, followed by fine-tuning on task-specific data generated through self-distillation from the
target LLM. We employ 4 NVIDIA A100 GPUs with 80GB memory, utilizing techniques like FSDP
(Fully Sharded Data Parallelism), gradient checkpointing, and lazy preprocessing to optimize train-
ing efficiency. Hyperparameters include a batch size of 8, 3 training epochs, a learning rate of 2e-5,
and a cosine learning rate scheduler with a warmup ratio of 0.03. We maintain consistent architec-
ture and training procedures across all white-box drafters, ensuring their heterogeneity stems solely
from the diverse task-specific datasets they are fine-tuned on. For further specifics on Eagle drafter
training, we refer readers to the original Eagle paper (Li et al., 2024).

F.3 DATASETS

Training dataset We utilize a diverse collection of datasets to train our specialized drafters, en-
suring their proficiency across various tasks and languages:

• ShareGPT (ShareGPT, 2023): A dataset of approximately 58,000 conversations scraped.
These conversations include both user prompts and responses from OpenAI’s ChatGPT.

• WMT16 De→En (Bojar et al., 2016): A dataset for German-to-English machine transla-
tion, providing high-quality parallel text data.

• JparaCrawl-v3.0 (Morishita et al., 2022): A large-scale Japanese web corpus, enabling
training of a drafter specialized in Japanese-to-English translation.

• WMT16 Ru→En (Bojar et al., 2016): A parallel corpus for Russian-to-English machine
translation, similar to the WMT16 De→En dataset but focusing on the Russian language.

• WMT14 Fr→En (Bojar et al., 2014): A dataset for French-to-English machine translation,
providing additional multilingual training data.

• WMT19 Zh→En (Barrault et al., 2019): A dataset for Chinese-to-English machine trans-
lation, further expanding the language coverage of our drafter pool.

• Code alpaca (Chaudhary, 2023): A dataset of code generation instructions and correspond-
ing outputs, facilitating the training of a drafter specialized in code-related tasks.

• CNN/Daily mail (Hermann et al., 2015): A dataset for summarization, comprising news
articles and their corresponding summaries.

• Natural question answering (Kwiatkowski et al., 2019): A large-scale question answering
dataset based on real user queries and Wikipedia passages, aiding in training a drafter for
question answering tasks.

• Meta math question answering (Yu et al., 2023): A dataset focusing on mathematical ques-
tion answering, providing specialized training data for a math-oriented drafter.

Evaluation dataset

• Multilingual translation: Ja to En (Morishita et al., 2022), Ru to En, De to En (Bojar et al.,
2016), Fr to En (Bojar et al., 2014), and Zh to En (Barrault et al., 2019).

• Code generation: Code tasks from the MT-Bench dataset (Zheng et al., 2024).
• Summarization: CNN/Daily summarization dataset (Hermann et al., 2015).
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• Question answering: Natural Questions dataset (Kwiatkowski et al., 2019).
• Math reasoning: GSM8K mathematical reasoning dataset (Cobbe et al., 2021).

Templates We employ specific prompt templates during model evaluation to guide the behavior
of the target LLM and drafters, ensuring consistency and clarity in task execution. These templates
are carefully designed to elicit desired responses and provide relevant context for each task category.
Before the data templates, system prompts of LLMs are positioned at the front to provide additional
context or instructions.

• Multilingual translation: ‘Translate this sentence from [source language] to English:
[source sentence]’.

• Code generation: Its instruction depends on the query.
• Summarization: ‘Summarize: [article text]’.

F.4 MAB SETTINGS

In our experiments, we set the exploration strength β for MetaSD-UCB to 0.01, balancing explo-
ration and exploitation. For MetaSD-EXP3, we use a gamma value of 0.4 to control the degree of
exploration. In the SH algorithm, we set the period to 1, ensuring frequent elimination of underper-
forming drafters.

F.5 BASELINE

We conduct several SD methods, ensuring their open-source availability and robust performance.
Each method embodies a distinct strategy for accelerating LLM inference:

• SpS (Chen et al., 2023): SpS employs a smaller LM from the same model series as the
drafter. In the verification stage, if a token is rejected, SpS corrects it using residual proba-
bility to maintain generation quality.

• BPD, Medusa, and Eagle (Stern et al., 2018; Cai et al., 2024; Li et al., 2024): These meth-
ods enhance the target LLM by incorporating additional lightweight FFN heads. These
heads draft potential token sequences based on the penultimate layer representations from
the target LLM.

• PLD (Saxena, 2023): Implementing the ideas of (Yang et al., 2023), PLD selects text spans
directly from the input to serve as drafts, aiming for relevant and accurate initial predictions.

• R-BPD (Rescored blockwise parallel decoding) and R-Medusa (Rescored Medusa) (Kim
et al., 2024): This method enhances BPD by rescoring the drafts at test-time, aiming to
increase the number of accepted tokens.

F.6 REWARD DISTRIBUTION

Figure 5 and Table 2 present a statistical analysis of the BE and BD reward distributions, collected
using autoregressive decoding with the same Japanese dataset and drafter configurations as in Ta-
ble 1. Several key observations emerge:

• Lower variance: The BD reward exhibits lower variance compared to the BE reward across
all drafters. This suggests that BD provides a more stable and consistent feedback signal,
leading to faster convergence with less sample complexity.

• Improved discrimination: The difference in mean reward between the optimal drafter
(Drafter 1; Ja-drafter) and the suboptimal drafters is more pronounced with the BD re-
ward. This improved discrimination between drafters can facilitate quicker identification
of the optimal drafter by the MAB algorithm.

• Reduced sparsity: A significant portion of the BE rewards are zero, particularly for the
suboptimal drafters. This sparsity can hinder the learning process of the MAB algorithm.
In contrast, the BD reward consistently provides non-zero feedback, enabling continuous
learning and adaptation.
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Figure 5: Comparison of rewards on the Ja→En dataset across different drafters in two scenarios:
(a) BE and (b) BD. Box plots show the distribution of rewards, with whiskers extending to the 5th
and 95th percentiles. Drafter specializations: 1: Ja →En, 2: Ru →En, 3: De →En, 4: Fr →En, 5:
Zh →En.

Table 8: Speedup ratio on long-context De→En translation with the same settings in Table 5.

Dataset Drafter1 Drafter2 Drafter3 Drafter4 Drafter5 UCB

Long De→En 1.238 1.316 2.044 0.970 1.187 2.031

These observations collectively suggest that the BD reward offers several advantages over the BE
reward in the context of MetaSD. Its lower variance, improved discrimination between drafters,
and reduced sparsity contribute to a more informative and efficient learning signal for the MAB
algorithm, potentially leading to faster convergence and better overall performance.

F.7 LONG-CONTEXT DE →EN TRANSLATION

While our results in Table 3 and Table 5 have the relatively less effectiveness of MetaSpS on the
WMT16 De→En translation task than other tasks, it is worth noting that this dataset primarily
consists of relatively short sentences with an average length of fewer than 100 tokens. To assess
the performance of our framework in a more challenging long-context scenario, we evaluate it on a
new De→En translation dataset with an average context length of 500 tokens generated by GPT-4o.
As shown in Table 8, MetaSpS-UCB achieves a speedup ratio of 2.031 on this long-context dataset,
approaching the performance of the optimal drafter (Drafter3).

F.8 EVALUATIONS ON OUT-OF-DOMAIN DATASETS

To evaluate the adaptability and performance of our MetaSD framework in out-of-domain settings,
we conduct additional experiments using the Alpaca-Finance (Bhartia, 2023) and RAG datasets
(Xia et al., 2024b). These datasets fall outside the domains of the specialized drafters used in our
main experiments, providing a robust test of MetaSD’s ability to generalize. The results in Table 9,
measured using an NVIDIA A100 GPU, are presented below:

Superior adaptability The results indicate that MetaSD consistently outperforms both OFA
drafters and most of individual specialized drafters in out-of-domain scenarios. This highlights
its ability to dynamically adapt to new tasks without relying on prior assumptions about domain
similarity. The following provides the limitations of similarity-based selection:

• Computing similarity between sentence embeddings requires encoding the context to gen-
erate embeddings. For inputs exceeding 128 tokens, this process can significantly increase
inference time. For example, with over 100 tokens, similarity computation becomes slower
than MetaSD’s dynamic drafter selection.

• High accuracy in selecting the correct drafter based on embeddings is challenging, leading
to potential misclassifications. Errors in this step can result in suboptimal drafter perfor-
mance. For example, as input lengths increase, the performance gap between static Math
drafters and MetaSD-UCB narrows, reducing the benefits of static drafter selection.
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Table 9: Performance of MetaSpS, MetaEagle, and baselines on out-of-domain datasets (measured
on A100 GPU).

Dataset Drafter1 Drafter2 Drafter3 Drafter4 Drafter5 OFA Drafter MetaSpS-UCB EAGLE1 EAGLE2 EAGLE3 EAGLE4 EAGLE5 OFA Eagle MetaEagle-UCB
RAG 1.720 1.373 1.752 1.944 1.552 1.638 1.799 1.844 1.568 2.566 2.535 1.793 2.175 2.238
Finance 1.416 1.284 1.414 1.550 1.397 1.367 1.436 2.432 2.175 2.494 2.826 2.175 2.435 2.517

Table 10: Black-box performance with perturbed prompts (speedup relative to greedy decoding,
measured on A100 GPU).

Task Drafter1 Drafter2 Drafter3 Drafter4 Drafter5 OFA Drafter MetaSpS - UCB
Code 2.368 1.158 1.521 1.763 1.633 1.937 2.139
Translation 0.997 1.986 0.973 1.036 0.935 0.969 1.422
CNN 1.458 1.016 1.895 1.458 1.318 1.521 1.779
NQA 1.297 1.158 1.285 1.907 1.237 1.387 1.610
MathQA 1.482 1.184 1.357 1.470 2.346 1.895 2.149

Intractability with heterogeneous drafters In practical scenarios, heterogeneous drafters often
lack complete or uniform training descriptions. Under such conditions, similarity-based selection
becomes infeasible. MetaSD’s dynamic and adaptive approach offers a scalable alternative, ensuring
robust performance even with limited information about drafter specialization.

F.9 EVALUATIONS WITH PERTURBED PROMPTS

To better reflect real-world use cases, we conduct additional experiments using perturbed prompts.
In this setting, the prompts for each query were slightly varied while remaining semantically equiv-
alent to the original. These perturbations, generated using GPT-4o, ensured diverse yet natural
variations. For example:

• In the translation task, the original prompt ‘Translate German to English’ used in the train-
ing was perturbed to ‘Convert this text from German to English’.

• In the summarization task, the original prompt ‘Summarize:’ used in the training was per-
turbed to ‘Provide a concise overview of the following text:’.

We find two key observations from the result. First, perturbed prompts introduce a performance drop
across all methods, including OFA drafter/Eagle and individual specialized drafters. This degrada-
tion highlights that real-world variability in prompts can challenge any static drafter selection strat-
egy, suggesting the need for more adaptive mechanisms. Second, despite the increased variability,
MetaSD consistently outperforms all baselines, including OFA and individual drafters. The results
demonstrate the strength of MetaSD’s dynamic token-level selection mechanism, which adapts to
the token distributions during inference rather than relying solely on the characteristics of the input
prompt. The performance, measured as speedup relative to standard greedy decoding, is presented
in Table 10 and Table 11.

F.10 THROUGHPUT OVER EAGLE DRAFTERS

To evaluate the throughput efficiency of our proposed method, particularly in distributed system
deployments where batch processing plays a critical role, we conduct experiments under the same
settings described in the original Eagle paper Li et al. (2024). Using an RTX 3090 (24GB) with the
Vicuna 7B model, we measured throughput across a diverse set of tasks. The results demonstrate that
MetaEagle-UCB achieves superior throughput compared to the single OFA Eagle, with a speedup
factor of 2.427 versus 2.235 for single drafters.

A key strength of our drafter management mechanism lies in its ability to maintain throughput
efficiency comparable to single-drafter methods. This is facilitated by preloading drafter parameters
into DRAM, thereby avoiding frequent memory transfers to VRAM during computation. As a result,
both the number of memory movements and the overall memory bandwidth requirements remain
consistent with those of single-drafter configurations, even in scenarios involving multiple drafters.
Additionally, the computational structure of MetaSD is designed to scale effectively across batches.
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Table 11: White-box performance with perturbed prompts (speedup relative to greedy decoding,
measured on A100 GPU).

Task EAGLE1 EAGLE2 EAGLE3 EAGLE4 EAGLE5 OFA Eagle MetaEagle-UCB
Code 3.748 1.335 1.697 2.030 2.451 3.626 3.563
Translation 1.757 2.553 2.161 2.035 1.677 2.293 2.375
CNN 1.671 1.529 3.084 1.939 1.639 2.648 2.742
NQA 1.837 1.616 2.094 2.932 1.722 2.439 2.516
MathQA 2.511 1.664 2.207 2.913 3.844 3.136 3.366

Table 12: Performance comparison of MetaSD-UCB with different KV cache strategies (speedup
relative to standard greedy decoding, measured on A100 GPU).

Task MetaEagle-UCB (Recomputing KV) MetaEagle-UCB with StreamingLLM
Code 3.724 3.624
Trans 2.318 2.352
Sum 3.057 2.986
NQA 2.641 2.654
Math 3.520 3.338

Performance gains observed in single-batch scenarios carry over seamlessly to multi-batch settings,
ensuring throughput efficiency in real-world distributed environments.

F.11 METAEAGLE-UCB WITH EFFICIENT KV CACHE STRATEGIES

In our framework, the KV cache is recalculated for the previous context whenever a drafter switch
occurs. Despite this recalculation, the computational overhead is negligible, even for relatively long
contexts. This efficiency arises from the minimal cost of prefilling the KV cache for a small drafter.
For instance, in the Eagle drafter, only one layer of KV cache is computed for the unseen context,
ensuring computational efficiency.

To further validate the framework’s efficiency, we conducted additional experiments incorporating
StreamingLLM techniques (Xiao et al., 2023). These techniques circumvent the need for full KV
cache recalculation, offering an alternative method for reducing computational costs. The results,
summarized in Table 12, demonstrate that StreamingLLM achieves comparable performance to the
default approach of KV cache recalculation, highlighting the robustness of MetaSD.

These results confirm two key observations. First, the computational overhead introduced by full
KV cache recalculation is minimal, as evidenced by MetaEagle-UCB maintaining high performance
across tasks. This demonstrates that recalculating the KV cache is not a significant bottleneck.
Second, Streaming Decode techniques provide an effective alternative, yielding similar overall per-
formance with slight improvements observed in specific cases such as Translation and QA. These
findings underscore the flexibility and efficiency of MetaSD in managing KV cache strategies.

G PROOFS

To begin, we provide the mathematical terms and notations in Table 13.

G.1 BASIC LEMMAS

First, we provide basic concentration inequalities which will be used to prove our theoretical results.

Lemma 1 (Chernoff-Hoeffding bound). Suppose there are n random variables X1, X2, . . . , Xn

whose value is bounded in [0, 1] and E[Xt|X1, . . . , Xt−1] = µ for 2 ≤ t ≤ n. Then, for Sn =∑n
i=1 Xi and a ≥ 0, following inequalities holds:

P(Sn ≥ nµ+ a) ≤ e−2a2/n,P(Sn ≤ nµ− a) ≤ e−2a2/n.
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Table 13: Mathematical terms and notations in our work.

Notation Descriptions

K Number of drafters

[K] For a given integer K, denotes the set {1, ...,K}
i Drafter index i ∈ [K]

αi True mean of acceptance rate when using drafter i

i⋆ Drafter index with the highest αi

t Number of current round

B Total number of tokens to generate

l(t) Number of input tokens at round t

x1:l Token sequence of first l tokens

Mq Target model

Mqi The i-th drafter

pl Probability distribution of target model output given token sequence x1:l

qli Probability distribution of output of drafter i given token sequence x1:l

Nacc(i, t) Number of accepted tokens using drafter i in round t

Nmax Number of candidate tokens

r Arbitrary reward distribution with bounded support [0,1]

ri,t General reward feedback using drafter i in round t

rBE
i,t BE reward using drafter i in round t

rBD
i,t BD reward using drafter i in round t

ni(t) Number of selecting drafter i until round t

at Index of selected drafter in round t

β The exploration strength hyperparamter in UCB

γ The exploration hyperparameter used in EXP3

µi Expectation of the reward distribution of drafter i

π Bandit policy (algorithm)

τ(π,B) Stopping time for the policy π with given total number of tokens B

λ Switching cost constant factor

∆i Suboptimality gap for the arbitrary reward distribution r: µ⋆
i − µi

∆(αi) Suboptimality gap for the BD reward: α⋆
i − αi

∆BE
i Suboptimality gap for the BE reward

R(ri) Feedback signal for reward distribution when using drafter i (Theorem 1)

dTV (·, ·) The total variation distance between probability measures

I Indicator function

O(·) Big O notation

Lemma 2 (Bernstein inequality). Suppose there are n random variables X1, X2, . . . , Xn whose
value is bounded in [0, 1] and

∑n
t=1 Var[Xt|Xt−1, . . . , X1] = σ2. Then, for Sn =

∑n
i=1 Xi and

t ≥ 0, following inequalities holds:

P(Sn ≥ E[Sn] + t) ≤ exp(− t2

σ2 + t/2
).
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G.2 PROOF OF THEOREM 1

In order to prove the theorem, we first provide statistics for the BE and BD rewards by the following
lemmas.

BE reward statistics Here, we explicitly calculate expectation and variance of the BE reward in
one round of speculative decoding. The result is presented in the following lemma.

Lemma 3 (BE reward statistics). The expectation and variance of the number of accepted tokens is
as follows:

E[rBE
i,t ] =

αi − αNmax+1
i

Nmax(1− αi)
,

Var[rBE
i,t ] =

αi

(
1− (2Nmax + 1)αNmax

i + (2Nmax + 1)αNmax+1
i − α2Nmax+1

i

)
(Nmax)2(1− αi)2

.

(5)

Proof of Lemma 3 We first start with calculating the expectation and variance of Nacc which can
be obtained in a closed form. Suppose we conduct one round of speculative decoding for candidate
token indices l + j for j = 1, . . . , Nmax. Now, define Ei

l+j as the event of (l+j)-th token gen-
erated by drafter i is accepted in the verification stage. Also, define random variable Xi

l+j to be 1
when Ei

l+j occurs and 0 otherwise. With the stationary assumption, one can observe Xi
l+j follows

Bernoulli distribution with mean αi. Now, expectation can be obtained as:

E[Nacc(i, t)] =

Nmax∑
l=1

E[Xi
l+j ] =

Nmax∑
l=1

αl
i =

αi − αNmax+1
i

1− αi
. (6)

To obtain variance, from Xi
L+l ∼ Ber(αl

i), following holds:

Var(Xi
L+l) = (αl

i − α2l
i )
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Now, we can directly obtain a closed form of the variance by,

Var(Nacc(i, t)) = Var(

Nmax∑
l=1

Xi
L+l)

=

Nmax∑
l=1

Var(Xi
L+l) + 2 ·

∑
l<m

Cov(Xi
L+l, X

i
L+m)

= 2 ·
Nmax∑
l=1

Nmax∑
m=l

Cov(Xi
L+l, X

i
L+m)−

Nmax∑
l=1

Var(Xi
L+l)

= 2 ·
Nmax∑
l=1

Nmax∑
m=l

(αm
i − αm+l

i )−
Nmax∑
l=1

(αl
i − α2l

i )

= 2 ·
Nmax∑
l=1

Nmax∑
m=l

αm
i − 2 ·

Nmax∑
l=1

Nmax∑
m=l

{αm+l
i − αi(1− αNmax

i )(1− αNmax+1
i )

1− α2
i

}

= 2 ·
Nmax∑
l=1

l · αl
i − 2 ·

Nmax∑
l=1

{αl
i

(
αl
i − αNmax+1

i

1− αi

)
− αi(1− αNmax

i )(1− αNmax+1
i )

1− α2
i

}

= 2 ·
Nmax∑
l=1

l · αl
i − 2 · 1

1− αi

Nmax∑
l=1

α2l
i

+ 2 · α
Nmax+1
i

1− αi

Nmax∑
l=1

{αl
i −

αi(1− αNmax
i )(1− αNmax+1

i )

1− α2
i

}

=
2αi(Nmax · αNmax+1

i − (Nmax + 1)αNmax
i + 1)

(1− αi)2
− 2α2

i (1− α2Nmax
i )

(1− αi)(1− α2
i )

+
2αNmax+2

i (1− αNmax
i )

(1− αi)2
− αi(1− αNmax

i )(1− αNmax+1
i )

1− α2
i

.

(7)

The second equality comes from the basic property of variance, the fourth equality is from observing
Cov(Xi

L+l, X
i
L+m) = E[Xi

L+lX
i
L+m]− E[Xi

L+l]E[Xi
L+m] = αm

i − αl+m
i . After rearranging the

terms, we can obtain closed form of the variance as follows.

Var(Nacc(i, t)) =
αi

(
1− (2Nmax + 1)αNmax

i + (2Nmax + 1)αNmax+1
i − α2Nmax+1

i

)
(1− αi)2

. (8)

Since rBE
i,t = 1

Nmax
Nacc(i, t) by definition, plugging this into eq. 6 and eq. 8 concludes the proof.

BD reward statistics Next, we obtain the expectation and variance of the BD reward by following
lemma.
Lemma 4. Following the relationships hold for rBD

i,t for all i, t:

E[rBD
i,t ] = αi,Var[r

BD
i,t ] ≤ 1

4Nmax
(9)

Proof of Lemma 4 Under stationary assumption, any random variable which is bounded in [0, 1]
has variance less than 1

4 . Since in eq. 1, rBD
i,t is constructed by empirical mean of Nmax numbers of

samples under stationary assumption, following holds:

Var[ri,t] = Var

 1

Nmax

Nmax−1∑
j=0

(1− dTV (p
l(t)+j , q

l(t)+j
i )

 ≤ 1

4Nmax
,
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and this concludes the proof.

Next, we formally define the bandit signal ratio as follows.
Definition 3 (Feedback signal). Under stationary environment, any reward design ri with µi =
E[ri], i⋆ = argmaxµi, and ∆i = µ⋆

i − µi, we define feedback signal for each suboptimal arm
i ̸= i⋆ as follows.

R(ri) :=
max(Var[ri],Var[ri⋆ ])

∆2
i

As we will see, R become crucial factor that governs regret upper bound of our MetaSD-UCB
algorithm. Specifically, the lower R(ri) guarantees smaller amount of regret by picking suboptimal
arm i.

Then, we provide a formal version of Theorem 1 which states the BD reward actually has lower
feedback signal compared to the BE reward.
Theorem 3 (Formal version of Theorem 1). Denote ∆(αi) := αi⋆ − αi for any suboptimal arm i
and n := Nmax for notational convenience. For any n ∈ N , define functions fn, gn, hn on (0, 1)

by fn(x) =
x−xn+1

1−x , gn(x) = f ′
n(x) =

∑n
s=1 sx

s−1, and hn(x) =
∑n

s=1 s(x
s−1 − x2n−s). Then

following holds:

R(rBD
i ) ≤ 1

4(∆(αi))2Nmax
. (10)

Also, following holds for any drafter configuration satisfying hn(αi⋆) ≥ gn(αi⋆ )
2

4nαi⋆
and Var[rBE

i ] <

Var[rBE
i⋆ ]:

R(rBD
i ) < R(rBE

i ). (11)

Proof. Upper bound for the BD reward can be directly obtained from Lemma 4. To prove eq. 11,
denote Nmax = n for notational convenience. Then, by directly applying Lemma 3, it is observed
that

R(rBE
i ) =

max(Var[rBE
i ],Var[rBE

i⋆ ])

∆2
i

=
αi⋆(1− (2n+ 1)αn

i⋆ + (2n+ 1)αn+1
i⋆ − α2n+1

i⋆ )

(fn(α⋆
i )− fn(αi))2(1− αi⋆)2

>
αi⋆(1− (2n+ 1)αn

i⋆ + (2n+ 1)αn+1
j − α2n+1

i⋆ )

(gn (αi⋆)∆(αi))2(1− αi⋆)
2

=
αi⋆hn(αi⋆)

(gn(αi⋆)∆(αi))2

≥ 1

4(∆(αi))2Nmax
,

(12)

where the first inequality is from fn is a convex function, the second equality comes from Lemma 3,
and the last line comes from the assumption.

Practical considerations While Theorem 3 provides a general scenario, the inequalities used in its
derivation can be quite loose in certain cases. In practice, the BD reward often exhibits a significantly
smaller feedback signal R(ri) than the BE reward. For example, consider the case where Nmax = 5,
which is the setting used in our main experiments. The condition hn(αi⋆) > gn(αi⋆ )

4nαi⋆
holds for

0.06 < αi⋆ < 0.8, which covers most of the practical range of αi⋆ . This implies that, in many
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realistic scenarios, the BD reward leads to a substantially tighter regret bound compared to the BE
reward, further supporting its effectiveness in the MetaSD framework. Moreover, assumption of
Var[rBE

i ] < Var[rBE
i⋆ ] covers most of the practical scenarios. As an example, if n = 5, Var[rBE

i ]
is monotonically increasing until αi = 0.815. Consequently, for any drafter set with αi⋆ < 0.815,
Var[rBE

i ] < Var[rBE
i⋆ ] holds for all suboptimal drafters.

Relationship between expectations of two rewards. Combining Lemma 3 and Lemma 4, one
can show that the expectation of the BD reward is proportional to the BE reward.

Lemma 5. Following relationship holds between the expectation of the BE reward and the expecta-
tion of the BD reward:

E[rBE
i,t ] =

1− αNmax
i

Nmax(1− αi)
E[rBD

i,t ]. (13)

G.3 STOPPING TIME REGRET

In this subsection, we provide the equivalence relation between two objectives, maximizing the
reward and minimizing the stopping time. First, we define the regret of MetaSD in terms of the
stopping time. Denote τ(π,B) as the stopping time for any policy π with target sequence length B
and π⋆ as the optimal policy. In Definition 2, stopping time regret of policy π with B is defined as:

REGs(π,B) = E[τ(π,B)]− E[τ(π⋆, B)].

Intuitively, minimizing REGs(π,B) should guarantee optimal speedup since minimizing τ(π,B)
implies minimizing the number of total SD round. The following lemma proves that our reward
design is well aligned with such objective.

Lemma 6 (BE reward original regret). For any policy π with the target sequence length B, denote
the original regret objective using the BE reward as REGo,BE(π, T ) =

∑T
t=1(E[ri⋆ ] − E[rat

]) .
Then, the following equation holds:

REGo,BE(π, T ) =
1

Nmax
REGs(π,B)

Consequently, minimizing the regret in terms of accepted tokens is equivalent to minimizing
REG(s)(π,B).

Proof. It is observed that

B =

τ(B)∑
t=1

(Nacc(i, t) + 1) = τ(B) +

τ(B)∑
t=1

Nacc(i, t) = τ(B) +Nmax

τ(B)∑
t=1

rat,t.

Thus,

τ(π,B)− τ(π⋆, B) = Nmax

τ(B)∑
t=1

(ra⋆
t ,t
− rat,t), (14)

where a⋆t is the action from the optimal policy π⋆ in round t. By taking the expectation on both
sides, we get the result.

However, we can show that above result does not hold in every reward design.

Lemma 7 (BD reward original regret). For any policy π with the fixed target sequence length B,
denote the original regret objective using the BE reward as REGo,BD(π, T ) =

∑T
t=1(E[ri⋆ ] −

E[rat
]) . Then, there exists a bandit instance with the two different policies π1, π2 such that:

E[Rego,BD(π1, B)] < E[Rego,BD(π2, B)],

E[Regs(π1, B)] > E[Regs(π2, B)].
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Proof. Suppose we have three drafters with α1 = 0.1, α2 = 0.5, α3 = 0.8 with Nmax = 2.
Consider π1 as the deterministic policy where it picks the drafter 1 for the first round and pick the
drafter 3 rest of the rounds. Also, π2 be the policy which picks drafter 2 for the first two rounds and
drafter 3 for the rest of the rounds. For the original regret objective, π1 has expected regret of 0.7
while π2 has expected regret 0.6. However, it can be observed that the number of expected tokens
until first two rounds is (0.1 + 0.12) + (0.8 + 0.82) = 1.55 for π1 and 2(0.5 + 0.52) = 1.50 for
π2. Since policy for the rest of the rounds are the same, we can conclude that the expected stopping
time of policy π1 is less then that of policy π2. As a result, π2 is better in terms of original regret
objective and π1 is better with stopping time regret objective.

G.4 METASD-UCB WITH GENERAL REWARD

In this subsection, we provide a generic theorem which is stated as follows.
Theorem 4 (Generic regret upper bound). For any reward design r, Denote µi = E[ri,t], ∆i =
µi⋆ − µi, and i⋆ = argmaxαi. If i⋆ = argmaxµi, then there exists a constant C ′, C ′′′ > 0 such
that following bound holds:

REG(π,B) <
∑
i ̸=i⋆

8

∆2
i

(lnB + ln (ln(
∑
i ̸=i⋆

1

∆2
i

)) + C ′) + C ′′′. (15)

Above theorem holds for any reward design as long as the drafter with the maximum expected
reward E[ri,t] also has the highest acceptance rate αi. Since both the BD and BE rewards satisfy
this condition, Theorem 4 applies to both of the reward designs. The proof of Theorem 4 consists of
two main parts. First, given total round, we can bound the expected number of selecting suboptimal
arms using the same anlysis in Auer (2002). Next, we get the upper bound on expected stopping
time of MetaSD-UCB algorithm.

Bounding suboptimal selection Given fixed stopping time, we can bound the expectation of num-
ber of selecting suboptimal arms as follows:
Lemma 8 (Theorem 1 from Auer (2002)). Let ni(t) be the number of pulling sub-optimal drafter
(i ̸= i⋆) by the MetaSD-UCB until round t. Also, denote ∆i := µr

i⋆ − µr
i be the sub-optimal gap.

Then, following inequality holds for β = 1 :

E[ni(τ(B))|τ(B)] ≤ 8 ln τ(B)

∆2
i

+ 1 +
π2

3
. (16)

Proof of Lemma 8 For the analysis, we restate the proof in Auer (2002) for MetaSD-UCB algo-
rithm with our notations. One can observe ni(τ(B)), the number of times drafter i is chosen for the
one round of speculative decoding until the end of generation, can be bounded as follows:

ni(τ(B)) = 1 +

τ(B)∑
t=K+1

I[at = i]

≤ l +

τ(B)∑
t=K+1

I[at = i, ni(t− 1) ≥ l]

≤ l +

τ(B)∑
t=K+1

I

[
µ̂i,t−1 +

√
2 ln (t− 1)

ni(t− 1)
≥ µ̂i⋆,t−1 +

√
2 ln (t− 1)

ni⋆(t− 1)
, ni(t− 1) ≥ l

]

≤ l +

τ(B)∑
t=1

t−1∑
s=1

t−1∑
ni=l

I

µ̂i,ni +

√
2 ln (t− 1)

ni
≥ µ̂i⋆,s +

√
2 ln (t− 1)

s

 .

(17)

Here, I is an indicator function and l is a positive integer. Now, one can see following holds:

P

(
µ̂i,ni

+

√
2 ln t

ni
≥ µ̂i⋆,s +

√
2 ln t

s

)
≤

P

(
µ̂i⋆,s ≤ µi⋆ −

√
2 ln t

s

)
+ P

(
µ̂i.ni ≥ µi +

√
2 ln t

ni

)
+ P

(
µi⋆ < µi + 2 ·

√
2 ln t

ni

)
.
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First term and the second term in the above equation is bounded by Lemma 1 as:

P

(
µ̂i⋆,s ≤ µi⋆ −

√
2 ln t

s

)
≤ exp(−4 ln t) = t−4,

P

(
µ̂i.ni

≥ µi +

√
2 ln t

ni

)
≤ exp(−4 ln t) = t−4.

(18)

By choosing l = ⌈ 8 ln τ(B)
∆2

i
⌉, one can see that the last term is 0 since,

2 ·
√

2 ln t

ni
≤ 2 ·

√√√√ 2 ln t

( 8 ln τ(B)
∆2

i
)
≤ ∆i. (19)

Finally, taking expectation of eq. 17 and put the above result, one can see that:

E[ni(τ(B))|τ(B)] ≤ ⌈8 ln τ(B)

∆2
i

⌉+ 2

τ(B)∑
t=1

t−1∑
s=1

t−1∑
ni=l

2t−4

≤ ⌈8 ln τ(B)

∆2
i

⌉+ 2

∞∑
t=1

t−1∑
s=1

t−1∑
ni=l

2t−4

≤ 8 ln τ(B)

∆2
i

+ 1 +
π2

3
.

(20)

Bounding stopping time The overall structure of the proof in bounding the stopping time is based
on the proof of Lemma 2 in Ding et al. (2013) while we provide additional details that suits with our
problem formulation. First, we obtain upper bound on stopping time by following lemma:

Lemma 9. Following inequalities holds for some constants C ′, C ′′ > 0 :

E[τ(π,B)] ≤ B(1− αi⋆)

1− αNmax+1
i⋆

+
∑
i ̸=i⋆

8

∆2
i

(lnB + ln (ln(
∑
i ̸=i⋆

1

∆2
i

)) + C ′) + C ′′.

In order to prove Lemma 9, we first present two lemmas for bounding stopping time for a single
armed bandit process i.e., we play only the single arm consecutively until the end of the round.
Then, we provide how can we decouple stopping time of multi-armed bandit process of UCB policy.

Lemma 10. Let τ(πi, B) be a stopping time for the single armed bandit process πi which chooses
only same drafter i throughout the generation (i.e. at = i for all t). Then the stopping time can be
bounded as:

B(1− αi)

1− αNmax+1
i

− 1 < E[τ(πi, B)] ≤ (B + 1)(1− αi)

1− αNmax+1
i

. (21)

Proof. One can see the expected number of generated tokens in each round is µc
i =

1−α
Nmax+1
i

1−αi

and the remaining number of tokens in the last round is contained in {1, 2, · · · , Nmax}. Now,
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suppose eq. 21 holds for all B < B0. Then one can observe:

E[τ(πi, B0)] = E

Nmax∑
j=0

(
τ(πi, B0 − 1− j) + 1

)
P[rBE

i = j]


≤

Nmax∑
j=0

(B0 − j)(1− αi)

1− αNmax+1
i

P[rBE
i = j] + 1

≤
Nmax∑
j=0

(B0 + 1)(1− αi)

1− αNmax+1
i

P[rBE
i = j]− (1− αi)

1− αNmax+1
i

E[rBE
i = j] + 1

=

Nmax∑
j=0

(B0 + 1)(1− αi)

1− αNmax+1
i

P[rBE
i = j].

Since it is trivial to see that eq. 21 holds for B = 1, by mathematical induction, one can conclude
the proof. The lower bound can be proved by the exactly same manner as in the upper bound.

Now, we propose a lemma which provides an upper bound on expected stopping time.
Lemma 11. For MetaSD-UCB algorithm π with given token budget target sequence length B,
expectation of stopping time τ(B) can be bounded as follows:

E[τ(B)] ≤ E[τ(πi⋆ , B)] +
∑
i ̸=i⋆

E[ni(π,B)], (22)

where, ni(π,B) is number of selecting drafter i by policy π during the generation.

Proof. We first prove the upper bound (eq. 22). For policy π with the budget target sequence length
B, define a corresponding process πu which is defined by extending the process with the new stop-
ping time, which is:

τu(πu, B) = min{τ > 0 |
τ∑

t=1

(Nacc(a
u
t , t) + 1) · I[aut = i⋆] ≥ B}.

where, aut = at for t ≤ τ(B) and aut = i⋆ for τ(B) < t ≤ τu(πu, B). In other words, τu(πu, B)
is the time where total number of generated tokens by optimal drafter exceeds B. Then, one can
see from the construction of πu and by observing that τu does not depend on the number of tokens
generated by suboptimal drafters, E[ni⋆(π,B)] ≤ E[τu(πu, B)] = E[τ(πi⋆ , B)].

E[ni⋆(π,B)] ≤ E[ni⋆(π
u, B)] = E[τ(πi⋆ , B)]. (23)

Proof of Lemma 9 To prove the upper bound, from Lemma 8 and Lemma 11, it is shown that

E[τ(B)] ≤ E[τ(πi⋆ , B)] +
∑
i ̸=i⋆

E[ni(π,B)]

≤ (B + 1)(1− αi⋆)

1− αNmax+1
i⋆

+
∑
i ̸=i⋆

E[ni(π,B)]

≤ (B + 1)(1− αi⋆)

1− αNmax+1
i⋆

+
∑
i ̸=i⋆

8

∆2
i

E[ln τ(B)] + (K − 1)(1 +
π2

3
),

≤ (B + 1) · (1− αi⋆)

1− αNmax+1
i⋆

+
αi⋆ − αNmax+1

i⋆

1− αNmax+1
i⋆

∑
i ̸=i⋆

8

∆2
i

lnE[τ(B)].

≤ (B + 1)(1− αi⋆)

1− αNmax+1
i⋆

+
∑
i̸=i⋆

8

∆2
i

lnE[τ(B)] + (K − 1)(1 +
π2

3
)

(24)
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where the second inequality holds from Lemma 10, the third inequality holds by Lemma 8, and
the last inequality holds from Jensen’s inequality. Now, using ln(x) ≤ x

ϵ + ln(ϵ) − 1 and taking
ϵ =

∑
i ̸=i⋆

16
∆2

i
, one can obtain:

E[τ(B)] ≤ (2B + 2) · (1− αi⋆)

1− αNmax+1
i⋆

+ 2 ln(
∑
i ̸=i⋆

16

∆2
i

)− 2 + (2K − 2)(1 +
π2

3
).

If we again put the above equation into the eq. 24, one can obtain:

E[τ(B)] ≤ (B + 1)(1− αi⋆)

1− αNmax+1
i⋆

+
∑
i ̸=i⋆

8

∆2
i

ln

 (2B + 2) · (1− αi⋆)

1− αNmax+1
i⋆

+ 2 ln(
∑
i ̸=i⋆

1

∆2
i

) + C1

+ C2

≤ B(1− αi⋆)

1− αNmax+1
i⋆

+
∑
i ̸=i⋆

8

∆2
i

(lnB + ln (ln(
∑
i ̸=i⋆

1

∆2
i

)) + C ′) + C ′′,

where C1, C2, C
′, C ′′ > 0 are constants that are independent of B and ∆i.

Proof of Theorem 4 The theorem is proved by observing:

E[τ(π,B)]− E[τ(π⋆, B)]) = (E[τ(π,B)]− E[τ(πi⋆ , B)])

≤ B(1− αi⋆)

1− αNmax+1
i⋆

+
∑
i ̸=i⋆

8

∆2
i

(lnB + ln (ln(
∑
i ̸=i⋆

1

∆2
i

)) + C ′) + C ′′ − E[τ(πi⋆ , B)])

<
B(1− αi⋆)

1− αNmax+1
i⋆

+
∑
i ̸=i⋆

8

∆2
i

(lnB + ln (ln(
∑
i ̸=i⋆

1

∆2
i

)) + C ′) + C ′′ − B(1− αi)

1− αNmax+1
i

− 1

<
∑
i ̸=i⋆

8

∆2
i

(lnB + ln (ln(
∑
i ̸=i⋆

1

∆2
i

)) + C ′) + C ′′′.

where C ′′ > 0 is an appropriate constant which doesn’t depend on B. C ′, C ′′′ > 0 are constants in-
dependent of B and ∆i. Here, first equality comes from Lemma 6, first inequality is from Lemma 9,
and second inequality holds by putting i⋆ to the lower bound of Lemma 10.

Note that above analysis holds for every β > 0 in Algorithm 2. However, when the target sequence
length B is finite, constant terms in the regret bound becomes important which makes the perfor-
mance of the algorithm dependent on β. We empirically found the optimal β in our experiments.
We provide further discussion on using different β in Appendix Section G.8

G.5 PROOF OF THEOREM 2

Concentration inequality Denote empirical mean of the BD and BE rewards as follows.

µBD
i,t =

1

ni(t)

t∑
τ=1

ri,τ · I[aτ = i], µBE
i,t =

1

ni(t)Nmax

t∑
τ=1

Nacc(i, t) · I[aτ = i],

where ni(t) is number of times drafter i is selected until round t and I is indicator function.

Then, following inequalities can be derived for ϵ > 0:

P

(
µ̂BE
i ≥ αi − αNmax+1

i

Nmax(1− αi)
+ ϵ

)
≤ exp

(
− ni(t)ϵ

2

2V ar[rBE
i ] + ϵ

)
, (25)

P
(
µ̂BD
i ≥ αi + ϵ

)
≤ exp

(
−2(Nmax)ni(t)ϵ

2
)
. (26)

eq. 25 comes from combining Bernstein’s inequality (Lemma 2) with Lemma 3 and eq. 26 is from
combining Hoeffding’s inequality (Lemma 1) with Lemma 4.
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Bandit algorithm guarantee Using concentration inequalities for both rewards, we provide how
the bandit signal defined in eq. 2 directly related to our algorithm Algorithm 2. In the proof of The-
orem 4, one can observe that bounding number of suboptimal arm selection (Lemma 8) directly
related to the regret under the new regret object defined by stopping time (Definition 2). Leveraging
above results, the regret upper bound for MetaSD-UCB algorithm with the BD and BE rewards can
be proved.

Proof of Theorem 2 For the BD reward, by putting β = 1√
Nmax

in the UCB algorithm and
apply eq. 26, one can directly observe eq. 18 becomes:

P

(
µ̂i⋆,s ≤ µi⋆ −

1√
Nmax

·
√

2 ln t

s

)
≤ exp(−4 ln t) = t−4,

P

(
µ̂i.ni

≥ µi +
1√

Nmax

·
√

2 ln t

ni

)
≤ exp(−4 ln t) = t−4.

(27)

By choosing l = ⌈ 8 ln τ(B)
(Nmax)∆(αi)2

⌉, one can see for ni ≥ l :

2√
Nmax

·
√

2 ln t

ni
≤ ∆i.

Rest of the proof is same as in Theorem 4 and we can obtain:

REG(B) ≤
∑
i̸=i⋆

8

(Nmax)∆(αi)2
(lnB + ln (ln(

∑
i ̸=i⋆

1

∆2
i

)) + C ′) + C,

for some constants C > 0 and this concludes the proof of Theorem 2.

BE reward regret For MetaSD-UCB algorithm with BE reward, we can obtain regret upper bound
by the following theorem.

Theorem 5. Define ∆BE
i := µBE

i⋆ −µBE
i where µBE

i = E[rBE
i ]. If Var[rBE

i ] < Var[rBE
i⋆ ], we can

obtain the following regret upper bound for the MetaSD-UCB algorithm using BE reward:

REG(πBE , B) ≤
∑
i ̸=i⋆

(
(32Var[rBE

i⋆ ] + 16)

(∆BE
i )2

)
(lnB + ln (ln(

∑
i ̸=i⋆

1

∆2
i

)) + C ′) + C, (28)

where C,C ′ > 0 are constants independent of B,∆BE
i .

Proof. From eq. 25, one can similarly modify the original proof of the UCB (Auer, 2002).

Then, putting ϵ =
√
(8Var[rBE

i⋆ ] + 4) ln t into eq. 25 make eq. 18 becomes:

P

(
µ̂i⋆,s ≤ µi⋆ −

√
(8Var[rBE

i⋆ ] + 4) ln t

s

)
≤ exp(−4 ln t) = t−4,

P

µ̂i.ni ≥ µi +

√
(8Var[rBE

i⋆ ] + 4) ln t

ni

 ≤ exp(−4 ln t) = t−4.

(29)

By choosing l = ⌈ (32Var[rBE
i⋆ ]+16) ln τ(B)

(∆BE
i )2

⌉, one can see for ni ≥ l :

2 ·

√
(8Var[rBE

i⋆ ] + 4) ln t

ni
≤ ∆BE

i .

Rest of the proof is similar as in Theorem 4.
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Regret comparison We restate the Collorary 1 formally as follows:

Corollary 2. For any n ∈ N , define functions fn, gn, hn on (0, 1) by fn(x) = x−xn+1

1−x ,

gn(x) = f ′
n(x) =

∑n
s=1 sx

s−1, and hn(x) =
∑n

s=1 s(x
s−1 − x2n−s). If hn(αi⋆) ≥ gn(αi⋆ )

2

4nαi⋆

and Var[rBE
i ] < Var[rBE

i⋆ ], then the regret of our algorithm πBE with the BE reward feedback is
upper bounded by some function f(B), where f(B) > 8

(Nmax)(∆(αi))2
lnB.

Proof. One can observe:
(32Var[rBE

i ] + 16)

(∆BE
i )2

≥ (32Var[rBE
i ])

(∆BE
i )2

>
16

∆(αi)2(Nmax)
,

where first inequality comes from Theorem 3. Now, putting above result with Theorem 2 and The-
orem 5, we get the result.

Note that the better regret upper bound does not always guarantee the better performance since some-
times it is a proof artifact. Since we take quite loose inequalities during the proof of Theorem 5,
we can improve the constant factors for BE reward. Still, even with assuming we can use Lemma 1
inequality in BE reward (which has better guarantee then Bernstein’s inequality), the result of Col-
lorary 1 still holds which shows the distinction between two reward designs in terms of regret as
in Theorem 3.

G.6 ASSUMPTION ON ACCEPTANCE RATE

IID assumption Here, we formally define the assumption on the acceptance rate which is used
throughout our analysis.

Assumption 1. Denote αi,t as the acceptance rate for t-th token generated by i-th model. Then,
for any instance of x1:B generated by the target model, αi,t’s are i.i.d. from a distribution νi with
expectation αi. In other words, following holds for all drafter i ∈ [K].

αi,t = 1− dTV

(
pt(·|x1:t−1), qti(·|x1:t−1)

) i.i.d.∼ νi,E[αi,t] = αi. (30)

Above assumption shows that the acceptance rate for each token only depends on the drafter index
i. We empirically verify the validity of the assumption by observing the TV distance between a
target model and a drafter is well concentrated (F.4). Also, note that we make Assumption 1 for any
temperature T which include greedy decoding. Assumption 1 assumes i.i.d. of acceptance rate αi,t

in every instance and this might include the case where αi can vary for every generation. However,
this does not affect the analysis of Theorem 2 since our algorithm reset the bandit instance in every
new generation.

Comparison with (Leviathan et al., 2023; Yin et al., 2024) In (Leviathan et al., 2023), authors
assume fixed value of αi where they show expected number of generated token in each round is a
fixed value. Our assumption is more general than this and variance of the acceptance rate is critical
factor to obtain a concentration bound as stated in Lemma 3 and Lemma 4 which is impossible when
assuming fixed acceptance rate. (Yin et al., 2024) analyze the most general case where they provide
the expected number of total rejected tokens as follows:

E[Nrej ] =

T∑
t=1

Ex1:t−1∼pt [dTV (p
t(·|x1:t−1), qti(·|x1:t−1)] (31)

This is general than Assumption 1 where we assume previous context x1:t−1 does not affect the
TV distance between target model and a drafter. Relaxing the assumption and considering context-
dependent reward distribution will be related to a contextual bandit problem (Li et al., 2010) while
we leave investigating on this as an interesting future direction.
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G.7 RANDOMNESS OF THE TARGET SEQUENCE LENGTH B

We can consider general scenarios where we take all possible instances generated by a target model
when using temperature sampling with T > 0. In this scenario, we define the expected regret over
the probability space induced by the target model. To do so, we first provide a formal definition of a
target sequence length B.
Definition 4 (Target sequence length B). Target sequence length B is a stopping time which is
defined as follows:

B = min {t ∈ N : xt = EOS}, (32)
where xt ∼ pt(·|x1:t−1) with pt being a probability distribution from the target model given context
x1:t−1 and EOS refers to the end of sentence token.

According to Definition 4, target sequence length is a random variable (a stopping time). With this,
one can observe following lemma holds:
Lemma 12. For b ∈ N,

P(B = b) = Ex1:b−1∼p

[(
b−1∏
t=1

(1− pt(EOS|x1:t−1)

)
· pb(EOS|x1:b−1)

]
(33)

Where, pt(·|x1:t−1) refers to the conditional probability distribution from a target model for t-th
token generation when given context x1:t−1. Moreover, expectation of a target sequence length
becomes:

E[B] = Ep(B) =

∞∑
b=1

b · P(B = b). (34)

Here, Ep denotes the expectation taken over the probability distribution induced by the target model
p.

Then the general version of stopping time which includes every instance of given context can be
analyzed with the following objective.
Definition 5 (General version of stopping time regret).

REG(π,B) = Ep,π [τ(π,B)]− Ep,π⋆ [τ(π⋆, B)] , (35)

where, Ep denotes the expectation taken over from a probability space induced by the randomness of
target model generation and Eπ,Eπ⋆ refers to the expectation taken over from the probability space
generated by a bandit policy π and the optimal policy π⋆ respectively.

In order to analyze the general version of the stopping time regret which includes the randomness of
B, we first take additional assumption on acceptance rates which is stated as follows.
Assumption 2. Denote αi,t as the acceptance rate for t-th token generated by i-th model. Then,
for any instance x1:B generated by the target model, αi,t’s are i.i.d. from a distribution νi with
expectation αi. In other words, following holds for all drafter i ∈ [K].

αi,t = 1− dTV

(
pt(·|x1:t−1), qti(·|x1:t−1)

) i.i.d.∼ νi,E[αi,t] = αi. (36)

Moreover, αi is independent of B and its conditional expectation over the events with given B is
same for every B.

The above assumption implies acceptance rate for each drafter is i.i.d. from a stationary distribution
of a given instance and its mean value is independent of B. Now, with the generalized regret objec-
tive and Assumption 2, one can obtain regret upper bound in terms of expectation of total generated
tokens.
Theorem 6 (General version of the Theorem 2). Under Assumption 2, following regret bound holds
for Meta-UCB with general stopping time regret:

REG(π,B) <
∑
i̸=i⋆

8

(Nmax)∆(αi)2

ln (E[B]) + ln

ln

∑
i ̸=i⋆

1

∆(αi)2

+ C ′

+ C. (37)

Here, C,C ′ > 0 are again constants that are independent from B and ∆(αi).
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Proof. Since drafter selection from the policy π is independent from B under Assumption 2, we can
decouple eq. 38 as follows:

REG(π,B) = EB [Eπ [τ(π,B)]− Eπ⋆ [τ(π⋆, B)]], (38)

where first expectation is taken over with respect to a probability distribution of B generated from
p. Using Jensen’s inequality and combining with Theorem 2, we get the result.

G.8 FURTHER ANALYSIS ON HYPER-PARAMETER β

Although original UCB-1 algorithm in (Auer, 2002) is based on using fixed value of β = 1, fol-
lowing works (Audibert et al., 2009; Bubeck, 2010) show the regret can indeed be dependent on
the exploration parameter β. We provide a general results which includes a hyperparameter β in
MetaSD-UCB algorithm. In the following, we borrow the analysis of (Bubeck, 2010) for the gen-
eral version of Theorem 2 that includes β.
Theorem 7 (Regret upper bound containing β). For β > 0.5 and with Assumption 1, the regret
upper bound in Theorem 2 can be generalized as follows:

REG(π,B) <
∑
i̸=i⋆

8β2

(Nmax)∆(αi)2
(lnB + ln (ln(

∑
i ̸=i⋆

1

∆2
i

)) + C ′) + C. (39)

Proof. The proof is based on modifying Lemma 8 to the equation (2.15) in (Bubeck, 2010) which
is stated here for the completeness.

E[ni(τ(B))|τ(B)] ≤ 8β2 ln τ(B)

∆2
i

+ 1 +
4

ln(2β2 + 1
2 )

(
2β2 + 1

2

2β2 − 1
2

)2

(40)

Rest of the procedure is same with Theorem 2.

Note that extra β2 appears in the regret bound and supports and constant term can arbitrarily blow
up when β becomes close to the 1

2 by the right term in eq. 40. We refer (Bubeck, 2010) for further
details of the calculations.

H EXTENDED SCENARIOS FOR THE METASD FRAMEWORK

Our MetaSD framework is universal as it can incorporate various bandit algorithms tailored for dif-
ferent scenarios. However, establishing optimality guarantees for existing algorithms in this frame-
work requires careful analysis or one should look for the different algorithm designs. This is due to
two key distinctions in our problem formulation: (i) stochastic stopping time, and (ii) a new regret
objective defined in terms of this stopping time (Definition 2).

This section explores two distinct scenarios and introduces possible algorithms for each. First, we
address a scenario when switching costs is not negligible anymore. In MetaSD framework, this
happens when substantial computational or memory overhead is incurred when changing drafters.
Second, we consider non-stationary environment where the characteristics of the context change
within a one generation. Finally, we briefly discuss on other possible extensions of our framework.

H.1 SWITCHING COSTS

Switching costs for multiple drafters In order to use multiple drafters in SD, one need to replace
all missing key-value(KV) cache values for the model whenever switching one drafter to another.
Reading and writing KV cache is one of the factor which can decrease the inference speed, and
we define any decrease of inference speed by changing drafter as the switching cost. Formally,
switching cost is defined as λ(at, t) = λ (l(t)− l(τi(t))) · I[at−1 ̸= at] where l(t) is number
of processed tokens by the target model in round t, τi(t) is the latest round where i-th drafter is
selected before round t, I is an indicator function, and λ is a constant. we first define the pseudo
regret objective in the presence of switching costs.
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Algorithm 4: Pure exploration-then-commit (PETC)

INPUT Drafter pool [K], initial prompt sequence x1:l, target sequence length B, exploration
rounds B0.

1: for l = 1, 2, ..., B0 do
2: Run SH algorithm with budget B0 (in Algorithm 5)
3: end for
4: î⋆ be the survived index.
5: while l < B do
6: SD with a single drafter î⋆.
7: end while

Definition 6. With bandit policy π and the given budget B, we define the regret as follows:

REGswitch(π,B, λ) = E[τ(π,B)]− E[τ(π⋆, b)] +

τ(B)∑
t=2

λtP(at−1 ̸= at). (41)

To minimize the above regret, observe λ(π,B) = λ
∑τ(B)

t=1 λ(at, t) = λ
∑K

i=1 Bi, where Bi’s are
total number of tokens generated by the i-th drafter after the final round. Intuitively, this implies that
total cost decreases when employing elimination-type of algorithms (Audibert & Bubeck, 2010;
Karnin et al., 2013), which successively eliminate sub-optimal drafters and exclude those drafters
from future selection. Consequently, the total regret REGswitch(B, λ) can be reduced from early
elimination of poor-performed drafters. However, regret can still increase if the best drafter is mis-
takenly eliminated early on. Therefore, it is essential to strike a balance between elimination-based
algorithms and standard MAB algorithms. For this, we design a new algorithm Pure Exploration-
Then-Commit (PETC) in Algorithm 4 which effectively balances these two approaches.

PETC (Algorithm 4) divides the MetaSD into two phases. In the first phase l < B0, the algorithm
tries to eliminate sub-optimal drafters as quickly as possible. In the bandit literature, this is related
to the pure exploration (or best arm identification) problem (Lattimore & Szepesvári, 2020) and we
select using SH Algorithm 5 for our analysis. After the exploration period for estimating the best
drafter, the algorithm exclusively selects this drafter for the remaining rounds.

Now, we provide how to find the optimal B0 which by the following theorem:
Theorem 8 (Regret upper bound on PETC). By choosing B0 = c · lnB for some constant
c > 0 and using Algorithm 5 for the pure exploration in the for the first phase in Algorithm 4,
REGswitch(π,B, λ) ≤ O(lnB) holds.

Proof. First, we can decompose the regret as:

REGswitch(π,B, λ) =

τ(B0)∑
t=1

REG(π, t) +

τ(B)∑
t=τ(B0)+1

REG(π, t) + ST ,

where REG(π, t) denotes original regret objective eq. 3 for one round t and ST denotes the total
switching cost. First term can be bounded by the stopping time of selecting the worst drafter every
round until B0 which can be bounded by τ(B0) = O(lnB) according to Lemma 10. To bound
the second term, we borrow Theorem 4.1 in Karnin et al. (2013), where they prove the probability
of Sequential Halving algorithm to select the suboptimal arm after B0 round can be bounded by
3 log2 K · exp(− B0

8H2 log2 K ), where H2 := maxi
i

∆2
i

. Then we have

τ(B)∑
t=τ(B0)+1

REG(π, t) ≤ τ(πiw , B) · 3 log2 K · exp(−
B0

8H2 log2 K
) = O(lnB),

where iw denotes the worst drafter, τ(πiw , B) denotes the stopping time for generating B tokens
using only the worst drafter. The last term is bounded by λB0 = O(lnB) and this concludes the
proof.
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Algorithm 5: Sequential Halving (SH) (Karnin et al., 2013)
INPUT Total budget T , drafter pool [K]

1: Initialize S0 ← [K]
2: for t = 0, 1, . . . , ⌊log2(K)⌋ − 1 do
3: Pull each drafter in St for nt =

⌊
T

|St|⌊log2(K)⌋

⌋
additional times

4: Rt(i)←
∑nt

j=1 ri,j for i ∈ St

5: Let σt be a bijection on Sk such that Rt(σt(1)) ≤ Rt(σt(2)) ≤ . . . ≤ Rt(σt(|St|))
6: Sk+1 ← [i ∈ Sk|Rt(σt(i)) ≤ Rt(σt(⌈|Sk|/2⌉))]
7: end for

OUTPUT Singleton element of S⌊log2(K)⌋

Here, we can improve constant term in regret upper bound in Theorem 8 by controlling c according
to the switching cost λ and given budget B or we may use more advanced proof techniques in the
best arm identification literature such as in Zhao et al. (2023). We leave these as a future work.

H.2 NON-STATIONARY ENVIRONMENT

In real-world scenarios, the reward distribution for each drafter may evolve over time and past infor-
mation becomes less relevant for decision-making. This phenomenon, referred to as non-stationarity,
challenges traditional MAB algorithms that operate under the assumption of stationary reward distri-
butions. In SD, non-stationarity can stem from various factors. For example, during a long-form text
generation task, the optimal drafter may change as the topic or style of the text evolves. Consider the
prompt: ‘Please summarize and reason about the following article on climate change...’. Initially, a
drafter specialized in summarization might be most effective. However, as the generation progresses
towards the reasoning part, a drafter trained on logical reasoning tasks could become more suitable.

Non-stationary MetaSD Standard analyses of non-stationary bandits (Auer et al., 2002; Kocsis
& Szepesvári, 2006; Garivier & Kaufmann, 2016) often define L to quantify the number of times the
reward distributions change over T rounds. Another line of work (Slivkins & Upfal, 2008; Besbes
et al., 2014) quantifies the non-stationarity using V , the total variation of the means. In both cases,
the regret (which is often called as dynamic regret) is defined as the cumulative expected difference
between the rewards of the optimal arm and the selected arm at each round.

REG(π,B,L) =

τ(B)∑
t=1

(max
i∈[K]

µi,t − E[µat,t]) (42)

where, as before, B is the number of total tokens we have to generate, µi,t is the mean reward
of choosing drafter i in t-th round, and τ(B) is the total round. However, the regret upper bound
on eq. 42 does not always guarantee the performance of the SD as we discussed in Section 3.1.
Instead, we can use our original regret objective using stopping time Definition 2 without any mod-
ification.

Here, we introduce two types of algorithms within our MetaSD framework: Discounted-UCB (D-
UCB) algorithm (Kocsis & Szepesvári, 2006) (Algorithm 6) and Sliding-window UCB (Garivier
& Moulines, 2011) (Algorithm 7). Discounted UCB-SD estimates mean reward by computing the
mean of discounted cumulative rewards as shown in the line 9 of Algorithm 6. By assigning less
weight to the past observations, the algorithm finds a balance between accumulating knowledge
and adapting to the changing environment. Similarly, sliding-window UCB utilizes a fixed-length
window to calculate mean reward as demonstrated in the line 9-10 of Algorithm 7. By focusing only
on recent information, it is also expected to achieve a balance with careful choose of the window
size τ . Garivier & Moulines (2011).

One interesting point is that in the non-stationary MetaSD problem, the definition of non-stationarity
L does not fit naturally into our problem. The reason behind this is that under non-stationary context
generations, number of distribution changes happen at the token level, not the round level. This can
disrupt existing regret analysis because a single round might involve multiple reward distribution
changes (e.g., one round of speculative decoding could have two changing points). Whether above
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Algorithm 6: Discounted UCB in MetaSD

INPUT Drafter pool [K], initial prompt sequence x1:l, target sequence length B, exploration
strength β, decaying parameter γ.

1: t← 0
/* Phase 1: Meta-draft each drafter in [K] once and do one round of speculative decoding. */

2: for i ∈ [K] do
3: Do one round of SD with drafter i and obtain Nacc(i, t), ri,t (by eq. 1)
4: µ̂i,t, ni, l, t← ri,t, 1, l +Nacc(i, t) + 1, t+ 1
5: end for

/* Phase 2: Meta-draft the draft following the UCB bandit until target sequence length B */
6: while l < B do
7: at ← argmaxi∈[K] µ̂i,t + β

√
2 ln t
ni

8: Do one round of SD with drafter at and obtain Nacc(at, t), rat,t (by eq. 1)
9: µ̂at,t =

1
nat

∑t
s=1 γ

t−sras,sI[as = at]

10: nat
, l, t← nat

+ 1, l +Nacc(at, t) + 1, t+ 1
11: end while

Algorithm 7: Sliding-window UCB in MetaSD

INPUT Drafter pool [K], initial prompt sequence x1:l, target sequence length B, exploration
parameter β, window size τ .

1: t← 0
/* Phase 1: Meta-draft each drafter in [K] once and do one round of speculative decoding. */

2: for i ∈ [K] do
3: Do one round of SD with drafter i and obtain Nacc(i, t), ri,t (by eq. 1)
4: µ̂i,t, ni, l, t← ri,t, 1, l +Nacc(i, t) + 1, t+ 1
5: end for

/* Phase 2: Meta-draft the draft following the UCB bandit until target sequence length B */
6: while l < B do
7: at ← argmaxi∈[K] µ̂i,t + β

√
2 ln t
ni

8: Do one round of SD with drafter at and obtain Nacc(at, t), rat,t (by eq. 1)
9: µ̂i,t ← 1

ni(t)

∑t
s=t−τ+1 ras,sI[as = i] ∀i ∈ [K]

10: ni(t)←
∑t

s=t−τ+1 I[as = i] ∀i ∈ [K]
11: l, t← l +Nacc(at, t) + 1, t+ 1
12: end while

algorithms maintain optimal regret bounds in our regret definition in this non-stationary setting
presents an interesting direction for future theoretical analysis.

H.3 OTHER POSSIBLE SCENARIOS

Adversarial environment EXP3 (Auer et al., 2002) is designed to handle adversarial changes
of reward distributions by continuously updating its estimates of the arm rewards and adjusting its
exploration strategy accordingly. It achieves this by maintaining a probability distribution over the
arms and exponentially weighting the rewards based on their recent performance. By incorporating
EXP3 into our framework (Algorithm 8), we can enable the system to adapt to evolving reward
distributions and dynamically select the optimal drafter even in adversarial environments. We utilize
this algorithm as a baseline in our experiments.
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Algorithm 8: MetaSD-EXP3 (Auer et al., 2002)

INPUT Drafter pool [K], initial prompt sequence x1:l, target sequence length B, γ ∈ (0, 1]
1: t← 0, wt(i)← 1 for i = 1, . . . ,K
2: while l < B do
3:

pt(i) = (1− γ)
wt(i)∑K
i=1 wt(i)

+
γ

K
i = 1, . . . ,K.

4: Draw at randomly according to the probabilities pt(1), . . . , pt(K).
5: Do one round of SD with drafter at and obtain Nacc(at, t), rat,t (by eq. 1)
6: for j = 1, . . . ,K do
7:

r̂j,t =

{
rj,t/pt(j) if j = at
0 otherwise,

wt+1(j) = wt(j) exp

(
γ · r̂j,t
K

)
8: end for
9: l, t← l +Nacc(at, t) + 1, t+ 1

10: end while

I FURTHER DISCUSSION

I.1 IS SCALING UP DRAFTER SIZE ALWAYS BETTER?

While increasing the drafter size might seem like a straightforward path to improved performance,
it can be less efficient than our MetaSD approach, especially considering memory bandwidth con-
straints. Larger models demand more memory for storing weights and activations, increasing data
movement between memory and processing units. This can become a bottleneck, particularly in
high-performance computing where memory bandwidth is often a limiting factor. It is also dis-
cussed in Yi et al. (2024) in SD scenarios. Moreover, this phenomenon is well-illustrated by the
roofline model, which highlights the trade-off between computational intensity and memory band-
width (Cai et al., 2024). As model size increases, computational intensity might improve, but the
memory bandwidth demands can quickly limit overall speedup.

In contrast, MetaSD utilizes multiple smaller drafters with lower individual memory requirements.
By efficiently switching between these drafters, MetaSD can achieve comparable or superior perfor-
mance to a single large drafter while mitigating the memory bandwidth bottleneck. This is because,
despite having multiple drafters, MetaSD only utilizes one drafter for computation at any given time.
Thus, the memory bandwidth requirement does not scale with the combined size of all drafters, but
rather with the size of the individual drafter being used. Provided sufficient GPU DRAM, this ap-
proach does not have any bottleneck compared to the single drafter SD. Furthermore, MetaSD offers
the flexibility to incorporate diverse drafters with specialized capabilities. This specialization can
be more effective than simply increasing the size of a single general-purpose drafter, particularly for
tasks demanding domain-specific knowledge.

I.2 COMPUTATIONAL OVERHEAD ANALYSIS

Training overhead While specialization may require additional training efforts compared to an
OFA (One-size-Fits-All) drafter, we emphasize that our approach is designed to handle real-world
scenarios where heterogeneous drafters already exist in public repositories. MetaSD focuses on
optimizing the utilization of such heterogeneous drafters, dynamically selecting the most suitable
drafter during inference. This shifts the problem from retraining models to developing an effective
strategy for utilizing pre-existing resources. Therefore, while training specialized drafters may in-
volve additional costs in certain cases, the broader applicability and versatility of MetaSD provide
substantial practical value. Additionally, the cost of training drafters is a general challenge shared
across the speculative decoding research domain, not limited to our work.
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Inference memory-bandwidth efficiency The inference memory-bandwidth efficiency of
MetaSD remains comparable to single-drafter methods. Although MetaSD employs multiple
drafters, the additional memory requirements are minimal. Specifically, MetaSD increases DRAM
usage by only 2 GB (from 17 GB to 19 GB), as the drafters’ weights are preloaded into DRAM.
However, this does not affect VRAM bandwidth, as only the active drafter interacts with VRAM
during inference. As a result, the VRAM bandwidth demands remain identical to those of single-
drafter methods. This efficient memory management ensures that MetaSD maintains competitive
performance without introducing significant overhead.

By ensuring that only the active drafter interacts with the VRAM, MetaSD maintains parity with
single-drafter approaches in terms of VRAM bandwidth demands.

Serving complexity Using multiple drafters in MetaSD does not inherently increase serving com-
plexity. Modern distributed systems already employ model parallelism techniques to allocate work-
loads across multiple GPUs effectively. In MetaSD, drafters are evenly distributed across GPUs,
with each GPU independently handling its assigned drafter without added coordination costs. This
design ensures the following:

• Load balancing: Drafters are distributed across GPUs based on their assigned tasks, main-
taining equivalent complexity to single-drafter systems.

• Minimal communication overhead: MetaSD requires no additional inter-GPU communica-
tion beyond standard model parallelism setups.

Justification of overhead The modest increase in DRAM memory usage (+2 GB) and marginal
training cost for specialized drafters is justified by the significant performance gains achieved
through adaptive optimization. MetaSD dynamically selects the most suitable drafter for each task,
consistently outperforming single-drafter methods across diverse scenarios, as highlighted in our
experimental results. Furthermore, MetaSD addresses an important real-world challenge: effec-
tively utilizing publicly available, pre-trained heterogeneous drafters. By providing a generalizable
strategy for optimizing these resources, MetaSD adds practical value beyond specialized retraining,
supporting diverse and evolving task requirements.

43


	Introduction
	Problem statement
	Motivation
	Problem formulation
	Reward design

	Method
	Algorithm
	Regret upper bound for MetaSD-UCB
	Extensions of MetaSD framework

	Experiment
	Experimental setup
	Main result
	Ablation study

	Discussion
	Conclusion
	Overview of appendix
	Broader impact and further motivation
	Broader impact
	Further motivation

	Limitation & Future work
	Limitation
	Future work

	Preliminary: speculative sampling
	Related work
	Speculative decoding
	Bandit algorithms
	Large language models and bandits

	Experiment detail
	Training specialized drafters with self-distilled data
	Drafter details
	Datasets
	MAB settings
	Baseline
	Reward distribution
	Long-context De →En translation
	Evaluations on out-of-domain datasets
	Evaluations with perturbed prompts
	Throughput over Eagle drafters
	MetaEagle-UCB with Efficient KV Cache Strategies

	Proofs
	Basic lemmas
	Proof of Theorem 1
	Stopping time regret
	MetaSD-UCB with general reward
	Proof of Theorem 2
	Assumption on acceptance rate
	Randomness of the target sequence length B
	Further analysis on hyper-parameter 

	Extended scenarios for the MetaSD framework
	Switching costs
	Non-stationary environment
	Other possible scenarios

	Further discussion
	Is scaling up drafter size always better?
	Computational overhead analysis


