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ABSTRACT

We initiate a unified theoretical and algorithmic study of a key problem in weak-
to-strong (W2S) generalization: when fine-tuning a strong pre-trained student
with pseudolabels from a weaker teacher on a downstream task with spurious
correlations, does W2S happen, and how to improve it upon failures? We consider
two sources of spurious correlations caused by group imbalance: (i) a weak teacher
fine-tuned on group-imbalanced labeled data with a minority group of fraction
1e, and (ii) a group-imbalanced unlabeled set pseudolabeled by the teacher with
a minority group of fraction 7,,. Theoretically, a precise characterization of W2S
gain at the proportional asymptotic limit shows that W2S always happens with
sufficient pseudolabels when 7,, = 1, but may fail when n,, # 1y, where W2S
gain diminishes as (1, — 7¢)? increases. Our theory is corroborated by extensive
experiments on various spurious correlation benchmarks and teacher-student pairs.
To boost W2S performance upon failures, we further propose a simple, effective
algorithmic remedy that retrains the strong student on its high-confidence data
subset after W2S fine-tuning. Our algorithm is group-label-free and achieves
consistent, substantial improvements over vanilla W2S fine-tuning.

1 INTRODUCTION

Traditional learning paradigms like supervised learning and knowledge distillation (Hinton et al.,
2015)) learn from training data generated by strong teachers, e.g., human experts. In contrast, contem-
porary foundation models encode encyclopedic knowledge through astronomical-scale pre-training,
thereby achieving comparable or even superior performance to human experts in various domains
via light post-training adaptation like fine-tuning (Brown et al.l |2020; [Achiam et al.l [2023). This
motivates the question on superalignment (Leike & Sutskever, 2023)): can models with superhuman
intelligence learn from weaker human supervision? Weak-to-strong (W2S) generalization (Burns
et al.,|2024)) provides an encouraging answer for this question: a strong pre-trained student fine-tuned
with pseudolabels generated by a weaker teacher can often outperform its teacher.

Since the first introduction of W2S by Burns et al.|(2024)), its mechanism has been extensively studied
empirically (Guo et al.,[2024; [Liu & Alahi} 2024} /Guo & Yang, [2024; [Yang et al., 2024} 2025} |Goel
et al.| 20235)), and theoretically (Lang et al.||2024} |Charikar et al., 2024;|Wu & Sahail, 2025} [Ildiz et al.,
2025 Mulgund & Pabbarajul, 2025} Dong et al., 2025; Medvedev et al.| [2025)). While existing works
on W2S generally assume access to clean downstream data, in practice, both the weak teacher and
the unlabeled data for weak supervision often carry systematic biases, such as spurious correlations
tied to demographic or acquisition factors (Arjovsky et al., 2019;|Sagawa et al.l 2020).

This challenge is especially relevant in the very settings that motivate W2S: a student broadly pre-
trained on general data is fine-tuned for a specialized task where labeled samples are scarce and
imperfect. In medicine, labels may be biased toward certain patient groups (Gupta et al., [2016)) or
imaging devices (Zech et al., | 2018)); in law, datasets may overrepresent particular jurisdictions or case
types (Chalkidis et al.| 2022)); in autonomous driving, sensor data may be skewed toward specific
weather or traffic conditions (Liu et al.| [2024). For these specialized downstream tasks, one usually
cannot interfere with the data acquisition process, nor obtain additional balanced data. It is therefore
crucial to understand whether W2S can remain effective under spurious correlations caused by group
imbalance—when it succeeds, when it fails, and how its procedure can be improved.

Our contributions. We initiate a systematic study of W2S under spurious correlations, providing
(i) a theoretical analysis that answers the “when” question comprehensively by characterizing the
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impact of spurious correlations on W2S precisely in the proportional asymptotic limit, as well as (ii)
a simple, effective remedy for the failure of W2S under spurious correlations inspired by our theory,
toward answering the “how” question. Concretely, our contributions are as follows.

* A theory of W2S under spurious correlations. In Section 2] we conduct a systematic analysis in
the ridgeless regression setting with zero approximation error, where W2S happens due to different
estimation errors (i.e., efficiency in utilizing data). At the proportional asymptotic limit, we provide
precise characterizations for the generalization errors of both teacher and student. Consider
using a weak teacher fine-tuned on labeled samples with a minority fraction 7, to pseudolabel N
unlabeled samples with a minority fraction 7,, for W2S fine-tuning. We show that (i) W2S always
happens with sufficiently large N when ny = n,, and improves when the teacher and student have
distinct representations; whereas (ii) when ny # 1y, W2S can fail even with N — oo, and W28
gain tends to diminish as (n,, — n¢)? increases. Our theory is validated with extensive experiments
on synthetic regression problems and real classification tasks (Section 3)).

An algorithmic enhancement for W2S when 1, # 7,.. In Section[d}, we propose a simple, effective
algorithm that retrains the strong student on its high-confidence data subset after W2S fine-tuning
via the generalized cross-entropy loss (Zhang & Sabuncu, [2018). Our method requires no group
annotations and improves W2S when the gap between 7,, and 7, is large. We conduct extensive
experiments on assorted spurious correlation benchmarks (e.g., Waterbirds (Sagawa et al.| 2020),
BFFHQ (Lee et al., [2021)), and ImageNet-9 (Xiao et al.,[2020)), across 10 different teacher—student
model pairs. The results show that our algorithm achieves consistent and substantial gains over
vanilla W2S.

1.1 RELATED WORKS

W2S generalization. Empirically, many methods have been developed to validate/enhance W2S
across various vision and natural language modeling tasks, including adjustable loss functions (Guo
et al.| 2024), multi-teacher algorithms (Liu & Alahil 2024)), data refinement strategies (Guo & Yang,
20245 |Yang et al., [2024)), and the use of weak models for data filtering (Li et al.,[2024). Theoretical
work on W2S is also rapidly expanding, offering various mechanistic explanations from first principles,
including the perspectives of neighborhood expansion (Lang et al.|[2024), data overlap density (Shin
et al.}2025), transfer learning (Somerstep et al., 2024), teacher-student disagreement (Charikar et al.,
2024; Mulgund & Pabbaraju}, 2025} [Yao et al.| [2025; Xu et al., 2025)), benign overfitting (Wu &
Sahail, 20255 | Xue et al.l [2025), knowledge distillation (Ildiz et al., [2025])), low intrinsic dimension
of fine-tuning (Aghajanyan et al.,2021; |Dong et al.| 20235)), regularization (Medvedev et al., 2025}
Moniri & Hassani, [2025)), and feature learning with different inductive biases (Oh et al.,[2025)).

Group robustness in knowledge distillation. When transferring knowledge from a strong teacher
to a weaker student, knowledge distillation (Hinton et al.| [2015) has been shown to harm the minority
group performance (Lukasik et al.,|2021}; |Vilouras et al.,[2023; Wang et al., 2023} |Lee & Lee} 2023}
Kenfack et al.,[2024). To address this issue, different methods have been proposed, including adaptive
mixing weights and per-class margins (Lukasik et al.| 2021)), distributionally robust optimization
(Wang et al.| 2023} |Vilouras et al., [2023)), last-layer transplantation (Lee & Lee, 2023)), and gradient-
based reweighting (Kenfack et al.| |2024) [H Our work differs from these approaches in three key
aspects: (a) W2S generalization, where a weak teacher supervises a stronger student, is fundamentally
distinct from classical knowledge distillation, (b) we explicitly consider the impact of mismatched
minority group proportions between teacher and student, and (c) our method for improving W2S
performance does not require any auxiliary information such as group annotations.

2 A THEORY OF W2S UNDER SPURIOUS CORRELATION

Notations. For any p,q € N, p > ¢, let Stiefel(p, q) = {Q € R?*? | Q" Q = I} be the Stiefel
manifold. A ® B € R™P*"4 denotes the Kronecker product of A € R™*™ and B € RP*%; when
n = q, let [A; B] € R™+P)X7 be the vertical stack; when m = p, let [A, B] € R™*("+4) be the
horizontal stack. For any w € R? and i € [d] or Z C [d], let w; and [w], denote the i-th entry and
the subvector of w indexed by Z. For any A € R™*" and i € [m],j € [n], let A; ; denote the
(i, j)-th entry; [A], - € R" denotes the i-th row; [A] , € R™ denotes the j-th column; and index
subsets Z C [m], J C [n] pick the corresponding submatrices.

! Group robustness under spurious correlations in supervised learning has been extensively studied and is out
of scope of this work. We defer more discussions to Appendix
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2.1 PROBLEM SETUP: REGRESSION UNDER SPURIOUS CORRELATION

Downstream task. Consider a downstream regression task characterized by a distribution D(7) :
X x Y x G — [0, 1] where X is the input space, ) = R is the label space, and G = {0, 1} contains
group labels (i.e., 1 for minority and O for majority). The fraction of the minority group in the
population is controlled by 1 € [0, 1] such that Pr[g = 1] = 1 — Pr[g = 0] = 7.

Definition 1 (Regression under spurious correlations). Let Dx be the marginal distribution of x € X;
Dy\g be the conditional distribution of x given g; and Dy be the conditional distribution of y
given x satisfying y = f«(x) + € for unknown f, : X — R and i.i.d. label noise ¢ ~ N (0, 05)
independent of x. Consider two feature maps: (i) the core feature z : X — R% determines the
label y through z(x) ~ N (04_,14.) and f.(x) = z(x) " B, for fixed B. € R%; while (ii) the group
feature & : X — RP (2 < p < 00) determines the group label g through &(x) ~ N (gpe, ong)for
fixed pe € RP with dimension-independent || pi¢||2, 0’? = 1

Here, z(x) encodes the core information for predicting y that is invariant across groups, typically rich
in semantics and therefore hard to learn (high-dimensional); while £(x) is a latent feature controlling
which group x belongs to, typically simpler to represent and therefore low-dimensional.

Classify cow vs. camel: Platonic representation: dy, dg = intrinsic dimensions
2(x) ~ H (04, 1) Pre-trained models encode ps<prp<d,

T A concrete objects similarly Dr. Ds = model sizes >> dr. d
y ~ N (@) By, 0y)

l Foreground in z(x) l & Strong student z2(x) € R% 2%

encodes z2(x)
&(x) less efficiently:

i Minority -
iPriz.= 1}-=n;

Group feature (p < d,):

&) | g ~ N(gpz 071,
____ Strong student encodes Strong student g5(x) = Ugeh(x)
£(x) more efficiently: S 'E(x) € R 2(x)

S € Stiefel(p, pg — 1)
Us € RP% 2(x) @ STE(X)

The abstract notion of
it ; or Teacher-student de = ped
group is encoded distinctly similarity: E = 'S s = Psd; os

by different pre-training
Background in z(x) ® &(x)

Figure 1: Visualization of the theoretical setup in Definitions I]and 2] through Example 1]

Weak vs. strong models. We consider two pre-trained models that provide reasonably high-
quality features for the downstream task: a weak teacher model fr : X — R and a strong student
model fs : X — R. Adapting the setting in |Dong et al.| (2025), we model fine-tuning in the
kernel regime (Jacot et al.,[2018; Malladi et al., [2023)) with low intrinsic dimensions (Aghajanyan
et al., [2021). In particular, we consider learning overparametrized linear layers 7 € RY7 and
05 € RYs over high-dimensional pre-trained representations @7 : X — RPT and pg : X — RPs,
respectively. When fine-tuning lies in the kernel regime, 7, g correspond to the gradients of the
tunable parameters in fr, fg at the pre-trained initialization, respectively, where D, Dg stand for
the large tunable parameter counts. The difference between r, g that separates the weak and
strong models on the downstream task with spurious correlations is pivotal in this setting:
Definition 2 (Weak vs. strong models). (i) The weak teacher representation o1 heavily entangles
the core and group features: there exists Up € Stiefel(Dr, dr) (dr < D) such that o7 (x) =
Urér(x) and ¢r(x) = z(x) @ w(x), where w(x) = [I; T ¢(x)] € RPT (2 < pr < p)
for a fixed T € Stiefel(p, pr — 1) that projects £(x) to a lower dimension (i.e., ¢r(x) =
[z(x);z(x) ® (TT&(x))] € RI7). We note that dr = prd,. Let pp = T " pe € RPT~L
(ii) A strong student representation pg partially disentangles the core and group features: there exists
Ug € Stiefel(Dg,ds) (ds < Dg) such that os(x) = Ugdg(x) and ¢ps(x) = z(x) ® (%),
where 1 (x) = [1;ST&(x)] € RPS (2 < ps < pr) for afixed S € Stiefel(p, ps — 1) that projects
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£(x) to a much lower dimension, ps < p (i.e., ¢s(x) = [2(x);z(x) ® (STE&(x))] € R¥s). We
note that dg = psd,. Let pg = STlJ,g IS Rps_l.

Definition 2] formalizes the intuitions that compared to ¢, the stronger ¢ (i) represents the infor-
mation required for the downstream task more efficiently (ds < dr) and (ii) partially disentangles
the core and group features, bringing robustness to spurious correlations. Notice that with z(x)
prepending in both ¢ (x) and ¢g(x), the teacher and student both have zero approximation error
(i.e., both pre-trained models are expressive enough for the downstream task), and W2S happens due
to different estimation errors (i.e., the student is more sample efficient than its teacher).

Example 1. We take the well-known analogy of classifying cows (often in pastures) vs. camels (often
in deserts) (Arjovsky et al.} 2019) as an example (see Figure . With z(x) encoding the foreground
of cows/camels, £(x) represents whether the background is typical or not, while z(x) @ w(x) and
z(x) ® 1(x) correspond to the representations of background from the weak and strong models.

While the Platonic representation hypothesis (Huh et al.| |2024|) suggests that different pre-trained
models tend to represent similar concrete objects similarly (with the same z(x)), different model
capacities can lead to distinct representations of a “typical” group in £(x). For instance, a strong
model that has learned the natural habitat of cows/camels during pre-training can encode typical
samples as those with their respective backgrounds, leading to a simple, low-dimensional (x);
whereas a weaker model without such knowledge have to rely on more complicated mechanisms to
represent typical samples (e.g., counting), resulting in a more complex, higher-dimensional w(x).

Analogous to|Dong et al.[(2025), a key quantity that controls W2S gain is the similarity between the
weak teacher and strong student representations, ¢7 and ¢g, as formalized in Definition 3]
Definition 3 (Teacher-student similarity). Under Definition |2} we define a similarity matrix E =
TTS € Rer=1xPs=1) Notice that | E||% < ps — 1 and | E||2 < 1.

= measures the similarity of group features extracted by @7, ¢s, e.g., |E[|% — 0 means w(x) and
1)(x) are orthogonal, while |Z|% — ps — 1 means w(x) and v(x) are highly aligned.

W2S fine-tuning pipeline. We consider two training sets with i.i.d. samples: (i) a small labeled
training set S = {(X;,¥;) | ¢ € [n]} ~ D(ne)™ that is privately available only to the weak teacher, o,
and (ii) a large unlabeled training set S, = {x; | i € [N]} from S = {(x;,v;) | i € [N]} ~ D(n.,)V
with hidden labels that is privately available only to the strong student, 5, where ¢, 7., € [0, 5].
The W2S fine-tuning pipeline consists of two stages: (i) Supervised fine-tuning (SFT) of fr () =

or(-) "0 on S via ridgeless regression: assuming n > dr,

n

1 ~ ~
61 = argmin H0||§ s.t. 6 € argmin — Z(@T(xi)—ré” — 1), (D
6crDT 6'erPr M S

(ii) W2S fine-tuning of fs(-) = ¢s(-) @5 on S, labeled by fr via ridgeless regression:

N

1
65 = argmin ||0H§ s.t. 6 € argmin — Z(gps(xi)—rﬂl — fr(x:))?, )
0cRPs o'crps NV i—1

Following Burns et al.| (2024)), in this W2S fine-tuning pipeline, we assume the weak teacher after SFT
is fixed and not trainable, accessible in the W2S fine-tuning stage only through inference. Moreover,
the labeled training set, S, is only accessible in the first, SFT stage to the weak teacher, whereas the
unlabeled set S, is only accessible in the second, W2S fine-tuning stage to the strong student.

Remark 1 (Why ridgeless regression provides sufficient regularization?). We note that under Defini-
tion[2where both pr(x) and ps(x) are constrained in low-dimensional subspaces, Range(Ur) and
Range(Uyg), ridgeless regression provides nearly optimal regularization to avoid overfitting (Wu &
Xu, |2020; Hastie et al., |2022)), which is essential for W2S generalization (Burns et al., |2024). When
o7 (%) and ps(x) are concentrated (in contrast to contrained) in low-dimensional subspaces with
tails evenly distributed in the orthogonal complement, explicit regularization (Moniri & Hassani,
2025 \Dong et al., |2025|) or early stopping (Burns et al., 2024; |Medvedev et al.| |2025) becomes
necessary to prevent the student from overfitting to noisy teacher labels. Nevertheless, analogous to

2For both w(x) and 1) (x), the first entry 1 effectively prepends the core feature z(x) in 7 (x) and pg(x),
which is essential to ensure that both teacher and student have negligible approximation error. Intuitively,
pre-trained models have sufficient expressivity to learn the downstream task over population.
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Dong et al.|(2025)), extending our ridgeless analysis to ridge regression does not alter our key insights
on spurious correlations. Therefore, we focus on the ridgeless setting for clarity of exposition.

The generalization performance is evaluated over a test distribution D(7;) for some 7, € [0, 1]: with
the test risk R, (f) := E(x,y)~D,, (n) [(f (X) — y)?], we consider the excess risk

ERm(f) = Rm(f)_Rm(f*) :Rm(f)_o'j 3

In particular, n; = % corresponds to the average test risk; 1; = 0 corresponds to the majority test risk;
and 1; = 1 corresponds to the minority test risk.

2.2  W2S GENERALIZATION UNDER SPURIOUS CORRELATION

With the problem setup, we are ready to present our main theorems regarding the effect of spurious
correlations on W2S generalization. First, to characterize the excess risks of fr and fg (and thereby
the W2S generalization gain) precisely, we push the problem to the proportional asymptotic limit:

Assumption 1 (Proportional asymptotic limit). We consider d.,n,N — oco with d./n — -y, €
(07p;1) (ie, n>dr), d,/N = v, € (O,pgl) (i.e, N > dg), whereas 2 < ps < pr < p are fixed.

We highlight that in practice, the unlabeled samples are typically much more affordable than the
labeled ones, leading to v, < ~,. Now, we characterize the excess risks of the weak teacher after
SFT and the strong student after W2S fine-tuning, respectively, in Theorems [T]and 2]

Theorem 1 (SFT of weak teacher (Appendix [D.1)). Under Assumptionl[l] (1) satisfies

P o l(ne — me) ol
En o [ERy, (f1)] 5 02 7 + el ).
V<TO> from label noise V;l) from spurious correlations

Theorem 2 (W28, formally in Theorem[3). Under Assumption satisfies

e — )iz + (o= ”")5”5”3} +6)

2
I¢

P
oy oo (BB, (73] 5 o2 {

VO <V v <V whennu = ne

where pras = 1+ ||E||f; € [1,ps] is the effective group feature dimension learned by the strong
student from the weak teacher controlled by the similarity between o1 and g in encoding group

features (see Definition —less similar teacher-student pairs enjoy lower pras; Véo) and Vq(wo) are

generalization errors of fs and fr from noisy labels; Vél) and V(Tl) are generalization errors of fgs
and fr induced by spurious correlations, 1y, Mg 7 1, and the higher-order term Eg, formalized in
Theorem 3] becomes negligible when v, < 1.

It is worth noting that the proportional asymptotic limit (Assumption |l) assumed in Theorems
and 2] can be relaxed to incorporate finite-sample cases via standard edge fluctuation analysis (see
e.g.,Hastie et al.| (2022); |Cheng & Montanari| (2024)). We omit such extensions here since they do
not bring additional insights to Theorems|[I|and 2}

As a special case, without spurious correlations (17 = 1, = 7 or g = 0,), Theoremsandexactly
recover the results in|Dong et al{(2025) at the proportional asymptotic limit: E[ER,, (fr)]—0;7.pr
and E[ER,, (fs)]—mf/fyz (pras + ©(v.)), where with a small v, < 1, the W2S gain is larger when
the teacher and student representations are less aligned (i.e., lower pras). Meanwhile, Theorems E]
and 2] together reveal insights regarding the effect of spurious correlations on the W2S gain,

AR”It = ED(W)" [ERW (fT)} - ED(nu)N7D(ng)" [ERW (fs)] ) 4)

as discussed in Remark where W28 generalization happens whenever AR,,, > 0.

Remark 2 (Does W2S happen under spurious correlations?). Theorems [I|and 2| provide a mixed
answer to this question conditioned on various factors, including the teacher-student similarity, the
separation between groups, and the choice of n,, for given nﬂ as summarized below:

31n practice, 7, is typically fixed and known (e.g., given a weak teacher fine-tuned on the Waterbirds training
set), while 7., can be controlled by the practitioner when collecting unlabeled data for W2S fine-tuning.
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(a) W2S happens whenever n,, = 1y and v is small, e.g., when | E||% ~ 0and v, < 1, AR, > Ois
optimized at n,, ~ ny (Figure|2l). We highlight that when n,, = 1y, in addition to the W2S gain from

variance reduction V;O) - VSO = pr — pras = 0, the strong student improves upon its teacher

in handling spurious correlations: V\\) — Vél) = ((ne —ne)*/o2)llperll3 — IBpsll3) = 0,
where the gain increases as the teacher-student similarity decreases.

(b) For fixed Z, assume pur # BEps, when v, < 1, the optimal n,, that maximizes W2S gain is

= nellprlls = (netne)pr Eps |
u lnr—Epsli3

w2 1 with ||Eug||2i£ 0, 0 tends to increase with ||psl||3 and deviate from 1, when
sl ~ [z |3 (Figure[3)left).
(c) W2S gain increases as the teacher-student similarity | Z||% decreases (Figure right).

= 2
Eusle oo whenn, = Loms = % when ||Eps|2 < [|prl2.

(d) W2S may not happen if 0, # 1., even when v, < 1 and |E||% = 0, e.g., when n; = 0.4 but
N = 0.1, with |E||% = 0, W2S does not happen if the majority and minority groups are well
separated: ARy 5 < 0 for any v if |pr|3/0f > 12.5(pr — 1). More generally, for |E|/% = 0,

Vél) increases proportionally to (1, — 1¢)?, and thus AR, diminishes as the gap increases.
In Appendix [F} we further discuss implications of Theorems [I|and 2] on the fairness of W2S.

2.3  SYNTHETIC EXPERIMENTS

v,=0.005 v,=0.01 v,=0.02 v,=0.04

Theoretical
Empirical . .

n =05 n=0.5 n=05 n=1.0 n=0.1 n:=0.5 n=01n=1.0

Figure 2: W2S gains across different combinations of 1, and 7;. Each panel shows theoretical (solid
lines) and empirical (circles) results for W2S gain as a function of 7, across different v, values.
Here we fix pr, s, E, and d, with ||pr||3 = 10.0, ||us||3 = 0.1, ||E]|% = 0.1ps. Vertical dashed
lines indicate the theoretical optimal 7}, values that maximize W2S gain.

ny = 0.1, different ||us||3, fixed ||Z||2=0.1ps ny = 0.1, different ||=||2, fixed ||us||3 =0.1
0.625
——— 0.6
0.600
£0575 it T T NN | —
=S 0.5 ———
» 0.550 —
g ! J
0.525 | 04
ng =0.13 ng =0.10
0.500‘ ni =16.10 &
0.0 0.1 02 0.3 0.4 05 0.0 0.1 02 03 0.4 05
Nu Nu
——  lpsll3=0.1 ——  lpsllz=1 —— |IZlI#=0.1ps —— |IZlIF=0.2ps
[lus|lz =5 [lusl3 =10 - [I=117 = 0.4ps [I=117 = 0.8ps

Figure 3: Impact of p1g and = on W2S gain. Both panels show theoretical (solid lines) and empirical
(circles) results for W2S gain as a function of 7,,. Fixed parameters: 7, = 0.1, n, = 0.5, v, = 0.04,
)12 = 10.0. Left: varying ||pg||2 with fixed |Z[|% = 0.1ps. Right: varying ||Z||2 with fixed
lles||3 = 0.1. Dashed lines indicate the theoretical optimal 7 values that maximize W2S gain.

Figures 2] and 3] validate the theory in Section [2.2]through synthetic Gaussian experiments, with fixed
d, = 2048 in all experiments. We begin by examining how varying 7,, affects W2S gains under
different values of 7,. As shown in Figure[2| when ||Z||% is small (a distinct teacher-student pair),
W2S gains are maximized at 7, = 17 for both balanced (1, = 0.5) and highly spurious (1, = 0.1)
unlabeled data. This holds for both the average test risk and the minority test risk, consistent with
Remark 2[(a). Moreover, the magnitude of the W2S gain decreases as v, increases, reflecting the
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role of £g in Theoreml Flgurelleft shows that as ||us ||% increases so that ||E s || becomes non-
negligible compared to || 1 ||2, the optimal value )} gradually shifts away from 7,. This indicates
that in some special cases 7, may not lie near 7, consistent with Remark @kb) Figure [3] right
illustrates that the W2S gain decreases as the teacher-student similarity ||Z||% increases, consistent
with Remark [2{c).

3 REAL-WORLD EVALUATION

Now we extend our theoretical understanding of W2S under spurious correlation to real-world tasks.
We first leverage the theoretical framework to interpret our findings on how spurious correlations
affect W2S performance across real-world benchmarks.

3.1 MODEL AND DATASET SETUP

Pre-trained models. Our weak teachers and strong students are drawn from a diverse set of
pre-trained vision backbones that differ in architecture and training paradigm. Specifically, we
consider ResNet-18 (ResNet18) (He et al.,[2016)), CLIP ViT-B/32 (Clipb32) (Radford et al.| 2021},
ConvNeXt-L (ConvNeXt) (Liu et al.,[2022)), DINOv2 ViT-L/14 (DINOv2) (Oquab et al.,|2023), and
MAE ViT-B/16 (MAE) (He et al., 2022). For each experiment on a given dataset, we include all
teacher—student pairs whose relative strength (measured by accuracy) remains stable when we vary
parameters including 7., 1,,, IV, or n. We freeze all backbone parameters, view the pre-trained feature
for the teacher and the student as ¢ and ¢g, and only finetune the classification head.

Datasets. From both theoretical and practical perspectives, effective W2S requires that the pre-
trained weak teacher and strong student have learned feature representations that are useful for the
downstream task. Therefore, we evaluate W2S performance on widely used spurious correlation
benchmarks that are relatively close to the pre-training distribution. These include Waterbirds (Sagawa
et al.,|2020), BFFHQ (Lee et al.| [2021]), and ImageNet-9 (Xiao et al.| 2020), which contain spurious
correlations between background and bird labels, age and gender labels, and background and object
labels, respectively. We further provide a self-generated dataset, BG-COCQO, by creating spurious
correlations between cats/dogs from COCO (Lin et al. [2014) and indoor/outdoor scenes from
Places (Zhou et al.,|2017). We note that in all four datasets, the spurious correlation arises from highly
imbalanced group proportions between the majority and minority groups. We denote the minority
group proportion in the original training set of each dataset as 7,, which equals 0.05, 0.005, 0, and
0.05 for Waterbirds, BFFHQ, ImageNet-9, and BG-COCO, respectively. Detailed configurations of
the dataset splits are provided in Appendix [E.T]

3.2 INTERPRETING W2S UNDER SPURIOUS CORRELATIONS

We investigate how the proportion of the minority group in the unlabeled data affects W2S per-
formance when the labeled data are either group-balanced or group-imbalanced. Specifically, we
fix n, = 0.5 and 1y = 7,, respectively, and vary 7, while recording the change in W2S gainE]
Figure [4] presents the average W2S gain across all teacher—student pairs on all four datasets. More
comprehensive results are provided in Appendix [E.2]

Our results show that, for both average accuracy (7, = 0.5) and worst group accuracy (1, = 1),
increasing the minority proportion in the unlabeled data improves W2S performance when the weak
teacher is free of spurious correlation (1, = 0.5). Moreover, when the weak teacher itself encodes
spurious correlation (n; = 1,), the W2S gain is consistently positive across all four datasets at
Nu = 7o, but surprisingly decreases for more balanced data as 7,, increases from 7, to 0.5. Overall,
W2S gain is negatively affected as the gap between 7,, and 7, increases. These observations echo
our theory and synthetic experiments (see Theorems [T] and [2} Remark [2} and Figure [2), showing
that our theoretical findings on regression extends natually to broader, real-world classification
problems.

4 ENHANCED-W2S METHOD

Inspired by the theory and observations in Sections [2] and [3] we introduce a simple retraining
method based on student confidence and generalized cross-entropy to strengthen W2S under spurious

*For classification tasks, W2S gain refers to the improvement in test accuracy achieved by the strong student
after W2S fine-tuning over its weak teacher.
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Figure 4: Average W2S gain across all teacher-student pairs as a function of 7,, on all four datasets.
Top row: average accuracy; bottom row: worst group accuracy. Left column fixes 7, = 0.5; right
column fixes 7y = n,. For i, = 0.5, curves are plotted over a shared 7, interval aligned across
datasets (bounded by minority group sample availability) to enable direct comparability. For n, = n,,
each dataset is plotted from its own 7, (0.05, 0.005, 0.05, and 0 for Waterbirds, BFFHQ, BG-COCO,
and ImageNet-9, respectively) up to 0.5. ImageNet-9 does not have a clearly defined worst group and
is therefore omitted from the bottom panels.

correlations. We show that this approach remarkably outperforms vanilla W2S across multiple
datasets and large pre-trained backbones, without requiring any group annotations.

Method. Both our theoretical results and empirical findings indicate that W2S gain is noticeably
reduced when there is a large discrepancy between the minority proportions of the unlabeled data and
the labeled data. Therefore, we propose a simple method that requires no group label annotations and
is capable of improving W2S gain in two particularly important settings: one where the labeled data
are heavily affected by spurious correlation while the unlabeled data are free of it (7 = 1., 7, = 0.5),
and the other where the unlabeled data suffer from spurious correlation while the labeled data are
balanced (9, = 0.5, 1, = 1,)-

Formally, let the unlabeled data be S = {(x;, ;) | i € [N]}, where g is the pseudolabel given by
the weak teacher on x; € S,. Our method enhances W2S gain by retraining the strong student after
W2S fine-tuning, based on two components: (i) selecting a fraction p € (0, 1] of S consisting of the
samples with the highest student confidence (equivalently, the lowest entropy), and (ii) applying the
generalized cross-entropy (GCE) loss (Zhang & Sabuncu, 2018) with parameter ¢ € (0, 1] to each
(x4, ;) in this subset:
— b (x4
Laoce(Xi, §isq) = H)?(;i()g)’

where py, (x;) is the softmax probability that the student assigns to the pseudolabel g; for x;.

In both settings (17y = 71,,m, = 0.5 and 1, = 0.5,1,, = 1,), selecting a high-confidence subset of
the student’s predictions filters for samples where all relevant features are clearly expressed and
effectively used during prediction, thus preventing the strong student from over-relying on any single
(potentially spurious) feature. Moreover, unlike the CE loss which imposes overly strong penalties on
high-confidence but incorrect pseudolabels, applying the GCE loss to the selected subset mitigates
the negative impact of pseudolabel noise from the weak teacherE] More importantly, for the case
Ne = Mo, My = 0.5, confidence-based selection further provides a crucial benefit. As shown in

>In our Enhanced-W2S method, the role of GCE loss is analogous to its original use in|Zhang & Sabuncu
(2018) for handling noisy labels. Different from the setting studied inNam et al.| (2020), where GCE loss on
ground-truth labeled datasets with spurious correlations was observed to amplify bias, in our method GCE loss
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Appendix [E3] the high-confidence subset tends to filter out a larger fraction of minority samples
to effectively reduce the new 7,, during retraining. This observation aligns with our theoretical
prediction that when 1, = 7,, decreasing 7,, from 0.5 leads to improved W2S gain.

Teacher—Student pair
Dataset Ne  Mu

DINOv2 DINOv2 DINOv2 DINOv2 ConvNeXt ConvNeXt ConvNeXt Clipb32 Clipb32 ResNetl8
ConvNeXt Clipb32 ResNetl8 MAE Clipb32  ResNetl8 MAE ResNetl8 MAE MAE

Waterbirds 0.5 no 6.60 11.29 7.34 16.68 3.79 2.05 6.28 — 2.07 0.77
no 0.5 7.19 13.86 11.73 11.62 2.85 2.02 433 — 1.32 14.54

0.5 1o 6.85 2.75 8.42 4.93 4.05 — — 6.54 5.12 —

BFFH

Q no 0.5 3.92 8.53 2.02 4.56 2.09 — — 2.06 -1.37 —
BG-COCO 05 1o 5.38 13.40 12.88 24.01 9.82 6.49 15.25 3.39 12.43 2.05
no 0.5 10.21 16.99 12.25 -3.52 3.41 1.21 -3.07 3.48 0.31 3.70
ImaeeNet-9 0.5 no — 6.03 7.45 24.11 4.74 5.30 18.49 4.22 21.73 17.98
¢ no 0.5 — 8.21 11.28 22.00 3.77 1.81 10.50 451 23.24 15.76

Table 1: Relative improvement of Enhanced-W2S over vanilla W2S (%, measured by average
accuracy) across all datasets and teacher—student pairs. Each entry reports the mean improvement
over all IV, n combinations. For each model pair in the table header, the assignment of weak teacher
and strong student depends on the dataset. We report for each dataset only those model pairs whose
relative strength relationship remains consistent across different (1, 7,,) settings within that dataset.

—=— Weak Teacher =~ —— W2S —— Enhanced W25
BG-COCO (Clipb32 —» DINOv2) Waterbirds (Clipb32 - DINOv2) BFFHQ (DINOv2 - Clipb32)
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Figure 5: Comparison of Enhanced-W2S and original W2S for the (Clipb32, DINOvV2) pair on
BG-COCO, Waterbirds, and BFFHQ. Top row: worst group accuracy with 1, = n,, 7,, = 0.5 (fixed
N, varying n). Bottom row: worst group accuracy with n, = 0.5, 7,, = 1, (fixed n, varying N).

Main results. We evaluate our Enhanced-W2S method across all four datasets. Table [T]reports the
relative improvement of Enhanced-W2S over vanilla W2S for each teacher—student pair. Figure 3]
further visualizes the performance of Enhanced-W2S versus vanilla W2S for a representative model
pair. Overall, for both average accuracy and worst group accuracy, Enhanced-W2S achieves consistent
and substantial improvements over vanilla W2S under both (n,, 7,,) settings. Specifically, Table
shows that 67 out of 70 model pairs exhibit a positive gain (measured by average accuracy), with the
mean relative improvements across all pairs reaching 7.02% (Waterbirds), 4.32% (BFFHQ), 7.50%
(BG-COCO), and 11.73% (ImageNet-9). In addition, the relative improvement of Enhanced-W2S in
terms of worst group accuracy across all pairs is 21.14% (Waterbirds), 3.81% (BFFHQ), and 7.73%
(BG-COCO). Further details are provided in Appendix [E-3]

is applied to a pseudolabeled dataset restricted to a high-confidence subset, and thus serves a fundamentally
different role.
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Metric Waterbirds BFFHQ BG-COCO ImageNet-9
Comparison _
(x1072) (M2, M) (M2, M) (M2, M) (M2, M)
(0.5,m0) (10,0.5) (0.5,1m5) (7m0,0.5) (0.5,7m0) (10,0.5) (0.5,7m5) (n0,0.5)
Enhanced W2S Average 3.27 1.00 3.51 0.46 3.41 0.52 1.00 0.51
— Enhanced W2S (g — 0)  Worst 5.15 239 434 1.90 3.79 1.46 — —
Enhanced W2S Average 2.79 4.84 2.77 2.69 4.97 3.37 451 5.08
— Enhanced W2S (p = 1)  Worst 3.57 8.58 275 3.73 6.26 5.44 — —

Table 2: Ablation across four datasets: improvements of Enhanced-W2S over two baselines, using
only the CE loss (i.e., the ¢ — 0 limit of GCE) and using all unlabeled data (p = 1), in terms of
either average accuracy or worst group accuracy. For each dataset, improvements are computed as the
mean across all model pairs whose relative strength relationship remains consistent under different
(n¢, M) settings. ImageNet-9 has no well-defined worst group, so those entries are omitted.

Ablation study. We conduct controlled ablations to examine the contribution of the two key
components of our Enhanced-W2S methods, namely the use of the GCE loss and confidence-based
selection. Specifically, we conduct two separate ablations: (i) replacing the GCE loss with the standard
CE loss, and (ii) replacing confidence-based selection with using the full unlabeled dataset. We then
retrain the model under each variant and compare the results with the original Enhanced-W2S method.
Table shows that under both (7, 7,,) settings, the GCE loss and confidence-based selection each
play a positive role in improving W2S gain. When 1, = n,, 1, = 0.5, the impact of using CE loss is
consistently smaller than that of using the full unlabeled dataset; whereas under 7, = 0.5, 7, = 1,,
the effects of the two ablations are more comparable. This suggests that filtering out minority group
samples via high-confidence selection plays a more critical role in the former setting, while in the
latter setting the contributions of GCE and high-confidence selection are comparable.

5 CONCLUSIONS, DISCUSSIONS, AND FUTURE DIRECTIONS

In this work, we start with a theoretical framework that models W2S generalization under spurious
correlations induced by group imbalance. Within this framework, we precisely characterize how
different factors, such as the proportions of minority groups in labeled and unlabeled data and the
teacher-student similarity, affect W2S, which is validated through extensive synthetic experiments
and on diverse real-world tasks. Inspired by our analysis, we proposed Enhanced-W2S, a confidence-
based retraining algorithm that does not require any group labels and substantially improves W2S
gains when the labeled or unlabeled data are highly group-imbalanced. The effectiveness of this
approach is demonstrated across assorted real-world datasets.

It is important to emphasize that spurious correlations in W2S constitute a critical issue that deserves
closer attention. Beyond standard benchmarks, such correlations can pose substantial risks: in
socially sensitive domains they may reflect demographic biases, and in safety-critical applications
they can degrade reliability under rare but high-stakes conditions. While our experiments focus on
public computer vision benchmarks, the mechanisms we analyze are broadly relevant. Our algorithm
provides the first attempt to improve W2S in this setting, and we hope this work will inspire further
efforts toward more reliable and efficient W2S methods.

Meanwhile, from a more technical perspective, another exciting future direction is to investigate W2S
generation (with or without spurious correlation) beyond the kernel regime by taking the training
dynamics of the teacher and student models, conditioned on their pre-trained initializations, into
consideration.
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A USAGE OF LARGE LANGUAGE MODELS

Large language models were used in a limited manner to (i) search for related literature, (ii) check
grammar/phrasing, and (iii) make stylistic adjustments.

B ADDITIONAL RELATED WORKS

Knowledge distillation. Knowledge distillation (KD) (Hinton et al.}2015) is closely related to W2S
but with the roles reversed: KD transfers knowledge from a larger teacher model to a smaller student
model. A series of works has analyzed when and why a distilled student generalizes (Phuong &
Lampert, 2019} [Stanton et al.| 2021}, [Ojha et al} 2023}, [Nagarajan et al., 2023} [Dong et al, [2024; [[idiz
et al.l[2025)). Analytically, W2S departs from traditional KD because “weak” vs. ’strong” is defined
relative to pretraining, so W2S is naturally studied as fine-tuning on pseudolabeled data.

Group robustness to spurious correlation. Extensive efforts have been devoted to mitigating
spurious correlation for robust and safe generalization to unseen test domains (Arjovsky et al., 2019}
Sagawa et al, 2020; [Krueger et al} 2021}, Deng et al, 2023} [Phan et al., [2024; Wen et al., 2025}
Liu et al., 2025b). Among these studies, a subset of work specifically targets spurious correlation
arising from group imbalance. When group labels are available, canonical approaches include
reweighting minority groups (Sagawa et al, [2020), downsampling majority groups
[2023), distributionally robust optimization (Sagawa et al.| 2020} [Zhang et al.| 2020), and progressive
data expansion (Deng et al., [2023). Since obtaining group annotations in training data can be

costly or even infeasible, alternative strategies aim to identify biased samples without explicit group
supervision (Nam et al., 2020} [Liu et al.| 2021}, [Zhang et al., 2022} [Yenamandra et al.| 2023} [Han &
2024), or leverage auxiliary signals such as knowledge of spurious attributes (Puli et al.| 2021),

class annotations (LaBonte et al.| 2024), and superclass-level information (Liu et al., 2025a).

Multi-round retraining and confidence-based selection. Multi-round retraining and confidence-
based data selection are widely adopted ideas that have been leveraged, independently, to improve
model performance for W2S generalization (Burns et al.| 2024} [Liu & Alahi, [2024), mitigate spurious
correlation (Liu et al, 2020), and in the broader literature on self-training
2020 [Yu et al.,[2021) and co-training (Zhang & Zhoul, 2011} Ma et al.} 2020). Our theory provides a
principled motivation to combine these practical techniques, bringing an effective algorithmic remedy
for the failures of W2S under spurious correlation.
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C ADDITIONAL NOTATIONS

Forany n € N, let [n] = {1,2,...,n}. e; is the i-th canonical basis of a conformable dimension.

We adapt the standard big-O notations for functions of multiple variables: for two functions f, g

N* — Ry, f(n) = O(g(n)) means that there exists a constant C' > 0 such that f(n) < Cg(n) for

alln € N¥; f(n) = Q(g(n)) means that there exists a constant ¢ > 0 such that f(n) > cg(n) for
)

all n € N f(n) = ©(g(n)) means that f(n) = O(g(n)) and f(n) = 2(g(n)): /(n) = o(g(n)
means that limyin; n, 00 f(n)/g(n) = 0. For a scalar quantity f(n) > 0 depending on n € N,
f(n) = Op(g(n)) means that for any J € (0, 1), there exists a constant C'(6) > 0, independent of n,
and a natural number N () € N such that Pr[f(n) < C(d)g(n)] = 1 — ¢ foralln > N(9).

D PROOFS FOR SECTION[2.2]

We first observe that when n > dr, (I) can be equivalently written as 87 = UpS3r where

R e -
Br = argmin — Y (¢7(X:) "B —5i)°. ©)
perir T
Analogously, (2)) can be equivalently written as s = Ug3s where

%—wmfZ@&ﬁ.mm- 6)

BERYs

D.1 SFT oF WEAK TEACHER

We start by considering the population-optimal linear predictor over the weak teacher representation,
or(-): asn — oo, (B) converges to

BF = argminE(x ), , (n)[(¢7(x) "8 — y)?]. (7
BERIT

Lemma 1 (Population SFT of weak teacher). When supervisedly fine-tuned over the population, the
weak teacher from (1) satisfies f2°(x) = ¢r(x) "B = z(x) " Bs = fe.

Proof of Lemmall] Notice that (7)) admits a closed-form solution
/8%0 = 2;;7772/1'%“777@’ 2¢T,m = ED(ne)[¢T(X)¢T(X)T]7 Hor,ne = ED(nz)[¢T(X)y]'
Since z(x) and w(x) are independent, we have
-
Sora =B | (2() © (X)) (2(x) & w(x)) |

=Ep(y) [2(x)2(x) "] @ Ep(y,) [w(x)w(x)"] ®
=I4, ® Cr(me),

where
1 Nepsr : 2 1
C = = diag (0,0:1,._1) + 1 ,
7(ne) - Uglqu Rl g ( elpr 1) TeiT 1 nepr], (9
whose inverse can be computed via block matrix inversion as
_ 1402 0 2 572 s
—0¢ “MeT O¢ dpr—1

Meanwhile, by the independence of z(x) and w(x), we have

HKor m, :ED(W) [Z(X> Y W(X)(Z(X)Tﬂ* + 6)]
= (Ep(n,) [2(x)2(x) "] Bs) ® Ep(y,) [W(x)]

1
=B @ {WMT} :

17



Under review as a conference paper at ICLR 2026

Therefore, the population-optimal linear predictor over ¢ is given by

BT =5} b n = (La. ® Cr(m)) ™ (5* ” [ 1 D —e (CT(W)l [WLTD

e
_ 2 _
g, |1oc Imenrly —ogPnent { 1 } B oe
—UgQUZNT O'g_ L, Nebr * ’
where e; € RPT is the first canonical basis. O

While the f2° = f. achieves the optimal population risk R(f2°) = R(f.) = 05, the inefficient repre-
sentation (d = d,pr > d.) and the entangled features of ¢ make the finite-sample generalization

challenging, especially under spurious correlations, as we will show next.
Theorem 1 (SFT of weak teacher (Appendix D). Under Assumption(l] (1) satisfies

P (e — me) a3
En ) [ERy, (f1)] 5 02 7 + el ).
V<TO> from label noise V;l) from spurious correlations

Proof of Theorem([I} For a small labeled set S = {(X;,5:) | i € [n]} ~ D(ne)", the SFT in ()
admits a closed-form solution

Br = (2. 87) 1.y, (1)

where @7 = [¢pp(X1), -, dr(X,)]T € R™™T and y = [§1,--- ,Jn] T € R™. Since Lemma
shows that the population-optimal linear predictor over ¢ is f2°(x) = ¢r(x) ' B = f.(x), we

have y = ;I;Tﬁ%o + € where € ~ N(0,,, azIn). Therefore, we observe that
Br — BY =(®187) ' ®rE.
Since the excess risk over the test distribution D(7;) is given by
ER,, (fr) =Ep()[(fr(x) = f(x))*] = Ep([(6r(x) " (Br — BF))?]
=l8r - 875, ., -

where By, = Ep(y 67 (x)6r(x) 7], let B, = 2@ &7 € R XIT be the sample covariance
matrix of ¢ (X) over X ~ Dx(n¢), we have

Es iy (BB (F1)] =t (g0 |Sorn (Br = BF) (Br — 87)"|)

:O’i tr (E¢T1ﬂtE§~D(m)" [(@;@T)*{D (12)
o2 ~
=2t (Zprn B
n r PT,Mt“n
Recall ¢r(x) = z(x) ® w(x) and notice that for any n € [0, 1],
Epm (o1 ()] =Epy)[2(x)] @ Epgy) [w(x)] = 04y,
while the derivation of (8) suggests that for any 1 € [0, 1],

Sorm = Epplor(x)¢r(x) "] =14, ® Cr(n). (13)

However, we notice that ¢ (x) is not multivariate Gaussian due to the non-Gaussianity of products
of independent Gaussian variables and the dependence of entries in z(x) ® w(x). Therefore, 3,,

cannot be directly computed using inverse Wishart. Instead, we leverage the concentration of 3, in
the proportional asymptotic limit (Assumption [I). In particular, Lemma[2]and (T3] implies that as
d,,n — oo withd,/n — v, € (0,p3"),

o2

Zy tr (E(bT’mf];l) 5 03 Y. tr (Cr(n:)Cr(ne) ™). (14)
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Leveraging the derivation of (9) and (I0), we observe that

tr (Cr(n:)Cr(ne) ") =pr + o i pr |3 — 20 *menel |5 + o 07 |3
- lper|l3 (a5)
=pr+ o (= ne)*llprl3 = pr+ O —ne)* =72,
3
and therefore, (T4) becomes
o < d oI5
Y -1\ P2 @z o el
F tr (E¢T7"]t2n ) —>O'y ; pT —+ (nt — 77[) TE
2 2 ||HT||§
=0, V. | P+ (e — M)~ | -
%e
Plugging the above into (I2) completes the proof. O

Lemma 2. For fixed pr > 2, let C € RPT*PT be any fixed symmetric matrix with ||C||, < oo.
Recall 3, = 237" | o (X;)pr(X;) T where X; ~ Dx () i.id. for all i € [n]. As d.,n — oo with
d./n — . € (0,p7"),

1 ~
~tr (L. ® O)F;") 5 7.t (COr(n) ™).

Proof of Lemma[Z] We observe that ¢ (x)or(x) T = (2(x)z(x) T)®(w(x)w(x) "), and the sample
covariance matrix X,, can be partitioned into d, x d, blocks of size pr X pr:

~ 1 & _ _ _ B
where 30D = =% "2 (%)% (%) - WK )w(X) | € R,
n
i=1

5, =[S0

}k,le[dz]

where for any x € X, z;(x) is the k-th entry of z(x). Notice that E[flff’l)} = 05,1Cr(ne) where
dx,1 is the Kronecker delta since z(x) and w(x) are independent, and E[zj(x)z;(x)] = dx,; given

Z(X) ~ N(odz,Idz)-
Off-diagonal blocks are negligible. For any &, € [d,] with k # [, we define pr x pr self-adjoint
matrices,

wwnzgmam&nW&mwaf—0ﬂw>am mwﬁzgmam&Mhmm

where recall from the derivation of (8) that C1(1¢) = Ep(,,) [w(x)w(x) T]. Since E[z,(x)z(x)] =
S0, we have E[Y V] = ER"D] = 0,,, . for k # [, and

igc’l) = ZYz(kJ) + REkJ)’ E[ignk’l)] = OPT Xpr*

i=1
Let L,, := 4+/log(n) and consider the event

B 1= {0, < 22 ) A {mas IR0l < 22

i€[n] i€ln

First, for z(X;) ~ N (04_,14.), the union bound and Gaussian tail bound imply that

L L
Pr |max ||z(X; > 2| =Pr max 26(X)] > —=
) > 5| =Pr| e 1> ]
L2 2d.,
<2nd, exp (") = n"2=o(n"t).
4 n

Meanwhile, we observe that for g; ~ N (0,,-1,I,,-1),

2
~ 2 ~ 2
IwRa) I3 =1+ || Wy |, < 2021213 + 202 il

2:pr
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while the Laurent-Massart x2 tail bound (Laurent & Massart, [2000) implies that

Pr [Ilgi\li >pr—1+2y/(pr =1t + 2t] <e ', Vt>0.

Then, for fixed and finite p7 and || 7 ||,, with a sufficiently large n, there exists a constant a,, > 1/8
such that applying the union bound with ¢ = a,, L? yields that
Pr {max ||W(Xl)||2 >L ] nexp (—anL2) =o(n™").

i€[n]
Applying the union bound again, we get Pr[ES] = o(n~!) for sufficiently large n. Meanwhile,
conditioned on F,,, we have for any i € [n],
1 LA 1 L?
Y(k,l)” <= ll2(%,)|12 )2 < En ’R(k,l)‘) < llz&)|2 |IC Ly
Y& < @I Iwa I < =2, RS <~ 2% ICrmoll, 5 =2,

which implies that

n r 2 L8 L8
[ vz 5] <3 [y |En]<n~;—"7
, =1 L 2 n n
LT 2 L* 1A
2 (k?,l) n o __ n
[ e <3[R s T =
2 =1 -

Then, applying the matrix Bernstein inequality (Tropp, 2012, Theorem 1.6) to > ., Yz(k’l) and
Dy ng’l) and a union bound over all k, [ € [d,] off-diagonal blocks with k # [ yields that

log(n)

maxHi](k’l)H > Lg(n)
n ol ™

Pr lmaxHi],(f’l)H > ] <Pr[E;]+Pr E,
k#l 2 k#l n

n2
<o(n1) + 2prn (&) @2 = o(1),
and therefore, the off-diagonal blocks are negligible:

max Hi(k,l) H —Op log(n)
| I DY n '

Diagonal blocks are concentrated. Consider the k-th diagonal block S for any fixed k € [d,]:

E(k k) sz xl -w( xl)w()?i-)—r

I 1 — - o
- ;W(X”W(X”T 5 ) - ) wiRw(E)
where we denote E:Tvn = % S w(x)w(x;) . Let

I

Then,

- . 1N, - .
BER — 54 Cr(ne) =(Crn — Cr(me)) + o D k(i) = 1) - (w(E)w(X) " — Cr(ne)),
i=1
where both terms are sums of independent random matrices with zero mean. Leveraging the same
argument as for the off-diagonal blocks using the same event F,,, the matrix Bernstein inequal-
ity (Tropp, 2012, Theorem 1.6), and a union bound over all k € [d.], we have for sufficiently large
n,

max

keld.] n

1
Z(k k) SkCT(W)H = Op ( og(n)> ) (17)
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Also, the x? concentration (Laurent & Massart, 2000) implies that for any fixed € € (0,1/2), as
d,,n — oo withd,/n — 7, € (0,p;"),

Pr Lmidn sp<1-— e} <d.Prisy <1—¢ <d.exp(—O(ne®)) = o(1),
€ld-] (18)

Pr Lm[zzx] sp>1+ e} <d.Prlsp > 1+¢ <d.exp(—O(ne®)) = o(1),
6 z

so that all s;’s are close to 1 with high probability.

Concentration of 1. LetD,, = diag (s1C7 (1), - - - , sq. C1(n¢)) be the block-diagonal matrix
with k-th diagonal block s Cr(n;) for all k € [d,]; and E,, = 3, — D,, be the fluctuations around
D.,,. Since Cr () is positive definite, (I8) implies that HD; 1 H , < 0o with high probability for
sufficiently large n. Then, the resolvent identity implies that

3,!=(D,+E,) ' =D, - D,'E,(D, +E,) . (19)

In particular, the block matrix inversion formula implies that for any & € [d.], the k-th diagonal block
of -1, denoted as (X;;!)(***) € RP7*P7 i5 concentrated around the k-th diagonal block of D,
(s1Cr (1))~

S 1
&2 ED — (3eCr )7 S IBally = O ( gﬂ”") : 20)

Concentration of the trace. Finally, notice that the trace of interest, % tr <(Idz ® C)f]; 1), de-

pends only on the diagonal blocks of 1. Then, (20) implies that

1 - 1 ~
—tr((lo. ®C)%, 1) ==Y tr (C(E,H)*M
G )= e )
d.
= <1 1) tr (CCr(ne)~") + Op ( 10g(n)>
"= ok n
d

Since {nsk}zzz , are independent and x? distributed, for any fixed n > 2, E[s; '] = - Then, the
weak law of large numbers implies that as d,, n — oo,

d:

1 1 p n
- — = — L
d, Z Sk n —2 n—oo
k=1
Putting everything together with d, /n — v, € (0,p;') completes the proof. O

D.2 W2S FINE-TUNING OF STRONG STUDENT

Theorem 3 (W2S fine-tuning of strong student (formal restatement of Theorem [2)). Under As-
sumption as d,,n,N — oo with d,/n — 7, € (O,p;l) and d,/N — v, € (O,pgl),
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fs(x) = ps(x)T0s = ¢s(x) " Bs from @) satisfies
P
E s, D)~ §~p(nn [ERn (fs)] = 05%( +

v < v

2
O¢

( —_ 2
00 = o)z + (e = 77u)=us||2} .

-

VS) < V(Tl) when 1, = 1

r

v.(pr — PTAS) (ps + (e — Uu)znﬁi‘i”zﬂ}

13

-

where pras = 1 + ||EH% € [1, ps| quantifies the effective dimension of group features learned by
the strong student from the weak teacher.

Notice that in Theorem Véo) + Vél) is dominant and will be small if T, S are nearly orthogonal

(i.e., ||Ell2 =~ 0) and ), = n;; whereas £g tends to be much smaller than Véo) + V(l), especially
since unlabeled data is usually abundant compared to labeled data (i.e., v, < 7,).

Proof of Theorems 2] and 3] We first introduce some helpful notions for the proof. Recall ¢g(x) =
z(x) @ P(x). Let By, ) = Ep(y;)[s(x)¢s(x) "] for any n € [0, 1] and observe that

1 T
Bgu =L ©Cs0). Cs) = Epplbp) = | o M50, o] a0

The block matrix inversion formula implies that

Cs(n)

o [Ho e lesl —a*mﬂ | o)

—onms o e
Meanwhile, the cross covariance of the student-teacher representations under D(7) is given by
e bra =Enin[65()61(x) 7] = Epy[(2(x) @ () (2(x) © w(x)) ]
=Ep ;) [2(x)2(x) "] ® Epy [ (x)w(x) "] = Lo, @ A1),

where
T 1 T
A(n) =Epg [ (x)w(x) '] = Ep) HSTg(X)] 1 €&(x) Tﬂ (23)

I W¥2 | e gresror, o4
nus oS T +n pspr

Close-form solution and population-optimal predictor of W2S fine-tuning. Given the equiva-
lence between (2)) and (6), we consider the latter throughout the proof. Adapting the notion from the
proof of Theorem |1} given the labeled set S = {(X;, ;) | i € [n]} ~ D(n;)" and the unlabeled set
S = {(xi,y:) | i € [N]} ~ Dx(n.)" with unknown y;’s, we denote

(iT = [¢T(§1>’ T 7¢T(§n)]—r € RnXdT7 y = E[jlf o 7§H]T S Rn7
®s = [ps(x1), -, ds(xn)]T €ERN*E Bp = [pr(xy),- -, dr(xn)]T € RV*IT,

Then, since n > dp and N > dg by Assumption|I] (6) admits a unique closed-form solution

-1 Srx =T
Bs = (Bi®s)  ®iPrBr where fBr = (2;®7) '®1y
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from (TI)). Recall from Lemma ]| that the population-optimal linear predictor over ¢ in Lemmal[I]is
2 (x) = ¢r(x) T B = f.(x) with B° = B, ®e;. Conditioned on f2°(x), the population-optimal
linear predictor over ¢g is given by
00 -1 00
B =Ep(y,) [¢s(x)ds(x) "] Ep(y,) [ps(x)or(x) "] BF
=(Ta. ® Cs (1))~ (Lo, @ A(1)BF
:(Idz ® (Cs(nu)_lA(nu)))(ﬁ* ® el)
:/6* ® (CS(nu)_lA(nu)el) - /@* ® e,

which implies that f&°(x) = ¢s(x) " B = f.(x), i.e., a strong student W2S fine-tuned with pseu-
dolabels from the Bayes-optimal weak teacher over the population is also Bayes-optimal. Therefore,
the student estimator in (€ differs from 32° by

e} -1 0
Bs = BF = (B5®s) @51 (Br - BF)
-1 ~T= =T~
=(BiPs)  ®iPr (B Pr) ' PE,
and the estimation error of W2S fine-tuning is given by

ER,, (fs) =Ep(y)[(Fs(x) = £.(0)°] = Ep( [(0s(0) T (Bs = BF))%] = 18s — B |1z,

Nt

Then, conditioned on ;I;T and ®g, P, the excess risk can be expressed as
Ee [ER,, (fs) | &1, s, 1|

1 a2 -
Egm(@gtﬁg) Lo (] 1) 1<I>;6H |<I>T,‘I)5,<I>T] (25)

Pt

-1 ~rx —1
—o2 tr (2%% (B1®s)  BLBr(BLBr) ' BLBs (BL D) ) .
Concentration of sample covariance matrices. Define the sample (cross) covariance matrices
a 1.+ - 1+ ~ P
YN = N'I’s P, Xsr N = N‘I’g D7, Xp, = E'I’T(I)T~

Then, taking the expectation of over S and S, yields

0.2

Eg s, [ERy, (fs)] =2 tr (Esz [E;T,Nzg}qukﬂhEE,SVES,T,N} Es [EilnD~ (26)

x

At the proportional asymptotic limit, Lemma 3] below shows that

1 el e _
n tr (]ESI {E—SF,T,NES}NECﬁs,mES}NESyTyN} E§ [ETlnD
P - _
= %2 tr (Cr,s (1, 12) Cr(00) ™) + 7202 (pr — pras) tr (Cs(m)Cs (1) ™)
Leveraging (21), (22)), and (23), we have

tr (Cr.s(ne,1)Cr(ne) ™) =tr (A(nu) " Cs (1) " Cs(1:)Cs(mu) " A(nu)Cr(ne) ")
(0 — ne)per + (e — n)Ens|

=1+ |=|?
+EI% + r
3
—_ 2
— | (e — me)per + (e — 1) Epes |5
=pTAS + = )
3

while an analogous derivation as in (I5) implies that

2
2 HHSHQ
—.

tr (Cs(1:)Cs(na) ") = ps + (1 — 1) pn
3
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Overall, plugging everything back to (26) yields

B > (M — ne)per + (e — 10)Eps|f
Eg,Sx [ERW (fS)] _>O-y72 pPras + 3

O¢

||us||
+ 00712 (pr — PrAS) (ps + (e =) 52 |,

o?

Lemma 3. In the proof of Theorem[2} at the proportional asymptotic limit,
1 N o S-1 <
- tr (]Esw {EE,T,NES}NE%JHEs}NES,T,N} Es |:2T1n}>

5 42 tr (Cros (1, 12)Cr(ne) ™) + 7202 (b7 — pras) tr (Cs (1) Cs (1) ™1
where Crp g(n¢, 1) € RPTXPT is defined as

Cr,s(m;nu) = A(nu) Cs(nu) " Cs(n:)Cs(nu) " Alnu),

Proof of Lemma[3] The proof mostly follows the same argument as in Lemma [2] with the key
difference bemg a careful treatment of the off-diagonal blocks in the sample (cross) covariance

matrices & s,n and s s,T,N > which are still small but with an additional non-negligible higher-order
moment in the proportlonal asymptotic limit.
Following the proof of Lemma[2] “Separation of block diagonals and off-diagonals”, we first partition
Ys,nand Xg 7y into d, X d, blocks:
~ ~ d. ~ ~ d.
Son = [B0V] . Ssow = S8
S,N S,N k=1 S, T,N S, T,N kl=1

where f](sklf,) € RPs*Ps and f](sk%)N € RPS*PT are given by

i=1
‘We denote
N

s1 = Z (xi)z1(x;) forall k,l € [d.],

and observe that for k # [, E[sg;] = 0 and for k = [, E[sg] = 1. We therefore observe and denote
that
Ds := Ep(,) [is,zv} =1, ® Cs(nu), Dsr:=Ep(q,) {is,T,N] =L @ A(nu).  Q27)

We further define the reminder fluctuation matrices around Dg and Dg 7:

Es=3Ssy - Ds. Esr=3Zsrny - Dsr, (28)
where
1,1 (1,2 a(1l,ds
S4N — Cslm) i S
a(2,1 2,2 $(2,d-
(k)] % Z3(5,1\/) 23(S,N) —Cs(nu) -+ 259,1\/ )
Eg = [ES } - ,
k=1 : : :
s(dz,1 s (d=,2 $(dz,dz
Eg, ) EE‘S’,N ) Eg]\r ) CS(%)
S(1,1 S(1,2 s (1.dz
(2,1 (2,2 a(2.d.
[ (K, z)] ES,T,N ES,T,N A1) ES,T,N
Esr = |E i
kil=1
S(ds,l S(ds,2 $(dz,d-
E(S,TJ\)/ Eg,TJ\)/ Eg,T, )~ A (1)
(29)
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Again, following the proof of Lemma[2] the resolvent identity implies that
Y5 =(Ds +Es) ' =Dg' — D3'Eg(Ds + Eg) !
=Dg' - D;'EsDg' + D5'EsDg'Eg(Ds + Eg) .
Then, since E[Eg] = 044 x4 and E[Eg 1] = 044 x4,., We have
Es, [EE,T,NﬁéﬁvxabsmtiEﬁvis,T,N}
=E [(Dsr +Esr)" (Ds +Es) '(Is. ® Cs(n))(Ds + Egs) ' (Ds,r + Es 1))
:DE,TDgl(Idz ® Cs(m:))D5'Dsr + Ry
+E[Eg,Dg'(Is. ® Cs(m))Dg'Esr] (= Rsr) (31)
+E[D§,D5'EsDg' (Io. ® Cs(n:))Dg'EsDg'Dsr] (= Rss)
—E[D§ D5 'EsDg' (I, @ Cs(n:))Dg'Es,r] (= Rssr)
~E [Eg7rD5'(Is. ® Cs(m))D5 ' EsDg'Dsr],  (=: Rsr.s)

where |Ry||, = op(1) for sufficiently large N; Eg and Eg 1 are averages over N i.i.d. random
matrices with d, x d, independent blocks. Therefore, when taking expectation for the second
moments of Eg and Eg 7, the off-diagonal blocks in Rs 7, Rs s, Rs 5.7, Rs. 7.5 € RY7*T vanish
due to independence, and only the diagonal blocks remain, which are i.i.d. across k € [d.]. Notice
that implies that

D§ D' (Ls, ® Cs(n))Dg' Ds.r = La, © Cr,5(ne, mu)-

(30)

Also, we recall that the fourth moment of any Gaussian random vector g ~ N(0,1,) satisfies for any
fixed matrix M € R4xd,

E|(gg”)’] = (@+2)Ls, E[(gg")M(gg")] = tr(M)Ly+ M+ M. (32)

Define a function g : R¥7 47 — R as
1 -
A)= -t (AEg [S7L]).
g(A) n " S |*Tn

Then, we have

1 « « _ < — S -~ —

- tr (ESw {E;TtNEs,lsz,mEs,lsz&TW} Es |:2T1n:|)

=9 (Ia. ® Cr,s(nt,nu)) + 9(Rs ) + 9(Rs,s) — 9(Rs,s,7) — 9(Rs 1,5) + op(1),
where given the I, ® Cr s(n:,7,,) structure, Lemmathen implies that under the proportional
asymptotic limit,

P _
9 (e, ® Cr,s(ne, 1)) = 7= tr (Cr,s (i, 1) Crr(ne) 1) -

Let M := Cg(n:)Cs(n,) "1 € RPs*Ps and M/ := M],.,,s 2.5+ Recall from @) that Rs,r =
E [E{;Dg'(Is. ® Cs(n))Dg'Es 7). (32) and (T3), along with the proof of Lemmaimply that

2
P 2 —T w — e 2
g (Rs1) = 202 (pT tr (M) + o tr (M':T.:.) +Cg (n 770)2 NT||2> 7
3 13

for some constant C's > 0 independent of d,, N. Analogously, we have

P 2 —_—T — (7 2 2
g (Rs.s) = Y21 (pT/\S tr(M) + — tr (M/.:.T:.) +Cs (n 77£)2 ””T”2> ,

O¢ T¢
P 2 =T (= 10)? llpar 13
g((RS,S,T)) — Y2Vz | PTAS tI‘(M) + ? tr (M = .:.) + Cg o
3 3

9((Rs,7.5)) = 9((Rs,5,7))-
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Overall, at the proportional asymptotic limit,
1 A « — « — s -——
- tr (Esm {Eg}T,NES,%NELi’S,mES,ZEVE&ZN} Es [ETInD

E) Yz tr (CT,S(ntv nu)CT(nZ)il) + Y2V (pT - pT/\S) tr (CS(nt)CS('r]u)il) .

E ADDITIONAL EXPERIMENTAL DETAILS

E.1 DATASET STATISTICS

In this work, we construct three distinct splits for each of the four datasets, Waterbirds (Sagawa et al.|
2020), BFFHQ (Lee et al.,2021), ImageNet-9 (Xiao et al.,[2020), and BG-COCO. Specifically, each
dataset is partitioned into a group-imbalanced training set D1, a group-balanced training set D5, and
a group-balanced test set D3. The minority group proportion in Dy, Dy, and Dj is 1,, 0.5, and 0.5,
respectively. Across different real-world experiments in the paper, we vary the group proportions
(n¢ and n,,) as well as the sample sizes (n and V). We first summarize the dataset statistics for each
benchmark, and then describe how D; to D3 are utilized in different experimental setups.

Waterbirds statistics. The Waterbirds (Sagawa et al.,[2020) dataset is designed to capture spurious
correlations between natural backgrounds and bird labels, with 77, = 0.05. Table[3|reports the detailed
group distributions across D, to Ds. Following Sagawa et al.| (2020), we supplement additional
samples for the minority groups (waterbird, land) and (landbird, water) in the same manner as the
original dataset, due to the limited size of the raw data.

Split ~ (waterbird, water)  (waterbird, land)  (landbird, water)  (landbird, land)  Total

D1 1,057 56 184 3,498 4,795
Do 1,804 1,804 1,804 1,804 7,216
D3 451 451 451 451 1,804

Table 3: Dataset statistics for Waterbirds. Each column corresponds to a group, and the last column
gives the total sample count.

BFFHQ statistics. The BFFHQ (Lee et al., 2021)) dataset is designed to capture spurious correla-
tions between age and gender labels, with 77, = 0.005. Table[d|reports the detailed group distributions
across D; to Ds. Due to the limited size of the minority groups in the raw data, our splits are
constructed from de-duplicated samples across multiple BFFHQ subsets.

Split  (young, female)  (young, male) (old, female) (old, male) Total

Dy 9,552 48 48 9,552 19,200
Do 790 790 790 790 3,160
D3 198 198 198 198 792

Table 4: Dataset statistics for BFFHQ. Each column corresponds to a group, and the last column
gives the total sample count.

ImageNet-9 statistics. The ImageNet-9 (Xiao et al., 2020) dataset is designed to capture spurious
correlations between object and background labels. Different from Waterbirds and BFFHQ, ImageNet-
9 is a 9-class classification task over categories dog, bird, wheeled vehicle, reptile, carnivore, insect,
musical instrument, primate, and fish. The original dataset provides two variants, mixed-same and
mixed-rand. In the mixed-same version, each image background is replaced with a background from
an image of the same class, thus preserving spurious correlations; in the mixed-rand version, the
background is randomized and contains no information about the true label. These two variants
correspond to minority group proportions of 0 and 0.5, respectively. Table [5| reports the dataset
statistics across D; to Ds3. Based on this table, we set 77, = 0. Note that ImageNet-9 does not have a
well-defined group structure under either the mixed-same or mixed-rand settings. Therefore, we do
not report worst-group accuracy for this dataset.
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Split  mixed-same  mixed-rand  Total  Per-class
Dy 4,050 0 4,050 450
Do 0 3,240 3,240 360
D3 0 810 810 90

Table 5: Dataset statistics for ImageNet-9. Within each split, the nine classes have identical counts.

BG-COCO statistics. The BG-COCO dataset is a self-generated benchmark designed to capture
spurious correlations between cats/dogs from COCO (Lin et al.,2014) and indoor/outdoor scenes
from Places (Zhou et al.|[2017). Specifically, we define the indoor/outdoor split as living room, dining
room (indoor) and park (outdoor). By construction, cats are aligned with indoor scenes and dogs with
outdoor scenes. Table [f]reports the detailed group distributions across D; to Ds. Based on this table,
we set 7, = 0.05.

Split  (cat, indoor)  (cat, outdoor)  (dog, indoor)  (dog, outdoor)  Total
D1 1,900 100 100 1,900 4,000
Do 1,000 1,000 1,000 1,000 4,000
Ds 250 250 250 250 1,000

Table 6: Dataset statistics for BG-COCO. Each column corresponds to a group, and the last column
gives the total sample count.

Across all four datasets, we construct training and evaluation splits as follows. When either 7, or n,,
is fixed 7,, samples are drawn from D; with the desired size N (for unlabeled data) or n (for labeled
data). When either 7, or 1, is fixed to 0.5, balanced samples are instead drawn from Ds. Several
experiments involve fixing 7, while varying 7,,. In this setting, if necessary, we keep the labeled data
unchanged and supplement the unlabeled data with additional samples independently drawn from D;
or D5, while ensuring that the total unlabeled sample size N remains constant across different 7,,.
The balanced dataset D5 is reserved for testing, and when required, we further split 20% of D3 as a
separate validation set.

E.2 RESULTS FOR INTERPRETING W2S UNDER SPURIOUS CORRELATIONS

# of model pairs with increased W2S gain

Dataset

Average accuracy ~ Worst group accuracy
Waterbirds 10/10 10/10
BFFHQ 10/10 9/10
BG-COCO 9/10 10/10
ImageNet-9 710 —

Table 7: Proportion of teacher-student pairs that exhibit an increase in W2S gain as n,, increases from
0 to the maximum feasible value of 7, (Waterbirds: 0.5, BFFHQ: 0.23, BG-COCO: 0.5, ImageNet-9:
0.4) when 7, = 0.5, summarized across all datasets. ImageNet-9 has no well-defined worst group, so
only average accuracy is reported.

In Section[3.2] we primarily presented how the average W2S gain across all teacher-—student pairs
varies with increasing 7,, on each dataset. Here, we further provide results for individual model pairs.
Specifically, Figure[6] compares the difference in W2S gain between the group-balanced (1, = 0.5)
and group-imbalanced (1, = 7)) settings on selected datasets. Table [7] summarizes, for 7, = 0.5,
the proportion of model pairs that exhibit an increase in W2S gain as 7,, increases from 0 across all
datasets. Table|8|summarizes, for n;, = 7,, the proportion of model pairs that exhibit a decrease in
W2S gain as 7,, increases from 1), across all datasets. These results further validate our theoretical
analysis in Section[2.2] which predicts that in most cases the larger the gap between 7, and 7, the
smaller the resulting W2S gain.
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Figure 6: Top: On the Waterbirds dataset, the change in W2S gain (value at 7,, = 0.5 minus value at
1, = 0) across all teacher—student pairs with fixed 7, = 0.5. Bottom: On the ImageNet-9 dataset,
the change in W2S gain (value at 7, = 0.5 minus value at 1, = 7),) across all teacher—student pairs
with fixed 7, = 7,. ImageNet-9 does not have a clearly defined worst group and is therefore omitted
from the bottom panel.

# of model pairs with decreased W2S gain

Dataset

Average accuracy ~ Worst group accuracy
Waterbirds 7/10 8/10
BFFHQ 8/10 7/10
BG-COCO 8/10 7/10
ImageNet-9 9/10 —

Table 8: Proportion of teacher-student pairs that exhibit a decrease in W2S gain as 7,, increases from
7o to 0.5 when 7, = 7),, summarized across all datasets. ImageNet-9 has no well-defined worst group,
so only average accuracy is reported.

E.3 RESULTS FOR ENHANCED W2S

Model training. Enhanced-W2S improves upon vanilla W2S by retraining the strong student
after the initial W2S fine-tuning. First, we select a fraction p € (0,1] of S consisting of those
samples for which the student exhibits the lowest prediction entropy. Second, we apply the GCE
loss Lacer(Xi, §i; ) with parameter ¢ € (0, 1] to each selected sample (x;,9;). We tune the
hyperparameters by grid search over p € {0.2,0.4,0.6,0.8,1.0} and ¢ € {0,0.2,0.7}, where ¢ = 0
corresponds to the CE loss (i.e., the ¢ — 0 limit of GCE). To avoid a trivial overlap with the vanilla
W2S baseline, (p,q) = (1,0) is excluded from the Enhanced-W2S search space. In the case of
(e, M) = (Mo, 0.5), we further restrict the subset ratio to p € {0.2,0.4,0.6} to emphasize the role
of high-confidence subsets in filtering for the majority group. Each run of Enhanced-W2S is repeated
with multiple random seeds, and the reported results are obtained by averaging across seeds.

Role of confidence-based selection. When (7¢,7,,) = (1,,0.5), Figure|7|shows that samples with
high student confidence (i.e., low predictive entropy) after W2S fine-tuning are almost exclusively
drawn from the majority group, and furthermore are nearly always assigned the correct pseudolabels
by both the weak teacher and the strong student. At the same time, Theorem [2] predicts that
reducing 7),, from 0.5 directly increases the W2S gain. These two observations together suggest
that confidence-based selection provides significant benefits for improving W2S performance in the

setting (77€a nu) = (7707 0-5)'
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Figure 7: Student confidence on unlabeled data as stacked density plots of predictive entropy
(ne = Mo, Nu = 0.5). Each panel shows the student’s predictive entropy (after W2S fine-tuning),
visualized as two stacked density plots: (top) split by group (majority vs. minority) and (bottom)
split by prediction correctness of the weak teacher and the strong student. Columns correspond to
datasets (Waterbirds, BFFHQ, BG-COCO). Rows correspond to model pairs: (ConvNeXt, Clipb32)

and (Clipb32, DINOv2).
Dataset - - Mean relative improvement (%)
Average Accuracy  Worst Group Accuracy
o 0% 0 o
A R 5
Bacoco 2 e U i
ImageNet-9 0'05 (7)7"5 ﬁ;; B

Table 9: Mean relative improvement (%) of Enhanced-W2S over vanilla W2S, averaged across
selected teacher—student pairs, for both average accuracy and worst group accuracy. For each dataset,
we select all model pairs whose relative strength relationship remains consistent across different

(ne, M) settings.

Mean relative gains. Table 0] summarizes the mean relative improvement of Enhanced-W2S over
vanilla W2S, averaged across all teacher—student pairs. Consistent with the main text, our method
achieves clear gains under both average accuracy and worst group accuracy. On the Waterbirds dataset,
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we further compare the performance of Enhanced-W2S with the auxiliary confidence loss proposed
in (Burns et al.l 2024)), which was also designed to improve the generalization ability of W2S. Specifi-
cally, we perform a grid search over the auxiliary confidence loss weight « € {0.2,0.4,0.6,0.8}, and
Table reports, for each (¢, n,,) configuration, the mean relative improvement of Enhanced-W2S
minus the mean relative improvement obtained with the auxiliary confidence loss. Our method yields
larger gains in all cases, confirming that it is motivated by our theoretical analysis (see Sectiond)) and
is specifically tailored to address W2S under spurious correlation.

Difference in mean relative improvement (%)

e U

Average Accuracy  Worst Group Accuracy
05 1 522 3.88
N, 0.5 5.90 3.41

Table 10: Difference in mean relative improvement (%) Waterbirds, computed as Enhanced-W2S
minus the auxiliary confidence loss baseline, averaged across selected teacher—student pairs for each
(n¢, M) configuration.

F GROUP FAIRNESS IN W2S GENERALIZATION

Ensuring that algorithmic decisions do not exhibit systematic bias against certain attributes (e.g., race,
gender, age) has long been a central objective in fair machine learning (Liu et al.| 2019; |Oneto &
Chiappal 2020; [Mehrabi et al.| 2021). At the same time, when the data contains spurious correlations
caused by group imbalance, unfairness across different groups is likely to arise, as the model tends to
rely on spurious features when making predictions (Izmailov et al., 2022). This lack of group fairness
is particularly concerning when groups are defined by sensitive attributes. Therefore, a line of work
on mitigating spurious correlation has explicitly targeted group robustness, and the evaluation metrics
adopted in this literature (e.g., worst group accuracy) can be interpreted as a measure of fairness. In
parallel, several works have more directly studied the relationship between spurious correlations and
formal notions of group fairness (Veitch et al., 2021} Schrouff et al., |[2024)).

In this section, we extend our analysis of W2S under spurious correlation to incorporate the notion of
group fairness. Under W2S, the minority group proportions in both the labeled dataset (7)) and the
unlabeled dataset (n,,) jointly influence the extent to which the strong student preserves group-level
parity after the W2S process.

Definition 4 (Group risk disparity). Under Definitions|l|and 2| we define the group risk disparity of
the strong student after W2S fine-tuning as

Agrp(f5) = [Ep(n,)¥, Do [ER0(f5)] = Ep(n,)~, Dinern [ER1(f5)] ] (33)

where ER(fs) and ER(fs) denote the excess risks of the student on the majority (n; = 0) and
minority (ny = 1) groups, respectively.

In Definitiond] we quantify the group fairness through the absolute difference between the student’s
excess risk on the majority group and the minority group. It is important to note that our definition
of group risk disparity is directly aligned with the notion of perfect fairness (also referred to as risk
parity) in the group-fairness literature (Williamson & Menon, 2019} |Liu et al.,|2025b). In particular,
the condition A, (fs) = 0 is equivalent to achieving perfect fairness (risk parity).
Corollary 1 (Group risk disparity of W2S). Under Definitions|[I|and[2|and assumption|[I} the group
risk disparity of the strong student after W2S fine-tuning satisfies
o2y,

Agp(fs) = 2L

e

—

—_— 2 2
2(n¢ — nu)purEps — (1 — 21,) (Ilzusllz + v.(pr — PrAs) I\ust)‘

Corollary [T|follows directly from the precise asymptotic characterization of the strong student excess
risk in Theorem [3] providing a precise quantification of the group risk disparity in the proportional
asymptotic limit.

We outline several key insights from Corollary [T] below:

(a) Low teacher-student similarity (p7»s = 1) brings robustness of group fairness A, (fs) to
teacher bias 7, < 0.5, where W2S is fair if the unlabeled training set is balanced 7, = 0.5.
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(b)

©)

Notably, when pras = 1 (i.e., |E[% = 0), Agp(fs) becomes independent of 7, and is only
affected by 7, through the (1 — 27),,) factor. When 7,, = 0.5 further, we have 1 — 27, = 0, and

therefore Agrp( fs) ﬂ 0, i.e., the strong student from W2S fine-tuning is fair, even though a
biased weak teacher fine-tuned with 1, < 7, can still hurt the generalization of the strong student.

Low teacher-student similarity (pr,s = 1) induces group fairness of W28, A, (fs) — 0,
as v, — 0. While prprs = 1 (i.e., | E]|% = 0) alone does not guarantee fairness, it provides

2

P g
Agrp — (1 - QTIu)WszO%(pT - pT/\S) ”NSHE = (1 - 277u)’Ysz,
13

where we have Ag,(fs) L 0asd,,n,N — oo if v, — 0, i.e., when N is large enough
compared to d, low teacher-student similarity induces fairness of W2S.

For high teacher-student similarity (p;,s — ps), group fairness of the student A, ,(fs) is
influenced by the fairness of the teacher 7, with the dependence determined by u; Epg. In

particular, when pras — pg so that |N;EMS | is non-negligible, W2S is fair (i.e., Agyp (fs) 5 0)
when
= 2 2
IEuslls + v=(pr — pras) [|1sll;
nrEps 7

ner =, + (1 - 2n,)

assuming it falls in the range 77§air € [0, 0.5], while the group fairness gets worse (i.e., Agrp(fs)
increases) as 1y deviates from ngair. Notably,
(1) if nﬁair < 0, the group fairness gets worse as 7, increases, best when 7, = 0; while

2) if ngair > 0.5 the group fairness gets worse as 7, decreases, best when 7, = 0.5.

31



	Introduction
	Related Works

	A Theory of W2S under Spurious Correlation
	Problem Setup: Regression under Spurious Correlation
	W2S Generalization under Spurious Correlation
	Synthetic Experiments

	Real-World Evaluation
	Model and Dataset Setup
	Interpreting W2S under Spurious Correlations

	Enhanced-W2S Method
	Conclusions, Discussions, and Future Directions
	Usage of Large Language Models
	Additional Related Works
	Additional Notations
	Proofs for sec:theory
	SFT of Weak Teacher
	W2S Fine-tuning of Strong Student

	Additional Experimental Details
	Dataset Statistics
	Results for Interpreting W2S under Spurious Correlations
	Results for Enhanced W2S

	Group Fairness in W2S Generalization

