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Abstract

In this paper, we use matrix information theory
as an analytical tool to analyze the dynamics of
the information interplay between data represen-
tations and classification head vectors in the su-
pervised learning process. Specifically, inspired
by the theory of Neural Collapse, we introduce
matrix mutual information ratio (MIR) and ma-
trix entropy difference ratio (HDR) to assess the
interactions of data representation and class clas-
sification heads in supervised learning, and we
determine the theoretical optimal values for MIR
and HDR when Neural Collapse happens. Our
experiments show that MIR and HDR can effec-
tively explain many phenomena occurring in neu-
ral networks, for example, the standard supervised
training dynamics, linear mode connectivity, and
the performance of label smoothing and pruning.
Additionally, we use MIR and HDR to gain in-
sights into the dynamics of grokking, which is an
intriguing phenomenon observed in supervised
training, where the model demonstrates general-
ization capabilities long after it has learned to
fit the training data. Furthermore, we introduce
MIR and HDR as loss terms in supervised and
semi-supervised learning to optimize the informa-
tion interactions among samples and classification
heads. The empirical results provide evidence of
the method’s effectiveness, demonstrating that the
utilization of MIR and HDR not only aids in com-
prehending the dynamics throughout the training
process but can also enhances the training proce-
dure itself.
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1. Introduction
Supervised learning is a significant part of machine learning,
tracing its development back to the early days of artificial
intelligence. Leveraging ample annotated data from large-
scale datasets like ImageNet (Krizhevsky et al., 2012) and
COCO (Lin et al., 2014), supervised learning has achieved
outstanding performance in tasks such as image recogni-
tion (He et al., 2016; Girshick, 2015; Ronneberger et al.,
2015), speech recognition (Hinton et al., 2012; Chan et al.,
2016), and natural language processing (Vaswani et al.,
2017), thereby advancing the development of artificial in-
telligence. Concurrently, with its enhanced performance
in real-world applications, some interesting phenomena in
supervised learning, such as Neural Collapse (Papyan et al.,
2020), linear mode connectivity (Frankle et al., 2020), and
grokking (Power et al., 2022) have emerged. More and
more work is beginning to explore the reasons behind these
phenomena.

Neural Collapse (Papyan et al., 2020) is an interesting phe-
nomenon observed during the training process of supervised
learning. In different stages of network training, features of
samples within the same class become more similar in the
feature space, meaning that intra-class differences decrease.
At the same time, feature vectors of different classes become
more distinct in feature space, leading to more significant
inter-class differences. In supervised learning classification
tasks, after prolonged training, a special alignment occurs,
this alignment is formed between the weights of the net-
work’s final fully connected layer and the feature vectors of
the classes. This indicates that for each class, the centroid
of its feature vector almost coincides with the weight vector
of its corresponding classifier (classification head vector).

Existing work on the theory of Neural Collapse primarily
solely focuses on feature or classification head similarity,
with few studies exploring the information between fea-
tures and class classification heads. We introduce matrix
information theory as an analytical tool, using similarity
matrices constructed from sample features and class classifi-
cation heads to analyze the information dynamics along the
training process. According to Neural Collapse, for a well-
trained model at its terminal phase, sample features and the
corresponding class classification heads align well. Thus, at
the stage of Neural Collapse, the similarity matrix of sample
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features aligns with the similarity matrix constructed by
the corresponding class classification heads. Therefore, we
first theoretically calculate their matrix mutual information
ratio and the matrix entropy difference ratio at the point
of Neural Collapse. We find that at the point of Neural
Collapse, the theoretical MIR is nearing its maximum, and
the HDR reaches its theoretical minimum. Therefore, we
expect an increase in MIR and a decrease in HDR during
the training process. Experiments demonstrate that MIR
and HDR effectively describe such phenomena during train-
ing. Motivated by the success of understanding dynamics in
standard training, we also explore their uses in other settings
like linear mode connectivity, label smoothing, pruning, and
grokking. Compared to accuracy, MIR and HDR not only
can describe the above phenomena but also possess unique
analytical significance. We also explore integrating infor-
mation constraints on model performance, by adding MIR
and HDR as a loss term in supervised and semi-supervised
learning. Experiments show that adding additional informa-
tion constraints during training effectively enhances model
performance, especially in semi-supervised learning with
limited labeled samples, where information constraints help
the model better learn information from unlabeled samples.

Our contributions are as follows:

1. Motivated by Neural Collapse and matrix information
theory, we introduce two new metrics: Matrix Mutual Infor-
mation Ratio (MIR) and Matrix Entropy Difference Ratio
(HDR), for which we also deduce their theoretical values
when Neural Collapse happens.

2. Through rigorous experiments, we find that MIR and
HDR are capable of explaining various phenomena, such
as the standard training of supervised learning, linear mode
connectivity, pruning, label smoothing, and grokking.

3. We integrate matrix mutual information and information
entropy differences as a loss term in both supervised and
semi-supervised learning. Experiments demonstrate that
these information metrics can effectively improve model
performance.

2. Related Work
Neural network training phenomenon. Recent research
has revealed several interesting phenomena that are signifi-
cant for understanding the behavior and learning dynamics
of neural networks. Firstly, Papyan et al. (2020) observe that
in the final stages of deep neural network training, the fea-
ture vectors of the last layer tend to converge to their class
centroids, and these class centroids align with the weights
of the corresponding class in the final fully connected layer.
This phenomenon is known as Neural Collapse. Neural
Collapse occurs in both MSE loss and cross-entropy loss
(Han et al., 2021; Zhou et al., 2022). Secondly, Frankle

et al. (2020) find that models trained from the same starting
point, even when changing the input data sequence and data
augmentation, eventually converge to the same local area.
This phenomenon is termed Linear Mode Connectivity,
which is influenced by architecture, training strategy, and
dataset (Altıntaş et al., 2023). Lastly, Power et al. (2022)
discover that after prolonged training, models can transition
from simply memorizing data to inductively processing it.
This phenomenon is known as the Grokking. Nanda et al.
(2022) finds the connections of grokking on the modulo
addition task with trigonometric functions.

Information theory. Traditional information theory pro-
vides a universally applicable set of fundamental concepts
and metrics to understand the relationship between prob-
ability distributions and information (Wang et al., 2021).
However, when dealing with high-dimensional data and
complex data structures, traditional information theory tools
struggle to analyze higher-order relationships within the
data. As an extension and advancement of traditional infor-
mation theory, matrix information theory broadens the scope
of information theory to encompass the analysis of inter-
matrix relationships. This enables a better understanding
of the latent structures in data and more effective handling
of complex relationships in high-dimensional data (Bach,
2022). There have been works that utilize matrix mutual in-
formation to analyze neural networks. Tan et al. (2023b) use
matrix mutual information to study the Siamese architecture
self-supervised learning methods. Zhang et al. (2023a) point
out the relationship between effective rank, matrix entropy,
and equiangular tight frame.

Semi-supervised learning. Semi-supervised learning fo-
cuses on how to train a better model using a small number
of labeled data and a large number of unlabeled data (Sohn
et al., 2020; Zhang et al., 2021; Chen et al., 2023; Tan et al.,
2023c; Wang et al., 2023; Tan et al., 2023a; Zhang et al.,
2023b). FixMatch (Sohn et al., 2020) ingeniously integrate
consistency regularization with pseudo-labeling techniques.
MixMatch (Berthelot et al., 2019b) amalgamates leading
SSL methodologies, achieving a substantial reduction in
error rates and bolstering privacy protection. FlexMatch
(Zhang et al., 2021) introduces Curriculum pseudo-labeling
to improve semi-supervised learning by dynamically adapt-
ing to the model’s learning status, showing notable efficacy
in challenging scenarios with limited labeled data. Soft-
match (Chen et al., 2023) efficiently balances the quantity
and quality of pseudo-labels in semi-supervised learning,
demonstrating significant performance improvements in di-
verse applications including image and text classification.
FreeMatch (Wang et al., 2023) innovates in semi-supervised
learning by self-adaptively adjusting confidence thresholds
and incorporating class fairness regularization, significantly
outperforming existing methods in scenarios with scarce la-
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beled data. How to more accurately utilize the information
of unlabeled data remains an important problem in the field
of semi-supervised learning.

3. Preliminaries
3.1. Supervised classification problem

Given a labeled dataset {(xi, yi)}ni=1, where yi ∈
{1, 2, · · · , C} is the class label. In this paper, we mainly
consider training an image classification problem by con-
catenation of a deep neural network h and a linear classifier.
The linear classifier consists of a weight matrix W ∈ RC×d

and b ∈ RC×1. Denote WT = [w1 · · ·wC ]. The training
loss is the cross-entropy loss.

H(p, q) = −
n∑

i=0

p(xi) log q(xi),

where p is the true probability distribution, and q is the
predicted probability distribution.

3.2. Matrix entropy and mutual information

The following definitions of matrix entropy and matrix mu-
tual information are taken from paper (Skean et al., 2023).

Definition 3.1 (Matrix entropy). Suppose a positive-definite
matrix K ∈ Rd×d which K(i, i) = 1 (1 ≤ i ≤ d). The
matrix entropy is defined as follows:

H(K) = − tr

(
1

d
K log

1

d
K

)
.

In the following we assume that Kj ∈ Rd×d which
Kj(i, i) = 1 (1 ≤ i ≤ d, j = 1, 2).

Definition 3.2 (Matrix mutual information). The matrix
mutual information is defined as follows:

MI (K1,K2) = H (K1) + H (K2)−H(K1 ⊙K2),

where ⊙ is the Hardmard product.

Based on the two definitions above, we can introduce the
following concepts, which measure the normalized informa-
tion interactions between matrices.

Definition 3.3 (Matrix mutual information ratio (MIR)).
The matrix mutual information ratio is defined as follows:

MIR (K1,K2) =
MI (K1,K2)

min{H(K1),H(K2)}
.

Definition 3.4 (Matrix entropy difference ratio (HDR)). The
matrix entropy difference ratio is defined as follows:

HDR(K1,K2) =
|H(K1)−H(K2)|

max{H(K1),H(K2)}
.

4. Theoretic Insights in Supervised Learning
4.1. Neural collapse

Neural Collapse (NC) is an interesting phenomenon (Papyan
et al., 2020) appeared at the terminal phase of the classi-
fication problem. We will briefly summarize the 3 most
important NC conditions for our paper as follows.

Denote µG =
∑n

i=1 h(xi)

n and µc =
∑

yi=c h(xi)

#{yi=c} be the
global mean and class-wise mean respectively. Then we can
define µ̃c = µc − µG.

(NC 1) h(xi) = µyi
(i = 1, 2, · · · , n).

(NC 2) cos(µ̃i, µ̃j) =
C

C−1δ
i
j− 1

C−1 , where cos is the cosine
similarity and δij is Kronecker symbol.

(NC 3) WT

∥W∥F
= M

∥M∥F
, where M = [µ̃1 · · · µ̃C ].

In this paper, the matrics used in the matrix information
quantities usually is the similarity (gram) matrix. For ease
of exposition, we introduce a standard way of constructing
a similarity (gram) matrix as follows.

Definition 4.1 (Construction of similarity (gram) matrix).
Given a set of representations Z = [z1 · · · zN ] ∈ Rd×N . De-
note the l2 normalized feature ẑi =

zi

∥zi∥ , Ẑ = [ẑ1 · · · ẑN ].

Then gram matrix is defined as G(Z) = ẐT Ẑ.

Note that Neural Collapse conditions impose structural in-
formation on the weight matrix and class means, we provide
the matrix mutual information ratio and matrix entropy dif-
ference ratio of this imposed structure in Theorem 4.2.

Theorem 4.2. Suppose Neural collapse hap-
pens. Then HDR(G(WT ),G(M)) = 0 and
MIR(G(WT ),G(M)) = 1

C−1 + (C−2) log(C−2)
(C−1) log(C−1) .

The proof can be seen in Appendix A.1. As the linear weight
matrix W can be seen as (prototype) embedding for each
class. It is natural to consider the mutual information and
entropy difference between sample embedding and label
embedding. We discuss this in the following Corollary 4.3.

Corollary 4.3. Suppose the dataset is class-balanced,
µG = 0 and Neural collapse happens. Denote Z1 =
[h(x1) · · ·h(xn)] ∈ Rd×n and Z2 = [wy1 · · ·wyn ] ∈
Rd×n. Then HDR(Z1,Z2) = 0 and MIR(Z1,Z2) =

1
C−1 + (C−2) log(C−2)

(C−1) log(C−1) .

Remark: Note 1
C−1 + (C−2) log(C−2)

(C−1) log(C−1) ≈ 1
C−1 +

(C−2) log(C−1)
(C−1) log(C−1) = 1 and MIR, HDR ∈ [0, 1]. These facts
make quantities obtained by Theorem 4.2 and 4.3 very in-
teresting, as HDR reaches the minimum possible value and
MIR approximately reaches the highest possible value.

3



Unveiling the Dynamics of Information Interplay in Supervised Learning

4.2. Some theoretical insights for HDR

Mutual information is a very intuitive quantity in informa-
tion theory. On the other hand, it seems weird to consider
the difference of entropy, but we will show that this quantity
is closely linked with comparing the approximation ability
of different representations on the same target.

For ease of theoretical analysis, in this section, we consider
the MSE regression loss.

The following Lemma 4.4 shows that the regression of two
sets of representations Z1 and Z2 to the same target Y
are closely related. And the two approximation errors are
closely related to the regression error of Z1 to Z2.

Lemma 4.4. Suppose W∗
1,b

∗
1 = argminW,b ∥Y −

(WZ1+b1N )∥F . Then minW,b ∥Y−(WZ2+b1N )∥F ≤
minW,b ∥Y−(WZ1+b1N )∥F +∥W∗

1∥F minH,η ∥Z1−
(HZ2 + η1N )∥F .

The proof can be found in Appendix B.1. From Lemma 4.4,
we know that the regression error of Z1 to Z2 is crucial for
understanding the differences of representations. We further
bound the regression error with rank and singular values in
the following Lemma 4.5.

Lemma 4.5. Suppose Z1 = [z
(1)
1 · · · z(1)N ] ∈ Rd′×N and

Z2 = [z
(2)
1 · · · z(2)N ] ∈ Rd×N and rank(Z1) > rank(Z2).

Denote the singular value of Z1√
N

as σ1 ≥ · · · ≥ σN . Then

minH,η
1
N ∥Z1− (HZ2+ η1N )∥2F ≥

∑rank(Z1)
j=rank(Z2)+2(σj)

2.

The proof can be found in Appendix B.2. The bound given
by Lemma 4.5 is not that straightforward to understand.
Assuming the features are normalized, we successfully de-
rived the connection of regression error and ratio of ranks
in Theorem 4.6.

Theorem 4.6. Suppose ∥z(1)j ∥2 = 1, where (1 ≤ j ≤
N ). Then lower bound of approximation error can
be upper-bounded as follows:

∑rank(Z1)
j=rank(Z2)+2(σj)

2 ≤
rank(Z1)−rank(Z2)−1

rank(Z1)
≤ 1− rank(Z2)

rank(Z1)
.

The proof can be found in Appendix B.3. From (Wei et al.,
2024; Zhang et al., 2023a), exp (H(G(Z)) is a good ap-
proximate of rank(Z). Then we can see that rank(Z2)

rank(Z1)
≈

exp (H(G(Z2))−H(G(Z1))), making the difference of
entropy a good surrogate bound for approximation error.

5. Information Interplay in Supervised
Learning

Inspired by matrix information theory and Neural Collapse
theory, we focus more on the consistency between sample
representations and class classification heads. We deter-
mine the relationships among samples by constructing a
similarity matrix of the representations of dataset samples.

According to NC1 and NC3, the similarity matrix between
samples approximates the similarity matrix of the corre-
sponding class centers, which is also the similarity matrix
of the corresponding weights in the fully connected layer.
Therefore, under Neural Collapse, the similarity relationship
among samples is equivalent to the similarity relationship of
the corresponding category weights in the fully connected
layer. Our analysis, grounded in matrix information theory,
primarily concentrates on the relationship between the repre-
sentations of samples and the weights in the fully connected
layer. Due to constraints in computational resources, we
approximate the dataset’s matrix entropy using batch matrix
entropy.

Our models are trained on CIFAR-10 and CIFAR-100. The
default experimental configuration comprise training the
models with an SGD optimizer (momentum of 0.9, weight
decay of 5e−4), an initial learning rate of 0.03 with cosine
annealing, a batch size of 64, and a total of 220 training
iterations. The backbone architecture is WideResNet-28-2
for CIFAR-10 and WideResNet-28-8 for CIFAR-100.

5.1. Information interplay during standard supervised
learning process

According to Neural Collapse, during the terminal stages
of training, sample features align with the weights of the
fully connected layer. Theorem 4.2 indicates that during
the training process, MIR increases to its theoretical upper
limit, while HDR decreases to 0. We plot the model’s ac-
curacy on the test set during the training process, as well
as the MIR and the HDR between data representations and
the corresponding classification heads. As shown in Figure
1, on CIFAR-10 and CIFAR-100, the accuracy and MIR
exhibit almost identical trends of variations. In most cases,
both accuracy and MIR increase or decrease simultaneously,
and MIR consistently shows an upward trend, having its
trajectory toward its theoretical maximum value. As shown
in Figure 2, during the training process, in most instances,
accuracy and HDR show opposite trends, with HDR contin-
ually decreasing and even nearing its theoretical minimum
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Figure 1. Accuracy and MIR on the test set during training.
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value of 0 on CIFAR-100. In summary, MIR and HDR
effectively describe the process of training towards Neural
Collapse.
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Figure 2. Accuracy and HDR on the test set during training.

5.2. Information interplay in linear mode connectivity

Linear mode connectivity (Frankle et al., 2020) suggests
that under specific datasets and experimental setups, models
initialized with the same random parameters will be opti-
mized near the same local optimal basin, even if the order
of training data and data augmentation differs. We inves-
tigate the behaviors of MIR and HDR under the setting of
linear mode connectivity. We initialize models with the
same random parameters and train them using different data
sequences and random augmentations. Subsequently, we
linearly interpolate these two checkpoints and obtain a new
model h = (1− ω) · h1 + ω · h2, where h1 and h2 are the
two ckeckpoints and ω is the interpolation weight. Then we
test these models on a test set for accuracy, MIR, and HDR.

We conduct experiments on CIFAR-10 and CIFAR-100. As
shown in Figure 3a and 3b. On CIFAR-100, the perfor-
mance of models obtained along the interpolation line is
close, aligning with the linear mode connectivity. At this
point, MIR and HDR remain almost unchanged. However,
on CIFAR-10, the models do not exhibit linear mode con-
nectivity. When the value of interpolation weight is between
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Figure 3. Accuracy, MIR, and HDR of models interpolated with
different weights on the test set.
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Figure 4. Accuracy, MIR, and HDR of models interpolated with
different weights on CIFAR-10 test set.

0.4 and 0.6, the performance of the interpolated models even
drop to that of random guessing. Surprisingly, at this time,
MIR shows an additional upward trend. Moreover, when
the value of interpolation weight is close to 0 and 1, despite
a slight decrease in performance, HDR also decreases. Al-
though we find it difficult to explain this anomaly, it does
demonstrate that HDR and MIR have distinctive attributes
compared to the accuracy metric, presenting an intriguing
avenue for further exploration.

Altıntaş et al. (2023) point that linear mode connectivity is
related to the experimental configuration. Therefore, we
posit that the performance decline of the interpolated model
on CIFAR-10 is associated with an excessively high learn-
ing rate. In the training phase, models navigate the loss
landscapes in search of minimal values, and two models
with linear mode connectivity are optimized near the same
local optimum. When the learning rate is too high, different
training sample ordering and data augmentations lead to di-
recting model optimization towards distinct regions within
the loss landscapes. We experiment with different learning
rates on CIFAR-10 and test their linear mode connectivity.
It is observed that as the learning rate decreased, fluctua-
tions in accuracy, MIR, and HDR also reduced. When the
learning rate is lowered to 3e−4, the model demonstrate
linear mode connectivity on CIFAR-10. This suggests that
HDR and MIR are also effective in describing linear mode
connectivity when it exists.

5.3. Information interplay in label smoothing

Label smoothing (Szegedy et al., 2016) is a widely used
technique in deep learning. It improves the generalization
of the model by setting smoothness of labels. y′ = (1 −
ϵ) · y + ϵ

C , where ϵ is the smoothness and y is the one-
hot label. We train models with various smoothness levels
to explore their impact on accuracy, HDR, and MIR. As
shown in Figure 5, the variation in accuracy, MIR, and HDR
are minimal, indicating that HDR and MIR can effectively
describe the performance of label smoothing technique.
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5.4. Information interplay in model pruning

We would like to use MIR and HDR to understand why
the pruning technique is effective in maintaining relatively
high accuracy. We apply standard unstructured pruning to
models: for a well-trained model, we determine the number
of parameters to prune, denoted as k. The model’s parame-
ters are sorted in descending order based on their absolute
values, and the smallest k parameters are removed. Subse-
quently, the remaining parameters are fine-tuned again on
the dataset (Han et al., 2015).

We prune the model under various sparsity levels and extract
features using the model before and after pruning. We
calculate the MIR and HDR of the features extracted by the
model before and after pruning. As shown in Figure 6, even
when the model sparsity is 90%, the features extracted by
the pruned model maintain a high MIR with those extracted
before pruning. At various sparsity ratio, the variations in
MIR and HDR for models after pruning are little compared
to these before pruning, the performance differences of the
models before and after pruning are also not significant.
This indicates that fine-tuning the pruned subnetwork can
restore adequate information extraction capabilities.

5.5. Information interplay in grokking

In supervised learning, training models on certain datasets
can result in an anomalous situation. Initially, models
quickly learn the patterns of the training set, but at this
point, their performance on the test set is very poor. As
training continues, the models learn representations that
can generalize to the test set, a phenomenon referred to
as Grokking(Nanda et al., 2022). We aim to explore the
information interplay in Grokking. Following Nanda et al.
(2022); Tan & Huang (2023), we train a transformer to learn
modular addition c ≡ (a+ b) (mod p), with p being 113.
The model input is “a b =”, where a and b are encoded
into p-dimensional one-hot vectors, and “=” is used to sig-
nify the output value c. Our model employ a single-layer
ReLU transformer with a token encoding dimension of 128

0.0 0.2 0.4 0.60.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

0.0

0.2

0.4

0.6

0.8

1.0

HDR/M
IR

Accuracy
MIR
HDR

(a) CIFAR-10

0.0 0.2 0.4 0.60.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

0.0

0.2

0.4

0.6

0.8

1.0

HDR/M
IR

Accuracy
MIR
HDR

(b) CIFAR-100

Figure 5. Accuracy, MIR, and HDR under different smoothness
levels.
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Figure 6. Accuracy, MIR, and HDR of the features extracted by
the model before and after pruning.

to learn positional encodings, four attention heads each of
dimension 32, and an MLP with a hidden layer of dimension
512. We train the model using full-batch gradient descent,
a learning rate of 0.001, and an AdamW optimizer with a
weight decay parameter of 1. We use 30% of all possible in-
puts (113×113 pairs) for training data and test performance
on the remaining 70%.

As shown in Figure 7, we plot the accuracy of both the
training and test sets during the grokking process, as well
as the variation in MIR and HDR between the representa-
tion and the fully connected layer. It can be observed that,
in the early stages of training, the model quickly fits the
training data and achieves 100% accuracy on the training
set. However, at this point, the performance on the test set
is nearly equivalent to that of random guessing. As training
continues, the model gradually shows generalization capa-
bility on the test set, ultimately achieving 100% accuracy,
which is a hallmark of grokking. Figure 7 also reveals a
clear two-phase variation in both MIR and HDR between
data representation and the weight of fully connected layer.
Initially, similar to fully supervised learning, MIR increases,
while HDR decreases. However, as training proceeds, MIR
begins to decrease, and HDR starts to increase, indicating
the model is seeking new optimal points. After the model
achieves the grokking, MIR reaches its lowest, and HDR
rapidly declines from its highest point. The experiments
demonstrate that HDR and MIR exhibit distinct phenom-
ena in two stages, suggesting that information metrics can
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describe the grokking phenomenon, providing a basis for
further research.

6. Improving Supervised and Semi-Supervised
Learning With Information Interplay

6.1. Pipeline of supervised and semi-supervised learning

In this section, we introduce how to apply matrix informa-
tion entropy in supervised and semi-supervised learning.
In supervised learning, we train the nerual network h and
classifier W ∈ RC×d on the dataset DL = {(xi, yi)}NL

i=0

consisting of NL samples. h is used to extract data features
f ∈ RD, and W classifies the extracted features. The model
is optimized using the following cross-entropy loss.

Ls =
1

B

B∑
i=1

H(yi, p(ω(xi))),

where B represents the batch size, H denotes the cross-
entropy loss, p(·) refers to the model’s output probability of
a sample, and ω means random data augmentation.

Compared to supervised learning, semi-supervised learning
includes an additional unlabeled dataset DU = {ui}NU

i=0

which contain NU unlabeled data and utilizes it to assist
in optimizing the model. In the processing of unlabeled
data, we adopt the approach outlined in Freematch (Wang
et al., 2023). This involves generating pseudo-labels through
weak data augmentation and selecting data based on a prob-
ability threshold. The model is then employed to extract
features from strongly augmented data for the computation
of cross-entropy loss in conjunction with the pseudo-labels.
The formulaic representation of the training objective for
unlabeled data is as follows:

Lu =
1

µB

µB∑
i=1

I (max(qi) > τ) · H (q̂i, Qi) ,

where qi and Qi correspond to p(y|ω(ui)) and p(y|Ω(ui)),
respectively. The term q̂i refers to one-hot pseudo-labels
generated from qi. The symbol I(· > τ) denotes the indi-
cator function applied to values surpassing the threshold τ .
Furthermore, ω and Ω are used to distinguish between weak
and strong data augmentation.

In addition, Freematch incorporates a fairness objective to
predict each class with uniform frequency.

Lf = −H

(
SumNorm

(
p1

hist1

)
,SumNorm

(
p2

hist2

))
.

SumNorm = (·)/
∑

(·). p1 and p2 refer to the average
predictions of the model under weak and strong augmenta-

tion, respectively. Likewise, hist1 and hist2 indicate the
histogram distributions resulting from weak and strong aug-
mentation, respectively.

The overall objective is

Lssl = Ls + λuLu + λfLf ,

where λu and λf represent the weight for Lu and Lf .

6.2. Insights from information interplay

In a batch of labeled data {(xi, yi)}Bi=1 ∈ DL, h extracts
feature representations, denoted as f ∈ RB×D. In Neu-
ral Collapse theory, the representation of each sample’s
class center aligns with the classifier weight of the respec-
tive category, i.e., Vi = Wyi . In the case of unlabeled
data {ui}µBi=1 ∈ DU , we select sample features f ′ from
µB samples with pseudo-label probabilities greater than τ .
i.e., f ′ = {fi ∈ f |I (max(qj) > τ)}, and obtain the corre-
sponding class centers V ′ = Wy′

i
, where y′i is the pseudo

label of f ′.

Maximizing mutual information. As shown in Figure 1,
during the model training process, the mutual information
between a batch’s data features f and the corresponding
class weights V increases. Therefore, we add an additional
loss term to increase the mutual information between them.
For supervised learning, the final optimization objective is

L = Ls − λmi · MI (G(f),G(V )) .

For semi-supervised learning, the final optimization objec-
tive is

L = Lssl − λmi · MI (G(f ′),G(V ′)) ,

where λmi is the weight for the mutual information.

Minimizing entropy difference. As depicted in Figure 2,
throughout the training phase, the disparity in information
entropy between a batch’s data features f and the associated
category weights V diminishes in tandem with an increase
in accuracy. Consequently, it is feasible to introduce an aux-
iliary loss component within the training regime to further
mitigate this entropy discrepancy. In the context of super-
vised learning, the ultimate optimization target is delineated
as

L = Ls + λid · |H(G(f))− H(G(V ))| .

Regarding semi-supervised learning, this target shifts to

L = Lssl + λid · |H(G(f ′))− H(G(V ′))| ,

wherein λid signifies the weight for entropy difference.
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Table 1. Error rates (100% - accuracy) on CIFAR-10/100, and STL-10 datasets for state-of-the-art methods in semi-supervised learning.
Bold indicates the best performance, and underline indicates the second best.

Dataset CIFAR-10 CIFAR-100 STL-10

# Label 10 40 250 400 2500 40 1000

Π Model (Rasmus et al., 2015) 79.18±1.11 74.34±1.76 46.24±1.29 86.96±0.80 58.80±0.66 74.31±0.85 32.78±0.40

Pseudo Label (Lee et al., 2013) 80.21± 0.55 74.61±0.26 46.49±2.20 87.45±0.85 57.74±0.28 74.68±0.99 32.64±0.71

VAT (Miyato et al., 2018) 79.81± 1.17 74.66±2.12 41.03±1.79 85.20±1.40 48.84±0.79 74.74±0.38 37.95±1.12

MeanTeacher (Tarvainen & Valpola, 2017) 76.37± 0.44 70.09±1.60 37.46±3.30 81.11±1.44 45.17±1.06 71.72±1.45 33.90±1.37

MixMatch (Berthelot et al., 2019b) 65.76± 7.06 36.19±6.48 13.63±0.59 67.59±0.66 39.76±0.48 54.93±0.96 21.70±0.68

ReMixMatch (Berthelot et al., 2019a) 20.77± 7.48 9.88±1.03 6.30±0.05 42.75±1.05 26.03±0.35 32.12±6.24 6.74±0.17

UDA (Xie et al., 2020) 34.53± 10.69 10.62±3.75 5.16±0.06 46.39±1.59 27.73±0.21 37.42±8.44 6.64±0.17

FixMatch (Sohn et al., 2020) 24.79± 7.65 7.47±0.28 5.07±0.05 46.42±0.82 28.03±0.16 35.97±4.14 6.25±0.33

Dash (Xu et al., 2021) 27.28± 14.09 8.93±3.11 5.16±0.23 44.82±0.96 27.15±0.22 34.52±4.30 6.39±0.56

MPL (Pham et al., 2021) 23.55± 6.01 6.93±0.17 5.76±0.24 46.26±1.84 27.71±0.19 35.76±4.83 6.66±0.00

FlexMatch (Zhang et al., 2021) 13.85± 12.04 4.97±0.06 4.98±0.09 39.94±1.62 26.49±0.20 29.15±4.16 5.77±0.18

FreeMatch (Wang et al., 2023) 8.07± 4.24 4.90±0.04 4.88±0.18 37.98±0.42 26.47±0.20 15.56±0.55 5.63±0.15

OTMatch (Tan et al., 2023c) 4.89± 0.76 4.72±0.08 4.60±0.15 37.29±0.76 26.04±0.21 12.10±0.72 5.60±0.14

SoftMatch (Chen et al., 2023) 4.91± 0.12 4.82±0.09 4.04±0.02 37.10±0.07 26.66±0.25 21.42±3.48 5.73±0.24

FreeMatch + Maximizing Mutual Information (Ours) 4.87± 0.66 4.66± 0.13 4.56± 0.15 36.41± 1.91 25.77± 0.35 16.61± 1.19 5.24 ± 0.17

FreeMatch + Minimizing Entropy Difference (Ours) 4.69± 0.16 4.63± 0.25 4.60± 0.15 37.31± 1.96 25.79± 0.41 14.93 ± 3.28 5.30 ± 0.18

6.3. Performances on supervised and semi-supervised
learning

In our effort to conduct a fair comparison between our pro-
posed method and existing methodologies, we meticulously
designed our experiments building upon previous scholarly
work. TorchSSL (Zhang et al., 2021), a sophisticated code-
base encompassing a wide array of semi-supervised learning
techniques as well as supervised learning implementations,
was employed as our foundational code base. This enables
us to implement our algorithm effectively and assess its
performance on well-established datasets like CIFAR-10,
CIFAR-100, and STL-10. In the realm of supervised learn-
ing, our unique loss components are applied to annotated
data, facilitating the computation of both mutual informa-
tion loss and information entropy difference loss. For semi-
supervised learning scenarios, these loss components are
extended to unlabeled data, enhancing the calculation of
these loss metrics during the unsupervised learning phase.
We use an SGD optimizer, configured with a momentum
of 0.9 and a weight decay parameter of 5e−4. The learning
rate was initially set at 0.03, subject to cosine annealing.
We report the performance metrics over several runs of
seeds. The batch size are maintained at 64 across a compre-
hensive 1,048,000 iterations training regimen. Concerning
model architecture, WideResNet-28-2, WideResNet-28-8,
and WideResNet-37-2 are respectively chosen for datasets
CIFAR-10, CIFAR-100, and STL-10,

We train supervised and semi-supervised learning models us-
ing mutual information and information entropy difference
as constraints in the loss function. Table 1 and 2 present the
performance of semi-supervised and supervised learning,
respectively. It is observed that applying mutual information
and information entropy constraints led to a slight improve-

Table 2. Results for fully supervised learning

Datasets CIFAR-10 CIFAR-100

Fully supervised 95.35 80.77
Ours (MIR) 95.52 80.81
Ours (HDR) 95.57 80.96

ment in supervised learning performance. We believe this
is because sufficient labeled data provides adequate infor-
mation constraints, leading to only a modest enhancement
in performance. However, in semi-supervised learning, in
most settings, maximizing mutual information and minimiz-
ing information entropy resulted in the best or second-best
performance. Additionally, our method consistently out-
performed our baseline, FreeMatch, across various settings.
This suggests that in situations with insufficient labeled sam-
ples, additional information constraints can more effectively
improve model performance.

7. Conclusion
In conclusion, we have made significant advancements in
understanding the dynamics of supervised learning by uti-
lizing matrix information and Neural Collapse theory. Our
introduction of matrix mutual information ratio (MIR) and
matrix entropy difference ratio (HDR) provide novel in-
sights into the interplay between data representations and
classification head vectors, serving as new tools to under-
stand the dynamics of neural networks.

Through a series of rigorous theoretical and empirical anal-
yses, we demonstrate the effectiveness of MIR and HDR
in elucidating various neural network phenomena, such as
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grokking, and their utility in improving training dynamics.
The incorporation of these metrics as loss functions in super-
vised and semi-supervised learning shows promising results,
indicating their potential to enhance model performance and
training efficiency. This study not only contributes to the
field of machine learning by offering new analytical tools
but also applies matrix information to optimize supervised
learning algorithms.
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Appendix

A. Detailed proofs for Neural Collapse related Theorems
Theorem A.1. Suppose Neural collapse happens. Then HDR(G(WT ),G(M)) = 0 and MIR(G(WT ),G(M)) =

1
C−1 + (C−2) log(C−2)

(C−1) log(C−1) .

Proof. By (NC 3), we know that WT = ∥W∥F

∥M∥F
M. Noticing that ∥W∥F

∥M∥F
> 0, we know that wi

∥wi∥ = µ̃i

∥µ̃i| . It is then very
clear that G(WT ) = G(M). Therefore from definition 4.1 and 3.4, it is clear that HDR(G(WT ),G(M)) = 0.

Define E(α) =


1 α · · · α
α 1 · · · α
...

...
...

...
α α · · · 1

. From (NC 2), we know that G(WT ) = G(M) = E( −1
C−1 ) and G(WT )⊙G(M) =

E( 1
(C−1)2 ). Notice that E(α) = (1−α)IC +α1T

C1C , we can obtain its spectrum as 1−α (C − 1 times) and 1+ (C − 1)α

(1 time). Therefore, we can obtain that H(G(WT )) = H(G(M)) = log(C − 1). And H(G(WT ) ⊙ G(M)) =

− 1
C−1 log

1
C−1 − (C − 1) C−2

(C−1)2 log
C−2

(C−1)2 = 1
C−1 log(C − 1) − C−2

C−1 log(C − 2) + 2(C−2)
C−1 log(C − 1) = (2 −

1
C−1 ) log(C − 1)− C−2

C−1 log(C − 2). Then then conclusion follows from definition 3.3.

As the linear weight matrix W can be seen as (prototype) embedding for each class. It is natural to consider the mutual
information and entropy difference between sample embedding and label embedding. We discuss this in the following
theorem 4.3.

Corollary A.2. Suppose the dataset is class-balanced, µG = 0 and Neural collapse happens. Denote Z1 =
[h(x1) · · ·h(xn)] ∈ Rd×n and Z2 = [wy1

· · ·wyn
] ∈ Rd×n. Then HDR(Z1,Z2) = 0 and MIR(Z1,Z2) =

1
C−1 + (C−2) log(C−2)

(C−1) log(C−1) .

Proof. Denote n1 = n
C the number of samples in each class. Without loss of generality, assume samples are arranged as C

consecutive groups, each group has samples from the same class.

Define E(α) =


1 α · · · α
α 1 · · · α
...

...
...

...
α α · · · 1

 and 1n1,n1 a n1 × n1 matrix with all its element 1.

From (NC 1), we know that G(WT ) = G(M) = E( −1
C−1 )⊗ 1n1,n1

and G(WT )⊙G(M) = E( 1
(C−1)2 )⊗ 1n1,n1

, where
⊗ is the Kronecker product. By the property of the Kronecker product spectrum, the non-zero spectrum of G(WT ) will be
n1 times the spectrum of E( −1

C−1 ). Then this corollary follows by the same proof of the theorem 4.2.

B. Some theoretical guarantees for HDR
Mutual information is a very intuitive quantity in information theory. On the other hand, it seems weird to consider the
difference of entropy, but we will show that this quantity is closely linked with comparing the approximation ability of
different representations on the same target.

For ease of theoretical analysis, in this section, we consider the MSE regression loss.

The following lemma 4.4 shows that the regression of two sets of representations Z1 and Z2 to the same target Y are closely
related. And the two approximation errors are closely related to the regression error of Z1 to Z2.

Lemma B.1. Suppose W∗
1,b

∗
1 = argminW,b ∥Y − (WZ1 + b1N )∥F . Then minW,b ∥Y − (WZ2 + b1N )∥F ≤

minW,b ∥Y − (WZ1 + b1N )∥F + ∥W∗
1∥F minH,η ∥Z1 − (HZ2 + η1N )∥F .

11
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Proof. Suppose H∗, η∗ = argminH,η ∥Z1−(HZ2+η1N )∥F . Then minW,b ∥Y−(WZ2+b1N )∥F ≤ ∥Y−(W∗
1H

∗Z2+
(b∗

1 + W∗
1η

∗)1N )∥F ≤ ∥Y − (W∗
1Z1 + b∗

11N )∥F + ∥W∗
1(Z1 − (H∗Z2 + η∗1N ))∥F ≤ ∥Y − (W∗

1H
∗Z2 + (b∗

1 +
W∗

1η
∗)1N )∥F ≤ ∥Y − (W∗

1Z1 + b∗
11N )∥F + ∥W∗

1∥F ∥Z1 − (H∗Z2 + η∗1N )∥F .

From lemma 4.4, we know that the regression error of Z1 to Z2 is crucial for understanding the differences of representations.
We further bound the regression error with rank and singular values in the following lemma 4.5.

Lemma B.2. Suppose Z1 = [z
(1)
1 · · · z(1)N ] ∈ Rd′×N and Z2 = [z

(2)
1 · · · z(2)N ] ∈ Rd×N and rank(Z1) > rank(Z2). Denote

the singular value of Z1√
N

as σ1 ≥ · · · ≥ σN . Then minH,η
1
N ∥Z1 − (HZ2 + η1N )∥2F ≥

∑rank(Z1)
j=rank(Z2)+2(σj)

2.

Proof. The proof idea is similar to (Garrido et al., 2023). Suppose H∗, η∗ = argminH,η
1
N ∥Z1 − (HZ2 + η1N )∥2F and

r = rank(H∗Z2 + η∗1N ).

Then from Eckart–Young–Mirsky theorem 1
N ∥Z1 − (H∗Z2 + η∗1N )∥2F ≥

∑N
j=r+1(σ

(1)
j )2. And note r ≤ rank(Z2) + 1

and singular value index bigger than rank is 0. The conclusion follows.

The bound given by lemma 4.5 is not that straightforward to understand. Assuming the features are normalized, we
successfully derived the connection of regression error and ratio of ranks in theorem 4.6.

Theorem B.3. Suppose ∥z(1)j ∥2 = 1, where (1 ≤ j ≤ N ). Then lower bound of approximation error can be upper-bounded

as follows:
∑rank(Z1)

j=rank(Z2)+2(σj)
2 ≤ rank(Z1)−rank(Z2)−1

rank(Z1)
≤ 1− rank(Z2)

rank(Z1)
.

Proof. The proof is direct by noticing the summation of the square of singular values is 1 and we have already ranked
singular values by their indexes.
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