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Abstract
The Median of Means (MoM) is a mean estima-
tor that has gained popularity in the context of
heavy-tailed data. In this work, we analyze its
performance in the task of simultaneously esti-
mating the mean of each function in a class F
when the data distribution possesses only the first
p moments for p ∈ (1, 2]. We prove a new sample
complexity bound using a novel symmetrization
technique that may be of independent interest. Ad-
ditionally, we present applications of our result
to k-means clustering with unbounded inputs and
linear regression with general losses, improving
upon existing works.

1. Introduction
The problem of estimating the mean of a random variable
from a finite sample of its i.i.d. copies is fundamental in
statistics and machine learning. When the random variable
has exponentially decaying tails, the sample mean exhibits
optimal or near-optimal performance. In particular, for
ε, δ ∈ (0, 1), it is known that POLYLOG(1/δ)/ε2 samples
suffice to obtain an ε-close estimate with probability at least
1− δ. Recent studies have shown that heavier-tailed distri-
butions, possessing only the first p moments for p ∈ (1, 2],
are better suited to model several important cases, includ-
ing but not limited to, large attention and language models
(Zhang et al., 2020; Zhou et al., 2020; Gurbuzbalaban et al.,
2021; Gurbuzbalaban & Hu, 2021), certain applications in
econometrics (Bradley & Taqqu, 2003) and network science
(Barabási, 2016), and some classes of extremal processes
(Nair et al., 2022). Under this model, the sample mean
suffers from sub-optimal performance with a polynomial de-
pendence on 1/δ (Catoni, 2012). Median-of-Means (MoM)
is a mean estimator that provides optimal performance guar-
antees even under heavy-tailed distributions (Nemirovskij
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& Yudin, 1983; Jerrum et al., 1986; Alon et al., 1996). Its
popularity is largely due to its simplicity and efficiency. In-
deed, its computation only requires splitting the sample into
κ batches, computing the sample mean in each batch, and
then returning the median of these sample means, with an
overall runtime that is quasi-linear in the number of obser-
vations. Notice that the user is only required to specify the
number of batches, which should be of order log(1/δ) for
optimal performance.

In this work, we analyze the performance of the MoM esti-
mator in solving the following significant generalization of
the mean estimation task, a problem typically referred to as
uniform convergence. Given a set of real-valued functions
F over a domain X , and a distribution D supported over
X , we consider the problem of estimating, simultaneously
for each f ∈ F , the mean µ(f) = E[f(X)] from an i.i.d.
sample X ∼ Dn generated from D. In particular, our goal
is to estimate the sample complexity of the MoM estimator,
i.e., the smallest sample size n∗ = n(ε, δ,F) that suffices to
guarantee that for all ε, δ ∈ (0, 1) and n ≥ n∗, the following
holds:

P
X∼Dn

(
sup
f∈F

| MOM(f,X)− µ(f)| ≤ ε

)
≥ 1− δ. (1)

Uniform convergence has fundamental applications in ma-
chine learning. First, given an estimator θ satisfying (1),
one can learn F by minimizing θ(f,X) over F . Notice that
if θ is the sample mean, this corresponds to the standard
Empirical Risk Minimization (ERM) paradigm. Second,
such an estimator can be used to estimate the risk of any
function in F using the same data as for training. This is
particularly useful when a test set cannot be set aside, or
only an approximate solution to the empirical problem can
be computed. Third, as the sample complexity of θ features
a dependence on some complexity measure of F , it can be
used to perform model selection, i.e., to select a class of
functions for the learning problem at hand before having a
look at the data.

Contributions. We provide the following contributions.

• We show that, upon F admitting a suitable
distribution-dependent approximation of size
ND(ε, (vp/ε

p)1/(p−1)), where vp is a uniform upper
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bound to the Lp norm of the functions in F , the
sample complexity of the MoM estimator is at most of
order (vp/ε

p)1/(p−1) log(ND(ε, (vp/ε
p)1/(p−1))/δ).

Specifically, we require that: given ε, δ > 0 and
m ∈ N, there exists a finite set F(ε,m) of size at most
ND(ε,m) s.t. for a large enough κ, with probability at
least 1− δ the functions in F can be ε-approximated
on most of the κ batches of 3 i.i.d. random samples
X0,X1,X2 of size m · κ. We argue that this condition
on F is mild, and in addition to capture the canonical
case of functions with bounded range, it also captures
important classes of unbounded functions.

• To illustrate this we show that our result applies to
two important class of unbounded functions. First, we
prove a novel relative generalization error bound for
the classical k-means problem that, compared with
prior work, features an exponential improvement in the
confidence term 1/δ. Second, we use the MoM estima-
tor to derive sample complexity bounds for a large class
of regression problems. Our sample complexity bound
only requires continuity of the loss function along with
a bound on the norm of the weight vectors. We also
provide a more refined bound in the more specific case
of Lipschitz losses. Moreover, our sample complex-
ity bounds match the known results for exponentially
tailed distributions, only assuming the existence of the
p-th moments for p ∈ (1, 2] .

• To derive the main result, we introduce a novel sym-
metrization technique based on the introduction of an
additional ghost sample, compared to the standard ap-
proach using only one ghost sample. While the first
ghost sample is used to symmetrize the mean, the sec-
ond ghost sample is used to symmetrize the MOM.
Analyzing two ghost samples simultaneously requires
non-trivial modifications to the canonical discretiza-
tion and permutation steps. The new discretization step
allows for relaxing a uniform approximation over the
functions to an approximation at the sample mean level,
only requiring most of the sample means to be approx-
imated, which is a desirable feature when dealing with
unbounded functions and heavy tailed data.

2. Related Work
The study of uniform convergence for classes of real-valued
functions is a fundamental topic in statistical learning theory.
In the special case of binary-valued functions, a complete
(worst-case) characterization is provided by the Vapnik-
Chervonenkis dimension of the class (Vapnik & Chervo-
nenkis, 1971). When the range of the functions in F is
bounded within an interval, the problem is known to be
solved by the sample mean as soon as the fat-shattering
dimension (Kearns & Schapire, 1994) of F is finite at all

scales (Alon et al., 1997; Bartlett et al., 1996; Colomboni
et al., 2025). In particular, the best known upper bounds
on the sample complexity of the sample mean are of the
order of ε−2(fatε + log(1/δ)), where fatε denotes the fat-
shattering dimension of F at scale ε.

The variant of the uniform convergence problem considered
in this work is a special case of the formulation given in
(Oliveira & Resende, 2023) except we don’t consider ad-
versarial contaminations. Differently from our work, the
authors in (Oliveira & Resende, 2023) analyzed the perfor-
mance of the trimmed mean with a focus on the estimation
error. Their bounds feature a dependence on a quantity
related to Rademacher complexity (Bartlett & Mendelson,
2003). Similar results, but in the more restrictive case of
p ∈ (2, 3], have also been obtained by (Minsker, 2019),
who considered a different class of estimators interpolat-
ing between the Catoni´s estimator (Catoni, 2012) and the
MoM. The estimation error of the MoM has been studied in
(Lugosi & Mendelson, 2019; Lecué et al., 2020) for p = 2.
These works also feature a dependence on a quantity related
to Rademacher complexity of F . Compared to this line
of work focussing on the estimation error, our focus is on
the sample complexity and is thus more aligned with the
results discussed earlier in this section of (Alon et al., 1997;
Bartlett et al., 1996; Colomboni et al., 2025). We notice that
the Rademacher Complexity depends on the sample size,
and thus it is sometimes problematic to derive an explicit
sample complexity bound from an estimation error bound.
Taking a sample complexity perspective allows for coping
with function classes that are otherwise difficult to handle
through the Rademacher Complexity such as k-means clus-
tering with unbounded input and center spaces, and linear
regression with general continuous losses. In that respect,
we see our results for p = 2 as a complement to these
works. We remark that our proof technique differs from
the bounded difference arguments proposed in (Lugosi &
Mendelson, 2019; Lecué et al., 2020), and instead is based
on a novel symmetrization argument that we believe may
be of independent interest. In contrast, while (Oliveira &
Resende, 2023; Minsker, 2019; Lecué et al., 2020) consider
both heavy-tailed distributions and adversarial contamina-
tions, in this work, we focus exclusively on heavy-tailed
distributions.

3. Sample Complexity Bound
In this section, we describe our main result and provide a
sketch of its proofs (we refer to Appendix B for the details).

3.1. Notation

We will use boldface letters for random variables and
non-boldface letters otherwise. Throughout the section,
b ∼ {0, 1} will always denote the random variable de-
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Figure 1. Proposed symmetrization approach. Red crosses and green ticks denote mean estimates that failed or succeeded respectively.
Step 1: Symmetrization of the MOM with a ghost sample. Step 2: Imbalance preserving discretization of the class F . Step 3: Permutation
of the sample means between the MOM of interest and the “ghost” MOM.

fined as Pb (b = 0) = Pb (b = 1) = 1/2. For a natu-
ral number κ ∈ N we define the set [κ] = {1, . . . , κ}.
Given two sets A and B, BA denotes the set of all func-
tions from A to B. For a function f ∈ F ⊆ RX ,
m ∈ N, X ∈ Xm, and a distribution D over X , the no-
tations µ(f,X) and µf denote the sample mean of f on X ,
i.e. µ(f,X) =

∑m
i=1 f(Xi)/m and its expectation over D

µf = EX∼D [f(X)]. Furthermore, for p ∈ (1, 2] we write
F ⊆ Lp(D) iff supf∈F EX∼D [f(X)p] < ∞.

For κ ∈ N, if a1, . . . , aκ ∈ R and we let a(1) ≤ . . . ,≤ a(κ)
denote the numbers in ascending order, we define their
median as

MEDIAN(a1, . . . , aκ) =

{
a((κ+1)/2) if κ is odd
a(κ/2) if κ is even.

With the definition of the median, we can now define the
MoM estimator.

Algorithm 1 Median of Means (MoM) Estimator
Input: Sample X = (X1, . . . , Xκ), Xi ∈ Xm m,κ ∈ N,
function f : X → R
Return: MOM(f,X) = MEDIAN(µf,X1 , . . . , µf,Xκ).

In words, the MOM takes as input a sample consiting of κ
blocks of m samples in each, and a function f wanting the
mean estimate of.

Finally, for m,κ ∈ N, and X1, X2, X3 ∈ (Xm)κ, for each
l ∈ {1, 2, 3} we rely on the following notation,

Xl = (X1
l,1, . . . , X

1
l,m, . . . , Xκ

l,1, . . . , X
κ
l,m).

3.2. Proof Overview

Here, we provide a high-level and intuitive explanation of
the proof for our main theorem, we here provide Figure 1
as a way of thinking about the proof pictorially.

The first thing we observe is that for the MOM to fail in
providing a uniform error bound over the functions in F ,

there must exist a function f ∈ F for which at least half of
its κ mean estimates in the MOM fail to be ε-close to the
true mean. However, for a fixed function f , we know that
the MOM is likely to have almost all of its κ mean estimates
correct. We now leverage this in the first step of the analysis
by introducing a “ghost” MOM, that has almost all of its κ
mean estimates correct for the function f ∈ F , on which the
MOM of interest had at least half of its κ mean estimates
incorrect. This step is depicted in Figure 1 as “Step 1,”
where the red crosses indicate whether a mean estimate
is correct or not. We observe that the MOM of interest
has at least half of its κ mean estimates incorrect, whereas
the “ghost” MOM has very few errors among its κ mean
estimates for the function f ∈ F . This imbalance between
incorrect mean estimates in the MOM of interest and the
“ghost” MOM is key for “Step 3,” which argues that such
an imbalance is unlikely due to the symmetry introduced in
this step - “Step 1” can be seen as a symmetrization of the
MOM.

The next step in the analysis involves discretizing the func-
tion class F into a finite-sized function class F̃ . Normally,
this step would be performed by creating a net over the func-
tion class F for any possible estimating sequence. However,
since we aim to provide bounds for potentially unbounded
function classes, with finite moments, we adopt an alter-
native discretization. Specifically, we only require the dis-
cretization F̃ of the function class F to ensure that most
of the mean estimates in both the MOM of interest and the
“ghost” MOM remain the same - thus preserving the im-
balance between incorrect mean estimates in the MOM of
interest and the “ghost” MOM created in “Step 1”. Further-
more, we also allow the discretization to fail for a negligible
amount of mean estimates. This step is depicted as “Step 2”
in Figure 1, where we observe that the discretization F̃ of F
preserves the imbalance between incorrect mean estimates
of the MOM of interest and the “ghost” MOM.

The final step of the analysis is due to the previous two steps,
to analyze the probability of the existence of a function
f̃ ∈ F̃ for which the MOM of interest has close to half
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or more of its mean estimates incorrect, while the “ghost”
MOM has very few incorrect mean estimates. First, since
F̃ is finite, it suffices to analyze a fixed f̃ ∈ F̃ and then
do a union bound over F̃ . For a fixed f̃ , we leverage the
symmetry introduced in “Step 1”, namely using that the
mean estimates of both the MOM of interest and the “ghost”
MOM are i.i.d. Thus, we may view the κ mean estimates
of the MOM of interest and the “ghost” MOM as being
”assigned” as follows: Draw two mean estimates, µ1f̃ ,X and
µ2f̃ ,X′ , and with probability 1/2, assign µ1f̃ ,X to the MOM
of interest and µ2f̃ ,X′ to the “ghost” MOM. Otherwise,
assign µ2f̃ ,X′ to the MOM of interest and µ1f̃ ,X to the
“ghost” MOM. Repeat this process κ times. Under this
perspective, it is intuitively that having a large imbalance
between the number of incorrect mean estimates for the
MOM of interest and the “ghost” MOM - the MOM of
interest has close to half or more of its mean estimates
incorrect while the “ghost” MOM has very few incorrect
mean estimates - is unlikely. This final step is depicted as
“Step 3” in Figure 1, where the mean estimates of the MOM
of interest and the “ghost” MOM are permuted.

The above high-level analysis contrasts with the conven-
tional symmetrization-discretization-permutation argument,
on the estimating sequence level, where the above analysis
symmetrizes, discretizes, and permutes the mean estimates.

3.3. Main Result

To present our main result, we need the following definitions
of discretization for a function class F .

Definition 3.1 ((ε,m)-Discretization). Let 0 < ε,
m,κ ∈ N, X0, X1, X2 ∈ (Xm)κ. A function class
F ⊆ RX admits a (ε,m)- discretization on X0, X1, X2 if
there exists a set of functions F(ε,m) defined on X0, X1, X2

satisfying the following: for each f ∈ F , there exists
π(f) ∈ F(ε,m) and If ⊂ [κ] s.t.: |If | ≤ 2κ

625 , and for each
i ∈ [κ]\If and ∀l ∈ {0, 1, 2}, it holds that

m∑
j=1

∣∣∣∣∣f(Xi
l,j)− π(f)(Xi

l,j)

m

∣∣∣∣∣ ≤ ε. (2)

We call |F(ε,m)| the size of the ε-discretization of F on
X0, X1, X2.

The above definition requires only that we can approximate
most of the κ sample means of a function f ∈ F appearing
in its MoM with those of its neighbor π(f) ∈ F(ε,m), on all
three samples X1, X2, X3. The following definition extends
this idea at distribution level, by requiring that with large
probability, the samples X0,X1,X2 allows F to admit a
(ε,m)-discretization.

Definition 3.2 (D-Discretization). Let D be a distribution
over X . A function class F ⊆ RX admits a D-discretization

if there exists a threshold function κ0 ∈ N[0,1], a threshold
ε0 > 0 and size function ND ∈ NR2

, s.t. for any 0 < ε < ε0,
0 < δ < 1, m ≥ 1, and κ ≥ κ0(δ), with probability at
least 1 − δ (over X0,X1,X2 ∼ (Dm)κ) it holds that: F
admits a (ε,m)-discretization F(ε,m) on X0,X1,X2 and
|F(ε,m)| ≤ ND(ε,m).
Remark 3.3. The following comments are in order.

• If a function class F ⊆ RX and ε0 > 0 is such that
for any distribution D′ over X and any 0 < ε ≤ ε0, F
admits a ε-net Nε(D′,F , L1) in L1 with respect to D′,
i.e. for any f ∈ F there exists π(f) ∈ Nε(D′,F , L1)
such that

E
X∼D′

[|f(X)− π(f)(X)|] ≤ ε (3)

then for any 0 < ε ≤ ε0, m,κ ∈ N, X0, X1, X2 ∈
(Xm)κ, F admits a (ε,m)-discretization of size
at most supD′ |N2ε/1875(D′,F)|. Furthermore, for
any data generating distribution D over X, F
has D-discretization with threshold function κ0 =
1, threshold ε0 and size function ND(ε,m) =
supD′ |N2ε/1875(D′,F)|. See the Appendix A for a
proof of this claim.

• Let p ≥ 1. For a function class F , it is known that the
existence of a ε-net w.r.t. Lp(D′) implies the existence
of a ε-net w.r.t. L1(D′). Thus, each F admitting a
net w.r.t. to the Lp metric, would also admit a (ε,m)-
discretization and a D-discretization.

• Any function class F bounded between [−1, 1] and
featuring finite fat shattering dimension FATε at every
scale ε > 0, admits a ε-net N (ε, L1(D)) for any D of
size at most exp

(
O(FATO(ε) ln (1/ε))

)
(see Corollary

5.4 in Rudelson & Vershynin (2006)). This result can
be also be extended to classes bounded in [−M,M ]
for M ≥ 1 with appropriate rescaling.

• We remark that the definition of a D-Discretization
is allowed to depend on realizations of the samples,
oppose to the stricter definition of having one fixed
discretization which holds for all realizations of the
samples. This view of considering discretizations that
depend on the samples is (to our knowledge) the most
common in the literature, see e.g. (Shalev-Shwartz
& Ben-David, 2014)[Definition 27.1], (Kupavskii &
Zhivotovskiy, 2020)[Lemma 7] and (Rudelson & Ver-
shynin, 2006)[Theorem 4.4 and Corollary 5.4].

We are now ready to present our main result.
Theorem 3.4 (Main theorem). Let F ⊆ RX and D
be a distribution over X . Suppose that F admits a D-
discretization with threshold function κ0 ∈ N[0,1], thresh-
old ε0, and size function ND ∈ NR2

. Moreover, sup-
pose that for some p ∈ (1, 2], F ⊆ Lp(D) and let vp ≥
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supf∈F EX∼D [|f(X)− EX∼D [f(X)] |p]. Then, there ex-
ist absolute numerical constants c2, c3 > 0 s.t., for any
ε ∈ (0, ε0) and δ ∈ (0, 1), if

m ≥
(
400 · 16pvp

εp

) 1
p−1

,

κ ≥ max

{
κ0(δ/8),

106 ln (2)

99
, 50 ln

(
8ND(ε/16,m)

δ

)}
,

it holds

P
X∼(Dm)κ

(
sup
f∈F

| MOM(f,X)− µ(f)| ≤ ε
)
≥ 1− δ.

(4)

Remark 3.5. The following comments are in order.

• To provide some intuition on the MoM parameters
m,κ, ε, δ, we start noting that the dependency on ε
decides the number of samples m needed for each of
the mean estimates, and is chosen such that they are
within O(ε) distance from the true expectation with
constant probability. Furthermore, both ε and δ also
go into the number of mean estimates, κ. The intuition
for the choice of κ, is that the MoM, which is based on
aggregation of κ mean estimates, boosts the constant
success probability to 1− δ/ND(ε,m) probability for
any function in the discretization, and one can then do
a union bound.

• The sample complexity bound implied by our theorem
is of the order of(vp
εp

) 1
p−1

(
logND(ε/16, (vp/ε

p)
1

p−1 ) + log
(1
δ

))
,

when not taking into account κ0(δ/8), and there-
fore of order (vp/εp)

1/(p−1)
log(vp/(εδ)) as soon as

ND(ε/16, (vp/ε
p)1/(p−1)) = O((vp/ε)

α) for some
constant α. We notice that this is optimal (up to log
factors) (Devroye et al., 2016).

• In order to apply this result, one needs to find a D-
discretization of F . In Remark 3.3 we have seen that
this is possible if F is bounded. In the next section, we
show two concrete examples of unbounded classes that
admit such a cover.

• The estimation error bound in (Lecué et al., 2020),
holding for p = 2, instead is of the order of

R(F ,D, n)

n
+

√
log(1/δ)

n

where n is the sample size and R(F ,D, n) is the
Rademacher complexity of F over a sample of size n.

To derive a sample complexity bound from this, one
should be able to get an explicit estimate of R(F ,D, n)
in terms of n. This has already been done for cer-
tain classes of bounded or well-behaved functions (see
for example (Bartlett & Mendelson, 2003; Maurer &
Pontil, 2010)), it may be intersting to see if a relaxed
notation of discretization, in the same spirit of Defini-
tion 3.2, can lead to explicit bounds even for broader
classes of functions.

• We remark here that the magnitude of the constants in
Theorem 3.4 is rather large. This is due to the sym-
metrization, discretization, and permutation arguments,
and was not optimized. Notice that it is not uncom-
mon for symmetrization-discretization-permutation ar-
guments to yield large constants, for instance: (Bartlett
et al., 1996) having constant of approximately 1500
(read from proof of Theorem 9 (5)), and later improved,
asymptotically, by (Colomboni et al., 2025) having a
constant of approximately 5000 (read from point (j)
page 13), and (Long, 1999) having a constant of ap-
proximately 500 (read from lemma 9).

3.4. Analysis

We now give the proof of Theorem 3.4. We start by noting
that for the MOM to fail, it must be the case that at least
1/2 of the mean estimates are ε-away from the expecta-
tion, as in the converse case the median is ε-close to the
expectation. Thus, to bound the failure probability of the
MOM it suffices to upper bound the probability of the for-
mer event. Before presenting the upper bound, we introduce
the following auxiliary random variables that will be useful
throughout this section. For ♭ ∈ {>,≤}, κ,m ∈ N, ε > 0,
X0,X1,X2 ∼ ((D)m)κ, X0, X1, X2 ∈ ((X )m)κ, and a
random vector b ∈ {0, 1}κ, with independent coordinates
with P [bi = 0] = P [bi = 1] = 1/2, we define

Ŝ
(♭)
b (f, ε) =

κ∑
i=1

1{|µf,Xi
bi

− µf,Xi
2
|♭ε}

κ
,

S
(♭)
b (f, ε) =

κ∑
i=1

1{|µf,Xi
bi

− µf,Xi
2
|♭ε}

κ
.

In words Ŝ(>)
b (f, ε) is the fraction of the κ mean estimates

of f that are ε-away from the mean estimates of f on the
sample X2, and Ŝ

(≤)
b (f, ε) is the fraction of the κ mean

estimates of f that are ε-close to the mean estimates of
f on the sample X2. We also consider Ŝ

(♭)
1−b(f, ε) and

S
(♭)
1−b(f, ε), where 1−b = (1−b1, . . . , 1−bκ). Now we

can state our symmetrization lemma.

Lemma 3.6 (Symmetrization). Let p ∈ (1, 2], ε > 0, and
D a distribution over X . Suppose that F ⊆ Lp(D), and
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let vp ≥ supf∈F EX∼D [|f(X)− EX∼D [f(X)] |p]. Then,

if m ≥
(

400·16pvp
εp

) 1
p−1

and κ ≥
(

106 ln (2)
99

)
we have that

P
X∼(Dm)κ

(
∃f ∈ F :

κ∑
i=1

1{|µf,Xi − µf | > ε}
κ

≥ 1

2

)

≤4 P
b

X0,X1,X2

(
∃f ∈ F : Ŝ

(>)
b

(
f,

15ε

16

)
≥ a,Ŝ

(≤)
1−b

(
f,

2ε

16

)
>b
)
,

where a = 4801
10000 , b = 9701

10000 ,b ∼ {0, 1}κ, and
X0,X1,X2 ∼ (Dm)κ.

We notice that the above lemma captures the situation de-
scribed in “Step 1” of Figure 1. That is, we have related the
event of the MOM failing, with the event that one MOM has
many incorrect mean estimates (with the true mean being
estimated), and a second MOM has few incorrect mean esti-
mates. Notice the bi’s have been set up for the permutation
argument, which will show that this imbalance is unlikely.

Before applying the permutation step, we discretize the
function class to enable a union bound over the event
that the mean estimate fails for each function in the class.
The following lemma relies on the existence of a (ε,m)-
discretization: by definition, moving from F to its discretiza-
tion only changes the number of mean estimates that are
good approximations of the ”true” mean estimate µf,Xi

2
or,

conversely, the number of bad mean estimates, slightly. In
other words, this discretization preserves, the imbalance
created in the symmetrization step.
Lemma 3.7 (Discretization). Let m,κ ∈ N, ε > 0, and
X0, X1, X2 ∈ (Xm)κ. Suppose that F admits a ( ε

16 ,m)-
discretization F(ε/16,m) over X0, X1, X2. Then, it holds
that

P
b∼{0,1}κ

(
∃f∈F :S

(>)
b

(
f,

15ε

16

)
≥ a,S

(≤)
1−b

(
f,

2ε

16

)
>b
)

≤ |F(ε/16,m)| sup
f∈F(ε/16,m)

P
b∼{0,1}κ

(
S
(>)
b

(
f,

12ε

16

)
≥ c,

S
(>)
1−b

(
f,

12ε

16

)
<d
)
,

where a = 4801
10000 , b =

9701
10000 , c =

4769
10000 , d = 331

10000 .

The above lemma is described as “Step 2” in Figure 1. That
is, the function class has been discretized while preserving
the imbalance in the number of incorrect mean estimates,
and the problem has now been reduced to analyzing an
imbalance of correct mean estimates between two MOMs
for a single function.

The following permutation lemma, states that having two
sets of mean estimates that differ widely on their quality
happens with exponentially small probability, in the number
of estimates κ. This lemma models the situation depicted as
“Step 3” in Figure 1.

Lemma 3.8 (Permutation). Let m,κ ∈ N, ε > 0, and
X0, X1, X2 ∈ (Xm)κ. Then, for any f ∈ RX , it holds that

P
b∼{0,1}κ

(
S
(>)
b

(
f,

12ε

16

)
≥ c,S

(>)
1−b

(
f,

12ε

16

)
<d
)

≤ exp
(
− κ

50

)
where c = 4769

10000 and d = 331
10000 .

We are now ready to show the proof of Theorem 3.4.

Proof of Theorem 3.4. For the MOM to fail to provide a
uniform estimation for F it must be the case that there
exists a function f ∈ F s.t. at 1/2 of the mean estimates of
its MOM fails. That is

P
X∼(Dm)κ

(
sup
f∈F

| MOM(f,X)− µ(f)| > ε

)

≤ P
X∼(Dm)κ

(
∃f ∈ F :

κ∑
i=1

1{|µf,Xi − µf | > ε}
κ

≥ 1

2

)
.

Since m ≥
(

400·16pvp
εp

) 1
p−1

and κ ≥ 106 ln (2)
99 , Lemma 3.6

yields

P
X∼(Dm)κ

(∃f ∈ F : | MOM(f,X)− µf | > ε)

≤4 P
b∼{0,1}κ

X0,X1,X2∼(Dm)κ

(
∃f ∈ F : Ŝ

(>)
b

(
f,

15ε

16

)
≥ a,

Ŝ
(≤)
1−b

(
f,

2ε

16

)
>b
)
,

with a = 4801
10000 and b = 9701

10000 . Now let G denote the event
that the samples X0,X1,X2 are s.t. F admits a (ε/16,m)-
discretization of size at most ND(ε/16,m) over them. Then,
since by hypothesis κ ≥ κ0(δ/8), it holds that

P
X∼(Dm)κ

(∃f ∈ F : | MOM(f,X)− µf | > ε)

≤ 4 E
X0,X1,X2∼(Dm)κ

[
1{G} P

b∼{0,1}κ

(
∃f ∈ F ::Ŝ

(>)
b

(
f,

15ε

16

)
≥a,

Ŝ
(≤)
1−b

(
f,

2ε

16

)
>b
)]

+ δ/2. (5)

Since for each realization X0, X1, X2 of X0,X1,X2 ∈ G,
F admits a (ε/16,m)-discretization, Lemma 3.7 implies
that

P
b∼{0,1}κ

(
∃f ∈ F ::Ŝ

(>)
b

(
f,

15ε

16

)
≥a, Ŝ

(≤)
1−b

(
f,

2ε

16

)
>b
)

≤ |F(ε/16,m)| sup
f∈F(ε/16,m)

P
b∼{0,1}κ

(
S
(>)
b

(
f,

12ε

16

)
≥ c,

S
(>)
1−b

(
f,

12ε

16

)
<d
)
,
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where c = 4769
10000 and d = 331

10000 . Notice that the term on
the right-hand side, by Lemma 3.8, can be bounded with
exp (−κ/50). Thus, if we take κ ≥ 50 ln

(
8ND(ε/16,m)

δ

)
,

the above it is at most δ/8, which, combined with (5), im-
plies that

P
X∼(Dm)κ

(∃f ∈ F : | MOM(f,X)− µf | > ε) ≤ δ

and concludes the proof.

4. Applications
In this section we present two applications of Theorem 3.4.

4.1. k-Means Clustering over Unbounded Spaces

k-means clustering is one of the most popular clustering
paradigms. Here, we provide a new sample complexity
bound that improves upon existing works for the case of
unbounded input and centers.

Preliminaries. Given x, y ∈ Rd, we let d(x, y)2 =

||x− y||2. We use k ∈ N to denote the number of cen-
ters, and Q ∈ Rd×k to denote the centers meant as the
columns of Q. For x ∈ Rd and Q ∈ Rd×k, we let the
loss of Q on x be defined as d(x,Q)2 = minq∈Q ||x− q||2,
where the minimum is taken over the columns of Q. For
a distribution D over Rd, we let µ = EX∼D [X] and
σ2 = EX∼D

[
d(X, µ)2

]
.

In the k-means clustering problem, we are given random
i.i.d. samples from D, and the objective if to minimize
risk R(Q) = EX∼D[d(X, Q)2] over Q ∈ Rd×k. Our goal
is to provide a uniform estimation bound for all possible
sets of k-centers. We consider the class of normalized loss
functions defined below. For Q ∈ Rd×k, we define

fQ(x) =
2d(x,Q)2

σ2 + EX∼D [d(X, Q)2]
,

and Fk =
{
fQ|Q ∈ Rd×k

}
. The class Fk has been intro-

duced in Bachem et al. (2017) and provide several advan-
tages compared to the standard loss class including scale-
invariance, and that it allows to derive uniform bounds even
when the support of D is unbounded and Q ∈ Rd. The next
theorem provide a bound on the sample complexity of the
MOM for this problem.

Theorem 4.1. Let k ∈ N and let D be a distribu-
tion over Rd s.t. σ2 < ∞. Suppose that, there ex-
ists a p ∈ (1, 2] s.t. Fk ⊆ Lp(D), and ∞ > vp ≥
supf∈Fk

EX∼D [|f(X)− EX∼D [f(X)] |p]. Then, Fk ad-

mits a D-discretization with

κ0(δ) = 2 · 80002 ln (e/δ),
ε0 = 1,

ND(ε,m) = 8

(
72 · 104 · 8000e

ε

)140kd ln (6k)

.

Moreover, let ε, δ ∈ (0, 1), if

m ≥
(
400 · 16pvp

εp

) 1
p−1

κ ≥ max

(
κ0(δ/8),

106 ln (2)

99
, 50 ln

(
8ND(ε/16,m)

δ

))
then

P
x∼(Dm)κ

(
sup
f∈Fk

| MOM(f,X)− µ(f)| ≤ ε
)
≥ 1− δ.

Remark 4.2. The following comments are in order.

• The sample complexity bound implied by Proposi-
tion C.3 is of the order of

v
1

p−1
p

ε
p

p−1

(
dk log k log

1

ε
+ log

1

δ

)
. (6)

Notice that the dk log k-term depends on the number
of centers k and the dimensionality of the problem d,
and resembles a complexity term.

• The literature on generalization bounds for k-means
is rich and has mostly focussed on distributions with
bounded support and centers lying in a norm ball of a
given radious (Linder et al., 1994; Bartlett et al., 1998;
Levrard, 2013; Antos et al., 2005; Maurer & Pontil,
2010; Telgarsky & Dasgupta, 2013). The work closer
to ours, in that it considers inputs and centers from
unbounded sets, is Bachem et al. (2017). In that work,
authors analyze the problem of uniform estimation
over Fk with the sample mean and show a sample
complexity bound of the order of

K
ε2δ

(
dk log k + log

1

δ

)
, (7)

where K = E[d(X, µ)4]/σ4 is the kurtosis of D.

We start noticing that Bachem et al. (2017) requires
the finiteness of the kurtosis, while our result only re-
quires D to have a finite variance and Fk ⊆ Lp(D) for
some p ∈ (1, 2]. To see that our condition is weaker,
observe that when K < ∞ then Fk ⊆ L2(D) (See
Lemma C.1 and the relation between f ∈ Fk and s).
Focussing on the case of p = 2, we have the following
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observations. First, notice that our sample complexity
bound is exponentially better in the confidence term
1/δ, this is due to the stronger concentration properties
of the MOM compared to the sample mean. Second, in
(7) the confidence term 1/δ multiplies the complexity
term dk log k which is undesirable. In contrast, in our
sample complexity bound these two terms are decou-
pled. We finally note that our bound suffers from a
slightly worse dependence on ε due to the extra log
term.

• We have focussed on providing uniform estimation
guarantees for the class Fk of normalized losses. In
practice, one may be instead intered in bounding the
risk R(Q) of a certain set of centers Q, given its per-
formance on the sample. Calculations show that one
can get such a bound from Proposition C.3 (see the
Appendix C for details). In particular, under the same
assumptions of Proposition C.3, for each Q ∈ R(d×k)

the following holds with probability at least 1− δ

R(Q)∈(1± ε)
(

MOM(d(·, Q)2,X)± εσ2

2

)
, (8)

4.2. Linear Regression with General Losses

Linear regression is a classical problem in machine learning
and statistics. This problem is typically studied either in the
special case of the squared loss or for (possibly) non-smooth
Lipschit losses. We consider instead the more general class
of continuous losses and show a new sample complexity
result that holds for broad class of distributions.

Preliminaries. In this section ℓ ∈ [0,∞)R will denote a
continuous loss function unless further specified. We con-
sider the function class obtained composing linear predictors
with bounded norm with ℓ. That is, for W > 0, we define

FW =
{
ℓ(⟨w, ·⟩ − ·) | w ∈ Rd, ||w|| ≤ W

}
.

Thus, if f ∈ FW , then f((x, y)) = ℓ(⟨(w,−1), (x, y)⟩) =
ℓ(⟨w, x⟩ − y), for any x ∈ Rd, y ∈ R. For a, b > 0,
the define number αℓ(a, b) as the largest positive real s.t.
for x, y ∈ [−a, a] and |x − y| ≤ αℓ(a, b) we have that
|ℓ(x) − ℓ(y)| ≤ b. Since ℓ is continuous and [−a, a] is
a compact interval, αℓ(a, b) is well-defined. Thus, ℓ is
uniform continuous on [−a, a]. Furthermore, when ℓ is
L-Lipschitz, then αℓ(a, b) = b/L.

The next result provides a uniform bound that holds for
general continuous losses.

Theorem 4.3. Let W > 0 and DX and DY be distributions
over Rd and R respectively and let D = DX×DY . Suppose
that, there exists a p ∈ (1, 2] s.t. FW ⊆ Lp(D), and
∞ > vp ≥ supf∈FW

EX∼D [|f(X)− EX∼D [f(X)] |p] .

Then FW admits a D-discretization with

κ0(δ) = 4 · 12502 ln (e/δ),
ε0 = ∞,

ND(ε,m) =

(
6W

β(ε,m,D)

)d

,

where

β(ε,m,D) = min
(W

2
,

αℓ(J, ε)

3750 (E [||X||1] + E [|Y |])m

)
,

J = (3W/2 + 1) · 3750 (E [||X||1] + E [|Y|])m.

Moreover, let ε ∈ (0,∞) and δ ∈ (0, 1), if

m ≥
(
400 · 16pvp

εp

) 1
p−1

,

κ ≥ max

(
κ0(δ/8),

106 ln (2)

99
, 50 ln

(
8ND(ε/16,m)

δ

))
,

then

P
X∼(Dm)κ

(
sup

f∈FW

| MOM(f,Z)− µ(f)| ≤ ε
)
≥ 1− δ,

where Z = (X,Y) ∼ ((DX ×DY )
m)κ.

Remark 4.4. The following comments are in order.

• If we omit the dependence on vp, the sample com-
plexity bound implied by Theorem 4.3 is of the order
of

1

ε
p

p−1

(
log
( WJ

αℓ(J, ε)

)
+ log

(1
δ

))
. (9)

Notice that, for a given loss function ℓ, the
d log

(
W

αℓ(J,ε)

)
depends both on d, ε and W as well

as J . Which resembles a complexity term, depending
on the distribution via J , the complexity of ℓ via αℓ,
and the norm of the regressor and its dimension d .

• If the loss function ℓ is also L-Lipschitz and ℓ(0) = 0
, it is possible to obtain a more explicit bound. In
particular, calculations (see Appendix D for details)
show that, if supw∈B(W ) E [|⟨w,X⟩|p] + E [|Y|p] <
∞, and omitting it in the following expression(also
omitting vp ), the sample complexity is at most of the
order of(assuming W ≥ 1 )

1

ε
p

p−1

(
d log

(WL

ε

)
+ log

(1
δ

))
. (10)

In this case, the dependence in ϵ is explicit and of the
order of ε

p
1−p log(1/ε).
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• We notice that the rate 10 matches, in terms of the
dependence in ε and δ and up to log factors, the know
rates of the sample average when the distributions of
∥X∥ and Y are sub-exponential (see for example Mau-
rer & Pontil (2021)). For this class of distributions,
all moments exist, while our result only requires the
existence of the p-th moment for p ∈ (1, 2] . We also
point out that a similar generality on the distribution is
also achieved by Lecué et al. (2020) which also relied
on the MOM estimator. The main difference is that
their bound has a dependence on the Rademacher com-
plexity of FW , which as far as we know, is not explicit
for this class distribution.

5. Conclusions
In this work, we made a novel analysis of the MOM for the
problem of estimating the expectation of all functions in a
class only assuming that moments of order up to p ∈ (1, 2]
exist. We have focussed on the sample complexity and
identified a new notation of discretization that allows the
MOM to solve the task. To obtain this result, we have
also developed a new symmetrization technique. We also
showed that it is possible to find such a discretization in two
important cases: k-means clustering and linear regression. It
is interesting to find other applications where a discretization
of the function class is possible. Finally, another problem
is to match asymptotically lower and upper bounds to the
sample complexity of uniform mean estimation under heavy
tails, as done in Lee & Valiant (2022) for the single mean
estimation problem. We leave these questions for future
work.
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Lecué, G., Lerasle, M., and Mathieu, T. Robust classifi-
cation via mom minimization. Machine learning, 109:
1635–1665, 2020.

Lee, J. C. and Valiant, P. Optimal sub-gaussian mean esti-
mation in R. In 2021 IEEE 62nd Annual Symposium on
Foundations of Computer Science (FOCS), pp. 672–683,
2022. doi: 10.1109/FOCS52979.2021.00071.

Levrard, C. Fast rates for empirical vector quantization.
2013.

Linder, T., Lugosi, G., and Zeger, K. Rates of convergence in
the source coding theorem, in empirical quantizer design,
and in universal lossy source coding. IEEE Transactions
on Information Theory, 40(6):1728–1740, 1994.

Long, P. M. The complexity of learning according to
two models of a drifting environment. Machine Learn-
ing, 1999. URL https://doi.org/10.1023/A:
1007666507971.

Lugosi, G. and Mendelson, S. Near-optimal mean estimators
with respect to general norms. Probability theory and
related fields, 175(3):957–973, 2019.

Maurer, A. and Pontil, M. K-dimensional coding schemes
in hilbert spaces. 56(11):5839–5846, 2010.

Maurer, A. and Pontil, M. Concentration inequalities under
sub-gaussian and sub-exponential conditions. In Pro-
ceedings of the 35th Annual Conference on Advances in
Neural Information Processing Systems, pp. 7588–7597,
2021.

Minsker, S. Uniform bounds for robust mean estima-
tors, 2019. URL https://arxiv.org/abs/1812.
03523.

Nair, J., Wierman, A., and Zwart, B. The fundamentals
of heavy tails: Properties, emergence, and estimation,
volume 53. Cambridge University Press, 2022.

Nemirovskij, A. S. and Yudin, D. B. Problem complexity
and method efficiency in optimization. 1983.

Oliveira, R. I. and Resende, L. Trimmed sample means
for robust uniform mean estimation and regression, 2023.
URL https://arxiv.org/abs/2302.06710.

Rudelson, M. and Vershynin, R. Combinatorics of ran-
dom processes and sections of convex bodies. Annals of
Mathematics, 164:603–648, 2006.

Shalev-Shwartz, S. and Ben-David, S. Understanding Ma-
chine Learning: From Theory to Algorithms. Cambridge
University Press, 2014.

Telgarsky, M. J. and Dasgupta, S. Moment-based uniform
deviation bounds for k-means and friends. Advances in
Neural Information Processing Systems, 26, 2013.

Vapnik, V. N. and Chervonenkis, A. Y. On the uniform
convergence of relative frequencies of events to their
probabilities. Theory of Probability & Its Applications,
16(2):264–280, 1971.

von Bahr, B. and Esseen, C.-G. Inequalities for the rth
Absolute Moment of a Sum of Random Variables, 1 ≦
r ≦ 2. The Annals of Mathematical Statistics, 36(1):299
– 303, 1965.

Zhang, J., Karimireddy, S. P., Veit, A., Kim, S., Reddi, S.,
Kumar, S., and Sra, S. Why are adaptive methods good
for attention models? In Proceedings of the 34th Annual
Conference on Neural Information Processing Systems,
pp. 15383–15393, 2020.

Zhou, P., Feng, J., Ma, C., Xiong, C., Hoi, S. C. H., et al.
Towards theoretically understanding why sgd general-
izes better than adam in deep learning. In Proceedings
of the 34th Annual Conference on Neural Information
Processing Systems, pp. 21285–21296, 2020.

10

https://www.sciencedirect.com/science/article/pii/S0022000020300027
https://www.sciencedirect.com/science/article/pii/S0022000020300027
https://doi.org/10.1023/A:1007666507971
https://doi.org/10.1023/A:1007666507971
https://arxiv.org/abs/1812.03523
https://arxiv.org/abs/1812.03523
https://arxiv.org/abs/2302.06710


Uniform Mean Estimation for Heavy-Tailed Distributions via Median-of-Means

A. Details of Remark 3.3
In this appendix we elaborate on Remark 3.3.
Remark A.1. If a function class F ⊆ RX and ε0 > 0 is such that for any distribution D′ over X and any 0 < ε ≤ ε0, F
admits a ε-net Nε(D′,F , L1) in L1 with respect to D′, i.e. for any f ∈ F there exists π(f) ∈ Nε(D′,F , L1) such that

E
X∼D′

[|f(X)− π(f)(X)|] ≤ ε (11)

then for any 0 < ε ≤ ε0, m,κ ∈ N, X0, X1, X2 ∈ (Xm)κ, F admits a (ε,m)-discretization of size at most
supD′ |N2ε/1875(D′,F)|. Furthermore, for any data generating distribution D over X,F has D-discretization with threshold
function κ0 = 1, threshold ε0 and size function ND(ε,m) = supD′ |N2ε/1875(D′,F)|

To see the above let 0 < ε ≤ ε0 X0, X1, X2 ∈ (Xm)κ. Now consider the following distribution D′ induced by X0, X1, X2

given by D′(x) =
∑2

l=0

∑
x′∈Xl

1{x=x′}
3κm , i.e. points in the sequences X0, X1, X2 are weighted proportionally to the

number of occurrences they have in X0, X1, X2. Let now N2ε/1875(D′,F) be a 2ε/1875-net for F in L1 with respect to
D′ and let I denote the subset of [κ] such that I = {i : i ∈ [κ],∃l ∈ {0, 1, 2},

∑
x∈Xi

l

|f(x)−π(f)(x)|
m > ε} , then we have

by Equation (11) and the definition of the distribution D′ that

2ε/1875 ≥ E
X∼D′

[|f(x)− π(f)(x)|] =
k∑

i=1

2∑
l=0

m∑
j=1

|f(Xi
l,j)− π(f)(Xi

l,j)|
3mκ

≥
∑
i∈I

2∑
l=0

m∑
j=1

|f(Xi
l,j)− π(f)(Xi

l,j)|
3mκ

≥ ε|I|
3κ

which implies that |I| ≤ 6κ
1875 = 2κ

625 , and shows that F admits a (ε,m)-discretization N2ε/1875(D′,F) on X0, X1, X2, and
that it has size at most supD |N2ε/1875(D′,F)|.

We notice that the above held for any 0 < ε ≤ ε0, m,κ ∈ N, X0, X1, X2 ∈ (Xm)κ, so especially also for the outcome
of X0,X1,X2 ∼ (Dm)κ for any distribution D over X (now a data generating distribution). Thus, in the case that F for
any distribution D′ over X and any 0 < ε ≤ ε0 admits a ε-net Nε(D′,F , L1) in L1 with respect to D′, then it has for any
data generation distribution D over X a D-discretization with thresholds function κ0 = 1, (holds with probability 1 for any
κ ≥ 1 ), threshold ε0, and size function ND(ε,m) = supD |N2ε/1875(D,F)|.

We also remark that an L1-net is weaker than Lp-nets for p ≥ 1 (i.e. Equation (11) with (EX∼D′ [|f(X)− π(f)(X)|p])1/p
), so a function class F admitting net in Lp p ≥ 1 would also imply a (ε,m)-discretization of F . Furthermore, we remark
that for instance any function class which is bounded between [−1, 1] and has finite fat shattering dimension FATε at every
scale ε > 0 by (Rudelson & Vershynin, 2006)[Corollary 5.4] admits a ε-net Nε(D,F , L1) in L1 with respect to any D with
size exp

(
O(FATO(ε) ln (1/ε))

)
, this can also be extended to function classes bounded between [−M,M ] for M ≥ 1, with

suitable rescaling of the net size.

B. Proof of lemmas used in the proof of Theorem 3.4
In this appendix we give the proof of Lemma 3.6, Lemma 3.7 and Lemma 3.8. We start with the proof of Lemma 3.6. To the
end of showing Lemma 3.6 we need the following lemma which gives concentration of the sample mean given 1 < p ≤ 2
central moments of the random variable f(X). The proof of this lemma can be found Appendix E.

Lemma B.1. Let F ⊆ RX be a function class, D a distribution over X , 1 < p ≤ 2, 0 < δ < 1 and 0 < ε. For F ∈ Lp(D),

vp = supf∈F EX∼D [|f(X)− EX∼D [f(X)]] and m ≥
(

2vp
δεp

) 1
p−1

, then for any f ∈ F we have that:

P
X∼Dm

(|µf,X − µf | > ε) ≤ δ

With the above lemma presented, we now give the proof of Lemma 3.6

11
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Proof of Lemma 3.6. To shorten the notation in the following proof we now define the following random variables,

M>(f, ε) :=

κ∑
i=1

1{|µf,Xi − µf | > ε}
κ

, M̌≤(f, ε) :=

κ∑
i=1

1{|µf,X̌i
− µf | ≤ ε}
κ

.

Now notice that by the law of total probability we have

P
X,X̌∼(Dm)κ

(
∃f ∈ F : M>(f, ε) ≥

1

2
, M̌≤(f,

ε

16
) >

99

100

199

200

)
= P

X,X̌∼(Dm)κ

(
∃f ∈ F : M>(f, ε) ≥

1

2
, M̌≤(f,

ε

16
) >

99

100

199

200

∣∣∃f ∈ F : M>(f, ε) ≥
1

2

)
· P
X

(
∃f ∈ F : M>(f, ε) ≥

1

2

)
(12)

Suppose that M>(f, ε) ≥ 1
2 for some f ∈ F . Then for such f and for any i = 1, . . . , κ, we get by m ≥

(
400·16pvp

εp

) 1
p−1

and invoking Lemma B.1 with δ = 1/200 and ε
16 , that

E
X̌i∼Dm

[
1{|µf,X̌i

− µf | >
ε

16
}
]
= P

(
|µf,X̌i

− µf | >
ε

16

)
≤ 1

200
,

which implies that

E
X̌i∼Dm

[
1{|µf,X̌i

− µf | ≤
ε

16
}
]
> 199/200 (∀i = 1, . . . , κ). (13)

The multiplicative Chernoff inequality applied with κ ≥ 106 ln (2)
99 yields

P
X̌∼(Dm)κ

(
M̌≤(f,

ε

16
) ≤

(
1− 1

100

)
E M̌≤(f,

ε

16
)

)
≤ exp

(
−
(

1

100

)2

κE
[
1{|µ(f, X̌)− µf | ≤

ε

16
}
])

≤ exp

(
−
(

1

100

)2
199

200
κ

)
≤ 1

2
,

which, by (13), further implies

1

2
≤ P

X̌∼(Dm)κ

(
M̌≤(f,

ε

16
) >

(
1− 1

100

)
E M̌≤(f,

ε

16
)

)
≤ P

X̌∼(Dm)κ

(
M̌≤(f,

ε

16
) >

(
1− 1

100

)
199

200

)
≤ P

X̌∼(Dm)κ

(
M̌≤(f,

ε

16
) >

99

100

199

200

)
.

Thus, by independence of X and X̌ (12) can be lower bounded by

P
X,X̌∼(Dm)κ

(
∃f ∈ F : M>(f, ε) ≥

1

2
, M̌≤(f, ε) >

99

100

199

200

)
(14)

≥ 1

2
· P
X∼(Dm)κ

(
∃f ∈ F : M>(f, ε) ≥

1

2

)
.

We now introduce a third sample X̃ ∼ (Dm)
κ and for each f ∈ F and for every ε > 0, we define the random variables

D>(f, ε) :=

κ∑
i=1

1{|µf,Xi
− µf,X̃i

| > ε}
κ

, Ď≤(f, ε) :=

κ∑
i=1

1{|µf,X̌i
− µf,X̃i

| ≤ ε}
κ

.

12
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We now show that

P
X,X̌,X̃∼(Dm)κ

(
∃f ∈ F : D>(f,

15ε

16
) >

4801

10000
, Ď≤(f,

2ε

16
) >

9701

10000

)
≥ 1

2
P

X,X̌∼(Dm)κ

(
∃f ∈ F : M>(f, ε) ≥

1

2
, M̌≤(f,

ε

16
) >

99

100

199

200

)
. (15)

To this end, we again use the law of total probability to get that

P
X,X̌,X̃∼(Dm)κ

(
∃f ∈ F : D>(f,

15ε

16
) >

4801

10000
, Ď≤(f,

2ε

16
) >

9701

10000

)
= P

X,X̌,X̃∼(Dm)κ

(
∃f ∈ F : D>(f,

15ε

16
) >

4801

10000
, Ď≤(f,

2ε

16
) >

9701

10000

|∃f ∈ F : M>(f, ε) ≥
1

2
, M̌≤(f,

ε

16
) >

(
99

100

)2
)

· P
X,X̌∼(Dm)κ

(
∃f ∈ F : M>(f, ε) ≥

1

2
, M̌≤(f,

ε

16
) >

(
99

100

)2
)
,

and show that the conditional probability term is at least 1
2 . Now consider a realization X, X̌ of X, X̌ such that there exists

f ∈ F where

M>(f, ε) ≥
1

2
, M̌≤(f,

ε

16
) >

99

100

199

200
. (16)

Now repeating that above argument for X̌ but now with X̃ we conclude that with probability at least 1/2 over X̃, we have
that

κ∑
i=1

1{|µf,X̃i
− µf | ≤ ε

16}
κ

≥ 99

100

199

200
,

Thus we conclude that with probability at least 1/2 over X̃ we have that µf,X̃i
is ε

16 close to µf expect for a 1− 99
100

199
200 -

fraction of i = 1, . . . , κ so by the triangle inequality we get

M>(f, ε) =

κ∑
i=1

1{|µf,Xi
− µf | > ε}
κ

≤
κ∑

i=1

1{|µf,Xi
− µf,X̃i

| > 15ε
16 }

κ︸ ︷︷ ︸
D>(f, 15ε16 )

+1− 99

100

199

200

and

M̌≤(f, ε) =

κ∑
i=1

1{|µf,X̌i
− µf | ≤ ε

16}
κ

≤
κ∑

i=1

1{|µf,X̌i
− µf,X̃i

| ≤ 2ε
16}

κ︸ ︷︷ ︸
Ď≤(f, 2ε16 )

+1− 99

100

199

200

which by Equation (16) implies that

D>(f,
15

16ε
) ≥ 1/2− (1− 99

100

199

200
) ≥ 4801

10000
(17)

and

Ď≤(f,
2

16ε
) >

99

100

199

200
− (1− 99

100

199

200
) ≥ 9701

10000
(18)

13
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which proves (15). Notice that, so far, we have proved that

P
X∼(Dm)κ

(
∃f ∈ F : M>(f, ε) >

1

2

)
(19)

≤ 4 P
X,X̌,X̃∼(Dm)κ

(
∃f ∈ F : D>(f,

15ε

16
) ≥ 4801

10000
, Ď≤(f,

2ε

16
) >

9701

10000

)
.

We now make a short digression. For i ∈ [κ], let Xi
0 = (Xi

0,1, . . . ,X
i
0,m) ∼ Dm, Xi

1 = (Xi
1,1, . . . ,X

i
1,m) ∼ Dm, and

bi ∼ {0, 1} with Pbi
[bi = 0] = Pbi

[bi = 1] = 1/2 . Notice that for A ⊆ (Xm)2 it holds

P
bi∼{0,1},Xi

0∼Dm,Xi
1∼Dm

(
(Xi

bi
,Xi

1−bi
) ∈ A

)
(20)

=
1

2
P

Xi
0∼Dm,Xi

1∼Dm

(
(Xi

1,X
i
0) ∈ A

)
+

1

2
P

Xi
0∼Dm,Xi

1∼Dm

(
(Xi

0,X
i
1) ∈ A

)
= P

Xi
0∼Dm,Xi

1∼Dm

(
(Xi

0,X
i
1) ∈ A

)
(by i.i.d assumption)

thus (Xi
bi
,Xi

1−bi
) has the same distribution as (Xi

0,X
i
1).

Now let b = (b1, . . . ,bκ), X = ((X1
0,X

1
1), . . . , (X

κ
0 ,X

κ
1 )), X/X1 := (X2, . . . ,Xk) and X̌/X̌1 := (X̌2, . . . , X̌k).

Using this notation and Equation (24), the following holds

P
X,X̌,X̃∼(Dm)κ

(
∃f ∈ F : D>(f,

15ε

16
) ≥ 4801

10000
, Ď≤(f,

2ε

16
) ≥ 9701

10000

)
(21)

= E
X̃∼Dm

X\X1,X̌\X̌1∼(Dm)κ−1

[
P

X1,X̌1∼Dm

(
∃f ∈ F :

1{|µf,X1
− µf,X̃1

| > 15ε
16 }

κ
+

κ∑
i=2

1{|µf,Xi
− µf,X̃i

| > 15ε
16 }

κ
≥ 4801

10000

,
1{|µf,X̌1

− µf,X̃1
| ≤ 2ε

16}
κ

+

κ∑
i=2

1{|µf,X̌i
− µf,X̃i

| ≤ 2ε
16}

κ
>

9701

10000

)]

= E
X̃∼Dm

X\X1,X̌\X̌1∼(Dm)κ−1

[
P

X1
0,X

1
1∼Dm

b1∼{0,1}

(
∃f ∈ F :

1{|µf,X1
b1

− µf,X̃1
| > 15ε

16 }
κ

+

κ∑
i=2

1{|µf,Xi
− µf,X̃i

| > 15ε
16 }

κ
≥ 4801

10000

,
1{|µf,X1

1−b1
− µf,X̃1

| ≤ 2ε
16}

κ
+

κ∑
i=2

1{|µf,X̌i
− µf,X̃i

| ≤ 2ε
16}

κ
>

9701

10000

)]
... (repeating the above argument κ− 1 times and renaming X̃ to X2.)

= P
b∼{0,1}κ

X0,X1,X2∼(Dm)κ

(
∃f ∈ F :

κ∑
i=1

1{|µf,Xi
bi

− µf,Xi
2
|> 15ε

16 }

κ
≥ 4801

10000
,

κ∑
i=1

1{|µf,Xi
1−bi

−µf,Xi
2
| ≤ 2ε

16}

κ
>

9701

10000

)
.

Now combining the above Equation (19) and Equation (21) we conclude that

P
X∼(Dm)κ

(
∃f ∈ F : M>(f, ε) >

1

2

)
≤4 P

b∼{0,1}κ

X0,X1,X2∼(Dm)κ

(
∃f ∈ F :

κ∑
i=1

1{|µf,Xi
bi

− µf,Xi
2
|> 15ε

16 }

κ
≥ 4801

10000
,

κ∑
i=1

1{|µf,Xi
1−bi

−µf,Xi
2
| ≤ 2ε

16}

κ
>

9701

10000

)
.

which ends the proof.

We now give the proof of Lemma 3.7

14
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Proof of Lemma 3.7. We recall that F ε
16 ,m

by Equation (2), satisfies that for each f ∈ F , there exists π(f) ∈ F ε
16 ,m

and
If ⊂ [κ] such that |If | ≤ 2κ

625 and for i ∈ [κ]\|If | it holds for each l ∈ {0, 1, 2} that

m∑
j=1

∣∣∣∣∣f(Xi
l,j)− π(f)(Xi

l,j)

m

∣∣∣∣∣ ≤ ε

16
. (22)

Let for now f ∈ F , and b be a realization of b. We first observe that for any i ∈ [κ]\If we have by Equation (22) that

|µf,Xi
bi

− µf,Xi
2
| =

∣∣∣∣∣∣
m∑
j=1

f(Xi
bi,j

)− f(Xi
2,j)

m

∣∣∣∣∣∣ (23)

≤

∣∣∣∣∣∣
m∑
j=1

f(Xi
bi,j

)− f(Xi
2,j)−

(
π(f)(Xi

bi,j
)− π(f)(Xi

2,j)
)

m

∣∣∣∣∣∣+
∣∣∣∣∣∣

m∑
j=1

π(f)(Xi
bi,j

)− π(f)(Xi
2,j)

m

∣∣∣∣∣∣
(by triangle inequality)

≤
m∑
j=1

|f(Xi
bi,j

)− π(f)(Xi
bi,j

)|
m

+

m∑
j=1

|f(Xi
2,j)− π(f)(Xi

2,j)|
m

+ |µπ(f),Xi
bi

− µπ(f),Xi
2
| (by triangle inequality)

≤2ε

16
+ |µπ(f),Xi

bi

− µπ(f),Xi
2
|. (by i ∈ [κ]\If and Equation (22))

Similarly we conclude that for any i ∈ [κ]\If we have that

|µf,Xi
1−bi

− µf,Xi
2
| =

∣∣∣∣∣∣
m∑
j=1

f(Xi
1−bi,j

)− f(Xi
2,j)

m

∣∣∣∣∣∣ (24)

≥

∣∣∣∣∣∣
m∑
j=1

π(f)(Xi
1−bi,j

)− π(f)(Xi
2,j)

m

∣∣∣∣∣∣−
∣∣∣∣∣∣

m∑
j=1

f(Xi
1−bi,j

)− f(Xi
2,j)−

(
π(f)(Xi

1−bi,j
)− π(f)(Xi

2,j)
)

m

∣∣∣∣∣∣
(by reverse triangle inequality)

≥|µπ(f),Xi
1−bi

− µπ(f),Xi
2
| −

m∑
j=1

|f(Xi
1−bi,j

)− π(f)(Xi
1−bi,j

)|
m

−
m∑
j=1

|f(Xi
2,j)− π(f)(Xi

2,j)|
m

(by triangle inequality)

≥|µπ(f),Xi
1−bi

− µπ(f),Xi
2
| − 2ε

16
. (by i ∈ [κ]\If and Equation (22))

Now using Equation (23) we get that

κ∑
i=1

1{|µf,Xi
bi

− µf,Xi
2
| > 15ε

16 }

κ
(25)

=
∑
i̸∈If

1{|µf,Xi
bi

− µf,Xi
2
| > 15ε

16 }

κ
+
∑
j∈If

1{|µf,Xi
bi

− µf,Xi
2
| > 15ε

16 }

κ

≤
∑
i̸∈If

1{|µf,Xi
bi

− µf,Xi
2
| > 15ε

16 }

κ
+
∑
i∈If

1{|µπ(f),Xi
bi

− µπ(f),X2
| > 13ε

16 }

κ
+

2

625
(by |If | ≤ 2κ

625 )

≤
∑
i̸∈If

1{|µπ(f),Xi
bi

− µπ(f),X2
| > 13ε

16 }

κ
+
∑
i∈If

1{|µπ(f),Xi
bi

− µπ(f),X2
| > 13ε

16 }

κ
+

2

625
. (by Equation (23))

=

κ∑
i=1

1{|µπ(f),Xi
bi

− µπ(f),X2
| > 13ε

16 }

κ
+

2

625
.

15
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Furthermore using Equation (24) we get that

κ∑
i=1

1{|µf,Xi
1−bi

− µf,Xi
2
| ≤ 2ε

16}

κ
(26)

=
∑
i ̸∈If

1{|µf,Xi
1−bi

− µf,Xi
2
| ≤ 2ε

16}

κ
+
∑
i∈If

1{|µf,Xi
1−bi

− µf,Xi
2
| ≤ 2ε

16}

κ

≤
∑
i ̸∈If

1{|µf,Xi
1−bi

− µf,Xi
2
| ≤ 2ε

16}

κ
+
∑
i∈If

1{|µπ(f),Xi
1−bi

− µπ(f),X2
| ≤ 4ε

16}

κ
+

2

625
(by |If | ≤ 2κ

625 )

≤
∑
i̸∈If

1{|µπ(f),Xi
1−bi

− µπ(f),X2
| ≤ 4ε

16}

κ
+
∑
i∈If

1{|µπ(f),Xi
1−bi

− µπ(f),X2
| ≤ 4ε

16}

κ
+

2

625
(by Equation (24))

=

κ∑
i=1

1{|µπ(f),Xi
1−bi

− µπ(f),X2
| ≤ 4ε

16}

κ
+

2

625

Since we showed the above for any f ∈ F we notice that this implies that

∃f ∈ F :

κ∑
i=1

1{|µf,Xi
bi

− µf,Xi
2
| > 15ε

16 }

κ
≥ 4801

10000
,

κ∑
i=1

1{|µf,Xi
1−bi

− µf,Xi
2
| ≤ 2ε

16}

κ
>

9701

10000

⇒∃f ∈ F :

κ∑
i=1

1{|µπ(f),Xi
bi

− µπ(f),X2
| > 13ε

16 }

κ
≥ 4769

10000
,

κ∑
i=1

1{|µπ(f),Xi
1−bi

− µπ(f),X2
| ≤ 4ε

16}

κ
>

9669

10000

⇒∃f ∈ F ε
16 ,m

:

κ∑
i=1

1{|µf,Xi
bi

− µf,Xi
2
| > 12ε

16 }

κ
≥ 4769

10000
,

κ∑
i=1

1{|µf,Xi
1−bi

− µf,Xi
2
| > 12ε

16 }

κ
≤ 331

10000
.

Since we showed the above for any realization b of b it also holds for random b, and thus we conclude by the union bound
that

P
b∼{0,1}κ

(
∃f∈F :

κ∑
i=1

1{|µf,Xi
bi

−µf,Xi
2
|> 15ε

16 }

κ
≥ 4801

10000
,

κ∑
i=1

1{|µf,Xi
1−bi

−µf,Xi
2
| ≤ 2ε

16}

κ
>

9701

10000

)
≤ P

b∼{0,1}κ

(
∃f ∈ F ε

16 ,m
:

κ∑
i=1

1{|µf,Xi
bi

− µf,Xi
2
| > 12ε

16 }

κ
≥ 4769

10000
,

κ∑
i=1

1{|µf,Xi
1−bi

− µf,Xi
2
| > 12ε

16 }

κ
≤ 331

10000

)
≤

∑
f∈F ε

16
,m

P
b∼{0,1}κ

( κ∑
i=1

1{|µf,Xi
bi

− µf,Xi
2
| > 12ε

16 }

κ
≥ 4769

10000
,

κ∑
i=1

1{|µf,Xi
1−bi

− µf,Xi
2
| > 12ε

16 }

κ
≤ 331

10000

)

≤|F ε
16 ,m

| sup
f∈F ε

16
,m

P
b∼{0,1}κ

( κ∑
i=1

1{|µf,Xi
bi

− µf,Xi
2
| > 12ε

16 }

κ
≥ 4769

10000
,

κ∑
i=1

1{|µf,Xi
1−bi

− µf,Xi
2
| > 12ε

16 }

κ
≤ 331

10000

)
,

which finishes the proof.

We now give the proof of Lemma 3.8.

Proof of Lemma 3.8. Let ζ be the following fixed number

ζ =

κ∑
i=1

1{|µf,Xi
bi

− µf,Xi
2
| > 12ε

16
}+

κ∑
i=1

1{|µf,Xi
1−bi

− µf,Xi
2
| > 12ε

16
}

=

1∑
j=0

κ∑
i=1

1{|µf,Xi
j
− µf,Xi

2
| > 12ε

16
}.

16
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We notice that for the probability in Lemma 3.8 to be greater than 0, it must be the case that ζ ≥ 4769k
10000 , from now

on assume this is the case. Furthermore, we notice that since ζ ≥ 4769k
10000 , there is at least 4769k

20000 , i’s such that either
µf,Xi

0
or µf,Xi

1
is 12ε

16 away from µf,Xi
2
, i.e. |µf,Xi

0
− µf,Xi

2
| > 12ε

16 or |µf,Xi
1
− µf,Xi

2
| > 12ε

16 , let I ⊂ {1, . . . , κ} be
the set of these indexes, i.e. I = {i ∈ [κ] : |µf,Xi

0
− µf,Xi

2
| > 12ε

16 or |µf,Xi
1
− µf,Xi

2
| > 12ε

16 }. We notice that for
i ∈ I we have with probability at least 1

2 that |µ1−bi(f) − µf,Xi
2
| > 12ε

16 , furthermore we have that the random variable∑κ
i=1

1{|µ1−bi
(f)−µ

f,Xi
2
|> 12ε

16 }
κ =

∑
i∈I

1{|µ1−bi
(f)−µ

f,Xi
2
|> 12ε

16 }
κ , is a sum of independent {0, 1}-random variables. We

notice that by |I| ≥ 4769k
20000 this random variable has expectation

η := E
b∼{0,1}κ

[∑
i∈I

1{|µ1−bi(f)− µf,Xi
2
| > 12ε

16 }
κ

]
≥
∑
i∈I

1

2k
≥ 4769

40000
.

We notice that

331

10000
= (1−

η − 331
10000

η
)η,

and since x− 331
10000

x is an increasing function for x ≥ 331
10000 (has derivative

331
10000

x2 > 0), and η ≥ 4769
40000 > 331

10000 , we conclude

that 1 >
η− 331

10000

η ≥
4769
40000−

331
10000

4769
40000

= 3445
4769 . Thus, by an application of a multiplicative Chernoff bound we get that

P
b∼{0,1}κ

[
κ∑

i=1

1{|µ1−bi(f)− µf,Xi
2
| > 12ε

16 }
κ

≤ 331

10000

]

= P
b∼{0,1}κ

[∑
i∈I

1{|µ1−bi
(f)− µf,Xi

2
| > 12ε

16 }
κ

≤ (1−
η − 331

10000

η
)η

]

≤ exp

−

(
η− 331

10000

η

)2
ηκ

2

 ≤ exp

(
−
(
3445
4769

)2
ηκ

2

)
(by η− 331

10000

η ≥ 3445
4769 )

≤ exp

(
− 474721

15260800
κ

)
≤ exp (−κ/50), (by η ≥ 4769

40000 ,)

where the last inequality follows from 474721
15260800 ≥ 1

50 , and concludes the proof.

C. k -means
In this appendix we give the proof of the sample complexity result for the k-mean’s objective. To this end, we first introduce
some preliminaries and some results from (Bachem et al., 2017), which we will use in the following proof.

C.1. Preliminaries

We follow the notation used in (Bachem et al., 2017). For two points x, y ∈ Rd we write d(x, y)2 = ||x− y||2, for a
point x ∈ Rd and Q ⊂ Rd we let d(x,Q)2 = minq∈Q ||x− q||2. We use k ∈ N, for being the number of centers written
Q ∈ Rd×k, whereby we mean that the columns of Q are the centers. For a distribution D over Rd we define µ = EX∼D [X]

and σ2 = EX∼D
[
d(X, µ)2

]
. For a Q ∈ Rd×k we define the following function fQ given by 2d(x,Q)2

σ2+EX∼D[d(X,Q)2] . For k ∈ N
we will use Fk to denote the function class Fk =

{
fQ|Q ∈ Rd×k

}
.

To describe the complexity of Fk in the following we will need the definition of the pseudo dimension of a function
class F ⊆ RX . The pseudo dimension is defined as the largest number Pdim(F) = d, such that there exists a point set
x1, . . . , xd and thresholds r1, . . . , rd, where for any b ∈ {0, 1}d, there exist a function f ∈ F such that for i ∈ [d] and
bi = 0, then f is below ri i.e. f(xi) < ri and if bi = 1 then f is above ri i.e. f(xi) ≥ ri. We now introduce two lemmas
from (Bachem et al., 2017) that we are going to need in the following the first lemma states some useful properties about fQ
Lemma C.1 (Lemma 1 in (Bachem et al., 2017) ). Let k ∈ N, D a distribution on Rd, with µ = EX∼D [X] and
σ2 = EX∼D

[
d(X, µ)2

]
. For any Q ∈ Rd×k define fQ(x) =

2d(x,Q)2

σ2+EX∼D[d(X,Q)2] , the function class Fk =
{
fQ|Q ∈ Rd×k

}
17
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and s(x) = 4d(x,µ)2

σ2 + 8. We then have that Pdim(F) ≤ 6k(d+ 4) ln (6k)/ ln (2) and for all x ∈ Rd and Q ∈ Rd×k we
have that fQ(x) ≤ s(x).

The next lemma roughly says that when s(x) is bounded on a point set, then one can bound the size of a maximal ε-packing
of Fk. As in (Bachem et al., 2017) we state the result for a general function class F . For this we need to define what we
mean by a maximal packing, to this end let D be a distribution on X and F ⊆ [0,∞]X , we then say that Pε ⊆ F is a
ε-packing of F in L1(D) if for any f, g ∈ Pε where f ̸= g we have that

E
X∼D

[|f(X)− g(X)|] > ε. (27)

The packing Pε is maximal for F if it has the largest size possible.
Lemma C.2 (Lemma 4 in (Bachem et al., 2017)). Let F ⊆ [0,∞]X be a function class with d = Pdim(F) < ∞ and for
x ∈ X define s(x) = supx∈X f(x). Let D be a distribution on X , such that 0 < EX∼D [s(X)] < ∞. It then holds for any
0 < ε ≤ EX∼D [s(X)] that any maximal ε-packing Pε of F in L1(D) has size at most 8(2eEX∼D [s(X)] /ε)2d.

C.2. Proof of Proposition C.3

We now state our Proposition C.3 about the k-means objective introduced above.
Proposition C.3 ( k -means). Let k ∈ N, 0 < δ, ε < 1, D be a distribution over Rd, µ = EX∼D [X], 1 < p ≤ 2 and Fk ={
fQ | Q ∈ Rd×k

}
if σ2 = EX∼D

[
d(X, µ)2

]
< ∞, Fk ∈ Lp(D) and vp ≥ supf∈Fk

EX∼D [|f(X)− EX∼D [f(X)] |p]

then for m ≥
(

400·16pvp
εp

) 1
p−1

and κ ≥ max
(
κ0(δ/8),

106 ln (2)
99 , 50 ln

(
8N(D,ε/16,m)

δ

))
where κ0(δ) = 2 · 80002 ln (e/δ)

and N(D, ε,m) = 8
(

72·104·8000e
ε

)140kd ln (6k)

we have that with probability at least 1 − δ over X ∼ (Dm)κ: for all
f ∈ Fk that

| MOM(f,X)− E
X′∼D

[f(X′)]| ≤ ε

Before we give the proof of Proposition C.3 we make the following observation. Proposition C.3 considers the functions
fQ(x) =

2d(x,Q)2

σ2+EX∼D[d(X,Q)2] . For a fixed Q, the denominator in fQ is a fixed positive number, whereby we get that the median

of the means µfQ,Xi =
∑m

j=1

2d(Xi
j ,Q)2

(σ2+EX∼D[d(X,Q)2])m is just the same as scaling the median of the means
∑m

j=1

d(Xi
j ,Q)2

m

with 2/
(
σ2 + EX∼D

[
d(X, Q)2

])
. Whereby we conclude that

| MOM(f,X)− E
X′∼D

[f(X′)]| ≤ ε

implies by multiplication of 2/
(
σ2 + EX∼D

[
d(X, Q)2

])
that

| MOM(d(·, Q)2,X)− E
X′∼D

[
d(X′, Q)2

]
| ≤

ε
(
σ2 + EX′∼D

[
d(X′, Q)2

])
2

, (28)

and furthermore by rearrangement that

E
X′∼D

[
d(X′, Q)2

]
≤
(

1

1− ε/2

)(
MOM(d(·, Q, )X)2) +

εσ2

2

)
≤ (1 + ε)

(
MOM(d(·, Q, )X)2) +

εσ2

2

)
,

where the last inequality follows from 1 + x/2
1−x/2 ≤ 1 + x for 0 ≤ x ≤ 1, and again by rearrangement of Equation (28) we

get that

E
X′∼D

[
d(X′, Q)2

]
≥
(

1

1 + ε/2

)(
MOM(d(·, Q)2,X)− εσ2

2

)
which implies if the term

(
MOM(d(·, Q)2,X)− εσ2

2

)
≥ 0 that

E
X′∼D

[
d(X′, Q)2

]
≥ (1− ε)

(
MOM(d(·, Q)2,X)− εσ2

2

)
,

by 1
1+ε/2 ≥ 1− ε, but also holds in the case that the term

(
MOM(d(·, Q)2,X)− εσ2

2

)
< 0 since EX′∼D

[
d(X′, Q)2

]
is

non-negative and ε ≤ 1. We compile these observations in the following corollary
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Corollary C.4 (k-means). Let k ∈ N, 0 < δ, ε < 1, D be a distribution over Rd, µ = EX∼D [X], 1 < p ≤ 2 and Fk ={
fQ | Q ∈ Rd×k

}
if σ2 = EX∼D

[
d(X, µ)2

]
< ∞, Fk ∈ Lp(D) and vp ≥ supf∈Fk

EX∼D [|f(X)− EX∼D [f(X)] |p]

then for m ≥
(

400·16pvp
εp

) 1
p−1

and κ ≥ max
(
κ0(δ/8),

106 ln (2)
99 , 50 ln

(
8N(D,ε/16,m)

δ

))
where κ0(δ) = 2 · 80002 ln (e/δ)

and N(D, ε,m) = 8
(

72·104·8000e
ε

)140kd ln (6k)

we then have with probability at least 1− δ over X ∼ (Dm)
κ that: for all

Q ⊂ Rd such that |Q| = k

(1− ε)

(
MOM(d(·, Q, )X)2)− εσ2

2

)
≤ E

X′∼D

[
d(X′, Q)2

]
≤ (1 + ε)

(
MOM(d(·, Q, )X)2) +

εσ2

2

)
We now give the proof of Proposition C.3

Proof of Proposition C.3. We now show that Fk admits a D-discretization with threshold functions κ0(δ) = 2 ·

80002 ln (e/δ), ε0 = 1 and size function N(D, ε,m) = 8
(

72·104·8000e
ε

)140kd ln (6k)

if σ2 = EX∼D
[
d(X, µ)2

]
< ∞.

Thus, for any 0 < δ, ε < 1 we get by invoking Theorem 3.4 that for vp ≥ supf∈Fk
EX∼D [|f(X)− EX∼D [f(X)] |p] ,

m ≥
(

400·16pvp
εp

) 1
p−1

and κ ≥ κ0(δ/8),
106 ln (2)

99 , 50 ln
(

8N(D,ε/16,m)
δ

)
, it holds with probability at least 1 − δ over

X ∼ (Dm)κ that: For all f ∈ Fk

| MOM(f,X)− E
X′∼D

[f(X′)]| ≤ ε,

which would conclude the proof.

To the end of showing that Fk admits the above claimed D-discretization, let 0 < ε < ε0 = 1, 0 < δ < 1, m ≥ 1 and
κ ≥ κ0(δ). Now for each i ∈ {1, . . . , κ} , let Gi be the event

Gi =


2∑

j=0

m∑
l=1

s(Xi
j,l)

3m
≤ 12 · 8000

 . (29)

Now by Markov’s inequality σ2 < ∞ and that s(x) = 4d(x,µ)2

σ2 + 8 it follows that

P
Xi

0,X
i
1,X

i
2∼Dm

[
GC

i

]
≤ E

Xi
0,X

i
1,X

i
2∼Dm

 2∑
j=0

m∑
l=1

s(Xi
j,l)

3m

1

12 · 8000

 ≤ 12

12 · 8000
=

1

8000
, (30)

which implies that PXi
0,X

i
1,X

i
2∼Dm [Gi] ≥ 1− 1

8000 . Now since the random variables Xi
0,X

i
1,X

i
2 for i ∈ {1, . . . , κ} are

independent we get that the events Gi are independent, and it follows by an application of the multiplicative Chernoff bound,
and κ ≥ κ0(δ) = 2 · 80002 ln (e/δ) that

P
X0,X1,X2∼(Dm)κ

[
κ∑
i

1 {Gi} ≤ (1− 1

8000
)E

[
κ∑
i

1 {Gi}

]]
≤ exp

(
− κ

2 · 80002
)
≤ δ. (31)

Thus, we conclude that with probability at least 1− δ over X0,X1,X2, it holds that I = {i : i ∈ [κ] ,1 {Gi} = 1} is such
that |I| ≥ (1− 1

8000 )E [
∑κ

i 1 {Gi}] ≥ (1− 1
8000 )

2κ, where the last inequality follows from Equation (30). Now consider
any realization X0, X1, X2 of X0,X1,X2 such that |I| ≥ (1− 1

8000 )
2κ. Now by the definition of Gi in Equation (29) we

have that

∑
i∈I

2∑
j=0

m∑
l=1

s(Xi
j,l)

3m|I|
≤ 12 · 8000. (32)

Now let XG denote the points set ∪i∈IX
i =

{
x|∃i ∈ I, ∃j ∈ {0, 1, 2} ,∃l ∈ [m] such x = Xi

j,l

}
, so with out multiplicity,

and define the distribution DG on XG, where DG(x) =
∑

i∈I

∑2
j=0

∑m
l=1

1{Xi
j,l=x}

3m|I| , so assigning points in XG weight
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after their multiplicity in Xi for i ∈ I. We notice that with this distribution we have that

E
X∼DG

[s(X)] =
∑

x∈XG

s(x)DG(x) =
∑

x∈XG

∑
i∈I

2∑
j=0

m∑
l=1

s(x)
1

{
Xi

j,l = x
}

3m|I|

=
∑
i∈I

2∑
j=0

m∑
l=1

s(Xi
j,l)

3m|I|
≤ 12 · 8000, (33)

where the last inequality follows by Equation (32).

We now invoke Lemma C.2 to get an upper bound on the size of a maximal ε
3·104 -packing of Fk(XG) with respect

to L1(DG) of size at most 8
(

6·104eEX∼DG
[s(x)]

ε

)2dk

with dk = Pdim(Fk). We here make a small remark about the
invocation of Lemma C.2. Our s is only an upper bound on s′(x) = supf∈Fk

f(x) (by Lemma C.1), thus we actually
invoke Lemma C.2 with s′ and get that for ε′ = min( ε

3·104 ,EX∼DG
[s′(X)]) the size of a maximal ε′-packing is at most

8
(

2eEX∼DG
[s′(x)]

ε′

)2dk

.1 We notice that if ε′ = EX∼DG
[s′(X)], then since EX∼DG

[s(X)] ≥ 4 by Lemma C.1 and

0 < ε < 1, it holds that 8
(

2EX∼DG
[s′(X)]

ε′

)2dk

≤ 8
(

6·104 EX∼DG
[s(X)]

ε

)2dk

, if ε′ = ε
3·104 , the above is also an upper

bound since s′ ≤ s. Furthermore, the size of a maximal ε′-packing of Fk in L1(DG) is larger than the size of a minimal
ε′-net of Fk in L1(DG). Thus, the above also gives that the size of a minimal ε

3·104 -net of Fk in L1(DG) is at most

8
(

6·104eEX∼DG
[s(x)]

ε

)2dk

. By Lemma C.1, we have that dk ≤ 6k(d+ 4) ln (6k)/ ln (2) ≤ 70kd ln (6k). By Equation (33)
we have that EX∼DG

[s(x)] ≤ 12 · 8000. Thus, we have argued that the size of a minimal ε
3·104 -net of Fk(XG) in terms

of L1(DG) is at most 8
(

6·104eEX∼DG
[s(x)]

ε

)2dk

≤ 8
(

72·104·8000e
ε

)140kd ln (6k)

= N(D, ε,m). Let Fε = Fε(XG, L1,DG)

denote a minimal ε
3·104 -net for Fk(XG) with respect to L1(DG), i.e. has the following property, for f ∈ Fk(XG), there

∃f ′ ∈ Fε such that

ε

3 · 104
≥ E

X∼DG

[|f(X)− f ′(X)|] =
∑
i∈I

2∑
j=0

m∑
l=1

|f(Xi
j,l)− f ′(Xi

j,l)|
3m|I|

, (34)

and any other set with this property has a size less than or equal to |Fε| - the above last equality follows by similar
calculations as in Equation (33) (using the definition of DG). In what follows we will for f ∈ Fk use π(f) for the element
in Fε closest to f with ties broken arbitrarily.

Let now f ∈ Fk. We define If to be the following subset of [κ],

If =

{
i|∃i ∈ [κ],∃j ∈ {0, 1, 2}

m∑
l=1

|f(Xi
j,l)− π(f)(Xi

j,l)|
m

> ε

}
. (35)

We first notice that by Equation (34) we have that

ε

3 · 104
≥

∑
i∈I∩If

2∑
j=0

m∑
l=1

|f(Xi
j,l)− f ′(Xi

j,l)|
3m|I|

≥ |I ∩ If |ε
3|I|

which implies that |I ∩ If | ≤ 1
104 |I| ≤

κ
104 . Furthermore since |I| ≥ (1− 1

8000 )
2κ, implying IC ≤ (1− (1− 1

8000 )
2)κ,

we conclude that

|If | = |If ∩ I|+ |If ∩ IC | ≤ (
1

104
+ 1− (1− 1

8000
)2)κ ≤ 2

625
κ.

Thus, we have shown that for the realization X0, X1, X2 there exists a set of functions Fε defined on X0, X1, X2 such that
for f ∈ Fk there exists π(f) ∈ Fε and If such that |If | ≤ 2

625κ and for i ∈ [k]\If , and j ∈ {0, 1, 2} we have that (see

1In the case that EX∼DG [s′(X)] = 0 we have s′(x) = 0 for x ∈ XG, and we can take the cover to only consist of the 0 function on
XG, as s′(x) ≥ f(x) ≥ 0 so must be zero on XG, thus we assume that eX∼DG > 0 .
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Equation (35)) that

m∑
l=1

|f(Xi
j,l)− π(f)(Xi

j,l)|
m

≤ ε

and |Fε| ≤ 8
(

72·104·8000e
ε

)140kd ln (6k)

= N(D, ε,m) (see the argument above Equation (34)). That is Fk admits a

ε-discretization on X0, X1, X2 of size at most |Fε| ≤ 8
(

72·104·8000e
ε

)140kd ln (6k)

= N(D, ε,m), for 0 < ε ≤ 1 = ε0. We

showed the above for a realization X0, X1, X2 such that X0,X1,X2 such that |I| ≥ (1− 1
8000 )

2κ, which happens with
probability at least 1− δ for κ ≥ κ0(δ) = 2 · 80002 ln (e/δ) and σ2 < ∞ by Equation (31). Thus, we have shown that Fk

admits the claimed D-discretization which concludes the proof of Proposition C.3.

D. Linear Regression
In this appendix, we consider a continuous positive loss function cl ∈ [0,∞)R and the function class induced by the loss
function ℓ when doing linear regression with a constraint on the norm of the regressor of W > 0, formally we consider the
function class

FW =
{
ℓ(⟨(w,−1), ·⟩) | w ∈ Rd, ||w|| ≤ W

}
⊆ [0,∞)R

d+1

.

That is if f ∈ FW there exists w ∈ Rd, with squared norm at most W such that for x ∈ Rd, y ∈ R, we have
f((x, y)) = ℓ(⟨(w,−1), (x, y)⟩) = ℓ(⟨w, x⟩ − y), i.e. the loss function ℓ taken on the residual. To describe our result
we for a continuous loss function ℓ define for a, b > 0, the number αℓ(a, b) as the largest positive number such that for
x, y ∈ [−a, a] and |x− y| ≤ αℓ(a, b) we have that |ℓ(x)− ℓ(y)| ≤ b. We notice that since ℓ is continuous and [a, a] is a
compact interval αℓ(a, b) is well-defined by Heine-Cantor Theorem which ensures that ℓ is uniform continuous on [a, a].
We notice that if ℓ is L-Lipschitz then we have that αℓ(a, b) =

b
L .

In what follows we are going to need the following lemma which gives a bound on an epsilon net of the units ball in Rd in
terms of ||·||2.

Lemma D.1. Let 0 < ε < 1, B(1) =
{
x ∈ Rd|, ||X||2 ≤ 1

}
, then there exists a set Bε ⊆ Rd, of size at most (6/ε)d being

a ε-net for B(1) in ||·||2 , i.e. for any x ∈ B(1) there exists y ∈ Bε such that

||x− y||2 ≤ ε. (36)

We postpone the proof of Lemma D.1 to the end of this appendix and now present our main proposition on regression for a
continuous loss function.

Proposition D.2 (Regression). For a continuous loss function ℓ, 0 < δ < 1, 1 < p ≤ 2, distributions
DX and DY over respectively Rd and R, W > 0, ∞ > vp ≥ supf∈FW

EX∼DX ,Y∼DY
[f(X,Y)p], κ0(δ) =

4 · 12502 ln (e/δ), and N(D, ε,m) =
(

6W
β(ε,m,D)

)d
where β(ε,m,D) = min(W2 , αℓ(J,ε)

3750(E[||X||1]+E[|Y |])m ), with

J = (3W/2 + 1) · 3750 (E [||X||1] + E [|Y |])m we then have that for 0 < ε, m ≥
(

400·16pvp
εp

) 1
p−1

and κ ≥

max
(
κ0(δ/8),

106 ln (2)
99 , 50 ln

(
8N(D,ε/16,m)

δ

))
, it holds with probability at least 1 − δ over Z = (X,Y) ∼ ((DX ×

DY )
m)κ that: For all f ∈ FW

| MOM(f,Z)− E
Z′∼DX×DY

[f(Z′)]| ≤ ε.

Before we prove Proposition D.2 we make a small remark on what Proposition D.2 means for Lipschitz losses. In the case
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of ℓ being an L-Lipschitz loss and that ℓ(0) = 0 we get that

sup
f∈FW,ℓ

E [f(X,Y)p] ≤ Lp sup
w∈B(W )

E [|⟨(w,−1), (X,Y)⟩|p] (by ℓ(0) = 0 and ℓ L-Lipschitz)

≤ Lp sup
w∈B(W )

E [(|⟨w,X⟩|+ |Y|)p] (by |a+ b| ≤ |a|+ |b|)

≤ (2L)p sup
w∈B(W )

E [(max (|⟨w,X⟩|p , |Y|p))] (by a+ b ≤ 2max(a, b))

≤ (2L)p

(
sup

w∈B(W )

E [|⟨w,X⟩|p] + E [|Y|p]

)
. (by max(a, b) ≤ a+ b)

Furthermore as discussed earlier we in this case have that αℓ(J, ε/16) =
ε

16L , plugging these observations into Proposi-
tion D.2 implies the following corollary.
Corollary D.3 (Lipschitz-loss). For a continuous loss function ℓ which is L − Lipschitz and has ℓ(0) = 0,
0 < δ < 1, 1 < p ≤ 2, distributions DX and DY over respectively Rd and R, W > 0, ∞ > vp ≥

(2L)p
(
supw∈B(W ) E [|⟨w,X⟩|p] + E [|Y|p]

)
, κ0(δ) = 4 · 12502 ln (e/δ), and N(D, ε,m) =

(
6W

β(ε,m,D)

)d
where

β(ε,m,D) = min(W2 , ε
60000L(E[||X||1]+E[|Y |])m ), we have that for 0 < ε, m ≥

(
400·16pvp

εp

) 1
p−1

and κ ≥

max
(
κ0(δ/8),

106 ln (2)
99 , 50 ln

(
8N(D,ε/16,m)

δ

))
, it holds with probability at least 1 − δ over Z = (X,Y) ∼ ((DX ×

DY )
m)κ that: For all f ∈ FW

| MOM(f,Z)− E
Z′∼DX×DY

[f(Z′)]| ≤ ε.

We now give the proof of Proposition D.2

Proof of Proposition D.2. In what follows we will use Z0 = (X0,Y0), Z1 = (X1,Y1), and Z2 = (X2,Y2) and
let DZ = DX × DY , such that Zl ∼ (Dm

Z )κ. We now show that FW admits a D-discretization with threshold

functions κ0(δ) = 4 · 12502 ln (e/δ), ε0 = ∞ and size function N(D, ε,m) =
(

6W
β(ε,m,D)

)d
where β(ε,m,D) =

min(W2 , α(J,ε)
3750(E[||X||1]+E[|Y |])m ), with J = (3W/2 + 1) · 3750 (E [||X||1] + E [|Y |])m. Thus, for any 0 < δ < 1 we get by

invoking Theorem 3.4 that for 0 < ε < ε0 = ∞, m ≥
(

400·16pvp
εp

) 1
p−1

and κ ≥ κ0(δ/8),
106 ln (2)

99 , 50 ln
(

8N(D,ε/16,m)
δ

)
it holds with probability at least 1− δ over Z ∼ (Dm

Z )κ that: For all f ∈ F

| MOM(f,Z)− E
Z′∼DZ

[f(Z′)]| ≤ ε,

as claimed. To the end of showing that FW admits a D-discretization as described above let 0 < ε < ε0 = ∞, 0 < δ < 1,
m ≥ 1 and κ ≥ κ0(δ). We now define the following events for i ∈ [κ]

Gi =


2∑

l=0

m∑
j=1

∣∣∣∣∣∣(Xi
l,j ,Y

i
l,j)
∣∣∣∣∣∣
1

3m
≤ 1250 (E [||X||1] + E [|Y |])

 .

Then by Markov’s inequality, we have that

P
Zi

0,Z
i
1,Z

i
2∼Dm

Z

(
GC

i

)
≤ E

 2∑
l=0

m∑
j=1

∣∣∣∣∣∣(Xi
l,j ,Y

i
l,j)
∣∣∣∣∣∣
1

3m

1

1250 (E [||X||1] + E [|Y |])

 =
1

1250
,

which implies that PZi
0,Z

i
1,Z

i
2∼Dm

Z
[Gi] ≥ 1 − 1

1250 . Now since the random variables Zi
0,Z

i
1,Z

i
2 for i ∈ {1, . . . , κ} are

independent we get that the events Gi are independent. Thus, it follows by an application of the multiplicative Chernoff
bound, that for any κ ≥ κ0(δ) = 4 · 12502 ln (e/δ) we have

P
Z0,Z1,Z2∼(Dm)κ

[
κ∑
i

1 {Gi} ≤ (1− 1

1250
)E

[
κ∑
i

1 {Gi}

]]
≤ exp

(
−
(1− 1

1250 )κ

2 · 12502

)
≤ δ. (37)
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Thus, if we let I = {i ∈ [κ] : 1{Gi} = 1} then by Equation (37) it holds with probability at least 1− δ over Z0,Z1,Z2

that |I| ≥ (1− 1
1250 )

2κ, where we have used that we concluded earlier that PZi
0,Z

i
1,Z

i
2∼Dm

Z
[Gi] ≥ 1− 1

1250 . Thus, we have
that the size IC = [κ]\I , is at most |IC | = κ − |I| ≤ κ − (1 − 1

1250 )
2κ ≤ 2

625κ. Thus, if for Z0, Z1, Z2, outcomes of
Z0,Z1,Z2 where |I| ≥ (1− 1

1250 )
2κ, we can construct a set of functions Fβ (β is a parameter depending on ε,m,D as

allowed to in the definition of a D-discretization ) defined on Z0, Z1, Z2 such that for f ∈ FW , there exists π(f) ∈ Fβ ,
such that for i ∈ [κ]\IC = I it holds that for each l ∈ {0, 1, 2} that

m∑
j=1

∣∣∣∣∣f(Zi
l,j)− π(f)(Zi

l,j)

m

∣∣∣∣∣ ≤ ε, (38)

and the size of |Fβ | ≤ N(D, ε,m) then we have shown that FW admits a D discretization, and we are done by the above.
Thus, we now show that for outcomes Z0, Z1, Z2, of Z0,Z1,Z2 where |I| ≥ (1− 1

1250 )
2κ, there exists such an Fβ .

To this end consider a realization Z0, Z1, Z2 of Z0,Z1,Z2 such that |I| ≥ (1− 1
1250 )

2κ. We first notice that for any i ∈ I ,
l ∈ {0, 1, 2} we have that

m∑
j=1

∣∣∣∣∣∣(Xi
l,j , Y

i
l,j)
∣∣∣∣∣∣
1

3m
≤ 1250 (E [||X||1] + E [|Y |]) ,

which implies that for any j ∈ [m] ∣∣∣∣(Xi
l,j , Y

i
l,j)
∣∣∣∣
1
≤ 3750 (E [||X||1] + E [|Y |])m.

Thus, we conclude that for any i ∈ I , l ∈ {0, 1, 2} and j ∈ [m] we have that∣∣∣∣(Xi
l,j , Y

i
l,j)
∣∣∣∣
1
≤ 3750 (E [||X||1] + E [|Y |])m. (39)

Now let β = β(ε,m,D) = min(W2 , α(J,ε)
3750(E[||X||1]+E[|Y |])m ), where J denote the quantity J = (3W/2 + 1) ·

3750 (E [||X||1] + E [|Y |])m and let Fβ denote a β-net in ||·||2-norm for B(W ) =
{
w ∈ Rd : ||w||2 ≤ W

}
of mini-

mal size, i.e. ∀w ∈ B(W ) there ∃ŵ ∈ Fβ such that ||w − ŵ||2 ≤ β, and any other set satisfying this has size at least |Fβ |.
We notice that this implies that for ŵ ∈ Fβ we have that ||ŵ|| ≤ W + β, to see this let w ∈ B(W ) and let ŵ ∈ Fβ be
the points closest to w in the net Fβ , i.e. we have that ||w − ŵ|| ≤ β, and by the reverse triangle inequality we have that
W ≥ ||w|| ≥ ||ŵ||2 − ||ŵ − w||2 > ||ŵ||2 − β which implies that ||ŵ||2 ≤ W + β as claimed. Now using Equation (39),
that ||·||2 ≤ ||·||1 and Cauchy Schwarz it follows that for w ∈ B(W ), ŵ the points closest to w from Fβ(ties broken
arbitrarily), i ∈ I , l ∈ {0, 1, 2} and j ∈ [m] that

|
〈
(w,−1), (Xi

l,j , Y
i
l,j)
〉
−
〈
(ŵ,−1), (Xi

l,j , Y
i
l,j)
〉
| = |

〈
(w,−1)− (ŵ,−1), (Xi

l,j , Y
i
l,j)
〉
| (40)

≤ β ·
∣∣∣∣(Xi

l,j , Y
i
l,j)
∣∣∣∣
2

(by Cauchy Schwarz)

≤ β ·
∣∣∣∣(Xi

l,j , Y
i
l,j)
∣∣∣∣
1

(by ||·||2 ≤ ||·||1)

≤ β · 3750 (E [||X||1] + E [|Y |])m (by Equation (39))

and that for any w′ ∈ B(W ) ∪ Fβ , i ∈ I , l ∈ {0, 1, 2} and j ∈ [m] that

|
〈
(w′,−1), (Xi

l,j , Y
i
l,j)
〉
| ≤ ||(w′,−1)||2

∣∣∣∣(Xi
l,j , Y

i
l,j)
∣∣∣∣
2

(by Cauchy Schwarz)

≤ (||(w′)||2 + 1)
∣∣∣∣(Xi

l,j , Y
i
l,j)
∣∣∣∣
2

(by
√
a+ b ≤

√
a+

√
b)

≤ (W + β + 1)
∣∣∣∣(Xi

l,j , Y
i
l,j)
∣∣∣∣
2

(by w′ ∈ B(W ) ∪ Fβ so ||w||2 ≤ W + β)

≤ (W + β + 1)
∣∣∣∣(Xi

l,j , Y
i
l,j)
∣∣∣∣
1

(by ||·||2 ≤ ||·||1)

≤ (W + β + 1) · 3750 (E [||X||1] + E [|Y |])m (by Equation (39))

≤ (3W/2 + 1) · 3750 (E [||X||1] + E [|Y |])m (by β ≤ W
2 )

Let now J = (3W/2 + 1) · 3750 (E [||X||1] + E [|Y |])m and consider αℓ(J, ε). We recall that by the definition of αℓ(J, ε)
we have that for x, y ∈ [−J, J ], such that |x − y| ≤ αℓ(J, ε) it holds that |ℓ(x) − ℓ(y)| ≤ ε. Thus, by Equation (40) we
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have that for any i ∈ I , l ∈ {0, 1, 2} j ∈ [m] and w ∈ B(W ) with ŵ being the point in Fβ closest to w (with ties broken
arbitrarily) that

|
〈
(w,−1), (Xi

l,j , Y
i
l,j)
〉
−
〈
(ŵ,−1), (Xi

l,j , Y
i
l,j)
〉
| ≤ β · 3750 (E [||X||1] + E [|Y |])m ≤ αℓ(J, ε),

by β = min(W2 , α(J,ε)
3750(E[||X||1]+E[|Y |])m ), which implies that

|ℓ(
〈
(w,−1), (Xi

l,j , Y
i
l,j)
〉
)− ℓ

(〈
(ŵ,−1), (Xi

l,j , Y
i
l,j)
〉)

| ≤ ε,

and furthermore for i ∈ I and l ∈ {0, 1, 2}

m∑
i=1

∣∣∣ℓ
(〈

(w,−1), (Xi
l,j , Y

i
l,j)
〉)

− ℓ
(〈

(ŵ,−1), (Xi
l,j , Y

i
l,j)
〉)

m

∣∣∣ ≤ ε,

which concludes Equation (38), i.e. that Fβ (formally speaking ℓ compossed with the vectors in Fβ) is a ε-discretization
of the realization Z0, Z1, Z2 of Z0,Z1,Z2. Furthermore, by Lemma D.1 and β/W ≤ 1/2 there exists a net Bβ/W of
B(1) with precision β/W in ||·||2 of size at most (6W/β)d. We now notice that for any w ∈ B(W ), since w

W ∈ B(1)

we have that there exists ŵ ∈ Bβ/W such that
∣∣∣∣ w

W − ŵ
∣∣∣∣
2
≤ β

W which implies that ||w −Wŵ||2 ≤ β, i.e. shows that
WBβ/W =

{
ŵ|ŵ = Ww′ for w′ ∈ Bβ/W

}
, is a β net for B(W ) in ||·||2. Thus, since Fβ was chosen minimally (in terms

of size) over such nets, we have that the size of |Fβ | ≤
(

6W
β

)d
, where β = β(ε,m,D) = min(W2 , αℓ(J,ε)

3750(E[||X||1]+E[|Y |])m ),
with J = (3W/2 + 1) · 3750 (E [||X||1] + E [|Y |])m. Which concludes the claim of FW having a D-discretization

with threshold functions ε0 = ∞, κ0(δ) = 4 · 12502 ln (e/δ) and size function N(D, ε,m) =
(

6W
β(ε,m,D)

)d
where

β(ε,m,D) = min(W2 , α(J,ε)
3750(E[||X||1]+E[|Y |])m ), with J = (3W/2 + 1)·3750 (E [||X||1] + E [|Y |])m and further concludes

the proof.

We now give the proof of Lemma D.1

Proof of Lemma D.1. In the following we are going to need that the volume of a ball in Rd of radius r is Vol(B(r)) =
πd/2

Γ(d/2+1)r
d by 5.19(iii), where Γ is the Euler’s gamma function. It will also be convenient to introduce some notation for

balls centered at a point x ∈ Rd of radius r, we will use B(x, r) = {y|y ∈ Rd, ||x− y||2 ≤ r} for such balls.

Now let Bε be a maximal ε packing of B(1), that is Bε ⊆ B(1) and for any x, y ∈ Bε, where x ̸= y, we have that
||x− y||2 ≥ ε, and any other subset of B(1) with this property has size less than or equal to Bε. We notice that Bε must
also be a ε-net for B(1) since else there exists x ∈ B(1) such that for all y ∈ Bε we have that ||x− y||2 > ε, but then x
could have been added to the maximal packing Bε, leading to a contradiction with the maximality assumption of Bε. We
now argue that the size of Bε is (6/ε)d , which would conclude the proof since we just argued it is a ε-net in ||·||2 for B(1).

First since Bε is a packing it must be the case that if we place a ball on each point in Bε of radius ε/3, then these balls must
be disjoint. To see this assume it is not the case i.e. there exists x, y ∈ Bε such that x ̸= y and the balls B(x, ε/3) and
B(y, ε/3) centered at x and y of radius ε/3 has a nonempty intersection B(x, ε/3)∩ B(y, ε/3) ̸= ∅. Now let z be any point
in this nonempty intersection, then by the triangle inequality we have that ||x− y||2 ≤ ||x− z||2 − ||z − y||2 ≤ 2ε

3 leading
to a contradiction with Bε being a ε-packing, i.e. all different elements being ε away from each other.

Thus, we conclude that the balls centered at each point in Bε of radius ε/3 are disjoint, which implies that the sum of the
volumes of the balls centered around each point in Bε, which is

∑
x∈Bε

Vol(x, ε/3) = |Bε|Vol(B(ε/3)), are equal to the
volume of the union of all these balls Vol(∪x∈Bε

B(x, ε/3)) =
∑

x∈Bε
Vol(x, ε/3) = |Bε|Vol(B(ε/3)).

We now notice that any point in a ball of radius ε/3 of a point in Bε has norm at most 1 + ε/3. To see this let x ∈ Bε

and y ∈ B(x, ε/3) be a point contained in the ball of radius ε/3 around x, then we have by the triangle inequality that
||y||2 ≤ ||x||2 + ||y − x||2 ≤ 1 + ε/3, where we in the last inequality used that Bε ⊆ B(1) such that ||x||2 ≤ 1. Thus, we
have that the union of the balls of radius ε/3 centered at points in Bε, ∪x∈BεB(x, ε/3), is contained in the ball of radius
1 + ε/3, ∪x∈BεB(x, ε/3) ⊆ B(1 + ε/3).

Thus, we conclude that |Bε|Vol(B(ε/3)) = Vol(∪x∈BεB(x, ε/3)) ≤ Vol(B(1 + ε/3)), where we used that we earlier
conclude that the union of the balls of radius ε/3 centered at points in Bε, ∪x∈BεB(x, ε/3), have volume |Bε|Vol(B(ε/3)).
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We notice that this implies combined with the formula for the volume of a ball in Rd of radius r being Vol(B(r)) =

πd/2

Γ(d/2+1)r
d that |Bε| ≤ Vol(B(1+ε/3))

Vol(B(ε/3)) =
(

1+ε/3
ε/3

)d
≤
(
6
ε

)d
, where the last inequality follows by ε < 1, and concludes the

proof.

E. Proofs of Lemma B.1.
Lemma E.1 (Follows from (von Bahr & Esseen, 1965) Theorem 2). Let 1 ≤ p ≤ 2 and X = (X1, . . . ,Xm) be i.i.d. with
distribution D. Furthermore let µ̂ = 1

m

∑m
i=1 Xi, µ = EX1∼D [X1] and vp ≥ EX1∼D [|X1 − µ|p]. We then have that

E [|(µ̂− µ)|p] ≤ 2vp
mp−1

(41)

Using this lemma and Markovs inequality we obtain Lemma B.1.

Proof of Lemma B.1. By Lemma E.1 it holds for any f ∈ F that

E
X∼D

[|µ(f,X)− µ(f)|p] ≤ 2vp
mp−1

, (42)

Using the lower bound of m implies that we have that(
2vp

δmp−1

) 1
p

≤ ε,

thus by and Markovs inequality and Equation (42) we have that,

P (|µ(f,X)− µ(f)| > ε) ≤P

(
|µ(f,X)− µ(f)| >

(
2vp

δmp−1

) 1
p

)

≤E [|µ(f,X)− µ(f)|p] δmp−1

2vp
≤ δ,

which concludes the proof of Lemma B.1
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