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Abstract
Advice is a powerful tool for learning. But advice also presents the challenge of bridging the gap
between the high-level representations that easily capture human advice and the low-level repre-
sentations that systems must operate with using that advice. Drawing inspiration from studies on
human motor skills and memory systems, we present an approach that converts human advice into
synthetic or imagined training experiences, serving to scaffold the low-level representations of sim-
ple, reactive learning systems such as reinforcement learners. Research on using mental imagery
and directed attention in motor and perceptual skills motivates our approach. We introduce the con-
cept of a cognitive advice template for generating scripted, synthetic experiences and use saliency
masking to further conceal irrelevant portions of training observations. We present experimental
results for a deep reinforcement learning agent in a Minecraft-based game environment that show
how such synthetic experiences improve performance, enabling the agent to achieve faster learning
and higher rates of success.

1. Introduction

Advice is a powerful tool for enhancing learning, but delivering information in a way that can be
appropriately used to improve performance can be a complex endeavor. For example, corrective
advice should focus the learner on external components (e.g., effects of the motor control) rather
than internal components, such as the motor control itself, as internally focused attention harms per-
formance (Wulf et al., 2010). This is hypothesized to be due to conflicting representations between
abstract advice and low-level motor programs (Flegal & Anderson, 2008). This suggests that the
ability to apply top-down, abstract advice on a simple, reactive learning system requires that the
advice essentially “scaffold” the low-level representation (Petersen et al., 1998) rather than interact
with it directly. While this difference in knowledge representations is captured both in cognitive
architectures (Anderson, 1982; Sun et al., 2001) and human neurophysiology (Henke, 2010), the
ability to capture this scaffolding interaction model has yet to be explored.
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Table 1. Differences between human advice and inputs suitable for most reinforcement learning agents.

Humans Advice RL Inputs

Quantity Low (10s) Large (1,000s–1,000,000s)
Conceptual Level Higher level, more abstract No abstractions, grounded in environment
Representation Linguistic Instance-based

Given this inspiration from studies of human motor skills and memory systems, we explored
how abstract advice may be used to guide reinforcement learning for a simple, reactive agent. Hu-
man advice has been recognized as a powerful source of guidance for learning systems since the
early days of AI (McCarthy, 1959), and much work has been done on integrating advice into sym-
bolic reasoning systems (Mostow, 1983; Golding et al., 1987; Myers, 1996). In the 1990s, reinforce-
ment learning (RL) came onto the scene as an attractive paradigm for continuous, integrated learning
and acting. While mathematically elegant, systems for reinforcement learning are often limited to
small, toy domains due to their simplicity and inability to scale to complex problems. However,
with the explosive success of deep learning during the previous several years has also come im-
pressive gains through the use of neural function approximators to reduce complexity (Mnih et al.,
2013; Silver et al., 2017). As RL-trained autonomous systems become more widely used, a critical
component for their acceptance is the ability for users to advise and influence autonomy.

A large body of work already fuses the flexibility and learning capability of reinforcement learn-
ing with extensions to allow for more complex thought. Examples include using reinforcement
learning to learn an operator-selection policy in a cognitive system (Nason & Laird, 2005); support-
ing hierarchical deep Q-learning networks (DQN) (Kulkarni et al., 2016); developing goal-directed
Monte Carlo rollouts to identify courses of action that best match human preferences and constraints
(Kaushik et al., 2016); and other work further reviewed in Section 6. However, these approaches
implicitly assume that a fundamentally reactive learning algorithm, such as RL, cannot learn to
exhibit more complex, goal-directed behavior. Ostensibly, general belief and intuition dictate that
such simple algorithms must require additional cognitive machinery to exhibit complex behavior.
We contend that another path is possible, one that forgoes heavy modification of the reinforcement
learner or reactive learning algorithms.

A fundamental problem is that human-provided advice, which is abstract and rich in its repre-
sentation, is often not in a form readily usable by RL-trained autonomous agents. In developing
playbooks (libraries of procedural knowledge) for teams of autonomous agents, we have found
that domain subject matter experts often impart their knowledge in the form of high-level goals or
constraints, which current learning systems cannot use directly. Although attempts to incorporate
advice into RL systems have met with some success (Schaal, 1999; Ng & Russell, 2000; Abbeel &
Ng, 2004), these approaches tend to require heavy user involvement in the training process.

A key advantage of RL-based systems is that they generally require little or no domain knowl-
edge, learning strictly from examples garnered through experimentation. However, this focus on
instance-based learning leads to a fundamental disconnect between human communication and
standard approaches. Table 1 lists some of the differences between human-given advice and in-
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Figure 1. Scaffolding framework: Advice is matched by a selector to a template, which contains a model for
generating multiple instanced permutations representing the lesson in the advice. These are then made readily
available to a reactive learner.

puts accepted by such systems. Thus, the challenge is in developing techniques that allow abstract
human advice to be used to guide reinforcement learning.

Our main research objective is to understand how to take natural human advice – typically a
symbolic, language-based input that relies on robust models of the environment – and use it to guide
low-level (even model-free) reactive learners such as reinforcement learning. To bridge this gap, we
developed scaffolding, a framework for converting human advice into inputs that can influence
reactive learning algorithms such as reinforcement learning. Scaffolding addresses the conceptual
level of information and quantity of inputs (see Table 1). Our framework, further elaborated on in
Section 2, is guided by multiple memory systems theory1 (Sherry & Schacter, 1987; Squire, 2004)
and is based on the following core theoretical ideas:

• Tenet 1: Cognitive systems should support complex interactions between abstract cognitive
operations and simple, low-level reactive learning systems.

• Tenet 2: Because reactive learning processes are encapsulated, advice does not interact di-
rectly with the knowledge representation but instead acts as a scaffold to guide the learning.

• Tenet 3: Scaffolding can be realized through templates that generate synthetic training exam-
ples to shape the reactive learning.

Our primary claim is that simple reactive learning systems can be trained to deal with complex
problems without requiring large changes to the underlying algorithms. By taking human advice
and developing cognitive templates that model the specific components of the environment that are
most relevant for learning, we should be able to guide a reactive agent to learn faster while also
minimizing the amount of the environmental modeling required for high-level guidance. A theoret-
ical outline for scaffolding is given in Figure 1. We purposefully avoid committing to any specific
representation or reasoning mechanism at this level, as several different types of technologies can
meet the needs of each component. Instead, we list a minimal set of criteria needed to embody the
framework.

Advice is composed of key elements and a lesson. Key elements are the minimal set of world
elements that are needed to convey the lesson in the advice. A selection mechanism aligns the

1. Of note, not to be confused with complementary learning systems (Kumaran et al., 2016; McClelland et al., 1995)
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advice with the best matching template. Templates themselves have variables, which are matched
with key elements from the advice, and a script. The script consists of a sequence of abstract
interactions between its variables, along with labels indicating desirability of outcome. When a
template is reified by binding advice elements to variables, the script uses these elements and domain
knowledge to generate a larger amount of grounded instances.

In the remainder of the paper, we outline our research approach and hypotheses (Section 2),
and briefly review reinforcement learning (Section 3). Following this, we describe our research
platform (Section 4), our technical approach to applying cognitive-level advice to an RL system
(Section 4), and the results of our novel architecture (Section 5) that show how advice-derived
training memories improve the learning rate for a deep RL system. Finally, we discuss related work
in cognitive psychology and in computer science (Section 6), and conclude with a discussion about
future directions (Section 7).

2. An Approach to Learning from Advice

Our theoretical approach borrows principles from cognitive psychology and skill acquisition to
develop methods for how an agent (human or system) can take high-level information and use it
to guide low-level learning and representations. Expert skills rely on multiple, interacting mem-
ory systems, whereby a declarative system supports flexible knowledge representations that can be
used to guide a procedural system that supports slow, inflexible learning through repetitive prac-
tice (Tenet 1; Milner et al., 1998; Fitts & Posner, 1967; Taylor & Ivry, 2012; Anderson, 1982;
Henke, 2010). Akin to providing advice to a reactive learning agent, a coach provides verbalizable
input (high-level advice) to a student to disrupt an incorrect motor program (low-level procedural
representation), otherwise known as deliberate practice (Ericsson et al., 1993). The abstract rep-
resentation of advice serves as a “scaffold” (Petersen et al., 1998) to guide the development and
production of low-level motor programs (Chaffin et al., 2010), which are characterized by their in-
flexible, encapsulated representations (Tenet 2; Rozanov et al., 2010; Reber & Squire, 1998). Thus,
our approach is to generate simple cognitive scaffolds, or templates, to guide an RL agent through
the learning process – essentially constraining the search space for our novice learner. Because RL
agents only learn through instance-based examples, much like a skill learner’s procedural memory
system, these templates are used to generate advice “episodes” to guide learning. Advice episodes
were inspired by the technique of mental imagery, where a learner mentally rehearses a desired
behavior to improve skill learning and performance (surveyed in Weinberg (2008)).

A potential complication is that the templates may lead to learning of incorrect information (i.e.,
spurious correlations). To combat this, we assessed “saliency masking,” where only the most rel-
evant information was retained in the episode (e.g., if an episode is focused on teaching an agent
to avoid lava, it would only retain the lava in the environment). This was motivated by the vi-
sual attention literature in cognitive psychology, which hypothesizes that human attention focuses
on only a portion of the visual field, following a “zoom lens” or an “attentional spotlight” model
(Eriksen & St. James, 1986; Eriksen & Yeh, 1985; Posner et al., 1980). Moreover, studies in de-
veloping perceptual skills for sports have shown that expert-driven direction of visual attention can
improve performance. For example, having a coach highlight important portions of a training video
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improved a novice’s ability to anticipate badminton plays (Hagemann et al., 2006). The important
commonality that we leverage is the fact that only a portion of the visual field is considered useful
for learning or making a decision. It is interesting to note that this issue with saliency is a hallmark
of explicit, cognitive processing, whereby implicit learning (like a reactive learning agent) is tradi-
tionally able to learn complex rules from a high-dimensional space despite a lack of a clear, salient
cue (Jiménez & Méndez, 2001).

To implement our advice scaffolding on a reactive learner we selected reinforcement learning,
specifically DQN. Reinforcement learning was chosen because it is one of the most fundamental al-
gorithms for learning stimulus-response behaviors, suggesting that any demonstrated improvements
should be generalizable to other approaches (such as policy-gradient RL algorithms). We selected
DQN because it is an effective state approximator that automatically learns a state representation
without a large engineering overhead. We posit that the advice templates and subsequent advice
episodes should be as simple as possible to appropriately constrain the RL agent and avoid common
problems with machine learning systems. To this end, we utilize templates that reinforce a behavior
(approach) or punish a behavior (avoidance) and isolate the minimal information required to focus
the agent on the salient information that needs to be associated with the outcome. This approach is
aimed at mitigating a major challenge for RL systems, which is learning spurious correlations be-
tween training observations and desired outcomes. This occurs because machine learning systems
in general consider the entire input equally. For example, an autonomous driving system would
favor braking when it saw heavy cloud cover simply because its training set was collected on a
rainy and cloudy day. While statistics will eventually overcome this problem, getting enough data
to reach this point may be difficult or infeasible.

By minimizing the information available in the training episodes, we are leveraging the con-
cept of instructor-directed visual attention. Studies of human skill learning have found that novices
learned much faster if their attention was directed to the portions of training videos that instruc-
tors deemed salient (Hagemann et al., 2006). Our artificial equivalent is using saliency masking,
where we occlude portions of training observations to leave only the elements deemed essential for
conveying the key lessons in a piece of advice.

Following our research motivation, we explored the following hypotheses:

• Hypothesis 1: Templates based on human advice can be used to generate training episodes
that enhance learning of a model-free RL agent.

• Hypothesis 2: Masking the environment so that only the most salient information is available
will enhance the RL agent’s ability to learn from the templates.

Figure 2 depicts our scaffolding implementation. We author advice, such as “move toward target”,
in terms of existing templates and variables. While this also aligns advice to templates for us,
automated solutions for aligning templates to less formal representations, such as natural language,
are feasible as well. Templates are instantiated with world elements referenced in the advice, making
it more concrete. We increase the quantity of data by having the system generate a variety of
episodes illustrating the key element in the lesson, where episodes consist of actions, observations,
and rewards. Unlike episodes drawn from interaction with the target environment, these “imaginary”
episodes are constructed internally from a domain-specific action model and the selected template.
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Figure 2. Overview of our scaffolding implementation. A single piece of human advice is matched against the
domain-relevant templates, which are instantiated with world elements. Our system applies a simple action
model to generate a larger number of training episodes that illustrate the key elements of the advice. These
advice memories are fed into replay buffers, which the RL agent uses to learn from.

For example, “move toward target” generates several different paths for the agent to reach its target.
These are stored into a bank of replay buffers, a memory store used by the RL agent to store its
experienced memories and to draw from for learning. This approach was inspired by mental imagery
studies, in which human subjects were directed to visualize themselves executing sports skills or
playing out imaginary sports scenarios. When combined with practice, mental rehearsals improved
the participants’ performance on these tasks (Weinberg, 2008).

3. Review of Reinforcement Learning

A reinforcement learning agent learns how to operate in an environment to maximize cumulative
reward (Sutton & Barto, 1998). It does so by taking exploratory action in the environment, then
accumulating positive and negative rewards as a result. The environment is typically formulated as
a Markov decision process (MDP), which consists of five elements:

• a finite set of states S;
• a finite set of actions A;
• a state transition function T (s′|s, a) = Pr(St+1 = s′|St = s,At = a) that specifies the

probability of transitioning from one state to another given a particular action;
• a reward function R(s) ∈ R over states; and
• a discount factor γ ∈ [0, 1] over future rewards.

The aim of an RL agent is to find an action-selection policy π : S ×A→ [0, 1] that will lead to the
best reward outcome, without knowing either the state transition probability function or the reward
function in advance.
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There are numerous forms of RL; here we use Q-learning (Watkins & Dayan, 1992), a model-
free algorithm that bypasses the state transition function and instead learns a function Q∗(s, a)
that captures the expected discounted reward from taking action a in state s and choosing actions.
The optimal Q-value function, Q∗(s, a), is computed by taking the action that leads to the greatest
expected reward in subsequent time steps:

Q∗(s, a) = max
π

E[rt + γrt+1 + · · · |st = s, at = a, π] (1)

In our work, we use deep Q-learning networks (DQN), a variant of Q-learning that uses neural
networks to perform data-driven approximation of Q-values, yielding better generalizability over
previous methods (Mnih et al., 2013). A key component of many deep RL systems, including
DQN, is experience replay (Lin, 1992). Originally developed to improve sample efficiency and
accelerate learning, experience replay has also been used to break temporal correlations that arise
when estimating Q-values. In experience replay, the agent stores observed interactions as experience
tuples in a replay buffer. An experience tuple < s, a, s′, r > consists of an initial state s, the action
taken a, the resulting state s′, and resulting reward r. RL agents update their Q-value estimates by
sampling from tuples in the replay buffer rather than just the recent tuples from interaction with the
environment.

We note that no requirement exists that replay buffers be given only actual environmental ex-
perience, and we harness this characteristic by inserting synthetically generated training memories
into a replay buffer. By transforming user advice into these training memories and including them in
the learning updates, we provide a mechanism for human guidance to influence the agent’s learning.
In the next section, we discuss our approach for operationalizing user advice by augmenting agent
experience with synthetic training memories.

4. Learning from Advice in Minecraft

For our experiments, we used Project Malmo, an instrumented Minecraft2 environment (Johnson
et al., 2016). Minecraft is a 3D video-game environment, where the world is composed of different
types of blocks, such as bedrock, cobblestone, logs, or lava. The game features basic mechanics
that enable a variety of causal interactions between the agent and blocks in the environment, such as
using pickaxes to mine ore or axes to remove trees. Game environments are excellent experimental
platforms because they are controlled domains, generally inexpensive, and act as semi-realistic
proxies for real-world scenarios. Minecraft, in particular, offers a highly flexible, controllable, and
extensible environment. Its wide array of possible interactions supports modeling that ranges from
simple tasks to complex multi-goal problems. This provides the necessary ability to create a training
regime that consists of simple advice templates and complex environment exploration.

To focus on the key research problem of using advice to scaffold a reactive learner for improved
learning, we simplified the percept and action-learning problem by using Malmo’s discrete action
mode: An agent can move forward and backward in one-block steps, it can turn in 90-degree incre-
ments, and it can use its pickaxe to remove any cobblestones blocks facing it.

2. http://minecraft.net
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Figure 3. The test arena for the agent, from the point of view of a third-party observer. The agent (Alice) must
step forward, remove the cobblestone (grey) with its pickaxe and then touch the blue lapis column. Falling
into lava is instantly lethal and ends the episode. The walls (obsidian) and floor (bedrock) are indestructible
and impassable.

As learning basic percepts from visual input has proven to be a challenge for complex game
environments (de la Cruz et al., 2017; Lin et al., 2017), we used observations of the block identities
within a rectangular volume centered on the agent. This environment encompassed a volume seven
blocks wide, seven blocks long, and two blocks high, enabling the agent to observe the blocks
constituting the floor and one block above. This let us focus on the core problem of advising
reinforcement learning agents, although future work will instead start from pixels.

The test environment consisted of a small island surrounded by blocks of lava (Figure 3). If
the agent falls into lava the episode terminates and it accrues a large negative reward. If the agent
destroys the cobblestones and moves up to touch the blue lapis column, the episode ends and it
earns a large positive reward. The floor and walls were made of bedrock and obsidian, and were im-
passable and indestructible. To incentivize exploration, a small negative reward was garnered with
each step. The maximum duration for each run was set to ten seconds. We used the deep Q-learning
network (DQN) algorithm (Mnih et al., 2013), implemented in the Keras-RL package (Plappert,
2016), modified to incorporate experience replay buffers for advice-derived training memories or
experiences.

We manually frame advice in the form of simple templates (advice templates) that can be reified
with elements from the agent’s operating environment. The templates consist of a generic setup
with corresponding scripts for generating sequences of actions and rewards. We then generate ob-
servations by running the scripted actions in a simplified recording environment to generate training
memories. In the saliency-masked condition, we apply saliency masking to the observations. Lastly,
they are inserted into the RL agent’s replay buffer.

We examined several online Minecraft walkthroughs and playing guides to identify the types of
basic advice used. From these, we selected and developed two advice templates, Avoid Contact and
Approach, that we believed would be useful to the agent for playing in the Minecraft environment.
We deliberately avoided coding advice for removing obstacles (e.g., cobblestone blocks) with the
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Table 2. Generic advice templates.

Advice Template Setting Script

Avoid Contact(x) Agent is near x. Agent moves to contact x.
Approach(x, d) x is within d blocks of Agent. Agent moves to contact x.

agent’s pickaxe. We wanted to assess how well the agent could learn to integrate the best-generated
episodes that contain no explicit information about obstacle removal with experience in an environ-
ment that requires obstacle removal.

Each template consists of its arguments, the setting which describes how specific blocks and the
agent are situated, and a script of actions to be performed, as shown in Table 2. For our scenario,
we reified our advice templates as follows:

• Avoid Lava: Avoid contact with lava blocks, with contact earning a negative reward (-100).
• Approach Lapis Column: Approach and touch the lapis column. Contact earned a positive

reward (+100), with incrementally increasing reward for moving toward the goal.

We collected observations for advice memories by having agents execute scripted actions in a
recording environment. This was a simple flat plane with a floor composed of bedrock, and un-
like typical RL, this environment was different and separate from the test environment.

Saliency masking can be considered a form of background subtraction, where portions of an
observation deemed irrelevant to performing a task are removed. For example, an image-based car
make and model classifier can simplify its learning problem by using background subtraction to
identify which pixels are part of the background (non-vehicle). Setting these background elements
to zero effectively removes them and lets the learner focus solely on vehicles. For our observation
model, we represented non-salient blocks in the recording environment with a special “background”
block that was filtered out when processing scripted observations. For our approach, we preserved
only the objects used to reify the templates and “masked” all the other world elements in the ob-
servation (by converting these elements to zeros). Figure 4 illustrates our approach for the “Avoid
Lava” advice. Here, saliency masking has effectively removed everything from the observation
other than the lava block.

5. Experimental Studies of Learning from Advice

We now outline the training and testing protocol. For each training step, shown in Figure 5, the
agent selects an action to take, randomly drawn from a Boltzmann distribution (Sutton & Barto,
1998). This distribution derives the probability of an action a given the current state s from the
current Q-value estimates, Q(s, a). In the case of DQN, a Q-value neural network is trained to
approximate the Q-values.
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Standard With Saliency Masking

Figure 4. Saliency masking for generated observations: When collecting observations for “Avoid Lava” ad-
vice, we can either use full observations taken in the recording environment when executing the training script
(left) or apply saliency masking (right). Standard observations incorporate not just elements such as the lava,
the key point of this advice, but also extraneous blocks such as the bedrock floor and air. Saliency masking
removes all nonessential blocks from the observation, leaving just what is needed to convey the lesson.

Pr(a|s) =
eQ(s,a)

Σa′eQ(s,a′)
(2)

A transition tuple is collected and stored in the experience replay buffer. A tuple is then sampled
from this buffer and used to update the Q-value network’s parameters.

When advice-derived memories are used, we first convert human-provided advice into advice
memories and insert the corresponding tuples into an advice replay buffer. At each step, two tuples
are sampled: one from the experience replay buffer, the other from the advice buffer. Both are used
to update the network parameters. The testing procedure is illustrated in Figure 6. Twenty trials
were run for each experimental condition. Each trial consisted of 1000 training steps. At every 100
steps of training, performance was assessed with a test run, for a total of 10 test runs per trial. For
each test run, the agent at that stage of training was evaluated by using a greedy action-selection
policy, which selects the action with the maximal Q-value. The metric of test performance was
whether the agent reached the goal (success) or not (failure). Test outcomes were combined to
assess the probability of completion after a given number of training steps.

We ran 20 trials (one trial equaling 1000 training steps) for each experimental condition, eval-
uating the agent at every 100 steps. The three conditions were a standard DQN agent (DQN), a
DQN agent augmented with advice episodes (DQN+Advice), and a DQN agent augmented with
saliency-masked advice episodes (DQN+Masked Advice). Because of the highly stochastic nature
of reinforcement learning, we use bootstrapping (Efron & Tibshirani, 1993), with a sample size of
1000, to derive the mean probability and standard errors of the agent reaching the goal. Even with
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With advice episodes Regular condition: RL (DQN), one step

Take action in environment
Experience Replay 

Buffer

Q-value Network

Advice Replay Buffer

Advice 
Memory 

Generator

Human 
Provided 
Advices s',r

a

Q(s,a)

Figure 5. Order of events in a single training step: The agent randomly selects an action based on the current
Q-value network estimates. An experience tuple < s, a, s′, r > (start state s, action taken a, resulting state
s′, and reward r) is stored into the experience replay buffer. A tuple is sampled from the buffer and used to
update the Q-value network parameters. When advice memories are used, advice is converted into tuples,
which are stored in an advice replay buffer. The Q-value network updates draw from tuples sampled from
both the experience buffer and the advice buffer.

20 separate trials, there is a non-trivial amount of stochasticity in the learning, as evidenced by the
fluctuations in goal probability.

Figure 7 shows the experimental results, comparing the mean probability of reaching the goal
against total training steps on our three conditions. To assess our first hypothesis (templates based
on human advice can be used to generate training episodes that enhance learning of a model-
free RL agent) we compared a standard DQN agent (DQN) to agents augmented with the advice
memories (DQN+Advice; Figure 7, left) and saliency-masked advice memories (DQN+Masked
Advice; Figure 7, center). Compared to the standard DQN, we found that agents augmented with
advice memories (χ2(1) = 7.20, p = .007) and agents augmented with saliency-masked advice
memories (χ2(1) = 9.04, p = .003) achieved a higher overall probability of goal completion by the
end of the 1000 steps.

To address our second hypothesis (masking the environment so that only the most salient infor-
mation is available will enhance the RL agent’s ability to learn from the templates), we examined the
effect of saliency masking on the advice memories by comparing performance on the advice condi-
tion (DQN+Advice) and the saliency-masked advice condition (DQN+Masked Advice). We found
that saliency-masked advice did not materially improve performance compared to an agent that just
used advice memories, evidenced by a lack of performance difference at the final test,χ2(1) = 0.10,
p = .752. However, as seen in the right panel of Figure 7, the saliency-masked advice condition did
yield a better mean probability of reaching the goal at most of the evaluated training steps, particu-
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Figure 6. Test protocol for a single trial: After 100 steps of training, the agent uses its current Q-value net-
work, Qt(s, a), to execute a test in the environment. Actions are selected by a greedy policy intended to
maximize reward, unlike the exploration-focused stochastic policy used in training. When the test concludes,
we record whether it was able to reach the goal.

larly in the early stages, such as at 300 steps of training, χ2(1) = 5.00, p = 0.025. It also exhibited
less error overlap with the DQN condition than that of the unmasked advice condition.

These results show that advice memories, instantiated as synthetic training examples, can im-
prove the performance of a baseline DQN agent. However, they also entail a notable alternate
conclusion; use of advice memories did not harm overall performance. Because advice memories
were generated in an “artificial” recording environment, their corresponding observations are un-
likely to be distributionally similar to those obtained in the trial environment. Thus, this mismatch
does not guarantee that the advice memories will positively impact the learning rate, as they even
have the potential to harm the in-environment learning. The additional improvement in performance
provided by saliency masking, assessed by comparing saliency-masked advice (DQN+Masked Ad-
vice) to unmasked advice (DQN+Advice), was not robust but did trend towards being beneficial,
particularly during earlier trials. This indicates that removal of irrelevant observational elements
may help with reducing the impact of the discrepancies between observations, but this benefit may
be dependent on the stage of training.

We also noticed a conspicuous drop in performance for both the advice conditions (DQN+Advice,
DQN+Masked Advice), at around 750 steps of training. One possible explanation is after a certain
amount of in-environment experiences are accumulated, the advice memories began to hamper the
learning. Our naive memory sampling regime sampled equally from advice and environmentally
collected memories throughout training. This may strategy may not be optimal because as training
progresses the model will become more tuned to the environment. In contrast, advice memories
are static and do not change throughout training. At that point, updating the model with an equal
proportion of unrealistic advice memories may confound the learning, which in turn may cause the
agent to execute a different and less optimal behavior. This points to future investigations into how
advice memories should be used, such as when and how much they should be incorporated during
training. There is also the possibility that certain advice memories would be more valuable (or less
harmful) at certain points of learning, and a more nuanced sampling strategy may be fruitful.
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Figure 7. The mean probability of reaching the goal as a function of the number of training steps. Conditions
compared are standard DQN vs. DQN with advice memories (left), DQN vs. DQNs with saliency masked
advice memories (center), and DQNs with advice memories vs. those with saliency masked advice memories
(right). Shaded regions correspond to one standard error of the mean (the estimated probability).

6. Related Work

Our approach demonstrates the ability for declarative advice to be transformed into a representation
that can guide the learning of an autonomous reactive learning agent. In this section, we outline
related research in understanding how humans and artificial intelligence (from cognitive systems
to machine learning and connectionist networks) handle advice for enhanced learning and perfor-
mance.

6.1 Advice in Artificial Intelligence

The idea of computer systems improving their performance through advice was first introduced by
McCarthy (1959) in his seminal paper on Programs with Common Sense. He proposed a hypothet-
ical program, the Advice Taker, that “automatically deduces for itself a sufficiently wide class of
immediate consequences of anything it is told and what it already knows.” The idea is for an advice
giver to be able to improve an advice taker’s performance by making statements about the environ-
ment and what is required, without the need for intimate knowledge of the advice-taker’s internal
representation and reasoning mechanisms. McCarthy laid out the representational requirements for
the reasoning over situations and actions that would support such interaction.

Subsequent work further explored the idea of advice in symbolic reasoning systems. FOO
(Mostow, 1983) formulated learning as the problem of operationalizing task advice by transforming
it into executable procedures for accomplishing a task. FOO converted the advice by applying
general transformation rules to perform inference over domain-specific knowledge. Golding et al.
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1987 extended Soar to be able to use advice to set goals, relying on its natural chunking mechanism
to learn how to use the advice. The Advisable Planner (Myers, 1996) introduced the concept of
advice idioms to capture different classes of advice and developed translation strategies to convert
(pseudo-)natural language advice into constraints to guide the plan-construction process.

RATLE (Maclin et al., 2005) was one of the first reinforcement learning systems to incorporate
advice. Users provided advice in the form of simple if-then rules that were then converted into a
knowledge-based neural network (Towell & Shavlik, 1994). Kuhlmann et al. (2004) took advantage
of the restricted nature of the target task (RoboCup soccer) to successfully translate natural language
advice into a formal semantic representation directly usable by the agent. In Toro Icarte et al. (2018),
advice is represented as linear temporal logic formulas, which are converted into nondeterministic
finite-state automata that are used to drive the exploration of RL agents. Krening et al. (2017) look
at object-focused advice, which is essentially translated into policies whose recommendations are
balanced against those based on learned object-oriented policies.

Like all this previous work, our use of templates is motivated by the need to operationalize user
guidance into a form that can be used by the agent. However, rather than convert advice directly
into rules or constraints that directly influence the system’s behavior, our current approach converts
it into training examples for the learning system. An advantage of this approach is that it is agnostic
to the underlying learning system, enabling its use in any system that learns from training examples.

6.2 Human Guidance in Reinforcement Learning

Researchers in reinforcement learning have also explored other forms of human guidance to help
alleviate the computational demands of reinforcement learning. One major form of human input for
RL systems has been demonstration. Here, a human instructor performs the intended activity, which
the RL agent then attempts to learn to perform itself. Notable examples of the work in this area in-
clude imitation learning (Schaal, 1999), inverse reinforcement learning (Ng & Russell, 2000), and
apprenticeship learning for reinforcement learning (Abbeel & Ng, 2004). All take human demon-
strations as input but differ in their learning objectives and in their learned models. Imitation learn-
ing attempts to learn a policy to replicate the human’s policy through demonstrations and feedback;
inverse reinforcement learning tries to learn a reward function that will cause the agent to behave
similarly; and RL apprenticeship learning builds on inverse reinforcement learning to learn a policy
from the induced reward function. In settings where demonstrations may be costly or otherwise
impractical, our use of synthetic trajectories can replace or augment actual demonstrations.

Another large body of work, sometimes referred to as human-centered reinforcement learning or
human-in-the-loop reinforcement learning, looks at various ways of incorporating human feedback
into the training. Reward shaping involves using human feedback to modify the rewards an agent
receives. For example, in TAMER (Knox & Stone, 2009), the human trainer provides simple scalar
rewards for the agent’s actions, and the agent learns to choose the action with the highest predicted
reward. Policy shaping instead translates human feedback into direct policy feedback; the human-
provided rewards over the agent’s actions are used to infer the optimal policy rather than the reward
function (Griffith et al., 2013). MacGlashan et al. (2017) interpret human feedback in a policy-
dependent manner by passing human feedback through the advantage function, which estimates the
value of an action compared to the current policy. In these approaches, the human’s role is that of
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a trainer, and thus frequent interaction is required. In contrast, we are interested in settings where
human guidance is intended more as general advice.

Similar to TAMER’s use of human feedback to label actions, the Action Advisor approach
involves asking users to identify which actions are applicable in a state (Lin et al., 2017). These
labels serves as input to an Action Advisor; an arbiter then decides between the recommendations
from the Advisor and those from the learned policy. Another approach involves human labelers
indicating their preferences between pairs of trajectory segments (Christiano et al., 2017). While
user feedback over specific aspects of the training enable a reinforcement learner to achieve a higher
level of performance with fewer training examples, it still requires a relatively large amount of
human involvement, and for the user to examine individual instances instead of providing feedback
at a higher level of abstraction.

Use of simulations for training RL agents was used in work such as Abel et al. (2016). As with
advice memories, these simulations were approximations of the target environment. In contrast with
our work, agents conducted trials in this environment, and did not execute actions corresponding to
advice or desired behavior. However, it does demonstrate that agents can gain some benefit from
learning over unrealistic data.

6.3 Visual Attention and Mental Imagery

The machine learning community has a long and continuing interest in developing mechanisms to
guide learning relevant information, independent of whether it is a reinforcement learning agent or
an image-classification network. It is critical that neither an RL agent develops a strong affinity
for environmental rewards that prevent successful completion of a more complex goal, nor that
an image-classification system fixates on spurious signals found only in a training set. Toward
resolving these issues, related work explores selectively choosing which portions of an observation
to use, in the form of attention mechanisms (Xu et al., 2015), where systems learn how to weight
portions of their input. Along these same lines, others have used visual saliency mapping (Itti et al.,
1998), where the observed area is given in a fixed form and not framed as a probability distribution.
In contrast with other work, while our approach also employs selective input removal, we have the
instructional advice framework perform this removal instead of having the agent attempt to learn it.

Perhaps the work most related to our approach are imagery (Wintermute, 2010) and imagined
trajectories (Weber et al., 2017). Similar to our use of templates, both of these approaches use
knowledge of the environment and its dynamics to synthesize projected outcomes given an initial
state description. However, both of these methods use these projections to affect action selection.
Imagery extrapolates possible consequences for taking an action from a given state by simulating
projected outcomes with a domain-reasoning component. Imagined trajectories uses a similar idea,
except a neural model is used to generate possible outcomes and integrate them in the policy func-
tion. Instead of governing action selection, we use domain models to synthesize training episodes.
While this approach may not have as immediate an effect as directly governing agent policy, it re-
quires fewer changes to existing RL algorithms. It also lets us model just the knowledge needed to
convey the advice instead of the larger set necessary to generate projected outcomes.
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7. Conclusions and Future Work

Motivated by research in skill acquisition and expertise from cognitive psychology, we demonstrated
how to apply declarative, human-like advice to enhance the performance of a reinforcement learning
agent. We presented a theoretical framework for how advice cannot directly interact with a reac-
tive learning system’s encapsulated knowledge representation, but can shape it through synthetic
training examples. To implement this framework, we matched advice to templates that generated
“imagined” training examples. These examples were scripted sequences of actions and observa-
tions, with saliency masking to focus attention on the most relevant aspects of the experience. This
architectural allows for minimal a priori world modeling to guide a simple RL agent. Experimental
results in a Minecraft-based test environment showed how these synthetic experiences can improve
an RL agent’s performance, achieving both faster learning and a higher success rate.

The initial experimental results reported here are promising; however, there remain several av-
enues for future work. Our approach relies on an experience replay buffer to store the advice-based
memories, making it independent of the specific RL algorithm used. Thus, although we relied on
basic Q-learning, our approach can be applied to systems with more advanced RL architectures
that accommodate temporal abstractions and longer-range goals such as hierarchical RL (Kulkarni
et al., 2016), and option critic architectures (Bacon et al., 2017). The more general concept of using
advice templates to transform human advice into training examples applies to any learning system.
For example, this approach may be useful for learning subsymbolic components of comprehensive
architectures that span multiple levels of representation, such as training operator selection policies
in SOAR-RL (Nason & Laird, 2005), or inference policies (Asgharbeygi et al., 2005).

As with other DQN approaches using experience replay, our approach randomly samples from
the replay buffer. However, studies in episodic memory suggest that humans selectively retrieve
memories, choosing the ones most pertinent to a given situation and using these for learning (Ger-
shman & Daw, 2017). One line of future work is to implement this form of case-based retrieval
as a form of a specialized situation-aware critic, and evaluate its effect on learning. Currently, we
have templates to reinforce or to punish a behavior, but not both. Clearly humans will sometimes
give advice that is more nuanced, e.g., Do not brake suddenly unless you are about to hit something.
Thus, another avenue for future work is to develop mechanisms for handling such advice.

The work in this paper grew out of our work on a framework for explainable autonomy (Gervasio
et al., 2018). Given system explanations that surface problems in the agent’s knowledge, the natural
next step is for humans to correct that knowledge and hence, this effort. We note that a duality
exists between explanation and advice: good explanations often act as good advice. Thus, another
important direction for future work is the use of explanation to elicit more effective advice and we
are exploring the use of introspection mechanisms for this purpose.
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