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Abstract: Mastering deformable object manipulation often necessitates the use
of anthropomorphic, high-degree-of-freedom robot hands capable of precise,
contact-rich control. However, current trajectory optimisation methods often
struggle in these settings due to the large search space and the sparse task in-
formation available from shape-matching cost functions, particularly when con-
tact is absent. In this work, we propose D-Cubed, a novel trajectory optimisation
method using a latent diffusion model (LDM) trained from a task-agnostic play
dataset to solve dexterous deformable object manipulation tasks. D-Cubed learns
a skill-latent space that encodes short-horizon actions from a play dataset using
a VAE and trains a LDM to compose the skill latents into a skill trajectory, rep-
resenting a long-horizon action trajectory. To optimise a trajectory for a target
task, we introduce a novel gradient-free guided sampling method that employs
the Cross-Entropy method within the reverse diffusion process. In particular, D-
Cubed samples a small number of noisy skill trajectories using the LDM for ex-
ploration and evaluates the trajectories in simulation. Then D-Cubed selects the
trajectory with the lowest cost for the subsequent reverse process. This effectively
explores promising solution areas and optimises the sampled trajectories towards
a target task throughout the reverse diffusion process. Through empirical evalua-
tion on a published benchmark of dexterous deformable object manipulation tasks,
we demonstrate that D-Cubed outperforms traditional trajectory optimisation and
competitive baseline approaches by a significant margin. Videos can be found at:
https://applied-ai-lab.github.io/D-cubed.
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1 Introduction

The realm of dexterous robot hand manipulation has made remarkable progress in recent years,
in part due to advances in learning-based methods [1, 2, 3]. However, past research has focused
predominantly on tasks that involve rigid objects [4, 5, 6, 7]. On the other hand, real-world manipu-
lation tasks often present scenarios in which robots need to manipulate deformable objects, such as
folding a piece of clothing [8], manipulating soft tissues [9] or shaping dough [10, 11].

One common approach to generating actions for a dexterous robot hand is trajectory optimisation,
which optimises an action sequence by minimising a task-informed cost function. However, the
application of trajectory optimisation is predominantly limited to rigid object manipulation [7] or
relatively simple deformable object manipulation tasks with short horizons [12]. The primary chal-
lenges of optimising a trajectory for complex tasks such as those seen in dexterous deformable object
manipulation stem from 1) the large search space due to the complexity of the task including the in-
finite dimensionality of deformable objects and high degrees of freedom (DoF) of the robot hand;
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2) the large number of contacts associated with handling the objects; and 3) the limited task infor-
mation that the cost function typically provides [13]. Commonly, the cost function to be optimised
is defined as the distance between a target shape and the final shape of a deformable object after
manipulation [14]. In this scenario, no task-relevant signal is available when no contact is made
between the robot and the manipulated object, inhibiting the optimisation of a feasible trajectory.

Figure 1: D-Cubed leverages a LDM trained
from a task-agnostic play dataset to generate
action trajectories for long-horizon dexterous
deformable object manipulation tasks.

In this work, we propose D-Cubed, Latent
Diffusion for Trajectory Optimisation in Dexterous
Deformable Manipulation (see Fig 1). D-Cubed is
a novel trajectory optimisation approach that lever-
ages a latent diffusion model (LDM)[15] trained on
a task-agnostic play dataset collected using a hu-
man hand. This dataset captures diverse represen-
tative robot hand motions, such as closing and open-
ing the hand and moving individual fingers with-
out object interaction, enabling reuse across a wide
range of tasks. First, D-Cubed learns a skill-latent
space that encodes short-horizon action sequences
from the play dataset using a variational autoencoder
(VAE). An LDM is then trained to compose these
skill-latent representations into a skill trajectory, replicating motions of the robot hand found in the
dataset. By leveraging the task-agnostic play dataset, the LDM, capable of generating diverse trajec-
tories of meaningful robot hand motions, is applicable across diverse manipulation tasks (see Fig. 1).
To find a performant action trajectory for a target task defined by a target object shape, given a shape-
matching cost, we propose a novel gradient-free guided sampling method that employs a variation
of the Cross-Entropy Method (CEM) [16, 17] within the reverse diffusion process. For each denois-
ing step, the LDM generates a small number of noisy skill-latent trajectories to explore the solution
space. Since the skill latent space is trained to represent smooth low-level action sequences, each
skill in these noisy skill trajectories produces meaningful and consistent action trajectories that fa-
cilitate efficient exploration. These skill-latent trajectories are evaluated in a simulator using the
shape-matching cost function, and the trajectory with the lowest task cost among the sampled tra-
jectories is selected for further denoising in the reverse diffusion process. With each denoising step
guided by the CEM, the noise in the chosen performant trajectory is gradually removed, refining it
towards solutions with lower costs.

In summary, our contributions are three-fold: (1) we propose D-Cubed, a trajectory optimisation
method using an LDM to solve challenging long-horizon dexterous manipulation tasks; (2) we in-
troduce a novel gradient-free guided sampling method that employs the CEM within the reverse
diffusion process to optimise a trajectory for a target task; and (3) we empirically demonstrate that
D-Cubed significantly outperforms competitive baselines, including traditional trajectory optimisa-
tion methods such as gradient-based and sampling-based approaches.

2 Related Works

Several prior works note the importance of deformable object manipulation and introduce bench-
mark tasks for evaluating competing methodologies [12, 18, 19, 20, 14]. While most benchmarks
focus on deformable object manipulation tasks with point-mass agents or parallel grippers that are
incapable of dexterous manipulation, [14] proposes a suite of deformable object manipulation tasks
with dexterous robot hands [21] built upon a differentiable physics engine.

Trajectory optimisation, including gradient-based and sampling-based, is a common approach to
solving dexterous robot hand manipulation tasks by assuming access to an accurate dynamics model
or simplified object geometries (e.g. [4, 5, 6, 7]). Gradient-based approaches directly optimise a task-
informed cost function through a learned dynamics model [3, 22, 23] or differentiable simulator [12,
14, 24, 25] to find a performant action sequence. However, their application is limited to relatively
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simple, short horizon tasks [12] due to convergence to locally optimal solutions caused by a lack of
global task information, exacerbated by nonlinear contacts [14, 26]. Sampling-based methods such
as CEM [16, 17] and MPPI [27] offer a simple approach by sampling actions for exploration, with
MPPI applied to rigid object manipulation [7]. However, such sampling-based methods tend to be
computationally expensive for large solution spaces, requiring many trajectory samples. Although
previous work trains policies from expert demonstrations [28] or combine expert demonstrations
with trajectory optimisation [14] to alleviate such issues, collecting expert demonstrations for each
new task is considered expensive. Instead, in this work, a single task-agnostic play dataset containing
representative hand movements is collected to form a structured skill-latent space that is used across
a diverse range of tasks.

Diffusion models, a class of generative models, formulate data generation as an iterative denoising
process [29, 15, 30]. Classifier guidance [31] is a common technique for using gradients to guide
the sampling process of unconditional diffusion models to generate a desired sample, including a
trajectory for a target task [32, 33, 34, 35]. However, classifier guidance struggles to guide sampling
when gradients are inaccurate [36], such as when gradients are obtained from differentiable physics
simulators [13]. In contrast, this work proposes gradient-free guidance that employs a variation of
CEM to the reverse diffusion process for trajectory optimisation.

3 Preliminaries

Denoising Diffusion Probabilistic Models (DDPMs) DDPMs [15, 37] are a class of generative
models that are trained by denoising a sequence of noise-corrupted inputs. For each training datum
x0 ∼ qdata(x), the forward diffusion process constructs a Markov chain x0,x1, . . . ,xN such that
q(xi|xi−1) = N (xi;

√
1− βixi−1, βiI) where βi denotes a positive noise scale and subscript index

i refers to the time step of the diffusion process. Then, the reverse process, which aims to remove
noise from the noisy sample xi, is defined as pθ(x0:N ) = p(xN )ΠNi=1pθ(xi−1|xi), where p(xN ) =
N (0, I). The conditional distribution pθ(xi−1|xi) is commonly modelled as a Gaussian distribution
with mean µθ(xi, i) and covariance Σθ(xi, i):

µθ(xi, i) =

√
ᾱi−1βt
1− ᾱi

x0 +

√
αt (1− ᾱi−1)

1− ᾱi
xi,Σθ(xi, i) = σ2

i I = β̃i =
1− αi − 1

1− αi
βi, (1)

where αi := 1− βi and α := Πij=1αj .

Instead of predicting the noise, ϵi [15], added to the data, we train a diffusion model Gθ(xi, i) to
directly predict the clean datapoint, x0, to simplify the objective [38]:

Ldiffusion = Ex0∼q(x0),i∼[1,N ]

[
||x0 −G(xi, i)||22

]
. (2)

Cross-Entropy Method (CEM) The CEM finds solutions to complex problems by iteratively
refining a probability distribution, often modelled by a Gaussian distribution, to focus on promising
solution areas. The CEM samples a population of solutions from a given distribution, evaluates them
using a predefined cost function, and selects the top performing solutions to update the distribution.

4 Latent Diffusion Trajectory Optimisation

Given a representative dynamics model (e.g. a simulator), D-Cubed aims to find an action tra-
jectory {a0,a1, . . . ,aT }, over time horizon T , that enables a dexterous robot hand to manipulate
deformable objects to match a pre-defined goal shape. D-Cubed consists of three components: (1)
a variational autoencoder (VAE) that learns a skill-latent, z ∈ Z , by encoding short-horizon action
trajectories; (2) a latent diffusion model (LDM) that generates sequences of skill-latents that repre-
sent entire trajectories for exploration in the state space; and (3) trajectory optimisation using CEM
within the reverse diffusion process for a target task. D-Cubed relies on a task-agnostic play dataset
of action trajectories that cover a wide range of meaningful robot hand motions to learn a skill-latent
space. This section describes the data collection process in Section 4.1, the LDM in Section 4.2, and
the sampling method in Section 4.3. An overview of the method can be seen in Fig. 2.
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Figure 2: D-Cubed overview. (1) A VAE learns a skill latent representation z by reconstructing a
short-horizon action sequence at:t+H randomly sampled from the task-agnostic play dataset. (2) A
LDM learns to compose skills into a skill trajectory, representing a long-horizon action trajectory
sampled from the dataset. (3) During trajectory optimisation, the LDM generates B skill trajectories
{z1:Tskilli }|B|, where Tskill =

T
H is the length of skill trajectories. These trajectories are evaluated

in a simulator, and the best sequence z1:Tskillbest that minimises the cost is selected for the subsequent
reverse process.

4.1 Data Collection

Figure 3: Data collection pipeline. Hu-
man hand joints are retargeted to robot
hand joints to collect task-agnostic a
play dataset designed to span the space
of meaningful hand motions that form a
skill latent space learnt by a VAE.

Collecting expert demonstrations for every new task is ex-
pensive due to the difficulty in manipulating deformable
objects through teleoperation systems [14, 28]. To allevi-
ate this issue, a single task-agnostic play dataset of robot
hand trajectories Dplay is collected per robot platform,
without requiring interaction with deformable objects, al-
lowing a human operator to readily collect the dataset
without any training and enabling reuse across diverse
tasks. This play dataset is designed to span the space
of meaningful hand motions that can be performed by
the given hardware and thus forming a skill latent space
learnt by a VAE. This includes motions such as closing
and opening the hand, moving individual fingers, as well as moving and flexing the wrist throughout
the robot’s workspace. The dataset is collected within 20 minutes by tracking the motion of a human
hand and retargeting the human hand pose to a robot hand (see Fig. 3), similar to prior work [39].
This forms a dataset, denoted as Dplay, comprising sequences of robot actions at, where each action
represents a relative change in the joint angles. For further details, see Appendix B.

4.2 Latent Diffusion Model as Skill Sampler

Long-horizon dexterous deformable manipulation tasks induce a large solution space due to the task
complexity caused by the numerous contacts with deformable objects and the high DoF of a robot
hand. As such, sampling low-level actions to find performant solutions is often infeasible because
the sampled action trajectory is unlikely to correspond with meaningful robot hand motions that
effectively explore the solution space. Instead, D-Cubed learns a skill latent space [40] that encodes
a short-horizon action trajectory from the play dataset, which plays a significant role in efficiently
exploring the search space of tasks. Specifically, a VAE, consisting of an encoder qencψ (z|at:t+H) and
a decoder pdecψ (at:t+H |z), is trained to reconstruct short-horizon action trajectories at:t+H randomly
sampled from the play dataset Dplay to learn the skill z ∈ Z , by optimising the ELBO objective:

LELBO = Ez∼qψ(z|at:t+H) log p
dec
ψ (at:t+H | z)−DKL

[
qψ(z | at:t+H)∥p(z)

]
where p(z) is a Gaussian prior over the latent representation and H is the length of the short-horizon
action sequence (H = 10). See Appendix C.1 for further details on the hyperparameters of the VAE.
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Since the skill latent representation only encodes short-horizon actions of the robot hand, composing
multiple skill latent representations into a long-horizon action trajectory is necessary for efficient
exploration (e.g. to make meaningful contacts with an object). To achieve this, an LDM is trained
to compose a sequence of skill-latent representations z1:Tskill , where Tskill = T

H is the length of the
skill trajectory, which reconstruct robot hand trajectories from the play dataset. The LDM is trained
to optimise the following objective:

LLDM = Ez1:Tskill∼Dplay,i∼[1,N ]

[
||z1:Tskill0 −Gθ(z

1:Tskill
i , i)||22

]
. (3)

where N is the number of diffusion steps, z1:Tskill0 is a clean skill-latent trajectory, and z1:Tskilli is
a noisy skill-latet trajectory after i forward diffusion steps. An LDM is chosen as it is a generative
model proven to be capable of representing a complex multimodal distribution, like that of the play
dataset [41]. In this work, we employ a transformer model as the backbone of the noise prediction
model Gθ(·, i) (see Appendix C.2 for further details).

By leveraging a task-agnostic play dataset that captures meaningful hand motions, the trained LDM
can generate sequences of robot hand actions that effectively explore the action space and are
reusable across a diverse range of tasks. As a result, the LDM needs to be trained only once from
the single play dataset and can be applied to all tasks without retraining.

4.3 Trajectory Optimisation using Gradient-Free Guided Sampling

Traditional trajectory optimisation often struggles to solve dexterous deformable object manipula-
tion tasks due to the large search space. This is further amplified by the limited global task informa-
tion available from a cost function. Using the capability of the LDM with skill-latent space, the LDM
generates diverse skill trajectories that represent long-horizon action trajectories of meaningful robot
hand motions, leading to effective exploration of the state space. However, to solve a target task,
guidance is required to direct the diffusion sampling process to converge towards high-performing
trajectories. While classifier guidance is a common technique for guiding the reverse process us-
ing gradients, inaccurate [36] or noisy gradients such as those obtained from differentiable physics
simulators [13] are unable to successfully guide the reverse diffusion process (see Section 5.3 for
experimental results). To avoid such issues, we propose gradient-free guided sampling that employs
the CEM [42] within the reverse diffusion process to optimise a trajectory for a target task. The
reverse process can be viewed as analogous to the CEM optimisation steps, as D-Cubed evaluates
generated action trajectories in a simulator and updates the parameters of a Gaussian distribution
based on the trajectory with the lowest cost for each diffusion step (see Fig. 2 and Algorithm 1).

In particular, for each reverse step, a small number of noisy skill trajectories z1:Tskill are sampled
from a Gaussian distribution with a mean µi predicted by the LDM (Line 3, 9), where Tskill =

T
H

represents the horizon length of the skill-latent representations. Crucially, during the early stages of
the reverse process, D-Cubed focuses on exploring the search space. This is because the variance Σθ

of the Gaussian distribution, determined by the noise scheduler (see Equation 1), is large, thereby
generating diverse trajectories. During later steps of the reverse process, D-Cubed attempts to refine
the trajectories for a target task as a result of the small variance of the scheduled distribution. The
generated skill trajectories are decoded using the VAE into low-level action trajectories that are
then evaluated in the simulator to obtain their respective scores (Line 5). While the generated skill
sequences are noisy regarding their composition at early reverse diffusion steps, each short-horizon
action sequence decoded from the skill latent representations remains smooth, which effectively
promotes meaningful trajectories from the search space for efficient exploration.

Similar to how the CEM updates a Gaussian distribution based on the top-performing samples for
each optimisation step (see Section 3), D-Cubed also updates a Gaussian distribution to search for
more promising solution areas by predicting the mean µi using the LDM given the trajectory with
the lowest cost z1:Tskillbest as input (see Equation 4 and Line 6):

µθ(z
1:Tskill
best , i) =

√
ᾱi−1βt
1− ᾱi

Gθ(z
1:Tskill
best , i) +

√
αt (1− ᾱi−1)

1− ᾱi
z1:Tskillbest (4)
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Algorithm 1 D-Cubed Trajectory Optimisation

1: Require: denoising model, Gθ; target state of deformable objects, starget, Tskill = T
H

2: Initialise: Cbest =∞,µbest = None

3: {z1N , . . . , zTskillN }|B| ∼ N (0, I) ▷ Sample B initial sequences of skill latent representations
4: for i = N,N − 1, . . . , 1 do
5: z1:Tskillbest ← FINDBESTLATENTS({z1:Tsi }|B|) ▷ Choose the best sequence of skill latents

(Appendix E)
6: µi ← µθ(z

1:Tskill
best ) ▷ Predict a mean of a Gaussian distribution (see Eq. 4)

7: cost = evaluate(qdecψ (a1:T |µi)) ▷ Evaluate the predicted mean
8: if cost < Cbest then µbest ← µi, Cbest ← cost
9: {z1i−1, . . . , z

Tskill
i−1 }|B| ∼ N (µbest, σ

2
i−1I) ▷ Sample a batch B of sequences of skill latents

10: return pdecψ (a1:T |µbest)

Although CEM normally requires several top-performing samples to compute the mean and variance
of the Gaussian distribution, D-Cubed needs only a single top-performing sample because the mean
at the next diffusion step is determined by the prediction from the LDM (see Line 6). Furthermore,
in D-Cubed, the variance is updated based on a noise schedule (see Equation 1) for each reverse
step. Intuitively, by choosing the lowest-cost trajectory for each diffusion step, the LDM removes
noise from performant noisy trajectories for the subsequent reverse process. This leads to further
refinement of the trajectory and minimisation of the cost function by exploring more promising
solution areas.

Lastly, the mean µi of the Gaussian distribution predicted by the LDM does not necessarily compose
a better distribution for the following reverse steps because the LDM may make a poor prediction,
leading to trajectory samples that have a higher cost. To address this issue, inspired by a variant of
CEM [43, 44], the mean of the distribution is updated only when the current predicted mean µi has
a lower cost than the previous best mean µbest (see Line 8). This optimisation method, when paired
with a LDM is empirically shown in Section 5.3 to generate performant trajectories.

5 Experiments

Our experimental evaluation is designed to answer the following questions: (1) How effective is D-
Cubed in generating trajectories for dexterous deformable object manipulation? (2) How does our
method compare to competitive baselines including traditional trajectory optimisation approaches
and other methods that do not require expert demonstrations? (3) How important are the design
decisions of D-Cubed in generating high-performance trajectories? In addition, we conduct real-
world experiments to qualitatively assess whether the optimised action trajectories are executable
on real hardware (see Appendix A.2). For further experimental details and resuls, see Appendix 4.3.

5.1 Experimental Setup

Simulated Environments: We evaluate D-Cubed on a publicly available benchmark that consists
of a suite of six challenging dexterous deformable object manipulation tasks introduced in prior
work [14]. The benchmark consists of three single-hand tasks (Folding, Flip, Wrap) and three
dual-hand tasks (Dumpling, Bun, Rope). For dual-arm tasks, D-Cubed uses the same trained LDM
to independently generate action sequences for each arm, producing two coordinated trajectories
for each hand simultaneously. The cost function dictated by the benchmark is the Sinkhorn Diver-
gence [45] which measures the difference between the manipulated and the target object shape using
point clouds. Our experimental setup closely follows that of prior work [14] in that we evaluate D-
Cubed and competitive baselines on tasks intended to form 5 different target shapes for each task.
For more details on the tasks, see Appendix F and the prior work [14].
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Figure 4: Qualitative results of D-Cubed. (Top) Flip and (Bottom) Dumpling task. In Flip task,
the hand, using primarily the wrist and finger DoFs, is able to fold the plasticine into a configuration
that is representative of the goal state. In Dumpling task, using two hands to deform the stationary
plasticine, D-Cubedis able to manipulate the plasticine close to the target shape.

Env Folding Rope Bun Dumpling Wrap Flip
Grad TrajOpt 0.032± 0.061 0.079± 0.026 0.000± 0.000 0.032± 0.061 0.079± 0.026 0.000± 0.000

MPPI 0.002± 0.005 0.000± 0.000 0.000± 0.000 0.021± 0.042 0.000± 0.000 0.000± 0.000
Skill-based MPPI 0.020± 0.002 0.000± 0.000 0.048± 0.012 0.052± 0.034 0.000± 0.000 0.409± 0.001

PPO 0.361± 0.173 0.460± 0.257 0.069± 0.117 0.000± 0.000 0.000± 0.000 0.223± 0.328
LDM w/ Gradient guidance 0.050± 0.038 0.001± 0.001 0.019± 0.018 0.009± 0.014 0.016± 0.016 0.448± 0.080

Diffusion-ES 0.403± 0.227 0.192± 0.059 0.273± 0.092 0.179± 0.057 0.305± 0.007 0.678± 0.032
D-Cubed 0.871± 0.021 0.741± 0.031 0.704± 0.012 0.699± 0.037 0.512± 0.032 0.909± 0.025

Table 1: The averaged normalised improved EMD and standard deviation over 3 seeds are reported
for each method. The scores for Grad TrajOpt and PPO are taken from previous work [14].

Evaluation Metric: Following [14], we report the normalised improvement in Earth-Mover distance
(EMD) approximated by the Sinkhorn Divergence, calculated as d(t) = d0−dt

d0
where d0 and dt are

the initial and current EMD values. When the normalised improvement is 1, the deformable object
perfectly matches the target shape. A negative score from a large discrepancy is set to 0.

5.2 Baselines

We compare D-Cubed with the following state-of-the-art and competitive baselines that represent
competing approaches capable of generating trajectories (for further details, see Appendix D):

• Grad TrajOpt: A gradient-based trajectory optimisation [12] that utilises the first-order gradi-
ents available from the benchmark simulator.

• MPPI: A sampling-based trajectory optimisation method [27] that samples a batch of short-
horizon trajectories from a Gaussian distribution and updates the parameters of the distribution
based on the top-performing trajectories.

• Skill-based MPPI: Skill-based MPPI is similar to MPPI, but operates in the skill-latent space.
In contrast to D-Cubed, which uses an LDM to sample meaningful skill compositions, Skill-
based MPPI must optimise such meaningful compositions by sampling diverse trajectories.

• PPO: Proximal Policy Optimisation (PPO) [46] generates closed-loop action sequences from
point cloud inputs as an alternative to trajectory optimisation.

• LDM w/ Gradient Guidance: Using the learnt LDM to optimise a trajectory through the reverse
process with gradient guidance using gradients from the simulator.

• Diffusion-ES: A concurrent method [47] that also proposes a gradient-free sampling method
based on evolutionary search with a truncated diffusion process.

5.3 Trajectory Optimisation Results

D-Cubed is the highest performing method across all tasks. Table 1 shows the normalised im-
provement in EMD for each task. D-Cubed outperforms the baseline methods by a significant mar-
gin in all tasks. These results indicate that D-Cubed effectively combines learnt skills to explore
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the solution space using the LDM and exploits diverse sampled trajectories through gradient-free
guided sampling to minimise a task-informed cost (see Appendix 4.3).

Traditional optimisation methods and RL baselines struggle due to poor exploration. Grad
TrajOpt rarely obtains useful gradients from the shape-matching cost and struggles to find perfor-
mant trajectories. MPPI and Skill-based MPPI focus on local short-horizon optimisation, missing
better long-horizon solutions. In contrast, D-Cubed optimises the entire trajectory globally, en-
abling the dexterous hand to discover high-performing trajectories. This highlights the advantage of
using an LDM trained to compose meaningful skill sequences, effectively narrowing the search to
promising trajectories. Similarly, PPO underperforms relative to D-Cubed due to RL’s difficulty in
exploring high-dimensional state spaces, and must also be retrained for each task.

Gradient-guided diffusion and Diffusion-ES suffer from noisy or limited guidance. LDM w/
Gradient guidance performs poorly in all tasks, primarily due to noisy gradients from the simula-
tor [13] and the lack of informative task signals, especially in tasks requiring extensive search or
involving no object contact. Diffusion-ES, while initially generating clean trajectories and perturb-
ing them through short diffusion steps, also struggles to explore the solution space sufficiently. The
small perturbations limit its ability to recover when initial trajectories miss object contact.

Skill-level diffusion in D-Cubed enables efficient exploration. In contrast, D-Cubed explores the
solution space more effectively by generating noisy skill trajectories at the beginning of the reverse
diffusion process. This higher-level representation allows for broader exploration in the state space
compared to low-level action trajectories generated by Diffusion-ES, leading to more efficient and
successful planning outcomes.

5.4 Ablation Studies

Figure 5: Ablation of the number of tra-
jectories sampled during the reverse dif-
fusion process (line 9 in Algorithm 1).

Number of trajectories sampled during the reverse
diffusion process. Fig. 5 shows the mean and In-
terquartile Mean (IQM) with 95% confidence intervals
(CIs) [48] of normalised improvement in EMD averaged
across all six tasks with different numbers of trajectories
sampled during the reverse diffusion process (Line 9 in
Algorithm 1). Fig. 5 indicates that sampling more trajec-
tories during the reverse process significantly improves
performance because D-Cubed can more effectively search the solution space.

Figure 6: Comparison of D-Cubed w/
and w/o skill latent representations.

Efficacy of skill latent representations. Fig. 6 shows
the performance of D-Cubed with and without the use of
a skill latent across the six tasks. It is evident in simpler
tasks, such as Flip and Folding, that the use of a skill-
latent space does not significantly improve results. How-
ever, the performance of D-Cubed on Rope and Wrap,
considerably harder tasks, is substantially better when us-
ing a skill-latent space. We reason that this is because
D-Cubed with a skill-latent space can effectively search
the solution space and tackle hard exploration problems.

6 Conclusion

We present D-Cubed, a new trajectory optimisation method to solve long-horizon dexterous de-
formable object manipulation tasks using a latent diffusion model trained from a task-agnostic play
dataset. D-Cubed leverages a novel gradient-free guided sampling method that adapts the CEM
within the reverse diffusion process. The experimental results show that D-Cubed outperforms the
traditional and competitive trajectory optimisation baselines by a significant margin, showing great
promise for other challenging trajectory optimisation tasks.
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6.1 Limitations

Experimental studies show that D-Cubed can generate a performant action sequence for dexterous
deformable object manipulation tasks. However, D-Cubed cannot find realistic trajectories for all
tasks because some benchmark tasks permit non-physical behaviours, such as table penetration and
object floating. As a result, we are unable to conduct real-world experiments for every task, al-
though we successfully demonstrate transfer for Flip (see Appendix A.2). Another limitation is the
time required to generate a desired trajectory, which heavily depends on simulation evaluation time.
However, using a faster, parallel simulator [49, 50] would greatly improve the speed of optimising
a trajectory. Finally, D-Cubed is open-loop, making it unable to accommodate for discrepancies ob-
served when executing the trajectory. In the future, we aim to close the loop, potentially by distilling
the trajectories into a policy.
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[45] T. Séjourné, J. Feydy, F.-X. Vialard, A. Trouvé, and G. Peyré. Sinkhorn divergences for unbal-
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Figure 8: Qualitative results of D-Cubed using the LEAP hand in a real-world experiment. The
LEAP hand effectively deforms the object, exhibiting similar deformation as observed in the simu-
lation.

A Additional Analysis

A.1 Ablation of Additional Gradient Guidance

Figure 7: Comparison of performance with
and without additional gradient guidance in
our method. We report Mean and Interquar-
tile Mean (IQM) of improvement in EDM
averaged across all six tasks.

The performance disparity when D-Cubed also uses
gradient guidance with the proposed gradient-free
sampling is reported in Fig. 7. As gradient guidance
does not demonstrate a statistically significant im-
provement in the score compared to D-Cubed with-
out gradient guidance, the increased time required
by the simulator to calculate gradients used for gra-
dient guidance is not warranted. Additionally, this
result adds further evidence to the premise that gra-
dients from differentiable simulators are often sparse
and uninformative [13].

A.2 Qualitative Results in Real-World Environments

We qualitatively investigate whether an optimised trajectory from simulation can be transferred to
real-world environments. Due to hardware limitations, we use a LEAP hand, a low-cost dexterous
hand [51], instead of the Shadow hand [21]. Thus, the simulator is modified by replacing the Shadow
hand with the LEAP hand. We evaluate the trajectory transfer on the Flip task, as this benchmark
task makes the least number of simplifying assumptions compared to the real world. The other tasks
permit object interpenetration with the table and unrealistic floating behaviour of the deformable
object, rendering the evaluation impractical. In this experiment, given the known start state of
the deformable object, we transfer the sequence of actions optimised in simulation to the real-world
environment and control the hand in an open-loop manner. As shown in Fig. 8, the hand successfully
flips the deformable object so that the object is folded within the hand in the real-world environment.

B Data collection Details

A task-agnostic play dataset of representative robot hand motions, including finger closing and open-
ing and wrist movement, is collected. We use RGB data from a RealSense D435 camera to track
human hand motion and re-target the human hand pose to a robot hand in the SAPIEN simula-
tor [52], inspired by prior work [39]. We collect the play data for a duration of only 20 minutes,
which corresponds to around 50K data points.
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C Training Details

C.1 VAE

The VAE encoder and decoder both consist of a 4 layer LSTM [53] with 256 neurons per layer. In
this work, we use a subsequence of actions with H = 10 to learn the skill-latent space. The VAE is
trained using the Adam optimiser [54] with a learning rate of 1e−4.

C.2 Latent Diffusion Models

We use the transformer architecture used in NanoGPT [55]. We report further hyperparameter details
of the transformer denoiser network and diffusion in Table 2 and Table 3.

Table 2: Transformer Denoiser Network Hyperparameters

Parameter Value

Optimiser Adam
Learning rate 1e-4

Minibatch size 256
Embedding dimension 312

Batch size 256
Number of layers 6

Self-attention heads 4

Table 3: Diffusion Hyperparameters

Parameter Value

Number of diffusion timesteps 200
Noise schedule cosine

Noise schedule parameters s 0.008

C.3 D-Cubed Details

We report hyperparameters of D-Cubed used during trajectory optimisation steps in Table 4.

Table 4: D-Cubed Optimisation Hyperparameters

Parameter Value

Number of diffusion timesteps 200
Number of samples 5

D Baseline Method Details

As we report the scores for gradient-based trajectory optimisation (TrajOpt) and PPO from prior
work [14], we refer the reader to the prior work for further details.

D.1 MPPI

MPPI baseline samples 30 trajectories with a horizon of 15 steps. These parameters are chosen
because they result in an optimisation time similar to D-Cubed. We report the hyperparameters for

14



MPPI in Table 5 in detail. In this experiment, we employ the publicly available MPPI implementa-
tion1.

Table 5: MPPI and Skill-based MPPI Hyperparameters

Parameter Value

planning horizon 15
Number of samples 30

Temperature 1.0
Initial noise mean 0.0
Initial noise std 1.0

D.2 Skill-based MPPI

Skill-based MPPI baseline samples skill-latent representations for effective exploration of the state
space. We use the same hyperparameters as those of MPPI, except that the action sampled from a
Gaussian distribution is skill-latent representations instead of low-level actions.

D.3 LDM w/ Gradient Guidance

LDM w/ Gradient Guidance baseline leverages gradient guidance [31] to generate a desired trajec-
tory. In particular, first-order gradients from the differentiable physics simulator are used to guide
the reverse process of the latent diffusion model. In our experiments, we denoise a noisy trajectory
without gradient guidance for the first half of the diffusion steps so that a relatively clean trajectory
can be obtained. For the rest of the diffusion steps, the following gradient guidance is applied:

∇xi log pαi(xi|y) = ∇xi log pαi(xi) + γ∇xi log p(y|xi). (5)

where y is the cost of the trajectory,∇xi log p(y|xi) corresponds to the first-order gradients obtained
from differentiable physics simulators, and γ is the scale of the gradient guidance. In our experiment,
we use γ = 1e−4.

D.4 Diffusion-ES

Diffusion-ES, concurrent research [47], also optimises a trajectory using gradient-free guided sam-
pling with a truncated diffusion process. While the prior work chooses the last trajectory of the
optimisation process as output, we observe that it is often worse than the trajectories found in the
middle of optimisation iterations. Thus, we report the score of the best trajectory found during the
trajectory optimisation process. The hyperparameters used in Diffusion-ES is reported in Table 6.
Following the original work [47], initially, the diffusion mutation steps start from 5 and the mutation
step is linearly decayed to 1 over 200 search steps.

Table 6: Diffusion ES Hyperparameters

Parameter Value

Mutation diffusion start steps 5
Mutation diffusion final steps 1

Population 5
Optimisation steps 200

1https://github.com/UM-ARM-Lab/pytorch_mppi/tree/master
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E Gradient-Free Guided Sampling for Trajectory Optimisation

Algorithm 2 is a complete version of gradient-free guided sampling for trajectory optimisation in
D-Cubed. To determine the best sequence of skill latent representations z1:Tskillbest , each skill sequence
in a batch of B skill trajectories is evaluated in simulation, and the skill sequence that minimises a
cost is selected as the best sequence (Line 5).

Algorithm 2 Gradient-Free Guided Sampling for Trajectory Optimisation in Reverse Diffusion Pro-
cess

1: Require: denoising model, Gθ; target state of deformable objects, starget, Tskill = T
H

2: Initialise: Cbest =∞,µbest = None

3: {z1N , . . . , zTskillN }|B| ∼ N (0, I) ▷ Sample B initial sequences of latent representations
4: for i = N,N − 1, . . . , 1 do
5: z1:Tskillbest ← FINDBESTLATENTS({z1:Tsi }|B|) ▷ Choose the best sequence of skill latents
6: µi ← µθ(z

1:Tskill
best ) ▷ Predict a mean of a Gaussian distribution (see Eq. 4)

7: cost = evaluate(qdecψ (a1:T |µi)) ▷ Evaluate the predicted mean
8: if cost < Cbest then
9: µbest ← µi, Cbest ← cost

10: {z1i−1, . . . , z
Tskill
i−1 }|B| ∼ N (µbest, σ

2
i−1I) ▷ Sample a batch B of sequences of skill latents

11: return pdecψ (a1:T |µbest)
12: function FINDBESTLATENTS({z1, . . . , zTskill}|B|)
13: costbest, zbest =∞,None
14: for z1:Tskill = {z1, . . . , zTskill}|B| do ▷ Evaluate each sequence of latent representations in

the batch
15: costj = evaluate(pdecψ (a1:T |z1:Tskill))
16: if cost < costbest then
17: costbest ← cost, zbest ← z1:Tskill

return zbest

F Task Details

F.1 Cost Function

The cost function used for trajectory optimisation is defined by Sinkhorn Divegence. Following the
prior work [14], the geomloss library is used to define the cost function:

1 from geomloss import SamplesLoss
2 OT_LOSS = SamplesLoss(loss=" sinkhorn", p=1, blur =0.0001)

F.2 Tasks

For single-hand task, such as Folding and Wrap, the action dimension is 26 (20 for actuators includ-
ing finger joints and wrist, and 6 for the base). For in-hand manipulation tasks (Flip), a single hand
with a fixed base is assumed, resulting in an action dimension of 20. In dual-hand environments,
the action dimension is 52, allowing for a movable base for both hands. Since a VAE is trained
to encode a single-arm action trajectory in the play dataset, an LDM generates a single-arm skill
trajectory. Thus, to handle dual-hand tasks using D-Cubed, the LDM generates a trajectory for each
arm. In the following, we describe the details of each task.

Folding: The initial position of the robot hand is above the dough, and the hand must fold the dough
in four different directions: front, back, left, and right.

Wrap: The robot hand first picks up the plasticine ball and places it onto the dough shaped like a
rope. Then, it pinches the side of the rope to wrap the ball inside it.

Flip: The robotic hand tosses the dough in the air to reshape and reposition it.
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Bun: The two robotic hands deftly pinch and push the dough to form a bun-shaped object.

Rope: The right-hand grasps the rope on the right, lifts it, and places it above the left rope. Then,
the left-hand bends the left rope.

Dumpling: To wrap a dumpling, the right hand first grasps the right side of the dough. While
holding the dough with the right hand, the left hand lifts the left side of the dough. Finally, the two
hands bring the two sides of the dough together and form it into a dumpling shape.
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