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ABSTRACT

Language models have the ability to perform in-context learning (ICL), allow-
ing them to flexibly adapt their behavior based on context. This contrasts with
in-weights learning (IWL), where memorized information is encoded in model
parameters from iterated observations of the data (e.g., common sayings). An ideal
model should be able to maintain both of these abilities. Despite their apparent
ability to learn in-context, language models are known to struggle when faced with
unseen or rarely seen tokens (Land & Bartolo, 2024). Hence, we study structural
in-context learning, which we define as the ability of a model to execute in-context
learning on arbitrary novel tokens – so called because the model must generalize
on the basis of e.g. sentence structure or task structure, rather than content encoded
in token embeddings. We study structural in-context algorithms on both synthetic
and natural tasks using both toy models and MultiBERT models (Sellam et al.,
2021). We find that structural ICL appears before quickly disappearing early in LM
pretraining. While it has been shown that ICL can diminish during training (Singh
et al., 2023), we find that prior work does not account for structural ICL. Building
on Chen et al. (2024)’s active forgetting method used to help models learn new
languages, we introduce a pretraining method that can modulate the preference for
true structural ICL and IWL. Importantly, this allows us to induce a dual process
strategy where in-context and in-weights solutions coexist within a single model. 1

1 INTRODUCTION

A distinguishing trait of transformer language models (LMs) is their ability to perform ‘in-context’
learning (ICL) (Brown et al., 2020; Dong et al., 2023; Garg et al., 2023) – the ability to use context
at inference time to adjust model behavior, without weight updates, to generalize to unseen input-
output combinations. This ability enables models to flexibly accommodate variations in language.
For instance, a model is likely to memorize that the token green is typically an adjective, yet still
recognize that it is used as a noun in the sentence The child sat on the main green based on contextual
information.

This flexibility breaks down on truly novel/unseen tokens. Much recent research has studied ICL
algorithms in transformers (Chan et al., 2022b; Singh et al., 2023; Garg et al., 2023). This work
focuses on ICL on heldout inputs that are imbued with semantic information. However, does ICL
work on arbitrary inputs? Recent research suggests no: typical ICL algorithms fail when given
undertrained (Land & Bartolo, 2024; Rumbelow & Watkins, 2023) or newly-introduced (e.g. when
adding languages to an existing model) tokens (Chen et al., 2024). While these models appear to
be performing task composition under the hood (Hahn & Goyal, 2023; Li et al., 2024), this still
results in bizarre, non-deterministic behavior on queries such as asking GPT-3 to repeat back the
string SpaceEngineers (Rumbelow & Watkins, 2023). We refer to these typical ICL algorithms as
conditional ICL, as they break down when inputs have insufficient encoded information. In contrast,
we define structural ICL to be the ability of a model to perform in-context learning on tokens
without encoded information, defined more precisely in Section 2. We analyze this strong form of
ICL along training in naturalistic and synthetic tasks.

1We release code here for reproducibility
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Figure 1: (Top Left) In our natural setting, we use a part-of-speech probe trained on BERT represen-
tations of sentences from Penn Treebank 3 and evaluate on templated examples (Section 3). (Top
Right) In our synthetic setting, we train a small masked language model (MLM) on a grammar where
the expected response is conditioned on the part-of-speech of the query (Section 4). (Bottom Left)
An idealization of our main finding: structural ICL is transient (i.e. decays over training) in both
natural and synthetic settings. Active/temporary forgetting maintains structural ICL in the synthetic
setting. (Bottom Right) Our temporary forgetting procedure evokes structural ICL when applied for
N > 0 steps, enabling generalization to unseen random tokens. In-weights preference is coarsely
controllable by varying temporary forgetting parameter N .

Our research expands upon a burgeoning literature that uses the framework of ICL vs. in-weights
learning (IWL) to study the development of transformers (e.g. Chan et al. (2022b), Singh et al.
(2023), Reddy (2023)). Specifically, Chan et al. (2022b) finds that while ICL and IWL strategies
are often in opposition, a ”sweet spot” language-like label distribution enables both ICL and IWL
strategies to co-occur in the same model. This encoded dual process is crucial to current language
models, allowing flexible, context-sensitive operations for out-of-distribution settings and memorized,
static operations for ambiguous contexts or IID settings (Moskovitz et al., 2022; Kahneman, 2011;
Miller, 2000)2. Building off this, Singh et al. (2023) finds that ICL slowly dissipates as models
are overtrained; they discover that L2-regularization mitigates ICL transience, but instead leads to
IWL transience. We utilize the framework proposed in this literature to dissect ICL emergence into
structural vs. conditional ICL development. Moreover, we aim to translate insights from these studies
to actionable strategies to improve models on non-language-like data distributions – specifically, we
attempt to elicit powerful dual processes in arbitrary data distributions.

In our research, we find that structural ICL is also transient. However, while regularization provides
a path to persistence in conditional ICL (Singh et al., 2023), it does not for structural ICL. Therefore,
we propose an extension to active forgetting – a recent weight resetting technique introduced by
Chen et al. (2024) to help augment models with new tokens – to make structural ICL persistent. Our
modification allows us to coarsely control the strategies that the model adopts, enabling us to induce
a dual process strategy: (structural) ICL for rare and unseen tokens and IWL for common tokens.

Our main contributions are:
• We define and study the concept of structural ICL in both large models and toy models.

This allows for true generalization of in-context strategies for completely unseen tokens.
2We refer to in-weights learning v. in-context learning as a dual process. This connection is mainly intended

to succinctly describe the phenomenon rather than draw concrete parallels to other dual processes.
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We discover that both masked and autoregressive LMs exhibit a (limited) form of structural
in-context learning that emerges early in training, but this ability quickly vanishes.

• We show active forgetting (Chen et al., 2024) maintains structural ICL in models. We
introduce temporary forgetting, a straightforward extension of active forgetting that enables
one to control how much a model relies on in-weights vs. in-context solutions.

• We demonstrate that when training with skewed token distributions, temporary forgetting
enables us to induce a dual process strategy where our model uses an in-weights solution for
frequently-seen tokens in the head of the distribution and a (structural) in-context solution
for rare tokens in the tail.

2 DEFINITIONS

In-Context vs. In-Weights Learning We follow Reddy (2023), which defines in-weights learning
(IWL) to be “query-response relationships encoded in the weights of the network” while in-context
learning (ICL) emerges due to “common structural element[s]” and “can be exploited to perform
zero-shot learning on novel tasks that share this structure.”

We formulate our ICL prediction task as P(y | p1:n; z1:n;M0:l) where y are the label(s), p1:n is the
set of positional embeddings and z1:n is the set of word embeddings for a sequence of length n, and
M0:l is a length l transformer.

Within this framework, word embeddings are purely in-weight representations, which are enriched
with context information by attention layers.

Structural vs. Conditional ICL We define structural ICL precisely via an empirical test: a model
exhibits structural ICL if it can employ analogical reasoning from context in a way that is robust to
arbitrary embeddings. For one or more word embeddings at specified position(s) i ∈ I , we replace

zi
replace−−−→ zrandom. This removes the in-weight signal of the word embedding and forces reliance on

in-context information and structural analogy.

We state that a model can perform conditional ICL when it succeeds on prediction task P(y |
p1:n; z1:n;M0:l) when the ordered set z1:n remains unmodified. This is the standard ICL setting
studied by (Chan et al., 2022b; Singh et al., 2023; Garg et al., 2023; Akyürek et al., 2024). Note
that a model exhibiting conditional ICL does not imply that the same model will exhibit structural
ICL. Recent research suggests various models fail on undertrained ”glitch tokens” that do not possess
ample identity information zi ((Rumbelow & Watkins, 2023; Land & Bartolo, 2024)).

Head vs. Tail In skewed token distributions, we refer to the most frequently occurring tokens
(typically ≈ 10%) in a distribution of examples as the head of the distribution and the least frequently
occurring tokens (typically ≈ 10%) as the tail. As token distributions increase in skew, tail tokens
have less probability of being seen. This dichotomy relates very closely to our analysis of structural
ICL in that tail tokens can be thought of as somewhere between fully-trained tokens and random
tokens. By solving performance on random tokens, we can rectify ICL on rare tail tokens.

3 (STRUCTURAL) IN-CONTEXT LEARNING IS TRANSIENT

Recent work has discovered that conditional ICL capabilities slowly degrade over the course of long
training in a synthetic setting (Singh et al., 2023). Inspired by this work, we reproduce it and track the
structural ICL capabilities for encoder-only LMs in a naturalistic syntax probing task. We find that
structural ICL rapidly degrades to completely random performance after relatively few training steps,
while conditional ICL abilities remain present. To perform this developmental analysis, we study the
various intermediate checkpoints released from the MultiBERTs (Sellam et al., 2021), averaging all
of our results across seeds 0, 1, and 2. We calculate error bars in Figure 2 as ±1 standard error of the
mean (SEM).
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Figure 2: (Left) We exhibit the transience of structural ICL by examining the Random Token Accuracy
over time. (Middle) We show the trend of memorization of tail versus head of distribution over
training steps by examining the difference in Layer 7 Accuracy, where both in-context and in-weights
strategies are possible, and Layer 0 Accuracy, where only an in-weights strategy is possible; (Right)
We display the preference for in-weights strategy when conflicting with in-context strategy over time.

3.1 TASK

We design a task that employs templated stimuli to assess part of speech to tokens, permitting both
ICL and IWL solutions. For instance, in the sentence the dog is happy, there are at least two ways of
determining that dog is a noun: (1) memorize that the token identity “dog” is a noun or (2) extract
that dog is the subject of the sentence from the context. Each dataset contains sentences that obey the
template: The <noun> is <adj> (e.g. The dog is happy).

Our evaluation datasets are defined as follows:

1. Head/Tail: Templated examples where tokens are sampled from the most/least frequent
1500 nouns and most/least frequent 1500 adjectives in the training set of PTB-3.

2. Head/Tail Switch: Templated examples where tokens are sampled as in the “Head”/“Tail”
dataset, but where nouns appear in the adjective position and adjectives appear in the noun
position (e.g., The happy is dog).

3. Random Token: Templated examples where “nouns” and “adjectives” are sampled from a
set of 1,500 randomly initialized tokens. This metric evaluates structural ICL performance3.

For each layer and MultiBERT step, we train a binary POS probe on representations of nouns and
adjectives from sentences in the training set of Penn Treebank 3 (PTB-3) (Marcus et al., 1993). For
multi-token words, we average representations across tokens. See Appendix A.1 for additional details
about our probing setup. Note that the MultiBERTs are trained following Devlin et al. (2019) on a
combination of BookCorpus (Zhu et al., 2015) and English Wikipedia collected by Turc et al. (2019).
As such, the distribution of the training data is fixed, and our experiments are constrained to the
natural distribution of language. As BookCorpus does not have POS tags readily accessible, we
employ PTB-3 to estimate the noun and adjective distribution of the training data. We defined nouns
and adjectives as words that appeared as each POS, respectively, over 80% of the time. We chose
1500 examples as this is ≈ 10% of the number of unique nouns.

3.2 TRAINING DYNAMICS

We examine (1) structural in-context learning and (2) the tradeoff between in-context and in-weight
strategies over the course of training.

Structural ICL We find that the MultiBERTs are initially able to perform structural ICL, but
that this capability is transient. In Figure 2 (Left), we present results from a probe trained on
representations from Layer 7 as this layer achieves the highest probing validation performance on
PTB-3. This is consistent with prior research which demonstrates that syntactic structures are encoded
in the middle layers of MLMs (Tenney et al., 2019; Limisiewicz & Mareček, 2020). Furthermore,
results across all layers are presented in Appendix A.2. Structural ICL transience is evident as probe
performance on random tokens tend to spike early in MultiBERT training before dropping to chance

3We are able to generate novel labels not seen during train time because the embedding and unembedding
matrices are tied in the MultiBERT models.
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by the end of training. These results suggest that there is an inductive bias toward structural ICL that
diminishes as information is encoded in the embeddings. As structural ICL confers the ability to
generalize to rare and new tokens, transience raises questions about how we can train models that
maintain this ability throughout training.

In-Context vs. In-Weights Strategies Much like Singh et al. (2023), we observe that conditional
ICL strategies dissipate over training, as more information is encoded in token embeddings. We
approximate the use of in-context information for determining POS as the difference in performance
between Layer 0 (the embedding layer) and Layer 7. Layer 0 must rely only on in-weights information
as there is no in-context information available; in contrast, Layer 7 uses contextualization to achieve
higher performance (Tenney et al., 2019; Hewitt et al., 2021). The benefit of in-context information
disappears more quickly for the head of the distribution than the tail, likely because there are far
more gradient updates to head token embeddings.4 As the benefit of the model’s use of in-context
information dissipates, we observe that the model shifts from an in-context to an in-weights strategy
in Figure 2 (Right). In other words, models becomes more reliant on in-weights strategies and less
reliant on in-context strategies over the course of training. This finding aligns with Singh et al. (2023).

4 SYNTHETIC TASK: DISTRIBUTION IMPACTS IN-CONTEXT LEARNING

We develop a synthetic masked language modeling task to characterize how data distributional
parameters affect structural ICL, conditional ICL, and IWL. Our synthetic task requires the model
to determine which of two classes a word belongs to. This may be derived either from in-context
information or by memorizing token identity-class associations in the embedding layer. We draw
analogies between these classes and POS in natural language.

Our vocabulary contains tokens that represent nouns, adjectives, and a copula (i.e. is). Each sentence
is created by selecting (1) a sequence S, (2) a query Q, and (3) a response pattern P . Our
MLM is trained to predict P(Pi|S,Q) for all i ∈ {0, . . . , |P | − 1} (i.e. the probability of each pattern
token). The sequence and pattern are arbitrary and designed so that no exceedingly simple
heuristic may solve this task.

• sequence S: Either <noun> <copula> <adj> or <copula> <adj> <noun>.

• query Q: Either the <noun> or <adj> from the sequence.

• pattern P : Either <adj> <noun> <noun> if the query is a <noun> or <adj>
<adj> <adj> if the query is an <adj>.

This task is designed such that the model must make a POS classification on the query token,
and then perform an additional language-like operation conditioned on that classification (copying
specific token identities in a specific order). See Appendix A.8 for more details. See Figure 1 and
Appendix A.9 for examples.

We parameterize the task with vocabulary size v, the sampling distribution skew for nouns/adjectives
α (where we select <noun>, <ad> ∼ Zipf(α)), and the ambiguity of token POS ε. The ambiguity
parameter determines the percentage of tokens can act as both as noun and an adjective, and is
inspired by the inherent ambiguity of POS in natural language. For our primary experiments, we fix
ε = 0.10. Note, we find that ε must be greater than zero for an in-context solution to emerge at all.
We compare our skewed distribution results to sampling tokens from a Uniform distribution.

In this task, an ICL solution to derive the POS of the query may achieve perfect accuracy by
utilizing in-context information (e.g. a copula is always followed first by an adjective, then a noun).
In contrast, an IWL solution to derive the POS of the query may achieve at most an accuracy of
(1− ε/2) due to ambiguous tokens. To account for this, we evaluate our models only on tokens that
are not ambiguous; thus, both an ICL and IWL solution could achieve perfect accuracy. (Ambiguous
tokens always use an ICL solution.)

Our task is formatted in a cloze-style where each token in the pattern is masked. We employ a BERT-
style MLM (Devlin et al., 2019) to predict the identities of these masked tokens, with hyperparameters

4We observe that performance gain due to the model’s use of in-context information decreases across a
wide range of syntactic phenomena as embeddings are enriched during training. We term this the ”Pushdown
Phenomenon” and explore it more thoroughly in Appendix A.7.
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Figure 3: (Top) In-context performance by distribution with vanilla training; (Bottom) In-context
performance by distribution with active forgetting. The parameters used are v = 10000, ε = 0.10.
Note that the Uniform distribution does not have a head or a tail, so its results are in the head graphs.
Vanilla training results in structural ICL transience (Top Left), but conditional ICL is asymptotically
nonzero (Top Middle, Top Right). Examples with head tokens usually prefer IWL (Top Middle) while
examples with tail tokens usually prefer ICL (Top Right). In contrast, active forgetting preserves
structural ICL and removes all preference for IWL across distributions (Bottom Row). With active
forgetting, examples with head tokens usually prefer and examples with tail tokens both prefer ICL
(Bottom Middle, Bottom Right). In skewed distributions (α = 1.5), the loss of structural ICL results
in a loss of all ICL (Top Middle, Top Right - Red Line).

described in Appendix A.10. Near-perfect validation accuracy is achieved after < 60, 000 steps on
all experimental settings.

In addition to performance on a randomly selected validation set, we create datasets to evaluate the
model’s preferred strategy throughout training, similar to Section 3. All examples in these datasets
contain novel <adj>, <noun> pairs. Much like our naturalistic setting metrics in Section 3.1, we
create Tail, Head, Head Switch, Tail Switch, and Unseen Token Accuracy metrics. In this setting, our
head and tail metrics use the top and bottom 10% of the token distribution by count, respectively.

4.1 TRAINING DYNAMICS

Structural ICL is Not Conditional ICL We reproduce the results from the natural language setting
presented in Section 3: structural in-context solutions emerge quickly, but are transient. This is
shown by the early peak of Random Token Accuracy, followed by its steep drop, a trend which holds
across all tested distributions in Figure 3 (Top Left). As such, both the syntactic and naturalistic
settings align with our idealized graph of structural ICL transience exhibited in Figure 1 (Bottom
Left). However, the disappearance of a structural in-context algorithm occurs more quickly here than
in our MultiBERT experiments, likely due to the simplicity of our synthetic task.

Critically, the top row of Figure 3 shows that even though structural ICL performance degrades
quickly, conditional ICL abilities remain. Across all distributions, both the head and the tail show
reliance on conditional ICL asymptotically (Figure 3 Top Middle, Top Right) while structural ICL
remains zero. In a modified version of the Chan et al. (2022b) task, we find that the same trend of
structural ICL disappearance and conditional ICL continuation remain consistent (Figure 6, Left).

Structural ICL has Practical Importance In highly skewed distributions (e.g. Zipf α ≥ 1.5) where
tail tokens are very rare and head tokens are very common, the disappearance of structural ICL results
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Figure 4: (Left) Temporary forgetting achieves near perfect random token performance (structural
in-context) asymptotically among distributions. Tail performance of skewed distributions is poor
(Left - Green) after vanilla training (i.e. standard training); in contrast, tail performance is almost
perfect after temporary forgetting (Left- Blue). (Right) Temporary forgetting can asymptotically hold
preference for an in-weights strategy in the head of the distribution while holding preference for
an in-context strategy in the tail of the distribution (i.e. learn dual processes). Parameters used are
v = 10000, ε = 0.10 and optimal hyperpameters k,N over gridsearch.

in a total loss of ICL abilities (Figure 3 Top - Red Line). Common tokens are memorized resulting
in high overall performance of examples; however, tail tokens fail altogether (See Figure 4, Left).
Even when conditional ICL abilities remain in less skewed distributions, the least-frequent subset of
tail tokens have poor performance. We theorize that this finding is analogous to the “glitch token”
issue that plagues current language models (Land & Bartolo, 2024). Structural ICL would rectify
performance on these undertrained tokens.

In-Context Learning conflicts with In-Weights Learning Typically, conditional ICL and IWL
are in conflict. Increasing the skew of a distribution increases the pressure toward an IWL strategy.
Conversely, examples with tokens drawn from a Uniform sampling distribution show a comparatively
higher conditional ICL preference (and thus lower IWL preference) than any Zipfian sampling
distribution in Figure 3, Top Middle. Among Zipfian sampling distributions, the model’s strategy
varies based on whether the adjective and noun are in the head or the tail of the token distribution,
much like in our naturalistic task.5 As in our naturalistic setting, we find head tokens prefer IWL
while tail tokens prefer conditional ICL. We will explore how to mitigate this competition Section 6.

5 MAINTAINING STRUCTURAL ICL WITH ACTIVE FORGETTING

In Sections 3 and 4, we have demonstrated structural ICL is transient across models and tasks. In
an effort to promote structural ICL persistence, we utilize a recently-introduced training procedure:
active forgetting (Chen et al., 2024). Note we refer to vanilla training as the standard training
procedure without special interventions.

Active Forgetting When training a model using active forgetting, we re-initialize the embedding
matrix every k steps during training. The intuition behind this is that the model must employ in-
context strategies to achieve high accuracy, each token’s embedding is no longer guaranteed to have
in-weight information. The unseen/undertrained tokens that were before out-of-distribution now are
in-distribution, an effect which we further explore in Appendix A.14.

Results We test k = 100, 1000, 5000 and settle on k = 1000, as this worked well in our preliminary
exploration. Training our models with active forgetting promotes asymptotic structural ICL across all
tested skews, enabling the model to approach perfect performance on the random Unseen Token Set
(See Figure 3, Bottom Left). Given random embeddings representing a noun and an adjective, the
model can now (1) derive the POS of these tokens by ICL and (2) output novel labels corresponding
to the identity of these embeddings in the desired pattern.6 Note that we see a slightly more stochastic
version of our idealized trend from Figure 1, Bottom Left due to the resetting mechanism. We find
that this trend of active forgetting preserving structural ICL holds for other task-model combinations,
such as a modified Chan et al. (2022b) task. (See Figure 6, Middle).

5Additional experiments exploring the effect of ambiguity are located in Appendix A.12 and the effect of
vocabulary size are located in Appendix A.13.

6This relies on the embedding and unembedding matrix being tied
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Figure 5: Performance by token decile and on random tokens (Rnd). With vanilla training in a
skewed distribution (Zipfian α = 1.5), low decile tokens show poor performance; however, overall
performance remains good because these tokens are rare. Temporary forgetting preserves structural
ICL to solve performance on tail, undertrained, and unseen tokens compared with Singh et al. (2023)’s
L2-regularization procedure, which was proposed to preserve conditional ICL.

As the skew of the distribution of nouns and adjectives increases, there is greater pressure to memorize
the head of the distribution (as these tokens are observed more frequently). Thus, it takes longer for
the model to exhibit a preference towards in-context solutions for head tokens (e.g. almost 60,000
steps for the α = 1.5 setting) and there is a much larger drop-off in performance after every instance
of forgetting the embedding matrix.

6 DUAL PROCESS LEARNING WITH TEMPORARY FORGETTING

While active learning successfully induces a structural ICL strategy, our model loses the ability to
memorize information in its embeddings. This is detrimental in a variety of cases, such as when
in-context information is insufficient to generate an appropriate response. An optimal model would
encode a dual process strategy: maintaining a structural ICL solution while also memorizing useful
linguistic properties.

Temporary Forgetting We modify the paradigm of active forgetting to attempt to induce a bias
for structural in-context strategies in the tail of the distribution while preserving the in-weights
solutions for frequently-observed tokens. We introduce temporary forgetting, where we perform
active forgetting every k steps for the first N steps (N >> k) of training. After this point, we
allow the embedding matrix to train as normal. As a baseline, we compare to Singh et al. (2023)’s
solution to conditional ICL transience, L2 regularization. Crucially, we wish to understand whether
L2 regularization helps maintain structural ICL, which was not tested in the original work.

Results We find that by varying N , we can vary the model’s dependence on in-weights information
on frequently seen tokens while maintaining structural ICL performance as displayed in Figure 1,
Bottom Right (parameters used are v = 10000, ε = 0.10, α = 1.5). At the extremes, setting N to
be very large mimics the behavior of active forgetting and setting N to be small only sometimes
maintains structural ICL performance. We can control the preference for IWL versus ICL on observed
tokens by modifying N (See Figure 1, Bottom Right).

Thus, temporary forgetting enables a model to successfully encode two distinct strategies for the
same task. We can now induce this behavior for any distribution α ≥ 1.0, while also inducing
structural ICL behavior on all distributions we test (See Figure 4, Right).7 Note that the control
granted by temporary forgetting over head IWL preference has limits – we can push up to almost
90% the original IWL preference while maintaining a high tail ICL preference as seen in Figure 4. In
contrast, we find that the strategy suggested by (Singh et al., 2023) does not eliminate structural ICL
transience: undertrained and random tokens induce very poor performance, as seen in Figure 5.

Temporary forgetting imparts an incentive that significantly enhances our ability to balance between
in-context and in-weights strategies, overcoming inherent biases in naturally occurring data. After a
critical period, we can stop the forgetting mechanism and retain structural ICL abilities.

7Distributions where α ≤ 1.0 would likely only rely on an in-context strategy
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Figure 6: Results from our replication study on the Chan et al. (2022b) task with an autoregressive
transformer. (Left) With vanilla training, structural ICL is transient while conditional ICL remains
asymptotically. (Middle) Training with active forgetting preserves structural ICL. (Right) When fitting
our model to a skewed token distribution (Zipfian α = 3), vanilla training results in memorization
of head tokens and random performance on structural ICL; in contrast, temporary forgetting evokes
a dual process, which significantly improves structural ICL performance while preserving IWL on
common tokens. Task details and additional experiments found in Appendix A.4.

7 REPLICATION USING CHAN ET AL. (2022B) TASK

We replicate our main findings using an autoregressive transformer on a task similar to Chan et al.
(2022b). Notably, we modify the task presented in Chan et al. (2022b) to enable us to examine
structural ICL (See Appendix A.4).8 We find that the phenomena described in Sections 3, 4.1, 5, and
6 all extend to this new task.

In the original task of Singh et al. (2023) (the same as Chan et al. (2022b)’s task), undertrained/random
tokens were not tested. This prevented the possibility of observing specific structural transience,
which remained unsolved (See Figure 5). We replicate their autoregressive task, but introduce
randomly initialized embeddings for heldout classes. Our results are shown in Figure 6, which shows
that the structural ICL transience remains an issue that is remedied by active/temporary forgetting.

8 RELATED WORK

In Context v. In Weights A body of recent literature closely examines in-weights versus in-context
learning (Chan et al., 2022b;a; Reddy, 2023; Raparthy et al., 2023; Fu et al., 2024). The emergence of
in-context learning abilities in transformers has been shown to depend on the distributional properties
of the training data such as burstiness, training class rarity, and dynamic meaning (Chan et al., 2022b;
Reddy, 2023). While we employ a similar analytical framework to this work, we (1) consider truly
random heldout inputs and novel outputs/labels, (2) evaluate on large, natural language models, and
(3) consider structural ICL (defined in Section 2). Additionally, while slow transience of conditional
ICL has been noted in Singh et al. (2023), we find abrupt transience of structural ICL and introduce
temporary forgetting to (1) preserve structural ICL and (2) solve what both Singh et al. (2023) and
Chan et al. (2022b) suggest to be an extremely useful behavior: the co-existence of in-context learning
and in-weights learning.

More broadly, the conflict between context-dependent and context-independent (or reflexive) solutions
has been well-studied in the cognitive and computational neuroscience literature (Russin et al., 2024;
Rougier et al., 2005; Russin et al., 2022). A key feature of human intelligence, termed cognitive
control, is the ability to maintain dual strategies and flexibly deploy either one in response to particular
stimulus. Any artificial system that aspires to producing human-like behavior must therefore be
capable of maintaining both of these solutions.

Weight Forgetting To Help Learn. While most literature on forgetting characterizes this phe-
nomenon as undesirable (Kemker et al., 2017; Kirkpatrick et al., 2017; McCloskey & Cohen, 1989;

8This modification ensures the tail distribution of these tokens are undertrained/untrained and thereby
resemble the ”glitch tokens” of Rumbelow & Watkins (2023)
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Ratcliff, 1990), recent neuroscience literature has shown that intentional forgetting may have positive
roles in certain contexts (Srivastava et al., 2014; Pastötter et al., 2008; Levy et al., 2007; Anderson &
Hulbert, 2021). Intentional forgetting in neural networks is accomplished by resetting a subset of
parameters during training. On computer vision tasks, this resetting procedure has been shown to
help low compute and data resource generalization (Alabdulmohsin et al., 2021; Taha et al., 2021;
Ramkumar et al., 2023). Additionally, Zhou et al. (2022) show that a forget-and-relearn paradigm
helps language emergence. Our method of forgetting embeddings is directly inspired by Chen et al.
(2024), which shows forgetting during pretraining boosts linguistic plasticity for multilingual learning.
As far as we know, we are the first to propose using forgetting to induce ICL.

9 DISCUSSION

The ability to flexibly deploy in-context and in-weights algorithms has been described as an “important
and useful [behavior] for a model,” as it enables models to both memorize information about
commonly-seen classes and generalize to new classes Chan et al. (2022b). However, it has proven
difficult to ensure that model’s reliably acquire both forms of processing. While prior work celebrates
the ability to maintain dual strategies even for a limited set of distributions (and go so far as to suggest
“engineer[ing] data distributions to evoke this behavior in models” (Chan et al., 2022b)), the present
work demonstrates a method for engendering both solutions across a range of distributions. Moreover,
we extend the scope of the in-context algorithms under consideration: while prior work focuses on
what we term conditional in-context learning, we achieve structural in-context learning. This allows
the model to generalize its in-context algorithms to unseen and undertrained tokens.

Structural In-Context Learning One of our key findings is the transience of structural ICL in LMs.
Initially, models exhibit a strong ability to leverage structural ICL, generalizing algorithms to unseen
tokens. However, this capability dissapears as training progresses, suggesting an initial inductive
bias towards structural ICL that wanes as the model learns. This transience limits generalization on
rare tokens and new tokens. We find that active forgetting maintains structural ICL by repeatedly
reinitializating the embeddings. Our temporary forgetting training procedure enables a dual process
strategy through strategic re-initialization of weights. This enables adaptability while still leveraging
accumulated knowledge. Specifically, structural ICL could significantly improve performance on
abstract/symbolic reasoning tasks, which is important for various use cases including low-resource
language ICL and code generation.

Implications for Model Training and Application Our findings are useful to design training
protocols that result in flexible models. A significant reason for the success of LMs is their capacity
for ICL and IWL strategies to co-exist, a behavior that organically occurs with a moderately skewed
Zipfian distribution. However, most natural domains such as protein discovery, network traffic, and
video recording face even more skew, breaking down this ideal behavior. Our temporary forgetting
technique facilitates a dual process strategy regardless of skew, which could potentially bring some
of the profound success of LMs to other domains.

Future Directions and Limitations The research opens up several avenues for future investigation.
One significant limitation is that our temporary forgetting experiments were not performed on natural
LMs. Our compute resources limited such experiments, but we believe this is a critical future step
to refining this training intervention. Another potential limitation of our work is that the optimal
hyperparameters to temporary forgetting are not known a priori; while we do not explore this, our
experiments suggest performance is relatively robust to hyperparameter selection. Finally, another
avenue of fruitful future research may be the translation of structural ICL algorithms into symbolic
systems. As structural ICL does not rely on the content of the input, it should be possible to
use techniques like circuit analysis (Räuker et al., 2023) to reverse-engineer an explicit symbolic
representation of the algorithm that the neural network uses to solve a task.

Conclusion This study deepens our understanding of a model’s adoption of structural ICL, condi-
tional ICL, and IWL strategy during training. The techniques introduced here not only enhance our
theoretical understanding but also offer practical tools for improving model training and functionality
in real-world applications.(Gentner, 1983).

10
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 PROBING SETUP

We provide probing background in this section, borrowing some notation from Elazar et al. (2020).

Given a set of labeled data of points X = x1, . . . xn and task labels Y = y1, . . . , yn, we analyze a
model f that predicts the labels Y from X : ŷi = f(xi). We assume that this model is composed of
two parts: (1) an encoder h that transforms input xi into a learned representation vector hxi

and (2) a
classifier c that is used for predicting ŷi based on hxi

, such that ŷi = c(h(xi)). We refer by probe to
the classifier c and refer by model to the model from which the encoder h is a subset of.

Given this setup, we evaluate a particular model’s performance across various layers and training
steps for our POS task. Each encoder h is associated with a specific training step and layer ht,l. We
probe the residual stream after layer l.

In this research, we are interested in the model’s choice of strategy at a particular time step. That is,
we seek to describe the change in prediction of ŷi due to varying t, l of encoder ht,l. Accordingly, we
fix c as a single linear fully-connected layer.

A.2 STRUCTURAL ICL ACROSS LAYERS

Figure 7: We find that structural ICL is transient across all layers of MultiBERTs (seeds 0, 1, 2
averaged). The middle layers show the most structural ICL during early in training, whereas very
early and very late layers remain about random throughout training.

We find that structural ICL consistently approachs random levels as training progresses across layers
in the MultiBERTs. This signifies that the model fully loses the ability to process unseen tokens
as training continues. This is likely the reason for the “glitch tokens” described in Land & Bartolo
(2024), for which LMs fail to output sensible content.
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A.3 STRUCTURAL ICL IN GENERATIVE DECODER-ONLY LANGUAGE MODELS

A.3.1 SYLLOGISM TASK

We use a syllogism task that requires symbolic reasoning based on the context to show that (1)
structural ICL is transient in a decoder-only transformer based on generation and (2) a variant of
temporary forgetting can remedy structural ICL on a real natural langauge model.

Our task is formulated as follows: Our task requires abstract reasoning on untrained tokens in a
decoder-only transformer. The model must complete the following syllogism.

All <X> are <Y>.
All <Y> are <Z>.
Therefore, all <X> are

The correct answer is <Z>. We examine accuracy, which we define as the probability of choosing
<Z> compared to the probability of choosing <Y>. We test baseline performance over training steps
where <X>,<Y>,<Z> are chosen from the set of tokens representing A-Z, and we test unseen token
performance by replacing <X> with an unseen token in this formulation (<Y>,<Z> are still chosen
from A-Z).

A.3.2 STRUCTURAL ICL IS TRANSIENT IN PYTHIA 1.4B

Figure 8: We find that structural ICL is transient for the decoder-only Pythia-1.4B on a syllogisms
task. Performance on common tokens continues improving to near-perfect accuracy. Results averaged
over three trials.

We find that structural ICL consistently spikes and then approaches below random levels as training
progresses across layers in the Pythia-1.4B model (Biderman et al., 2023), as shown by the unseen
token accuracy in Figure 8. The model loses the ability to perform syllogisms on unseen tokens as
training continues. We chose the Pythia-1.4B model to show the generalizability of our finding to
natural language decoder-only models. We employ publicly released training checkpoints to run our
experiments.

A.3.3 PROBABILISTIC TEMPORARY FORGETTING FIXES STRUCTURAL ICL IN GPT-2

We finetune GPT-2 large (Radford et al., 2019) on Wikitext (Merity et al., 2016) sentences taken from
Wikepedia articles for 2000 steps. Note that unseen token syllogism performance on the pretrained
GPT-2 large is even worse than on the pretrained Pythia 1.4B. To accommodate the fine-tuning setting,
we use a probabilistic variant of temporary forgetting: every step, we replace tokens in the batch
with p = 0.10 with randomly initialized embeddings. After the step, we set the embedding matrix
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Figure 9: We find that structural ICL is transient for the decoder-only Pythia-1.4B on a syllogisms
task. Performance on common tokens continues improving to near-perfect accuracy. Results averaged
over three trials.

back to its original values, hence maintaining the spirit of temporary forgetting. In this method, our
pretrained embeddings remain unchanged.

After fine-tuning with probabilistic temporary forgetting on Wikipedia sentences, we find that
syllogism accuracy with unseen tokens jumps from 0.02 to 0.927 while the baseline syllogism
accuracy goes from 0.933 to 0.923, as seen in Figure 9. In addition, when we fine-tune without
probabilistic temporary forgetting (i.e. vanilla fine-tuning), we see that unseen token syllogism
accuracy remains substantially below-random. Our probabilistic temporary forgetting rectifies
structural ICL on a downstream task in a real natural language model.
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A.4 AUTOREGRESSIVE TRANSFORMER SYNTHETIC SETTING

To show the broadness of our structural ICL results, we also replicate our findings using a modified
version of the synthetic task presented in Chan et al. (2022b).

A.4.1 MODIFIED CHAN ET AL. (2022B) TASK

Figure 10: This is the setup of Chan et al. (2022b) (Figure 1 of their paper). We use a similar setup,
but with token embeddings that are learned during training rather than ResNet encodings of Omniglot.

Similar to Chan et al. (2022b)’s setup, we have training data comprised of sequences of tokens and
labels where the context is made up of the first 16 elements (8 token-label pairs), and the final element
is the ‘query’ token. The aim of the model is to predict the correct label for the query. There are
1600 tokens, each mapped to a label, however with a ambiguity probability of 0.05 is mapped to a
different label randomly chosen from the set of labels (closely resembling the multiplicity of labels
experiments to promote ICL). Sequences are bursty, with the query-label pair as well a different
token-label pair each occurring 3 times in the context. We evaluate the trained models on three types
of sequences to measure (1) structural ICL, (2) conditional ICL, and (3) IWL.

Again borrowing from Chan et al. (2022b), our context for the ICL setups is a random ordering of two
token-label pairs with 4 examples each, and the query is selected randomly from one of the two tokens.
While label-pairs are fixed in training (with p = 0.95), the labels for the two tokens are randomly
re-assigned to either 0 or 1 for each sequence. We calculate few-shot accuracy by considering only
probabilities assigned to 0 and 1 (resulting in a chance of 0.5). In evaluating structural ICL, we
generate sequences consisting of random tokens and labels while conditional ICL sequences consisted
of tokens previously seen by the model during training. We test on tokens drawn from uniform and
zipfian distributions, where experiments are with a Zipf α = 1.0001 token sampling distribution
unless otherwise specified.

To measure IWL, we considered non-bursty sequences where the query-label is not located in the
context. The only way for a model to correctly predict the label is to rely on information in weights
as we ensured unique, non-query token-label pairs in the context.

Note that the difference from Chan et al. (2022b)’s setup is that we use randomly initialized tokens
embeddings rather than Omniglot Resnet-encoded images and our autoregressive transformer is also
smaller. This enables us to test for structural ICL by replacing token identities with random vectors.
Another method for us to test structural ICL could have been to use random images, but this would
not have been analogous to the issue of undertrained/unseen ”glitch tokens” in language models,
unlike our current setup
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A.4.2 MODEL DESCRIPTION

We use a 4-layer GPT-2 architecture as our autoregressive transformer with 4 attention heads per
decoder layer and an embedding size of 64 (Radford et al., 2019). To optimize, AdamW with a
learning rate of 5 × 10−5 and a linear warmup schedule with 1/10 of the total number of steps as
warmup steps (Loshchilov & Hutter, 2019).

We ensure that on a validation similar to the training set, there is near-perfect performance by the
completion of training.

A.4.3 VANILLA TRAINING

We find across setting that settings where ICL arises, there is structural ICL and it disappears abruptly
with vanilla training. This is true for different levels of burstiness (0.8, 0.95, 1.0), different levels of
ambiguity (0.05, 0.10, 0.20), and different distributions (Uniform, Zipf with α = 1.0001, 1.5, 2, 3).
In-weights learning varies based on the distribution.

Figure 11: Structural ICL disappears while conditional ICL remains across different combinations
of ambiguity and skew in our autoregressive few-shot task described in Appendix A.4. Interesting,
skewed distributions with high ambiguities show some variance in structural ICL accuracy after the
initial disappearance.
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A.4.4 ACTIVE FORGETTING

Active forgetting preserves structural ICL, but completely removes any use of IWL. We see this
across tested distributions (Uniform, Zipf with α = 1.0001, 2). We use k = 500 because this worked
well with initial experiments (although the other tested parameters of k = 1000, 2000 also worked
almost equivalently).

Figure 12: Active forgetting preserves structural ICL across different skews in our autoregressive
few-shot task described in Appendix A.4. Interesting, increasing the skew seems to make active
forgetting converge quicker.

A.4.5 TEMPORARY FORGETTING

In our temporary forgetting setting, we use a burstiness parameter of 0.95 for experiments. We use
k = 1000, N = 8000 because these parameters worked well in initial experiments. We did not spend
much time optimizing parameters. We tested whether we could evoke a dual process of ICL and IWL
across distributions (Zipf with α = 1.0001, 2, 3), as seen in Figure 13. This is in contrast to active
forgetting, where we cannot learn information in-weights (Figure 14), and vanilla training, where we
cannot asymptotically perform above a random baseline for structural ICL (Figure 11).

Figure 13: Temporary forgetting preserves structural ICL across different skews in our autoregressive
few-shot task described in Appendix A.4, as opposed to vanilla training (i.e. standard training). In
addition, it enables IWL for common tokens instead of completely removing it like active forgetting.
It achieves about 90% the IWL use for these. Note we consider the smaller set between top 100
tokens and 90% of the probability when choosing common tokens to evaluate IWL on.

Figure 14: Temporary forgetting enables us to learn IWL while preserving structural ICL, whereas
active forgetting forces only structural ICL. This is seen by the developmental accuracies in this
figure (note k = 500 for active forgetting whereas k = 1000, N = 8000 for temporary forgetting).
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A.5 DUAL PROCESSES FOR SKEWED DISTRIBUTIONS

Figure 15: Temporary forgetting’s ability to invoke dual processes (in yellow) on various distributions
of our synthetic POS task compared with Chan et al. (2022b) observational baseline. Structural ICL
and IWL are able to be co-occur in networks now trained on data distributions of any skew with
α ≥ 1, as opposed to being limited to a specific ”sweet spot” distribution.

A.6 PUSHDOWN DATASETS

We use the train/dev splits from the English UD Treebank for the c-pos, f-pos, and dep tasks McDonald
et al. (2013); the train/dev splits from Ontonotes-v5 in the CoNLL-2012 Shared Task format for the
ner, phrase start, and phrase end tasks Linguistic Data Consortium (2013); Pradhan et al. (2012); the
train/dev splits from Penn Treebank-3 for the depth and dist tasks Marcus et al. (1993); and generated
token sequences for the prev, dup, and ind tasks.

We reproduce baselines from Elazar et al. (2020) to verify the correctness of our probing setups for
c-pos, f-pos, ner, dep, phrase start and phrase end and from Hewitt & Manning (2019) for depth and
dist.

A.7 PUSHDOWN SIGNATURE OBSERVATION IN SYNTAX

Figure 16: The ”Pushdown Phenomenon” is observed across syntactic features, suggesting that
a transition from IC to IW strategies happens across these features. In early steps of training,
representing syntactic information occurs in later layers, which are more contextualized. However,
as training progress, the same properties are better encoded in earlier layers due to memorization
of token-level and n-gram level information. The n-gram level information requires attention to
build, which explains why performance in dep, depth, and dist does not propagate all the way to
embeddings.

The ”Pushdown Phenomenon” suggests that in early steps of training, computing token-wise syntactic
properties occurs in later layers, which have more in-context information. However, as training
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progress, the same properties are better encoded in earlier layers until only the first couple layers are
required for representing syntactic properties.

We examine whether the ”Pushdown Phenomenon” exists in various syntactic properties in BERT. To
do so, we employ our probing setup (Appendix A.1) for the tasks of named entity recognition (ner),
coarse part of speech (c-pos), fine-grained part of speech (f-pos), dependency parsing (dep), syntactic
constituency boundaries which indicate the start and end of a phrase (phrase start, phrase end), depth
in the parse tree (depth), and distance in the parse tree (dist). We probe each property across the axes
of (1) training time steps and (2) layers. We repeat this process for three seeds of the MultiBERTs
(Sellam et al., 2021). For all tasks, we probed all layers of MultiBERT seeds 0, 1, and 2 for timesteps
from 0 to 200,000 increasing by 20,000; 200,000 to 1,000,000 increasing by 100,000; and 1,000,000
to 2,000,000 increasing by 200,000. If a specific word is composed of multiple subword tokens, we
follow Hewitt & Manning (2019) and average the encoding across tokens.

We observe the ”Pushdown Phenomenon” in all our examined tasks. However, we find that across
tasks, syntactic information is ”pushed down” at different rates. Early layer accuracy increases
approximately follow a pattern of ner → phrase start → cpos/fpos → phrase end → dep →
depth → dist. We leave it to future work to explore whether this timing is a function of (1) complexity
of high-achieving rules/heuristics consistent with Belrose et al. (2024) or (2) a naturally occurring
dependency hierarchy of syntactic relationships suggestive of implicit curriculum learning. One
possible intuition for why the ”Pushdown Signature” of memorization often coincides with poor
maintenance of in-context strategies might be neural collapse (Parker et al., 2023; Rangamani et al.,
2023), although this should be further investigated by future experimentation.

A.8 SYNTHETIC DATA GENERATION FORMULATION

Our synthetic data generation can be formally representated as a probabilistic context-sensitive
grammar (PCSG). Mathematically, we parameterize our vanilla PCSG (without POS ambiguity) as
follows:

G = (N,Σ, P, S, α, v)

where N = {S,Q,QN , QA, PN , PA} is the set of nonterminal symbols, Σ =
{Ninit, Ainit, Nr, Ar, C} is the set of terminal symbols, S is the starting point (and notationally
also represents sequence), and α, v characterize the sampling probability distribution of our terminal
symbols. Our production rules P are

F →
{
S QN PN

S QA PA
with eq. prob.

S →
{
Ninit C Ainit

C Ainit Ninit
with eq. prob. Q →

{
QN

QA
with eq. prob.

QN → Nr QA → Ar

PN → Ar Ar Ar PA → Ar Nr Nr

with terminal symbols sampled from

Ninit ∼ Zipf
(
α, 0,

v

2
− 1

)
Ainit ∼ Zipf

(
α,

v

2
, v − 1

)
C → v

Nr → Ninit Ar → Ainit

Ninit captures a specific token that corresponds to a token and all references to Nr use this token
exactly, enforcing strict consistency.

Note our sampling distribution Zipf is a truncated Zipfian parameterized by the tuple (α, s, e) with a
probability mass function of

P(X = k) =
k−α

H(α, e− s)
for k = s, s+ 1, . . . , e, where H(α, n) =

n∑
k=1

k−α

We select tokens for <noun> ∈
{
0, 1, . . . v

2 − 1
}

and <adj> ∈
{

v
2 ,

v
2 + 1, . . . v − 1

}
. Thus,

given a particular vocabulary size v and Zipf parameter α, <noun> ∼ Zipf
(
α, 0, v

2 − 1
)

and
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<adj> ∼ Zipf
(
α, v

2 , v − 1
)
. To add further control to this setting, we introduce the parameter ε to

describe ambiguity in the solution - that is, a proportion of ε tokens in each of n = 10 bins grouped
by probability mass do not have a fixed POS but instead may be a noun or adjective with equal
likelihood.

Note that when α = 0, this distribution degenerates into Unif(s, e) and when ε = 0, each token has a
fixed identity.

A.9 SYNTHETIC POS TASK EXAMPLES

Before approaching more complex tasks, it is prerequisite to understand phenomenon in a controlled
and adjustable environment. Here, we clarify the design of our synthetic POS task a bit. Our task is
designed to 1) minimally emulate a subtask performed in language models: Part-of-Speech tagging
while 2) controlling for various confounds. In particular (1) it does not allows heuristics based on
token position and (2) is not deterministic based on the query.
Here are a couple clarifying examples (<sequence> <query> → <pattern>):

1. (a) is happy dog dog→ happy dog dog
(b) dog is happy dog→ happy dog dog
Note that in this example, we show that using two templates rules out a simple position-
based. If model assumes the noun occupies the 3rd position of the sequence, then in the
second sentence, the model will believe happy is the noun and falsely predict a response
pattern of dog dog dog.

2. (a) dog is happy dog→ happy dog dog
(b) dog is sad dog→ sad dog dog
Note that in this example, both queries are dog, yet the predicted pattern is different.
Context is necessary for correct prediction.

A.10 TOY MODEL

We employ a 6-layer BERT model across the synthetic setting experiments. Experiments were
performed with an MLM as less prior work has examined syntactic tasks with autoregressive models
and structure is much more difficult to intuit in autoregressive models as they are only exposed
to an ordered subset of the tokens in a sentence. This model has 1 attention head per layer, 64-
dimensional hidden dimensions, 128-dimensional intermediate representations, and tied weights
for the embedding and unembedding layers. We optimize model parameters with AdamW with a
learning rate of 5 × 10−5 (Loshchilov & Hutter, 2019). We chose a thin and long representation
to examine how representations evolve after each attention operation (for better granularity). The
hidden dimension sizes were decided per a minimax strategy, i.e. this representation dimensionality
was the smallest such that we achieved near perfect accuracy on a validation set for the downstream
task. Future work should better examine the effect of representation size on in-context vs. in-weights
learning.
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A.11 PERFORMANCE BY TOKEN DECILE

Figure 17: Increased weight decay has little/no effect on the failure of the structural ICL strategy
(we increase weight decay from 0.01 to 0.1). In contrast, active temporary forgetting boosts rare
token validation accuracy significantly, as seen in the tail of the distribution. Parameters are v =
10000, ε = 0.10, α = 1.5

We find that on highly skewed distributions, the tail of the distribution suffers immensely due to
undertraining. This phenomenon cannot be rectified by Singh et al. (2023)’s method of promoting
asymptotic ICL. However, we find that both active forgetting and temporary forgetting correct this
behavior to boost performance on tail tokens in skewed distributions from near-zero to near-perfect
levels.
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A.12 AMBIGUITY (ε) EXPERIMENTS

Figure 18: (Top) ε = 0.01, (Middle) ε = 0.10, (Bottom) ε = 0.50. Overall in-context strategy
is dependent by amount of ambiguity in the labels. With 50% of the tokens as ambiguous, all
unambiguous tokens use an in-context strategy; with 10%, there is a mixed strategy dependent on
where in the distribution the example is; with 1%, almost unambiguous tokens use a memorized
strategy. The vocab size is v = 10000

In all of our ambiguity experiments, structural ICL is transient (even whe 50% of tokens are ambigu-
ous). The ambiguity parameter significantly alters the models overall strategy. With a low ambiguity
parameter, the model prefers memorization (IWL strategy) of umambiguous tokens and with a high
ambiguity parameter, the model prefers an ICL strategy. Across all ambiguity parameters, there is a
difference in tail and head behavior.
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A.13 VOCABULARY SIZE (v) EXPERIMENTS

Figure 19: (Top) v = 1000, (Middle) v = 10000, (Bottom) v = 20000. The strength of an in-context
solution depends on the interaction between vocabulary size v and skewedness of the distribution α.
Too small of a vocabulary size (i.e. v = 1000) encourages more memorization in general but fixes
performance in α = 1.5 setting. The ambiguity is ε = 0.10.

In all of our vocabulary experiments, structural ICL is transient. As expected, we find that vocabulary
size has a similar effect to the skewedness of the distribution. That is, increasing the vocabulary
without bound would lead to poor tail ICL performance. Too small of a vocabulary size seems to
increase ICL among very skewed distributions but decrease ICL among all other distributions.
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A.14 EMBEDDING ANALYSIS

We perform qualitative analyses on the embeddings produced by vanilla training (i.e. standard training
without modification), active forgetting, and temporary forgetting in order to better understand how
these training regimens impact model representations. These analyses, consisting of principal
component analysis (PCA) and probing for POS, are located in Appendix A.15.

After vanilla training, the learned embeddings cluster according to their POS, far from the distribution
of randomly-initialized tokens. We train a linear probe on these learned embeddings, and find that it
can almost perfectly partition nouns and adjectives. Note that the disappearance of structural ICL
occurs at the same time as the probe achieves above-random POS probing (i.e. memorization).

As expected, we do not see any structure in the embeddings produced after active forgetting. As such,
a linear POS probe trained on these embeddings never achieves above random chance throughout
training. The embedding distribution looks quite similar to the random initialization distribution,
indicating that no information has been encoded in these embeddings.

Finally, the temporary forgetting setting reflects aspects of both vanilla training and active forgetting;
that is, the head of the token distribution learns to partition nouns and adjectives whereas the tail
of the distribution does not learn any structure. The tail embeddings much more closely resemble
the initialization distribution with temporary forgetting than with vanilla training. This results in a
unseen token generalization in addition to memorized information.

A.15 PRINCIPLE COMPONENT ANALYSIS OF EMBEDDINGS

Figure 20: Vanilla training imposes structure on the adjectives and nouns such that randomly
initialized (unseen) tokens are out-of-distribution whereas active forgetting embeddings resemble the
initial distribution. Parameters used are v = 10000, α = 1.0001, ε = 0.10.

We find that while vanilla training results in embeddings that lie on a manifold, active forgetting
results in embeddings that look similar to the initial distribution. This helps motivate our use of
temporary forgetting as we would like to preserve embedding structure. Moreover, note that in the
above figure we use α = 1.0001 and PCA whereas in Figure 1 (Bottom Right), we use α = 1.5 and
T-SNE. The tail tokens in the higher skew distribution see fewer gradient updates and thus resemble
the randomly initialized (unseen) tokens more (in addition to T-SNE likely being a better visualization
tool).
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Figure 21: Vanilla training learns to partition noun and adjective embeddings in the head of the
distribution, and some structure in the tail. Active forgetting learns no separation between noun and
adjective embeddings. Temporary forgetting learns structure in the head of the distribution and no
structure in the tail of the distribution. Parameters used are v = 10000, α = 1.2, ε = 0.10.
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A.16 OTHER RANDOM DISTRIBUTION GENERALIZATION

Note that while we define structural in-context learning as free from reliance on any encoded
semantic information, it is important to note that this does not mean that structural in-context learning
assumes no geometry of the space. In fact, this would be practically impossible to achieve because
connectionist networks function in a geometric space and take advantage of orthogonality, translation,
scaling, etc. If we cannot make assumptions about the distribution from which the data is sampled,
then we deprive our networks of their toolbox. Still, we test on random sampling distributions for the
embeddings other than our initialization distribution. Namely, we test on a uniform distribution from
0 to 1 and a large normal distribution with mean of 5 and standard deviation of 5.

Figure 22: Vanilla training fails on all random tokens, whereas active/temporary forgetting succeed
on the random distribution of initialization. Active and stop forgetting do not generalize to arbitrary
random distributions, although show some generalization to normal distributions with large means
and variances.

A.17 REQUIRED COMPUTE FOR EXPERIMENTS

We employed compute resources at a large academic institution. We scheduled jobs with SLURM.
For our naturalistic experiments, each MultiBERT seed required 24 separate runs (one per tested
checkpoint at a particular timestep), which totaled ≈ 100 hours on an RTX A5000 with 24 GB
of GPU memory. Over 3 seeds, this was ≈ 300 hours of GPU usage. For our synthetic setting,
the vanilla training required 64 separate runs (one per hyperparameter combination of vocab size,
ambiguity, and sampling distribution), which totaled ≈ 250 hours of RTX A5000 usage. Likewise,
our active forgetting and temporary forgetting interventions took a similar amount of GPU usage.
Therefore, in total, our GPU usage for all synthetic experiments summed up to about 750 hours.
We ran experiments mostly in parallel with SLURM to iterate quickly. Compute was a significant
limitation for the development time and informed our development of training interventions in a
synthetic setting. In total, our GPU usage was significantly higher than the reported number due to
various failed/modified experiments. The total compute likely was around 20,000 GPU-hours on
RTX A5000s, although this is a rough estimate.
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