
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FAT-TO-THIN POLICY OPTIMIZATION:
OFFLINE RL WITH SPARSE POLICIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Sparse continuous policies are distributions that can choose some actions at random
yet keep strictly zero probability for the other actions, which are radically different
from the Gaussian. They have important real-world implications, e.g. in modeling
safety-critical tasks like medicine. The combination of offline reinforcement learn-
ing and sparse policies provides a novel paradigm that enables learning completely
from logged datasets a safety-aware sparse policy. However, sparse policies can
cause difficulty with the existing offline algorithms which require evaluating actions
that fall outside of the current support. In this paper, we propose the first offline
policy optimization algorithm that tackles this challenge: Fat-to-Thin Policy Opti-
mization (FtTPO). Specifically, we maintain a fat (heavy-tailed) proposal policy
that effectively learns from the dataset and injects knowledge to a thin (sparse)
policy, which is responsible for interacting with the environment. We instantiate
FtTPO with the general q-Gaussian family that encompasses both heavy-tailed and
sparse policies and verify that it performs favorably in a safety-critical treatment
simulation and the standard MuJoCo suite.

1 INTRODUCTION

Sparse continuous policies are distributions that can choose some actions at random, yet can maintain
strictly zero probability for the other actions. Therefore, they present a radically different solution than
the Gaussian policy which has been standard in the existing policy optimization algorithms (Haarnoja
et al., 2018; Abdolmaleki et al., 2018). Sparse policies have important real-world implications, e.g.
in safety-critical tasks such as treatment where dangerous actions should never be picked but some
other actions should be explored (Fatemi et al., 2021; Yu et al., 2021). Infinite-support policies like
the Gaussian or the heavy-tailed distributions (Kobayashi, 2019; Zhu et al., 2024b) are hence not
suitable in this regard. When sparse policies coupled with offline reinforcement learning (RL), an
attractive and novel paradigm emerges: a safe sparse policy can be learned completely from a logged
dataset without potentially harming the environment in an online manner.

However, sparse policies pose a challenge to the existing offline deep RL algorithms: the dataset
actions can fall outside of the sparse policy’s support, leading to undefined log-likelihood and hence
learning failure. The same issue persists for off-policy algorithms since offline learning can be seen
as an extreme case of off-policy learning. Note that this issue does not occur for infinite-support
policies like the Gaussian but rather is inherent to all sparse policies. To the best of our knowledge,
there is no systematic solution to the problem of out-of-support actions in offline learning incurred by
sparse policies. Existing methods resort to ad hoc solutions such as approximating the sparse policy
with the Gaussian (Lee et al., 2020; Xu et al., 2023) or replacing out-of-support actions with random
in-support actions (Zhu et al., 2024b).

In this paper we propose Fat-to-Thin Policy Optimization (FtTPO) that for the first time addresses
the problem of offline learning with out-of-support actions induced by sparse policies. Our method
consists of two steps: learning an infinite-support policy (either the Gaussian or the heavy-tailed)
from the dataset, then imparting its knowledge to a sparse policy. Since there is no prior work
directly comparable, we compare FtTPO against the existing ad hoc tricks and popular offline
algorithms. As it is commonly perceived that the sparse policies are inherently handicapped at the
exploration-exploitation tradeoff, we find it surprising that the sparse policy learned by FtTPO can
outperform full-support policies: FtTPO competes favorably against the popular offline algorithms

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

that use the Gaussian by default. To summarize, our contributions include: (1) we are the first to
investigate the out-of-support action issue with offline learning incurred by sparse policies; (2) we
propose Fat-to-Thin Policy Optimization: the first deep offline RL framework for learning sparse
policies; (3) we verify the sparse policy learned by FtTPO can indeed concentrate on a small band of
actions. Therefore, it outperforms existing popular baselines on a safety-critical treatment simulated
environment and the MuJoCo suite.

2 BACKGROUND

We focus on discounted Markov Decision Processes (MDPs) expressed by the tuple (S,A, P, r, γ),
where S and A denote state space and action space, respectively. Let ∆(X ) denote the set of
probability distributions over X . P : S ×A → ∆(S) denotes the transition probability function, and
r(s, a) defines the reward associated with that transition. γ ∈ (0, 1) is the discount factor. A policy
π : S → ∆(A) is a mapping from the state space to distributions over actions. In this paper we
focus on the offline setting where we learn from a fixed dataset D that stores transitions. We denote
the behavior policy that generates the dataset by πD. The learninig goal is to search for an optimal
policy that maximizes long-term accumulated rewards. We define the action value and state value as
Qπ(s, a) = Eπ [

∑∞
t=0 γ

tr(st, at)|s0 = s, a0 = a], V π(s) = Eπ [Qπ(s, a)].

We specifically consider policies defined by the deformed q-exponential function. The q-exponential
function and its unique inverse function q-logarithm are defined by (Naudts, 2002):

expqx =

{
expx, q = 1

[1 + (1− q)x]
1

1−q
+ , q ̸= 1

lnqx :=

{
lnx, q = 1
x1−q−1
1−q , q ̸= 1,

where [·]+ = max{·, 0} sets negative part of the input to zero. Note that expqxy ̸= expqx expqy
unless q = 1 and the same for lnqxy (Tsallis, 2009). When q < 1, it is clear that for the q-exp
truncates x < − 1

1−q , i.e.

expq<1 x = 1{(1 + (1− q)x)
1

1−q ≥ 0} · (1 + (1− q)x)
1

1−q .

We can use this property to define sparse distributions. Prior works focused on discrete sparsemax
policies (Martins & Astudillo, 2016; Lee et al., 2018; Chow et al., 2018; Lee et al., 2020). In this
paper we consider continuous sparse policies, especially the q-Gaussian (Naudts, 2010; Furuichi,
2010; Matsuzoe & Ohara, 2011).

3 OFFLINE LEARNING WITH SPARSE POLICIES

Offline RL algorithms typically require evaluating actions produced by behavior policies using the
current policy, e.g. in computing the log-likelihood. The Gaussian policy as the standard choice does
not incur any issue since it is an infinite-support distribution that can always yield nonzero probability
for offline actions. By contrast, the actions may fall outside the support of a sparse policy, resulting
in numerical issues or even failed learning.

3.1 WHEN SPARSE POLICIES CAN FAIL

For simplicity, we illustrate the sparse policy issue by assuming an actor-critic framework where the
actor minimizes the forward KL divergence between the desired policy and the parametrized policy.
This setting is common in offline RL and has several popular variants (Jaques et al., 2020; Wu et al.,
2020; Nair et al., 2021). The loss can be written as:

LForwardKL(ϕ) : = Es∼D [DKL(πdesired(·|s) ||πϕ(·|s))]
= E s∼D

a∼πdesired

[lnπdesired(a|s)− lnπϕ(a|s)] ,

= E s∼D
a∼πdesired

[− lnπϕ(a|s)] .
(1)

Minimizing this loss amounts to maximizing the log-likelihood of πϕ under the actions sampled
from the desired policy. The last line ignores the term not depending on the optimization variable ϕ.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

0 50 100

0

40

80

HalfCheetah
Medium-Expert

Step (×104)

S
co

re

FtTPO

ReverseKL

RAR

Figure 1: (Left) Illustration of offline learning with a sparse policy. The red histogram represents an
empirical behavior policy. The blue distribution indicates the sparse policy being learned. Actions
outside the intersection have zero probability under the learned policy. Therefore, their log-likelihood
will return −∞. (Middle) The random action replacement (RAR) trick used by (Zhu et al., 2024b).
When an out-of-support (OOS) action appears as the red dot, it is replaced by the nearest in-support
action (purple dots) sampled from the policy in the L2 sense. This method falls short in high
dimensional spaces like the MuJoCo suite. (Right) Performance of the proposed FtTPO against the
ad hoc tricks RAR and reverse KL on the MuJoCo Halfcheetah environment, averaged over 10 seeds.

Typically, πdesired is set to the behavior policy πD (or sampling only from the dataset for in-sample
learning (Fujimoto et al., 2019)). It is clear that when πϕ is specified as an infinite-support policy like
the Gaussian, optimizing lnπϕ(πD(s)|s) does not incur any issue. However, when πϕ is designated
to be a sparse policy, its support can be disjoint with the behavior policy, i.e. πϕ(πD(s)|s) = 0
and therefore lnπϕ(πD(s)|s) returns −∞. Figure 1 left illustrates this process. The red histogram
represents an empirical behavior policy. The blue policy indicates the sparse policy being learned.
Behavior actions outside the intersection cannot be used in log-probability evaluation.

3.2 AD HOC SOLUTIONS

Since the issue of out-of-support actions have not been studied before, there is no systematic solution
to the best of our knowledge. We discuss some ad hoc tricks used by existing works. These tricks
include random action replacement or reverse KL loss minimization (Zhu et al., 2024b). Random
action replacement (RAR) refers to replacing the out-of-support action with the nearest in-support
action sampled from the current policy, as visualized in the middle of Figure 1. However, it should be
noted that this method becomes increasingly ineffective as dimension grows, since in high dimension
spaces samples are increasingly concentrated inside the ellipsoid (Martins et al., 2022). As a result, it
becomes more and more difficult to sample actions near the boundary of the sparse policy. In Figure
1 we visualize the performance of RAR which shows slow learning on the example environment.

Another potential solution is to avoid offline actions from the behavior policy. For example, this can
be done by sampling from the learning policy itself. By reversing the direction of the KL divergence
in Eq. (1) the loss becomes a reverse KL divergence (Chan et al., 2022):

LReverseKL(ϕ) : = Es∼D [DKL(πϕ(·|s) ||πD(·|s))]
= E s∼D

a∼πϕ
[lnπϕ(a|s)− lnπD(a|s)] . (2)

Since actions are now sampled from πϕ, no out-of-support issue will occur. However, in practice
we find this method performs poorly, as can be seen from Figure 1. We conjecture that the inability
of reverse KL alone is due to the finite support of sparse policies, which cause the sampled actions
to concentrate around its mode and therefore no significant update can be performed, resulting in
extremely slow learning.

4 FAT-TO-THIN POLICY OPTIMIZATION

In Section 3 we discussed several important considerations underlying popular offline learning
methods. They can be instructive even for learning sparse policies, e.g. using samples from the
dataset directly or from a learned behavior policy for learning stability. Our proposed method builds

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

upon these considerations and takes inspiration from recent advances in two-stage actor-critic methods
(Neumann et al., 2023). We discuss related work in more detail in Section 6.

4.1 TWO-STAGE LEARNING

Recent studies explore two-stage actor-critic methods that aim to efficiently learn an unbiased policy.
The first policy, called the proposal policy, often maximizes biased reward (e.g. with entropy bonus).
It is used to generates actions for the second stage. The second policy – called the actor policy –
maximizes unbiased reward by learning from the actions sampled from the proposal policy,

Taking inspiration from this design, we formulate our Fat-to-Thin Policy Optimization by maintaining
two policies for different purposes: an infinite-support policy (fat) that learns from the offline dataset,
parametrized by ϕ; and a sparse policy (thin) that learns from the actions generated by the fat policy,
parametrized by θ. Specifically, we follow the common practice Eq. (1) for the first stage and
minimizes the reverse KL divergence between the two policies. The loss functions of FtTPO can be
expressed as the following:

LFat, Proposal(ϕ) := E s∼D
a∼πD

[−w(s, a) lnπϕ(a|s)] , (3)

LThin, Actor(θ) := Es∼D [DKL(πθ(·|s) ||πϕ(·|s))]

≈ E s∼D
a∼πθ

[
πϕ(a|s)
πθ(a|s)

+ lnπθ(a|s)− lnπϕ(a|s)− 1

]
.

(4)

In the proposal loss, we have an additional coefficient w(s, a) for weighting the importance of actions.
By letting w(s, a) = 1, it is clear that LFat, Proposal recovers the forward KL case in Eq. (1). We discuss
more choices that can facilitate learning in Section 4.3. Computing the KL divergence involving a
sparse policy can be very unstable. Therefore, we propose to do the following two steps for the actor
loss: (1) before every update of the actor, copy the proposal mean to the actor; (2) use an unbiased
estimator of KL divergence that has less variance (Schulmann, 2020).

While LFat, Proposal(ϕ) and LThin, Actor(θ) alone – respectively corresponding to forward and reverse
KL minimization – cannot learn sparse policies, FtTPO can successfully learn one that competes
favorably against popular existing methods. We attribute the success to the two-stage framework
where the thin policy allows for further improvement of the behavior-constrained fat policy. It is
also worth noting that many other alternatives are possible for learning the fat and thin policies. Our
choice is based on simplicity and performance. Some more sophisticated methods like SPOT (Wu
et al., 2022) do not lead to better performance. We discuss them in related work and verify that in the
experiment section.

4.2 INSTANTIATING FTTPO WITH q-GAUSSIANS

While in principle any distribution can be used for the fat and thin policy, we consider the q-Gaussian
family which includes both heavy-tailed and sparse members (Naudts, 2010; Zhu et al., 2024b):

πNq (a|s) =
1

Zq(s)
expq

(
− (a− µ(s))2

2σ(s)2

)
,

where Zq(s) =

σ(s)
√

π
1−q Γ

(
1

1−q + 1
)
/ Γ
(

1
1−q +

3
2

)
if −∞ < q < 1,

σ(s)
√

π
q−1 Γ

(
1
q−1 − 1

2

)
/ Γ
(

1
q−1

)
if 1 < q < 3.

(5)

Here, µ(s), σ(s) refer to the state-conditioned mean and standard deviation. Zq denotes the normal-
ization constant that ensures the policy integrates to 1. Without confusion we omit the dependence on
the state. Recall that when q = 1 the q-Gaussian recovers the standard Gaussian distribution. q < 1
corresponds to sparse distributions and 1 < q < 3 to the heavy-tailed.

We can set πϕ as a heavy-tailed q-Gaussian and πθ as a sparse q-Gaussian in Eq. (3). We choose
q = 0 for the thin policy and q = 2 for the fat policy, which are standard values (Chow et al., 2018;
Zhu et al., 2024b). To sample from the q-Gaussians, we resort to the Generalized Box-Müller Method
(GBMM) to map uniform random variables to q-Gaussian variables for all q < 3 (Thistleton et al.,
2007). Specifically, we sample u1, u2 ∼ Uniform(0, 1) and compute the following:

z1 =
√
−2 lnq′ (u1) · cos (2πu2) , z2 =

√
−2 lnq′ (u1) · sin (2πu2) , (6)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

then each of z1, z2 is a standard q-Gaussian with new index q = (3q′ − 1)/(q′ + 1). Often we know
the desired q in advance (as is the case for our fat and thin policies q = 2 and q = 0), we simply
generate variables by using q′ = (q − 1)/(3 − q). To sample from Nq(µ,Σ) where µ denotes an
N -dimensional mean vector and Σ an N ×N covariance matrix, we sample uniform random vectors
u1,u2 ∼ Uniform(0, 1)N and compute the transformed z entry-wise via the GBMM. The desired
random vector is given by µ+Σ

1
2 z.

4.3 q-EXPONENTIAL AS WEIGHTING COEFFICIENT

Many weighting schemes have been proposed to promote "good actions" in Eq. (3). One prominent
example is the exponential advantage function w(s, a) := exp

(
Q(s,a)−V (s)

τ

)
, where τ is the tem-

perature coefficient (Peng et al., 2020; Nair et al., 2021). When an action has large advantage value,
its log-likelihood will be emphasized and the others implicitly de-emphasized. This scheme is the
basis of many state-of-the-art algorithms (Kostrikov et al., 2022; Garg et al., 2023; Xu et al., 2023).
However, it is worth noting that due to the non-negativity of exp function, all actions will receive
nonzero weights regardless of how bad an action is.

We propose to change the exponential function to a q-exp: w(s, a) := expq

(
Q(s,a)−V (s)

τ

)
with

q < 1. The q-exp weights has an desirable effect of filtering out "bad actions" with low advantages
thanks to the sparsity of q-exp:

1

{(
1 + (1− q) · Q(s, a)− V (s)

τ

) 1
1−q

≥ 0

}
·
(
1 + (1− q) · Q(s, a)− V (s)

τ

) 1
1−q

.

Since the root does not affect the sign, it is clear that the q-exp weighting will truncate actions with
advantage Q(s, a)−V (s) < − τ

1−q . But higher q can shrink the magnitude of the advantage function.
Since it has been shown by (Zhu et al., 2023) that the role of q and τ are interchangeable in this
regard, we can safely choose q = 0. The q-exponential advantage weighting has been shown to
achieve superior performance in the single actor policy setting (Xu et al., 2023; Zhu et al., 2024a).
The experiments verify the sparse policy performs competitive against the original method.

FtTPO is listed in Algorithm 3. For simplicity, we assume at every policy update step t the action
value Qψt parametrized by ψt and state value Vζt parametrized by ζt are available. They are trained
by the standard critic learning procedures which will be detailed in the appendix. Recall that we set
the entropic index qw = 0 for the weighting coefficient w(s, a), but in principle any qw < 1 will
have the filtering property. We initialize by Alg. 1 and sample from the policies by Alg. 2. The loss
functions are empirical expectations Ês,a over the sampled states and actions.

Algorithm 1: q-Gaussian Initialization
Input: qf > 1 and qs < 1
Init. πϕ by Nqf (µϕ,Σϕ) per Eq. (5)
Init. πθ by Nqs(µθ,Σθ)
return πϕ, πθ

Algorithm 2: q-Gaussian Sampling
Input: q′, N,µ,Σ
sample u1,u2 ∼ Uniform(0, 1)N

compute z=
√
−2 lnq′(u1) · cos (2πu2)

return µ+Σ
1
2 z

Algorithm 3: Fat-to-Thin Policy Optimization
Input: D, T, τ > 0, qw < 1
Initialize policies by Alg. 1 ;
while t < T do

sample states s from dataset D ;
sample actions a from behavior policy πD;
compute Qψt(s, a) and Vζt(s);
update ϕt to ϕt+1 by minimizing
−Ês,a

[
expqw

(
Qψt (s,a)−Vζt (s)

τ

)
lnπϕt(a|s)

]
;

sample b from πθt by Alg. 2;
copy µϕt+1

to µθt ;
update θt to θt+1 by minimizing
Ês,b

[
πϕt (b|s)
πθt (b|s)

− 1− ln
πϕt (b|s)
πθt (b|s)

]
;

end

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0 20 40

−15

−10

−5

Learning Curve

Step (×104)

S
co

re

FtTPO

IQL

XQL

SQL

−1.0 −0.5 0.0 0.5 1.0

Action

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

Final Policy

0.3 0.4 0.5 0.6 0.7 0.8

Action

0.0

0.2

0.4

0.6

0.8

1.0

1.2

D
en

si
ty

Actor Proposal

FtTPO Policy

Figure 2: (Left) Scores across the learning. FtTPO attained the highest score, indicating it has learned
a safety-aware treatment strategy. The sub-optimal scores of the baselines suggest potential unsafe
actions. The solid lines show the mean and the ribbons 95% confidence interval. (Middle) The final
policy learned by each algorithm. Only FtTPO managed to learn a sparse yet stochastic policy tightly
concentrating around a small band of actions. By contrast, SQL collapsed into a delta-like policy
due to approximating a sparse policy with Gaussian. Other baselines have overly large randomness.
(Right) The FtTPO actor policy learns from the proposal policy by truncating its heavy tails and
retaining only the crucial trunk.

-2
-1

0
1

2

A
ction 0

1
2

3
4

Steps (x102 )

0

0.5

1

D
en

si
ty

FtTPO Actor FtTPO Proposal

Policy Evolution on Synthetic Environment
FtTPO Proposal and Actor

-2
-1

0
1

2

A
ction 0

1
2

3
4

Steps (x102 )

0

0.5

1

D
en

si
ty

FtTPO

IQL

XQL

SQL

SPOT

Policy Evolution on Synthetic Environment
FtTPO Actor and Baselines

Figure 3: The policy evolution plots over the first 400 updates. LHS shows that the FtTPO proposal
policy located a high-reward region and then the actor policy concentrated by removing the heavy
tails. RHS compares the FtTPO actor against other baselines using the Squashed Gaussian policy.
All baselines tended to have overly large randomness which can result in dangerous dosage.

5 EXPERIMENTS

In the experiments, we first verify that FtTPO is capable of learning a sparse and safe policy on
a simulated medicine environment. Then on the D4RL Mujoco benchmark, we demonstrate that
FtTPO can perform favorably against several popular offline algorithms that by default employ the
Gaussian policy. Lastly, we examine in the ablation studies that FtTPO improves on its components.
Implementation details are available in Appendix A.

Baselines. We choose several state-of-the-art methods as the baselines to verify that FtTPO can
competes favorably against them both in in terms of safety and performance. Specifically, we choose
XQL (eXtreme Q Learning) that learns a maximum entropy policy without the entropy bias (Garg
et al., 2023); SQL (Sparse Q Learning) that approximates an α-divergence induced sparse policy with
the Gaussian (Xu et al., 2023), InAC (In-sample Softmax Actor-Critic) (Xiao et al., 2023) and IQL
(Implicit Q Learning) (Kostrikov et al., 2022) that have been shown to perform very competitively.
Implementation details such as the Hyperparameter tuning are provided in Appendix A.2. For the
baselines their published settings are used.

5.1 SAFETY-CRITICAL TREATMENT SIMULATION

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

In this paper we consider the case where safety is explicitly coded into reward, so higher cumulative
reward suggests a safety-respecting policy. However, this may not always be true and extra care
is required when reward and safety need to be considered separately. We defer such investigation
to future study. We opt for the synthetic environment used in (Li et al., 2023) that simulates real
circumstances for continuous treatment. Note that only the most challenging environment is used
here. The environment has 8-dimensional state space and an unbounded action space. Safety is
explicitly coded into the reward function, such that danger is defined as cumulative dosage exceeding
a pre-specified threshold. Note that the states are also conditional on past dosage, therefore danger
states can vary depending on the dosage in the beginning states, see Appendix A for detail. According
to (Li et al., 2023), the optimal dosage is unique, and a high dosage leads to excessive toxicity while
a lower dosage is ineffective (Lu et al., 2022). We expect that the sparse policy can achieve superior
performance by randomly selecting dosage from a sub-interval and by strictly setting the action
probability of other dosage to 0. The offline dataset contains 50 trajectories each comprising 24 steps.

Figure 2 shows the performance. All the algorithms are run for 10 seeds. The solid lines show
the mean and the ribbons 95% confidence interval. It is visible that FtTPO outperformed all the
baselines in this safety-aware task. All baselines except the SPOT converged to a sub-optimal band of
scores as a result of their Squashed Gaussian policies. Indeed, from the middle subplot it can be seen
that the baselines tended to have overly large randomness which can sometimes adopt dosage that
are not safe. The SQL final policy collapsed as the result of approximating a sparse policy using the
Gaussian. By contrast, FtTPO managed to learn a sparse yet stochastic policy tightly concentrating
around the optimal action. The last subplot visualizes the synergy in FtTPO: the proposal policy
located a high-reward region, and the actor truncated its heavy tails and kept only the essential trunk.

To better visualize the learning process, Figure 3 shows the policy evolution plots for the first 400
updates. The left hand side shows how the FtT proposal and actor policies worked together in locating
a high reward region and then concentrating on it by removing heavy tails. The right hand side
compares the FtT actor with the baselines that used the default Squashed Gaussian policy. It is clear
that the baselines tended to have overly large randomness spanning the action range [−2, 2] which
can result in dangerous dosage.

5.2 MUJOCO

The D4RL MuJoCo suite has been a standard benchmark for testing various offline RL algorithms. In
this section we compare FtTPO against the baselines on 9 datasets each corresponding to a behavior
policy level and environment combination. We also include Tsallis Advantage Weighted Actor-Critic
(TAWAC) and AWAC as baselines, which respectively corrrespond to the proposal policy only and
the exponential advantage weighting setting. We run all algorithms for 1× 106 steps and average
over 10 seeds.

-2
-1

0
1

2

A
ction 0

10
20

30
40

Steps (x102 )

0

0.5

1

D
en

si
ty

FtTPO Actor FtTPO Proposal

Policy Evolution on HalfCheetah
FtTPO Proposal and Actor

Figure 5: Policy evolution of the 1st action dimen-
sion of FtTPO on HalfCheetah Medium-Expert.

Figure 4 shows the full result. Only FtTPO and
the environment-specific best algorithm from
the baselines are shown with full transparency.
Others are shown with low transparency for
uncluttered visualization. The best baseline is
picked by the final score. Recall that XQL, SQL,
InAC, TAWAC are very competent on the Mu-
JoCo tasks.

Given that it is commonly perceived that the
sparse policies are inherently handicapped at the
exploration-exploitation tradeoff, and no past
prior work has demonstrated competitive per-
formance to the infinite-support policies, it may
come as a surprise that FtTPO performs favor-
ably to or sometimes better than those state-of-
the-art algorithms even with a sparse actor.
This result suggests that full-support random-
ness might not be necessary. Rather, learning a

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 25 50 75 100

0

50

100

HalfCheetah
Medium-Expert

0 25 50 75 100

0

20

40

HalfCheetah
Medium-Replay

0 25 50 75 100

0

20

40

HalfCheetah
Medium

0 25 50 75 100

0

50

100

Hopper
Medium-Expert

0 25 50 75 100

0

35

70

Hopper
Medium-Replay

0 25 50 75 100

0

35

70

Hopper
Medium

0 25 50 75 100

0

50

100

Walker2d
Medium-Expert

0 25 50 75 100

0

35

70

Walker2d
Medium-Replay

0 25 50 75 100

0

35

70

Walker2d
Medium

Step (×104)

S
co

re

FtTPO IQL InAC TAWAC AWAC XQL SQL

Figure 4: Comparison between FtTPO and the baselines on the MuJoCo. Only FtTPO and the
environment-specific best performing algorithm are shown with full transparency. The best algorithm
is picked using the final score. All algorithms are run for 10 seeds. The solid lines show the mean
and the ribbons 95% confidence interval.

sparse policy yet not deterministic, with randomness only in a fixed region could be more preferable.
This can be seen from Figure 5 plotting evolution of the 1st action dimension. See Figure 15 for all
dimensions.

5.3 ABLATION STUDY

In the ablation studies we are interested in answering the following questions: (1) are more sophisti-
cated methods that sample from the learned policy such as SPOT (see equation 7) superior to the
simple FtTPO actor KL minimization? (2) is FtTPO inferior to its proposal only setting, which
has been shown to be performant in the MuJoCo benchmark? Note that the proposal-only setting
is a competitive baseline that learns a heavy-tailed policy rather than a sparse policy. (3) is the
heavy-tailed q-Gaussian FtTPO proposal policy better than the Gaussian?

To answer these questions, we evaluate the final scores of the aforementioned combinations and
visualize the proportion relative to the FtTPO scores in Figure 6. Here, 100% means exactly the same
final score as the FtTPO. It can be seen that despite the simplicity of FtTPO, (1) the KL minimization
actor loss is on par with sophisticated SPOT actor learning loss, with FtTPO-SPOT performed
slightly better on only 3 environments. (2) even FtTPO outputs a sparse policy, the performance is no
worse than the proposal policy which yields a heavy-tailed policy. (3) overall, FtTPO + Squashed
Gaussian policy (FtTPO-SG) performed significantly poorer than FtTPO, with exception only on the
Medium-Replay Hopper environment.

6 RELATED WORKS

FtTPO draws a connection to many existing works. But perhaps the most similar work to ours is the
Greedy Actor-Critic (GAC) that adopts a two-stage policy learning scheme for learning unbiased
reward-maximizing solutions. There are other methods allowing sampling from thin policy such
as the Supported Policy OpTimization (SPOT), which can be used for learning the thin policy. We

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

M
ed

iu
m

-E
xp

er
t

M
ed

iu
m

-R
ep

lay

M
ed

iu
m

M
ed

iu
m

-E
xp

er
t

M
ed

iu
m

-R
ep

lay

M
ed

iu
m

M
ed

iu
m

-E
xp

er
t

M
ed

iu
m

-R
ep

lay

M
ed

iu
m

60.0

80.0

100.0

120.0

F
in

al
P

er
fo

rm
an

ce
P

ro
p

ot
io

n
al

to
F

tT
P

O
(%

)

HalfCheetah Hopper Walker2d

FtTPO-SG

FtTPO-SPOT

TAWAC-HT

Figure 6: Propotion of final score of FtTPO-SPOT and TAWAC-HT relative to FtTPO. The similar
score verifies that the simple FtTPO actor loss is robust and does not lead to inferior performance
compared to more complex actor learning procedure (FtTPO-SPOT) and to the FtTPO proposal only
setting (TAWAC-HT). The overall better performance to FtTPO-SG (Squashed Gaussian) validates
the heavy-tailed proposal policy.

compare against it in the ablation study. Finally, the q-exponential distributions which are frequently
used in the physics literature are reviewed.

Two-stage policy optimization. Greedy Actor-Critic (GAC) is an online algorithm that considers
the conditional cross-entropy method as its actor loss function (Rubinstein, 1999). GAC maintains a
entropy-regularized proposal policy to provide high-valued actions for updating the unregularized
actor interacting with the environment (Neumann et al., 2023). Specifically, GAC optimizes the
following actor losses:

LGAC, Proposal(ϕ) := E s∼µ
a∼I(k,πϕ)

[− lnπϕ(a|s)− αH (πϕ(·|s))] ,

LGAC, Actor(θ) := E s∼µ
a∼I(k,πϕ)

[− lnπθ(a|s)] ,

where H (π) denotes the Shannon entropy and α > 0 the coefficient. I(k, πϕ) denotes the set of
the top k% actions: the action values of the sampled actions are computed and ranked, and then
the actions of the top k% are extracted. GAC maximizes entropy-regularized log-likelihood for the
proposal policy to facilitate exploration and log-likelihood for the actor. We find the set I(k, πϕ) does
not bring noticeable improvement. Therefore, we simply use all samples from the policy.

In-support sampling and updating. Unlike other methods that sample from the dataset or the
behavior policy, Supported Policy OpTimization (SPOT) constrains the policy to be close to the
behavior policy by sampling from the learned policy itself (Wu et al., 2022). SPOT learns an
actor policy πϕ that maximizes action value and log-likelihood of the behavior policy acting as a
regularization term:

LSPOT(ϕ) := E s∼D
a∼πϕ

[−Q(s, a)− α lnπD(a|s)] , (7)

SPOT samples actions from πϕ and imposes constraints directly on the density. While SPOT can
also be used for learning the thin policy learning step, we find that empirically it is on better than the
simple KL minimization. We show the results in the ablation study Section 5.3.

Sparse and heavy-tailed policies for RL. The Gaussian policy has been the default choice for
handling continuous action spaces. Some research works explored heavy-tailed policies such as the
Student’s t (Kobayashi, 2019) or more generally the heavy-tailed q-Gaussian (Zhu et al., 2024b).
These attempts showed promising performance of the heavy-tailed policies as alternatives to the
Gaussian. Li et al. (2023) explored sparse q-Gaussian with q = 0 implemented by the kernel
embedding and fixed-length trajectories. But they did not investigate the out-of-support issue and
their implementation required manual design of basis functions specific to simple environments.
We provide a general framework empowered by deep networks to learn arbitrary q-Gaussians that
perform favorably in high-dimensional tasks.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

7 CONCLUSION

Sparse policies combined with the offline reinforcement learning framework gave rise to a promising
new paradigm. It became possible to obtain a safety-aware yet exploratory sparse policy important
for realistic systems completely from logged datasets. However, this combination raised a challenge
to the existing offline algorithms that require evaluating dataset actions that may fall outside of the
sparse policy’s support, giving rise to numerical issues and learning failure.

In this paper we proposed Fat-to-Thin Policy Optimization, the first deep offline learning algorithm
addressing this issue. We demonstrated that FtTPO was indeed capable of learning a sparse policy
that outperformed the popular algorithms in a safety-critical treatment simulation and on the standard
MuJoCo control tasks. Policy evolution plots verified that the ability to tightly concentrate around a
subset of actions was the key to its superior performance. We conducted ablation studies to verify
that the simplicity and sparse policy did not lead to worse performance than its more complex and
heavy-tailed counterparts.

Currently, there are few works that study sparse policies in RL. An open question remains that what
specific effect the sparse policies bring, e.g. to quantifying the safety-awareness in offline RL or to
the exploitation-exploration tradeoff in the online context. This paper focused on offline learning
where no exploration is required. But an interesting future direction is to investigate the theoretical
implications brought by the sparse policies. For example, it would be interesting to analyze how
exploitation capability is gained at the cost of exploration by truncating the heavy tails.

REFERENCES

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Martin
Riedmiller. Maximum a posteriori policy optimisation. In International Conference on Learning
Representations, 2018.

Alan Chan, Hugo Silva, Sungsu Lim, Tadashi Kozuno, A. Rupam Mahmood, and Martha White.
Greedification operators for policy optimization: Investigating forward and reverse kl divergences.
Journal of Machine Learning Research, 23(253):1–79, 2022.

Yinlam Chow, Ofir Nachum, and Mohammad Ghavamzadeh. Path consistency learning in Tsallis
entropy regularized MDPs. In International Conference on Machine Learning, pp. 979–988, 2018.

Mehdi Fatemi, Taylor W. Killian, Jayakumar Subramanian, and Marzyeh Ghassemi. Medical dead-
ends and learning to identify high-risk states and treatments. In Advances in Neural Information
Processing Systems (NeurIPS), 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In Proceedings of the 36th International Conference on Machine Learning, pp.
2052–2062, 2019.

Shigeru Furuichi. On the maximum entropy principle and the minimization of the fisher information
in tsallis statistics. Journal of Mathematical Physics, 50:013303, 01 2010.

Divyansh Garg, Joey Hejna, Matthieu Geist, and Stefano Ermon. Extreme q-learning: Maxent RL
without entropy. In The Eleventh International Conference on Learning Representations, 2023.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings of the 35th
International Conference on Machine Learning, pp. 1861–1870, 2018.

Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Agata Lapedriza, Noah
Jones, Shixiang Gu, and Rosalind Picard. Way off-policy batch deep reinforcement learning of
human preferences in dialog, 2020.

Taisuke Kobayashi. Student-t policy in reinforcement learning to acquire global optimum of robot
control. Applied Intelligence, 49:4335–4347, 2019.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. In International Conference on Learning Representations, 2022.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Kyungjae Lee, Sungjoon Choi, and Songhwai Oh. Sparse markov decision processes with causal
sparse tsallis entropy regularization for reinforcement learning. IEEE Robotics and Automation
Letters, 3:1466–1473, 2018.

Kyungjae Lee, Sungyub Kim, Sungbin Lim, Sungjoon Choi, Mineui Hong, Jae In Kim, Yong-Lae
Park, and Songhwai Oh. Generalized tsallis entropy reinforcement learning and its application to
soft mobile robots. In Robotics: Science and Systems XVI, pp. 1–10, 2020.

Yuhan Li, Wenzhuo Zhou, and Ruoqing Zhu. Quasi-optimal reinforcement learning with continuous
actions. In The Eleventh International Conference on Learning Representations, 2023.

Liling Lu, Victor Brodzik, Talisa, and Chung-Chou H., Chang. Safe reinforcement learning for sepsis
treatment. Master’s thesis, 2022.

André F. T. Martins and Ramón F. Astudillo. From softmax to sparsemax: A sparse model of attention
and multi-label classification. In Proceedings of the 33rd International Conference on Machine
Learning, pp. 1614–1623, 2016.

AndrÃ© F. T. Martins, Marcos Treviso, AntÃ³nio Farinhas, Pedro M. Q. Aguiar, MÃ¡rio A. T.
Figueiredo, Mathieu Blondel, and Vlad Niculae. Sparse continuous distributions and fenchel-
young losses. Journal of Machine Learning Research, 23(257):1–74, 2022.

Hiroshi Matsuzoe and Atsumi Ohara. Geometries for q-exponential families. In Recent Progress in
Differential Geometry and Its Related Fields, pp. 55–71, 2011.

Ashvin Nair, Murtaza Dalal, Abhishek Gupta, and Sergey Levine. {AWAC}: Accelerating online
reinforcement learning with offline datasets, 2021.

Jan Naudts. Deformed exponentials and logarithms in generalized thermostatistics. Physica A-
statistical Mechanics and Its Applications, 316:323–334, 2002.

Jan Naudts. The q-exponential family in statistical physics. Journal of Physics: Conference Series,
pp. 012003, 2010.

Samuel Neumann, Sungsu Lim, Ajin George Joseph, Yangchen Pan, Adam White, and Martha White.
Greedy actor-critic: A new conditional cross-entropy method for policy improvement. In The
Eleventh International Conference on Learning Representations, 2023.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage weighted regression:
Simple and scalable off-policy reinforcement learning, 2020.

Reuven Y. Rubinstein. The cross-entropy method for combinatorial and continuous optimization.
Methodology And Computing In Applied Probability, 1:127–190, 1999.

John Schulmann. Approximating kl divergence. http://joschu.net/blog/kl-approx.
html, 2020.

Tim Seyde, Igor Gilitschenski, Wilko Schwarting, Bartolomeo Stellato, Martin Riedmiller, Markus
Wulfmeier, and Daniela Rus. Is bang-bang control all you need? solving continuous control
with bernoulli policies. In Advances in Neural Information Processing Systems, 2021. URL
https://openreview.net/forum?id=9BvDIW6_qxZ.

William J. Thistleton, John A. Marsh, Kenric Nelson, and Constantino Tsallis. Generalized
box–mÜller method for generating q-gaussian random deviates. IEEE Transactions on Infor-
mation Theory, 53:4805–4810, 2007.

C. Tsallis. Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World.
Springer New York, 2009. ISBN 9780387853581.

Jialong Wu, Haixu Wu, Zihan Qiu, Jianmin Wang, and Mingsheng Long. Supported policy optimiza-
tion for offline reinforcement learning. In Advances in Neural Information Processing Systems,
2022.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning,
2020.

11

http://joschu.net/blog/kl-approx.html
http://joschu.net/blog/kl-approx.html
https://openreview.net/forum?id=9BvDIW6_qxZ


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Chenjun Xiao, Han Wang, Yangchen Pan, Adam White, and Martha White. The in-sample soft-
max for offline reinforcement learning. In The Eleventh International Conference on Learning
Representations, 2023.

Haoran Xu, Li Jiang, Jianxiong Li, Zhuoran Yang, Zhaoran Wang, Victor Wai Kin Chan, and Xianyuan
Zhan. Offline RL with no OOD actions: In-sample learning via implicit value regularization. In
The Eleventh International Conference on Learning Representations, 2023.

Chao Yu, Jiming Liu, Shamim Nemati, and Guosheng Yin. Reinforcement learning in healthcare: A
survey. ACM Comput. Surv., 55, nov 2021.

Lingwei Zhu, Zheng Chen, Matthew Schlegel, and Martha White. Generalized munchausen rein-
forcement learning using tsallis kl divergence. In Advances in Neural Information Processing
Systems (NeurIPS), 2023.

Lingwei Zhu, Matthew Schlegel, Han Wang, and Martha White. Offline reinforcement learning with
tsallis regularization. Transactions on Machine Learning Research, 2024a.

Lingwei Zhu, Haseeb Shah, Han Wang, and Martha White. q-exponential family for policy optimiza-
tion, 2024b. URL https://arxiv.org/abs/2408.07245.

12

https://arxiv.org/abs/2408.07245


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

APPENDIX

A IMPLEMENTATION DETAILS

A.1 SAFETY-CRITICAL TREATMENT SIMULATION

We followed (Li et al., 2023) on reproducing this environment, see their Appendix. D.1 for detail. The
simulated environment uses the following paradigm to generate data. The action space is unbounded,
and actions are sampled uniformly from the range (−100, 100). But the policy can select actions on
the entire real line. The transition dynamics follow st+1

i ∼ N (µt+1
i ,Σ) with µti = [µti,1, . . . , µ

t
i,8]

and Σ being a pre-specified covariance matrix. Specifically,

µt+1
i,j =

exp
(
ati
100 + µti,j

)
− exp

(
−
(
ati
100 + µti,j

))
exp

(
ati
100 + µti,j

)
+ exp

(
−
(
ati
100 + µti,j

)) , if j = 1, 2, 3, 4,

µt+1
i,j =

exp
(
− ati

100 + µti,j

)
− exp

(
−
(
− ati

100 + µti,j

))
exp

(
− ati

100 + µti,j

)
+ exp

(
−
(
− ati

100 + µti,j

)) , if j = 5, 6, 7, 8.

The reward function is given by

rti =

(
st+1
i,1

2

)3

+

(
st+1
i,2

2

)3

+ st+1
i,3 + st+1

i,4 + 2

(st+1
i,5

2

)3

+

(
st+1
i,6

2

)3
+

1

2

(
st+1
i,7 + st+1

i,8

)
.

According to (Li et al., 2023), this environment simulates high-dimension state space and a well-
separated reward function. The reward function causes the effecet that selecting non-optimal actions
will greatly damage the rewards and increases the risk. The environment is tailored to examining
whether sparse policies could identify sub-regions and avoids sub-optimal actions which greatly
damage the performance.

A.2 PARAMETER SELECTION

We provide parameter settings of D4RL experiments in table 1. Parameter settings in the Synthetic
environment are listed in table 2.

In terms of computation time, training FtTPO on average costed around 15 hours for 1 million steps.
By contrast, among the baselines InAC took 8.5 hours,IQL 6 hours and TAWAC 6.5 hours. This
confirms that by maintaining two policy networks FtTPO costs around double computation time.
When interacting with the environment, we sample actions only from the actor policy, which costs
similar time to the Gaussian.

B FURTHER RESULTS

Figure 7 visualizes how the sparse policy of FtTPO provides a principled solution to ensuring safety.
The left figure compares FtTPO actor against IQL + Gaussian on the HalfCheetah. It is visible that
by clipping the policy, IQL Gaussian causes excessive density falling on the clipping boundary due to
normalization constraint. As a result, naive clipping can cause the policy to be a Bang-bang controller
(Seyde et al., 2021) that picks actions almost exclusively on the boundary, leading to unsafe actions.
The right figure shows the FtTPO actor and reward curves (gray) along with policy evolution. By
the definition of reward function, it depends recursively on the past actions. Therefore, a dangerous
action can lead to potential future low reward. It is crucial that the agent is capable of utilizing not
overly large yet effective dosage at each step to ensure safety. Since the low point of rewards does
not reach zero, FtTPO does not incur danger during the evolution.

Figure 8 shows the learning curves of ablation studies. The first shows FtTPO versus FtTPO-SPOT
vs FtTPO-SG and the second FtTPO versus TAWAC-HT. Recall that FtTPO-SPOT replaces the actor
with SPOT for learning a sparse policy. FtTPO-SG refers to replacing the proposal policy to the

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

-2
-1

0
1

2

A
ction 0

10
20

30
40

Steps (x102 )

0

0.5

1

D
en

si
ty

FtTPO IQL

Policy Evolution on HalfCheetah
FtTPO Actor and Baselines

-2
-1

0
1

2

A
ction 0

5
10

15
20

Steps

0

0.5

1

D
en

si
ty

FtTPO

Policy Evolution on Synthetic Environment
FtTPO Actor and Baselines

Figure 7: (Left) FtTPO actor compares against IQL + Gaussian on the HalfCheetah. It is visible
that by clipping the Gaussian policy, IQL Gaussian causes excessive density falling on the clipping
boundary due to normalization constraint. This can lead to choosing actions almost exclusively from
the boundary and hence unsafe actions. (Right) FtTPO actor reward curves (gray) along with policy
evolution. Since the low point of rewards does not reach zero, by the definition of reward function
FtTPO does not incur danger during the evolution.

Parameter Value

Learning rate
FtT: Swept in {1e− 3, 3e− 4}

Baselines: Swept in {3× 10−3, 1× 10−3, 3× 10−4, 1× 10−4}

Weights

FtT: Swept in {1.0, 0.5, 0.01}
Baselines: Same as the number reported in

the publication of each algorithm.
Except in TAWAC + medium datasets, the value was

swept in {1.0, 0.5, 0.01}.
Discount rate 0.99
Timeout 1000
Training Iterations 1,000,000
Hidden size of Value network 256
Hidden layers of Value network 2
Hidden size of Policy network 256
Hidden layers of Policy network 2
Minibatch size 256
Adam.β1 0.9
Adam.β2 0.99
Target network synchronization Polyak averaging with α = 0.005
Number of seeds for sweeping 5
Number of seeds for the best setting 10
STD in sparse policy Clipped at the upper bound of the action space

Table 1: Default parameters and sweeping choices in D4RL.

Squashed Gaussian policy. TAWAC-HT is TAWAC equipped with the heavy-tailed q-Gaussian, which
is the proposal policy only setting.

The bar plot Figure 6 was made using the final scores. But it is clear from the curves that FtTPO
is similar to FtTPO-SPOT also in the sense of area under curve (AUC), and they are both slightly
better than FtTPO-SG overall. For the lower plot, it is clear that the sparse policy of FtTPO leads to
roughly the same performance as the heavy-tailed policy. Therefore, performance is not a concern
when replacing the Gaussian/heavy-tailed policies with the sparse one.

We also visualized the policy evolution in HalfCheetah medium-expert dataset in Figure 15. It can be
seen that the same trend

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

0 25 50 75 100

0

50

100

HalfCheetah
Medium-Expert

0 25 50 75 100

0

20

40

HalfCheetah
Medium-Replay

0 25 50 75 100

0

20

40

HalfCheetah
Medium

0 25 50 75 100

0

50

100

Hopper
Medium-Expert

0 25 50 75 100

0

35

70

Hopper
Medium-Replay

0 25 50 75 100

0

35

70

Hopper
Medium

0 25 50 75 100

0

50

100

Walker2d
Medium-Expert

0 25 50 75 100

0

35

70

Walker2d
Medium-Replay

0 25 50 75 100

0

35

70

Walker2d
Medium

Step (×104)

S
co

re
FtTPO FtTPO-SPOT FtTPO-SG

0 25 50 75 100

0

50

100

HalfCheetah
Medium-Expert

0 25 50 75 100

0

20

40

HalfCheetah
Medium-Replay

0 25 50 75 100

0

20

40

HalfCheetah
Medium

0 25 50 75 100

0

50

100

Hopper
Medium-Expert

0 25 50 75 100

0

35

70

Hopper
Medium-Replay

0 25 50 75 100

0

35

70

Hopper
Medium

0 25 50 75 100

0

50

100

Walker2d
Medium-Expert

0 25 50 75 100

0

35

70

Walker2d
Medium-Replay

0 25 50 75 100

0

35

70

Walker2d
Medium

Step (×104)

S
co

re

FtTPO TAWAC-HT

Figure 8: (Upper) Learning curves of the ablation study FtTPO against FtTPO-SPOT and FtTPO-SG
(Squashed Gaussian). (Lower) Learning curves of the ablation study FtTPO against the proposal only
setting TAWAC-HT (Tsallis Advantage Weighted Actor-Critic-Heavy-Tailed).

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

-2
-1

0
1

2

A
ction 0

10
20

30
40

Steps (x102 )

0

0.5

1

D
en

si
ty

FtTPO Actor FtTPO Proposal

Policy Evolution on HalfCheetah
FtTPO Proposal and Actor

Dimension 1

-2
-1

0
1

2

A
ction 0

10
20

30
40

Steps (x102 )

0

0.5

1

D
en

si
ty

FtTPO Actor FtTPO Proposal

Policy Evolution on HalfCheetah
FtTPO Proposal and Actor

Dimension 2

-2
-1

0
1

2

A
ction 0

10
20

30
40

Steps (x102 )

0

0.5

1

D
en

si
ty

FtTPO Actor FtTPO Proposal

Policy Evolution on HalfCheetah
FtTPO Proposal and Actor

Dimension 3

-2
-1

0
1

2

A
ction 0

10
20

30
40

Steps (x102 )

0

0.5

1

D
en

si
ty

FtTPO Actor FtTPO Proposal

Policy Evolution on HalfCheetah
FtTPO Proposal and Actor

Dimension 4

-2
-1

0
1

2

A
ction 0

10
20

30
40

Steps (x102 )

0

0.5

1

D
en

si
ty

FtTPO Actor FtTPO Proposal

Policy Evolution on HalfCheetah
FtTPO Proposal and Actor

Dimension 5

-2
-1

0
1

2

A
ction 0

10
20

30
40

Steps (x102 )

0

0.5

1

D
en

si
ty

FtTPO Actor FtTPO Proposal

Policy Evolution on HalfCheetah
FtTPO Proposal and Actor

Dimension 6

Figure 15: The policy evolution plots over the first 4000 updates on HalfCheetah medium-expert
dataset. The FtTPO actor policy concentrated by removing the heavy tails.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Parameter Value

Learning rate FtT: Swept in {3× 10−4, 1× 10−4, 3× 10−5}
Baselines: Swept in {3× 10−3, 1× 10−3, 3× 10−4, 1× 10−4}

Weights
FtT: Swept in {1.0, 0.5, 0.1, 0.01}

IQL: temperature: {1/3, 0.7}; expectile: {0.7, 0.8, 0.9}
SQL, XQL: {2, 5}

Discount rate 0.9
Timeout 24
Training Iterations 500,000
Hidden size of Value network 256
Hidden layers of Value network 2
Hidden size of Policy network 256
Hidden layers of Policy network 2
Minibatch size 256
Adam.β1 0.9
Adam.β2 0.99
Target network synchronization Polyak averaging with α = 0.005
Number of seeds for sweeping 5
Number of seeds for the best setting 10
STD in sparse policy Clipped at the upper bound of the action space

Table 2: Default parameters and sweeping choices in Synthetic environment.

17


	Introduction
	Background
	Offline Learning with Sparse Policies
	When Sparse Policies Can Fail
	Ad Hoc Solutions

	Fat-to-Thin Policy Optimization
	Two-stage Learning
	Instantiating FtTPO with q-Gaussians
	q-exponential as Weighting Coefficient

	Experiments
	Safety-Critical Treatment Simulation
	MuJoCo
	Ablation Study

	Related Works
	Conclusion
	Implementation Details
	Safety-Critical Treatment Simulation
	Parameter Selection

	Further Results

