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ABSTRACT

The imbalance of the dataset leads to the trained model being biased towards head
classes and under-represent the tail classes, making the long-tailed recognition
challenging. To address those issues, this paper proposes the decoupled and patch-
based contrastive learning. Given an anchor image, the supervised contrastive
learning pulls two kinds of positives together in the embedding space: the same im-
age with different data augmentation and other images from the same classes. The
weights of two kinds of positives can be influenced by the cardinality of different
classes, leading to biased feature space. The decoupled supervised contrastive loss
decouples the two kinds of positives, removing the influence of the imbalanced
dataset. To improve the discriminative of the learned model on the tail classes,
patch-based self distillation crops the small patches from the global view of an
image. These small patches can encode the shared visual patterns between different
images, and thus can be used to transfer similarity relationship knowledge. Experi-
ments on several long-tailed classification benchmarks demonstrate the superiority
of our method. For instance, it achieves 57.7% top-1 accuracy on the ImageNet-LT
dataset. Combined with the ensemble-based method, the performance can be
further boosted to 59.7%. Our code will be released.

1 INTRODUCTION

Due to the powerful deep learning methods, the computer vision field has made impressive progress
in the last decades, boosting various real-scenario tasks, e.g., image classification Russakovsky et al.
(2015), object detection Lin et al. (2017), and semantic segmentation Long et al. (2015). Prior
researches mostly focus on learning from the manually balanced dataset, e.g., ImageNet1K Rus-
sakovsky et al. (2015), and COCO Lin et al. (2014). However, in real-world applications, training
samples always exhibit a long-tailed class distribution, where a few head classes contribute to most of
the observations, while most tail classes are associated with only a few samples Gupta et al. (2019);
Van Horn et al. (2018). The heavy imbalance of the training dataset leads to poor performance of the
learned model because of two main challenges: (a) the loss function designed for the balanced dataset
can be easily biased towards the head classes; (b) the lack of samples for tail classes makes it difficult
to learn the discriminative model for these classes, i.e., the under-representation of the tail classes.

Recently, some works Kang et al. (2020); Li et al. (2021b) extend the powerful contrastive learn-
ing Hadsell et al. (2006) to deal with the representation learning of long-tailed recognition, showing
its great potential. These works deal with the model biased problem of the contrastive loss on the
long-tailed dataset by designing the selection of positive samples Kang et al. (2020) or making the
features of different classes converge to the pre-defined uniformly distributed targets Li et al. (2021b).
These works ignore that the construction of positives in the supervised contrastive loss can lead to
bias and still do not well-solved the under-representation problem of tail classes.

In this work, we reformulate contrastive learning as a distribution alignment task. The target
distribution of supervised contrastive loss tries to learn a uniform one-hot distribution, where different
views of the same image and different images from the same classes have the same probability while
the probabilities of negative samples are zero. This target distribution can lead to biased model
and ignore the useful relationship information between different images, resulting unsatisfactory
performance on long-tailed recognition. We thus propose decoupled supervised contrastive loss
(DSCL) and patch-based self distillation (PBSD) to address those problems.
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Figure 1: Given an anchor image, supervised contrastive loss pulls the anchor image with its
augmented one and other images from the same class together and pushes images from different
classes away. The imbalanced dataset leads to different loss weights on these two kinds of positives,
making the model learn different kinds of features for head and tail classes. This simple definition
of positive and negative samples also ignores the useful knowledge encoded in the shared patterns
between classes (marked in the yellow rectangle).

Supervised contrastive loss pulls two kinds of positive samples together: the different views of the
same image generated by the data augmentation and different images from the same classes. As
discussed in Wei et al. (2020), pulling anchor with these two kinds of positives together makes the
model learn different kinds of features, task-agnostic appearance features and task-specific semantic
features, respectively. As shown in Fig. 1, the uniform one-hot distribution treats these two kinds
of positives equally, leading that head classes and tail classes have different weights for these two
kinds of positives. Therefore, the model will learn different kinds of features for head classes and tail
classes. The proposed decoupled supervised contrastive loss decouples these two kinds of positive
samples and re-designs the target distribution, removing the influence of the imbalanced training set
on the weights of these two kinds of positive samples. This simple modification can strongly improve
the performance of the model on the long-tailed dataset.

The motivation of PBSD is that many visual patterns can be shared between different classes, e.g.,
’wheels’ as shown in Fig. 1. Therefore, the similarity relationships between visual patterns can help
the learning of the tail classes. To extract visual patterns, besides the global view of an image, we also
crop multi small patches from the global view. To maintain the similarity relationship knowledge,
ROI pooling He et al. (2017) is used to extract features from the feature maps of the global view
according to the positions of cropped small patches. Then we leverage the distillation loss to force
the similarity distribution produced by small patches aligning the similarity distribution produced by
the pooled feature.

We evaluate our method on several long-tailed datasets including ImageNet-LT Liu et al. (2019),
and iNaturaList 2018 Van Horn et al. (2018). Experimental results show that our proposed method
improves the standard supervised contrastive learning baseline by 6.5% and achieves superior
performance compared with recent works, e.g., outperforming recent proposed supervised contrastive
learning based method TSC Li et al. (2021b) by 5.3% on long-tailed ImageNet.

To the best of our knowledge, this is an original contribution to first decouple the two kinds of
positives in supervised contrastive loss and use patch-based self distillation to introduce the similarity
relationship knowledge into the contrastive learning in the long-tailed recognition. Our method is
easy to implement, making it has the potential to benefit the application of the computer vision model
under long-tailed situations.

2 RELATED WORK

This work is related to long-tailed recognition and contrastive learning. This section briefly reviews
related works in these categories.
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Long-tailed recognition aims to address the problem of the model training in the situation where
a small portion of classes have massive samples but the others are associated with only a few
samples Zhang et al. (2021b). Most related works can be summarized into three categories, e.g.,
re-balancing methods, decoupling methods, transfer learning methods and ensemble-based methods.

Re-balancing methods use re-sampling or re-weighting to deal with long-tailed recognition Byrd &
Lipton (2019); Shen et al. (2016); Buda et al. (2018); Japkowicz & Stephen (2002); Ren et al. (2020);
Lin et al. (2017). Re-sampling methods typically include over-sampling for the tail classes Byrd &
Lipton (2019); Shen et al. (2016) or under-sampling for the head classes Buda et al. (2018); Japkowicz
& Stephen (2002). Besides re-sampling, re-weighting the loss function is also an effective solution,
e.g., LDAM Cao et al. (2019) leverages the class-dependent margins based on label frequencies and
encourages tail classes to have larger margins. Balanced-Softmax Ren et al. (2020) presents the
unbiased extension of Softmax based on the Bayesian estimation.

Decoupling methods find that the re-balancing methods are harmful to the discriminative of the
learned backbone Kang et al. (2019). Therefore, they propose the two-stage training to decouple
the representation learning and classifier training. Based on this conclusion, DisAlign Zhang et al.
(2021a) develops an adaptive calibration function to adjust the classification score.

Transfer learning methods enhance the performance of the model by transferring knowledge from
head classes to tail classes. RSG Wang et al. (2021) improves the performance by generating some
new samples for tail classes with the help of head classes knowledge. BatchFormer Hou et al. (2022)
introduces a one-layer Transformer Vaswani et al. (2017) to transfer knowledge by learning the
sample relationships from mini-batch.

Ensemble-based methods leverage multi experts to solve long-tailed visual learning. RIDE Wang
et al. (2020) proposes a multi-branch network to learn diverse classifiers in parallel. NCL Li et al.
(2022) trains each expert individually and performs knowledge transferring between different experts.
Although ensemble-based method achieves superior performance, the introduction of multi experts
usually increases the number of parameters and computational complexity.

Contrastive learning has received much attention because of its superior performance on represen-
tation learning Li et al. (2020); Caron et al. (2020); Zhu et al. (2021); Feichtenhofer et al. (2021);
He et al. (2020); Chen et al. (2020a); Chen & He (2021). Contrastive learning aims to find a feature
space that can encode the semantic similarities by pulling the positive pair together while pushing the
negative pair apart. Based on the powerful contrastive learning, some methods leverage it into the field
of long-tailed recognition, e.g., KCL Kang et al. (2020) finds that the self-supervised learning based
on contrastive learning can learn a balanced feature space. To leverage the useful label information,
they extend the supervised contrastive loss Khosla et al. (2020) by introducing a k-positive sampling
method. TSC Li et al. (2021b) improves the uniformity of the feature distribution by making the
features of different classes converge to the pre-defined uniformly distributed targets.

Different from existing contrastive learning based long-tail recognition methods, we firstly point out
the reason of that the supervised contrastive loss can be influenced by the imbalanced dataset. Based
on this analysis, we design a decoupled target distribution that is robust to the imbalanced training
set. In addition, we further extend the contrastive learning by introducing patch-based self distillation
to transfer knowledge between classes, mitigating the under-representation of the tailed classes.

3 METHODOLOGY

3.1 OVERVIEW

Given a training dataset D = {xi, yi}ni=1, where xi denotes an image and yi ∈ {1, . . . ,K} is its
class label. Assuming that nk denotes the cardinality of class k in D, and the classes are sorted by
cardinality in decreasing order, i.e., if i1 < i2, then ni1 ≥ ni2 . In long-tailed image classification,
the training dataset is extremely imbalanced, i.e., n1 � nK , and the imbalance ratio is defined as
n1/nK . Typically, the testing dataset T is balanced. The training objective of long-tailed image
classification method denotes as,

θ∗, ω∗ = argmin
θ,ω
L(D; θ;ω), (1)
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Figure 2: Illustration of the proposed method. Data augmentation is performed to get two global
views of a training image. Then multi small patches are cropped from the global view. The backbone
and ema backbone are used to extract the normalized features. These features are used to calculate
the similarity distribution with memory queue A. Ldscl is used to minimize the divergence between
the decoupled target distribution and the similarity distribution produced by the global view, while
Lpbsd is used to transfer knowledge through forcing the similarity distribution produced by the small
patches mimic the similarity distribution produced by the features that are pooled from the feature
map of global view with ROI pooling at the same positions of the small patches.

where L is the loss function, θ denote the parameters of feature extraction backbone fθ(xi), which
can map an image into a d-dim feature vector vi, and ω denote the parameters of classifier hω(vi),
which classifies a feature vector to K classification scores. If L is the loss function designed for the
balanced dataset, the large numbers of samples from head classes make the learned model biased
towards the head classes and the lack of samples from tail classes leads to under-representation of
these classes.

For an anchor image xi and its normalized feature embedding zi = gγ(fθ(xi)) extracted with the
backbone and an extra projection head gγ He et al. (2020), the supervised contrastive loss Khosla et al.
(2020) optimizes the embedding space by pulling the anchor image with its another data augmentation
and other images with the same class label together and pushing the images with different class labels
apart,

Lscl =
|D|∑
i=1

1

|P (i)|+ 1

∑
t∈{z+i ∪P (i)}

− log
exp (t · zi/τ)

exp
(
z+i · zi/τ

)
+
∑

m∈A exp (m · zi/τ)
, (2)

where τ is a predefined temperature parameter, z+i is the embedding feature of another data aug-
mentation, A is the set of samples that can be formulated by the training batch Chen et al. (2020a)
or the memory queue He et al. (2020), P (i) = {m ∈ A : ym = yi} is the set of positive samples’
embedding features of zi, and |P (i)| is the cardinality of P (i).

We define the probability of the conditional distribution as,

p(t|zi) =
exp(t · zi/τ)

exp(z+i · zi/τ) +
∑

m∈A exp (m · zi/τ)
, (3)

where t ∈ {z+i ∪A}. With the definition of the conditional distribution, Eq. (2) can be formulated as
a distribution alignment task,

Lalign =

|D|∑
i=1

∑
t∈{z+i ∪A}

−p̂(t|zi) log p(t|zi), (4)
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where p̂(t|zi) is the probability of the target distribution. In the self-supervised learning p̂(t|zi) =
1(t = z+i ) and p̂(t|zi) = 0(t ∈ A) while in supervised learning p̂(t|zi) = 1/(|P (i)| + 1)(t ∈
{z+i ∪ P (i)}) and p̂(t|zi) = 0 for other samples in A. Such target distribution is not suitable to the
long-tailed recognition task, as it can lead to the biased model and ignores the valuable similarity
relationship knowledge between classes.

p̂(z+i |zi) = 1/(|P (i)| + 1) and |P (i)| ∝ nyi . Therefore, the imbalance of training dataset can
influence the target distribution, i.e., the head classes have a much smaller p̂(z+i |zi) than the tail
classes. To relief the influence of the imbalanced long-tailed training dataset, we decouple the target
distribution in supervised contrastive learning into z+i part and t ∈ P (i) part and design a new target
distribution. The decoupled supervised contrastive loss (DSCL) can be written as,

Ldscl =
|D|∑
i=1

∑
t∈{z+i ∪A}

−p̂dscl(t|zi) log p(t|zi), (5)

where p̂dscl(t|zi) denotes the probability of the decoupled target distribution.

Some visual patterns are shared between classes, e.g., the pattern ’fur’ in dog class is also useful to the
recognition of the cat class. The target distribution of Lscl only considers pulling the positive samples
together and pushing the negative samples away, ignoring the knowledge encoded in the shared
patterns between classes. We introduce Patch-based Self Distillation (PBSD) to mine similarity
relationship knowledge between classes. To extract visual patterns, besides the global view of an
image, we also crop some small patches from its global view. The feature embeddings of these small
patches denote as {sji}Lj=1, where L denotes the number of small patches. The conceptual loss of
PBSD can be written as,

Lpbsd =
|D|∑
i=1

1

L

L∑
j=1

∑
t∈{z+i ∪A}

−qpbsd(t, sji ) log p(t|s
j
i ), (6)

where qpbsd(t, s
j
i ) is the probability of the PBSD target distribution that is related to sji and t. We

will introduce it in the following sections. Minimizing Eq. (6) can force the distribution produced
by small patches maintaining the similarity relationships between classes, thus encoding the shared
patterns knowledge into the model.

The overall loss function of our method can be written as,

Loverall = Ldscl + λ1Lpbsd, (7)

where λ1 is the loss weight.

Following Li et al. (2021b); Kang et al. (2020), after the training of the backbone, we discard the
learned projection head gγ(·) and train a linear classifier on top of the learned backbone using the
standard cross-entropy loss with the class-balanced sampling strategy Kang et al. (2019).

We illustrate our method in Fig. 2. The following sections proceed to present details of decoupled
supervised contrastive loss and patch-based self distillation.

3.2 DECOUPLED SUPERVISED CONTRASTIVE LOSS

As discussed in Section 3.1, the supervised contrastive loss minimizes the divergence between
the produced conditional distribution and a designed target distribution, where positive pairs have
p̂(t|zi) = 1/(|P (i)|+ 1) and negative pairs satisfy p̂(t|zi) = 0. There are two kinds of positives in
the supervised contrastive loss: (a) z+i the embedding feature of another data augmentation of xi; (b)
t ∈ P (i) the embedding feature of samples which have the same label with xi in A.

As shown in Eq. (2), supervised contrastive loss treats these two kinds of positives equally. However,
pulling the anchor with its another data augmentation or with the samples from the same semantic class
together is trying to capture different kinds of features for visual representation Wei et al. (2020), i.e.,
task-agnostic appearance features and task-specific semantic features, respectively. |P (i)| ≈ nyi

n |A|,
in a balanced dataset, n1 ≈ n2 ≈ · · · ≈ nK . Therefore, different classes have almost the same
|P (i)| and the target distribution. In an imbalanced dataset, |P (i)| of different classes can be totally
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different, e.g., the head classes have a large |P (i)| while |P (i)| in the tail classes is small. In other
word, p̂(z+i |zi) in the head classes is much smaller than p̂(z+i |zi) in the tail classes. Consequently,
different classes can learn different kinds of features, i.e., the head classes focus on the task-specific
semantic features while the tail classes focus on the task-agnostic appearance features as shown in
Fig. 4, leading to inconsistency between the learned features of the head classes and the tail classes.

To address aforementioned problem, we re-design the target distribution, where for any class,
p̂dscl(z

+
i |zi) is the same. Given a pre-defined p̂dscl(z+i |zi) = α, α ∈ [0, 1], the decoupled target

distribution and decoupled contrastive loss can be written as,

p̂dscl(t|zi) =


α, t = z+i
1− α
|P (i)|

, t ∈ P (i)

0, t ∈ A \ P (i)

Ldscl =
|D|∑
i=1

(−α log p(z+i |zi) +
1− α
|P (i)|

∑
t∈P (i)

− log p(t|zi))

(8)

In the decoupled target distribution, decoupling the two kinds of positives ensures that the weights
of two kinds positives are not influenced by the imbalanced datasets, preventing the model from
capturing different kinds of features for the head classes and tail classes. Experiments in Section 4.2
show that this simple modification can strongly improve the performance of the model on long-tailed
classification.

3.3 PATCH-BASED SELF DISTILLATION

To mine knowledge encoded in the visual patterns, inspired by the part-based methods in fine-grained
image recognition Zhang et al. (2014); Quan et al. (2019); Sun et al. (2018), we introduce the image
patch cropping, i.e., besides the global view of an image, we crop multi small patches from the global
view and extract their feature embeddings. The feature embeddings of these small parts denote as
{sji}Lj=1, where L denotes the number of small parts, and the coordinates of these patches in the
global view denote as {Bji}Lj=1.

To calculate the target distribution of Lpbsd, we use ROI pooling He et al. (2017) to get feature from
the feature map of the global view according to {Bji}Lj=1. The pooled features after the projection
head denote as {cji}Lj=1. The probability of the target distribution can be calculated by,

qpbsd(t, s
j
i ) = p(t|cji ) =

exp(t · cji/τ)

exp(z+i · c
j
i/τ) +

∑
m∈A exp

(
m · cji/τ

) . (9)

With the target distribution, the PBSD loss can be calculated by,

Lpbsd =
|D|∑
i=1

1

L

L∑
j=1

∑
t∈{z+i ∪A}

−p(t|cji ) log p(t|s
j
i ), (10)

note that p(t|cji ) is detached from the computation graph to block the gradient.

A small part of an object contains visual pattern that can be shared by other classes, e.g., wheels
for the class ’truck’ and class ’bus’. PBSD crops multi small patches from the global view of an
image to extract semantic-related visual patterns. q(t, sji ) is calculated to mine relationship of the
shared patterns between different images. Minimizing Eq. (10) maintains the shared patterns between
different images, thus transferring knowledge and mitigating the under-representation of the tailed
classes. Experiments in Section 4.2 validate that the introduction of the image patch cropping is vital
to the performance. Only using global view of the image with different color data augmentations to
perform Eq. (10) has a poor performance compared with our implementation.
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Table 1: Effectiveness of each component in our method. Supervised contrastive loss is used as
baseline. * denotes using global views instead of the small patches to calculate Eq. (10).

Settings Baseline + DSCL + PBSD + Both∗ + Both
Many 61.6 63.4 67.2 67.2 68.5

Medium 48.6 50.0 53.7 53.9 55.2
Few 30.3 31.4 34.6 33.7 35.4

Overall 51.2 52.6 56.3 56.2 57.7

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We use two popular datasets for long-tailed recognition as follows: 1) ImageNet-LT Liu
et al. (2019) contains 115,846 training images of 1,000 classes sampled from the ImageNet1K Rus-
sakovsky et al. (2015), with class cardinality ranging from 5 to 1,280. 2) iNaturaList 2018 Van Horn
et al. (2018) is a real-world long-tailed dataset with 437,513 training images of 8,142 classes, with
class cardinality ranging from 2 to 1,000.

Evaluation Metrics. We follow the standard evaluation metrics that evaluating our models on the
testing set and reporting the overall top-1 accuracy across all classes. To give a detailed analysis, we
follow Liu et al. (2019) that groups the classes into splits according to their number of images: Many
(> 100 images), Medium (20 - 100 images), and Few (< 20 images).

Implementation Details. For fair comparison, we follow the implementations of TSC Li et al.
(2021b) and KCL Kang et al. (2020) that train the representation backbone at the first stage and
train the linear classifier with the freezed learned backbone at the second stage. All experiments are
implemented on PyTorch Paszke et al. (2019). We adopt ResNet-50 He et al. (2016) as backbone for
all experiments. The α in Eq. (8) is set as 0.1 and the loss weight λ1 in Eq. (7) is 1.5.

At the first stage, the basic framework is the same as MoCoV2 Chen et al. (2020b), the momentum
value for the updating of ema model is 0.999, the temperature τ is 0.07, the size of memory queue A
is 65536, and the output dimension of projection head is 128. The data augmentation is the same as
MoCoV2 Chen et al. (2020b). We crop the small patches from the global view randomly with the
crop scale (0.05, 0.6) and resize them to 64. The number of small parts L is 5. SGD optimizer is used
with a learning rate decays by cosine scheduler from 0.1 to 0 with batch size 256 on 2 Nvidia RTX
3090 in 200 epochs. At the second stage, the parameters are the same as Li et al. (2021b). The linear
classifier is trained for 40 epochs with CE loss and class-balanced sampling Kang et al. (2019) with
batch size 2048 using SGD optimizer. The learning rate is initialized as 10, 30 for ImageNet-LT, and
iNaturaList 2018, respectively, and multiplied by 0.1 at epoch 20 and 30. For testing, the image is
first resized to 256 and center cropping is performed to get image of size 224.

4.2 ABLATION STUDY

Components analysis. We analyze the effectiveness of each proposed component on ImageNet-LT
in Table 1. Supervised contrastive loss Khosla et al. (2020) is used as baseline. Compared with
the supervised contrastive loss baseline, changing the target distribution to the decoupled form as
in Eq. (8) improves the top-1 accuracy by 1.4%, which is already higher than the recent proposed
contrastive learning based method TSC Li et al. (2021b). Different from many methods for long-tailed
classification that improve the performance of tail classes but sacrifice the head classes performance,
our proposed PBSD can transfer knowledge between classes, improving the performance of both head
and tail classes. Both DSCL and PBSD are important to the final performance and the combination
of them achieves the best performance. The introduction of small patches is important to the PBSD.
We conduct experiment by performing different color augmentations on the same global view and
use them to calculate Eq. (10). It decreases the overall accuracy by about 1.5%. It can be concluded
that each component in our method is effective in boosting performance.

The impact of α in Eq. (8) is investigated in Fig. 3. α determines the weight of pulling the anchor
with its data augmented one. Setting α = 0 means only pulling the anchor with other images from the
same class. Without pulling the anchor with its data augmented one together decreases the accuracy
from 57.7% to 56.8%, showing the importance of involving two kinds of positives. In addition, this
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Figure 3: Evaluation of α in Eq. (8), L the number of small patches, and λ1 the loss weight.

w/o PBSD w/ PBSD Query True Positive False Positive

Figure 4: Left: CAM Zhou et al. (2016) visualizations of our method with/without PBSD. Right:
examples of retrieval results with the features generated by model trained with DSCL and supervised
contrastive learning. In each part, the first row is the results of model trained with DSCL and the
second row is the results of the compared baseline.

setting still outperforms supervised contrastive loss (green dotted line in the figure), indicating that
preventing the head classes and tail classes from learning different kinds of features is important.
When α = 1, the loss degenerates into the self-supervised loss. The accuracy is only 39.8% because
of the lack of label information. We set α as 0.1, which gets the best performance.

The impact of the number of small patches is shown in Fig. 3. The model benefits from cropping
more small patches from the global view. The top-1 accuracy improves from 55.0% to 57.7% when
increasing L from 1 to 5. We set L as 5 for a good trade-off between training consuming and accuracy.

The impact of the loss weight λ1 is shown in Fig. 3. It can be concluded that PBSD is important to
the final performance and this parameter is easy to tune. We set it as 1.5 for its good performance.

Visualization analysis is conducted in Fig. 4. For the CAM Zhou et al. (2016) visualization, the
CAM of the model without PBSD focuses on the small parts while PBSD makes the model capture
more useful information, validating that with PBSD model learns more shared patterns between
classes. For the visualization of retrieval results, the query images are both from the tail classes. In
the first example, the class of query is ’chainsaw’, but the retrieval results of baseline are related to
the appearance features like green color. In the second example, the query image is a gray image
with class ’crutch’, the retrieval results of the baseline are all gray images with a person inside, not
the semantic features related to ’crutch’. Although our method also has some false positives, these
false positives are more related to semantic class ’crutch’, e.g., sticks held in hands. It is clear that
supervised contrastive loss makes the features of tail classes mainly focus on the visual appearance
feature. The visualization results further validate the effectiveness of our method.

4.3 COMPARISON WITH RECENT WORKS

We compare our method with recent works on ImageNet-LT Liu et al. (2019), and iNaturaList
2018 Van Horn et al. (2018). The compared methods include the re-balancing methods Liu et al.
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Table 2: Comparison with recent methods on ImageNet-LT, and iNaturaList 2018. CE denotes training
the model with the cross entropy loss. † denotes the model is trained with RandAugment Cubuk et al.
(2020) and 400 epochs, which has potential unfair comparison with our method.

Methods Reference ImageNet-LT iNaturaList 2018
Many Medium Few Overall Many Medium Few Overall

CE - 64.0 33.8 5.8 41.6 72.2 63.0 57.2 61.7
OLTR Liu et al. (2019) CVPR2019 35.8 32.3 21.5 32.2 59.0 64.1 64.9 63.9
Balanced Ren et al. (2020) NeurIPS2020 61.1 47.5 27.6 50.1 - - - -
τ -norm Kang et al. (2019) ICLR2020 56.6 44.2 27.4 46.7 65.6 65.3 65.9 65.6
cRT Kang et al. (2019) ICLR2020 58.8 44.4 26.1 47.3 69.0 66.0 63.2 65.2
LWS Kang et al. (2019) ICLR2020 57.1 45.2 29.3 47.7 65.0 66.3 65.5 65.9
Logit Adjust Menon et al. (2020) ICLR2020 - - - 50.4 - - - 68.4
DisAlign Zhang et al. (2021a) CVPR2021 59.9 49.9 31.8 51.3 - - - 67.8
MetaSAug Li et al. (2021a) CVPR2021 - - - 47.4 - - - 68.8
RSG Wang et al. (2021) CVPR2021 - - - - - - - 67.9
BatchFormer Hou et al. (2022) CVPR2022 61.4 47.8 33.6 51.1 - - - -
KCL Kang et al. (2020) ICLR2020 61.8 49.4 30.9 51.5 - - - 68.6
PaCo† Cui et al. (2021) ICCV2021 65.0 55.7 38.2 57.0 73.2 70.3 73.2 73.6
TSC Li et al. (2021b) CVPR2022 63.5 49.7 30.4 52.4 72.6 70.6 67.8 69.7
Our This paper 68.5 55.2 35.4 57.7 74.2 72.9 70.3 72.0
CBD Iscen et al. (2021) BMVC2021 68.5 52.7 29.2 55.6 - - - 73.6
RIDE Wang et al. (2020) ICLR2021 - - - 55.4 70.9 72.4 73.1 72.6
ACE Cai et al. (2021) ICCV2021 - - - 54.7 - - - 72.9
NCL† Li et al. (2022) CVPR2022 - - - 59.5 72.7 75.6 74.5 74.9
Our + RIDE This paper 70.1 57.5 37.7 59.7 74.8 74.9 73.1 74.2

(2019); Ren et al. (2020), the decoupling methods Kang et al. (2019); Menon et al. (2020); Zhang et al.
(2021a), the transfer learning based methods Li et al. (2021a); Zhong et al. (2021); Hou et al. (2022),
the methods that extend the supervised contrastive learning Kang et al. (2020); Li et al. (2021b); Cui
et al. (2021), and the ensemble-based methods (Iscen et al., 2021; Cai et al., 2021; Li et al., 2022).

As shown in Table 2, directly using standard cross entropy loss suffers a low performance on the
tail classes. Most long-tailed recognition methods can improve the performance of the methods on
the testing set. However, the accuracy of Many split is sacrificed. Compared with the re-balancing
methods, decoupling methods adjust the classifier after the training of the backbone and achieve a
better performance, showing the effectiveness of the two-stage training. Transfer learning based-
methods improve the performance of the model with less sacrifice of head classes performance, e.g.,
BatchFormer has higher accuracy on Many split compared with DisAlign which has the same overall
accuracy with it. The supervised contrastive learning based methods achieve better performance
with less sacrifice of head classes accuracy and higher overall accuracy. Our method achieves
the best 57.7% overall accuracy on ImageNet-LT, even outperforming PaCo Cui et al. (2021) that
uses stronger data augmentation and twice training epochs. Our method is the only one that can
improve the performance of all the head, medium and few classes without introducing stronger data
augmentation or multi-model ensemble.

Our method is easy to use and can also be combined with ensemble-based method to further boost its
performance. Combined with RIDE Wang et al. (2020), our method achieves 59.7% overall accuracy
on ImageNet-LT, outperforming all the compared ensemble-based method. In summarize, our method
shows superior performance among compared methods.

5 DISCUSSION AND CONCLUSION

This paper addresses the long-tailed recognition. Our proposed method has shown impressive
improvements in long-tailed recognition. This is achieved by the decoupled supervised contrastive
loss that mitigates the influence of the imbalanced dataset by designing a more reasonable target
distribution and patch-based self distillation that transfers knowledge between classes by introducing
useful similarity relationship knowledge into contrastive learning. Experiments on several long-tailed
recognition benchmarks demonstrate the effectiveness of the proposed method.
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A APPENDIX

This Appendix provides more details of experiments and analysis on each proposed component.

Ablation Study on Different Imbalanced Ratios of Datasets. We conduct more experiments to
further validate the effectiveness of the proposed method across different imbalanced ratios. We
generate 2 datasets with different imbalanced ratios from the ImageNet1K following the Pareto
distribution. The detailed statistics of the generated datasets and the experimental results are shown in
Table 3 and Table 4, respectively. As shown in the Table 4, our proposed DSCL and PBSD generalize
well on different imbalanced ratios. Both of them can bring performance improvement.

Table 3: Dataset statistics on training instance numbers, including the maximal and minimal instance
number per class, the number of total training instances, and the imbalanced ratio.

Max Min Total Imbalanced Ratio
ImageNetLT 1280 5 115846 256

Dataset A 857 10 115852 85.7
Dataset B 343 37 115801 9.27

Ablation Study on Different Backbones. It is also important for the method to generalize well on
different backbones, we thus conduct experiments that use ResNeXt50 Xie et al. (2017) as backbone.
ResNeXt50 is another commonly used backbone in Long-tailed recognition. The results are shown in
Table 5. It is clear that our proposed components are also effective on ResNeXt50.

Ablation Study on DSCL. We conduct more experiments to validate that DSCL is a reasonable
choice to remove the bias of the supervised contrastive loss. As discussed in Section.3.1, the bias of
the supervised contrastive loss is caused by the imbalanced A. Therefore, one possible solution is to
maintain a balanced memory queueA. The result is shown in the second row of Table 6. The balanced
memory queue does not bring performance improvement and is even harmful to the performance of
the tail classes. The reason is that the balanced memory queue leads to more negative gradients to the

12



Under review as a conference paper at ICLR 2023

Table 4: Ablation study of each component in our method on datasets with different imbalanced
ratios. Supervised contrastive loss Khosla et al. (2020) is used as baseline.

ImageNetLT Dataset A Dataset B
Baseline 51.2 53.2 56.1
+ DSCL 52.6 54.7 57.3
+ PBSD 56.3 59.2 61.8
+ Both 57.7 59.6 62.7

Table 5: Ablation study of each component in our method on different backbones. Supervised
contrastive loss Khosla et al. (2020) is used as baseline.

ResNet50 ResNeXt50
Baseline 51.2 51.8
+ DSCL 52.6 53.2
+ PBSD 56.3 57.7
+ Both 57.7 58.7

Table 6: Ablation study on DSCL. Top-1 accuracy is used as metric. Balanced Queue denotes A is a
balanced memory queue. Re-weighting denotes the loss weight is added as in Cui et al. (2019).

Settings Many Medium Few Overall
Baseline 61.6 48.6 30.3 51.2

Balanced Queue 62.3 48.9 29.2 51.4
Re-weighting 59.7 45.9 30.4 49.1

DSCL 63.4 50.0 31.4 52.6

tail classes, i.e., the tail classes receive too many gradients to push them away from other samples in
the feature space. While in the original imbalanced memory queue, the number of tail class samples
is small, preventing too many negative gradients on the tail classes. Re-weighting is a commonly
used method to remove the bias. We add the loss weight as in Cui et al. (2019),

Lscl =
|D|∑
i=1

ωyi

|P (i)|+ 1

∑
t∈{z+i ∪P (i)}

− log
exp (t · zi/τ)

exp
(
z+i · zi/τ

)
+
∑

m∈A exp (m · zi/τ)
,

ωyi
=

1− β
1− βnyi

(11)

where β ∈ [0, 1) is a hyper-parameter, and nyi
is the number of samples in the class yi. The result

shows that re-weighting method decreases the performance. The same phenomenon is also validated
in Kang et al. (2019) that the re-weighting leads to a poor discriminative feature space. It can be
concluded that DSCL is a reasonable choice to remove the bias of the supervised contrastive loss.
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