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ABSTRACT

LDP deployments are vulnerable to inference attacks as an adversary can link the noisy responses
to their identity and subsequently, auxiliary information using the order of the data. An alternative
model, shuffle DP, prevents this by shuffling the noisy responses uniformly at random. However,
this limits the data learnability – only symmetric functions (input order agnostic) can be learned.
In this paper, we strike a balance and show that systematic shuffling of the noisy responses can
thwart specific inference attacks while retaining some meaningful data learnability. To this end,
we propose a novel privacy guarantee, dσ-privacy, that captures the privacy of the order of a data
sequence. dσ-privacy allows tuning the granularity at which the ordinal information is maintained,
which formalizes the degree the resistance to inference attacks trading it off with data learnability.
Additionally, we propose a novel shuffling mechanism that can achieve dσ-privacy and demonstrate
the practicality of our mechanism via evaluation on real-world datasets.

1 INTRODUCTION

Differential Privacy (DP) and its local variant (LDP) are the most commonly accepted notions of
data privacy. LDP has the significant advantage of not requiring a trusted centralized aggregator,
and has become a popular model for commercial deployments, such as those of Microsoft (Ding
et al., 2017), Apple (Greenberg, 2016), and Google (Erlingsson et al., 2014; Fanti et al., 2015; Bittau
et al., 2017b). Its formal guarantee asserts that an adversary cannot infer the value of an individual’s
private input by observing the noisy output. However in practice, a vast amount of public auxiliary
information, such as address, social media connections, court records, property records, income and
birth dates (La Corte, 2019), is available for every individual. An adversary, with access to such
auxiliary information, can learn about an individual’s private data from several other participants’
noisy responses. We illustrate this as follows.

Problem. An analyst runs a medical survey in Alice’s community to investigate how the
prevalence of a highly contagious disease changes from neighborhood to neighborhood.
Community members report a binary value indicating whether they have the disease.

Next, consider the following two data reporting strategies.

Strategy 1. Each data owner passes their data through an appropriate randomizer (that flips
the input bit with some probability) in their local devices and reports the noisy output to the
untrusted data analyst.

Strategy 2. The noisy responses from the local devices of each of the data owners are
collected by an intermediary trusted shuffler which dissociates the device IDs (metadata)
from the responses and uniformly randomly shuffles them before sending them to the analyst.

Strategy 1 corresponds to the standard LDP deployment model (for example, Apple and Microsoft’s
deployments). Here the order of the noisy responses is informative of the identity of the data owners –
the noisy response at index 1 corresponds to the first data owner and so on. Thus, the noisy responses
can be directly linked with its associated device/account ID and subsequently, auxiliary information.
This puts Alice’s data under the threat of inference attacks. For instance, an adversary1 may know
the home addresses of the participants and use this to identify the responses of all the individuals
from Alice’s household. Being highly infectious, all or most of them will have the same true value (0
or 1). Hence, the adversary can reliably infer Alice’s value by taking a simple majority vote of her
and her household’s noisy responses. Note that this does not violate the LDP guarantee since the
inputs are appropriately randomized when observed in isolation. Additionally, on account of being

1The analyst and the adversary could be same, we refer to them separately for the ease of understanding.
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(a) Original Data

(b) LDP (c) Our scheme: ra (d) Our scheme: rb (e) Uniform shuffle

(f) Attack: LDP (g) Attack: ra (h) Attack: rb (i) Attack: unif. shuff.

Figure 1: Demonstration of how our proposed scheme thwarts inference attacks at different granularities. Fig.
1a depicts the original sensitive data (such as income bracket) with eight color-coded labels. The position of the
points represents public information (such as home address) used to correlate them. There are three levels of
granularity: warm vs. cool clusters, blue vs. green and red vs. orange crescents, and light vs. dark within each
crescent. Fig. 1b depicts ε = 2.55 LDP. Fig. 1c and 1d correspond to our scheme, each with α = 1 (privacy
parameter, Def. 4.3). The former uses a smaller distance threshold (r1, used to delineate the granularity of
grouping – see Sec. 4.2) that mostly shuffles in each crescent. The latter uses a larger distance threshold (r2) that
shuffles within each cluster. Figures in the bottom row demonstrate an inference attack (uses Gaussian process
correlation) on all four cases. We see that LDP reveals almost the entire dataset (Fig. 1f) while uniform shuffling
prevents all classification (1i). However, the granularity can be controlled with our scheme (Figs. 1g, 1h).

public, the auxiliary information is known to the adversary (and analyst) a priori – no mechanism
can prevent their disclosure. For instance, any attempts to include Alice’s address as an additional
feature of the data and then report via LDP is futile – the adversary would simply discard the reported
noisy address and use the auxiliary information about the exact addresses to identify the responses of
her household members. We call such threats inference attacks – recovering an individual’s private
input using all or a subset of other participants’ noisy responses. It is well known that protecting
against inference attacks that rely on underlying data correlations is beyond the purview of DP (Kifer
& Machanavajjhala, 2014; Tschantz et al., 2020).

Strategy 2 corresponds to the recently introduced shuffle DP model, such as Google’s Prochlo
(Bittau et al., 2017b). Here, the noisy responses are completely anonymized – the adversary cannot
identify which LDP responses correspond to Alice and her household. Under such a model, only
information that is completely order agnostic (i.e., symmetric functions that can be computed over
just the bag of values, such as aggregate statistics) can be extracted. Consequently, the analyst also
fails to accomplish their original goal as all the underlying data correlation is destroyed.

Thus, we see that the two models of deployment for LDP present a trade-off between vulnerability to
inference attacks and scope of data learnability. In fact, as demonstrated in Kifer & Machanavajjhala
(2011), it is impossible to defend against all inference attacks while simultaneously maintaining utility
for learning. In the extreme case that the adversary knows everyone in Alice’s community has the
same true value (but not which one), no mechanism can prevent revelation of Alice’s datapoint short
of destroying all utility of the dataset. This then begs the question: Can we formally suppress specific
inference attacks targeting each data owner while maintaining some meaningful learnability of
the private data? Referring back to our example, can we thwart attacks inferring Alice’s data using
specifically her households’ responses and still allow the medical analyst to learn its target trends?
Can we offer this to every data owner participating?

In this paper, we strike a balance and propose a generalized shuffle framework that meets the utility
requirements of the above analyst while formally protecting data owners against inference attacks.
Our solution is based on the key insight: the order of the data acts as the proxy for the identity of data
owners as illustrated above. The granularity at which the ordering is maintained formalizes resistance
to inference attacks while retaining some meaningful learnability of the private data. Specifically,
we guarantee each data owner that their data is shuffled together with a carefully chosen group of
other data owners. Revisiting our example, consider uniformly shuffling the responses from Alice’s
household and her immediate neighbors. Now an adversary cannot use her household’s responses
to predict her value any better than they could with a random sample of responses from this group.
In the same way that LDP prevents reconstruction of her datapoint using specifically her noisy
response, this scheme prevents reconstruction of her datapoint using specifically her households’
responses. The real challenge is offering such guarantees equally to every data owner. Bob, Alice’s
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neighbor, needs his households’ responses shuffled in with his neighbors, as does Luis who is a
neighbor of Bob but not of Alice. Thus, we have n data owners with n distinct, overlapping groups.
Our scheme supports arbitrary groupings (overlapping or not), introducing a diverse and tunable
class of privacy/utility trade-offs which is not attainable with either LDP or uniform shuffling alone.
For the above example, our scheme can formally protect each data owner from inference attacks
using specifically their household, while still learning how disease prevalence changes across the
neighborhoods of Alice’s community.
This work offers two key contributions to the machine learning privacy literature:
• Novel privacy guarantee. We propose a novel privacy definition, dσ-privacy that captures the

privacy of the order of a data sequence (Sec. 4.2) and formalizes the degree of resistance against
inference attacks (Sec. 4.3). dσ-privacy allows assigning an arbitrary group,Gi, to each data owner,
DOi, i ∈ [n]. For instance, the groups can represent individuals in the same age bracket, ‘friends’
on social media, or individuals living in each other’s vicinity (as in case of Alice in our example).
Recall that the order is informative of the data owner’s identity. Intuitively, dσ-privacy protects
DOi from inference attacks that arise from knowing the identity of the members of their group Gi
(Sec. 4.3). Additionally, this grouping determines a threshold of learnability – any learning that is
order agnostic within a group (disease prevalence in a neighborhood – the data analyst’s goal in
our example) is utilitarian and allowed; whereas analysis that involves identifying the values of
individuals within a group (disease prevalence within specific households – the adversary’s goal) is
regarded as a privacy threat and protected against. See Fig. 1 for a toy demonstration of how our
guarantee allows tuning the granularity at which trends can be learned.

• Novel shuffle framework. We propose a novel mechanism that shuffles the data systematically
and achieves dσ-privacy. This provides a generalized shuffle framework that interpolates between
no shuffling (LDP) and uniform random shuffling (shuffle model) in terms of protection against
inference attacks and data learnability.

2 RELATED WORK

The shuffle model of DP (Bittau et al., 2017a; Cheu et al., 2019; Erlingsson et al., 2019) differs
from our scheme as follows. These works (1) study DP benefits of shuffling whereas we study the
inferential privacy benefits, and (2) only study uniformly random shuffling where ours generalizes
this to tunable, non-uniform shuffling (see App. A.15).
A steady line of work has studied inferential privacy (Kasiviswanathan & Smith, 2014; Kifer &
Machanavajjhala, 2011; Ghosh & Kleinberg, 2016; Dalenius, 1977; Dwork & Naor, 2010; Tschantz
et al., 2020). Our work departs from those in that we focus on local inferential privacy and do so via
the new angle of shuffling.
Older works such as k-anonymity (Sweeney, 2002), l-diversity Machanavajjhala et al. (2007),
Anatomy (Xiao & Tao, 2006) and others (Wong et al., 2010; Tassa et al., 2012; Xue et al., 2012;
Choromanski et al., 2013; Doka et al., 2015) have studied the privacy risk of non-sensitive auxiliary
information or ‘quasi identifiers’. These works (1) focus on the setting of dataset release, whereas
we focus on dataset collection, and (2) do not offer each data owner formal inferential guarantees,
whereas we do. The De Finetti attack (Kifer, 2009) shows how shuffling schemes are vulnerable to
inference attacks that correlate records to recover the original permutation of sensitive attributes. A
strict instance of our privacy guarantee can thwart such attacks (at the cost of no utility, App. A.3).

3 BACKGROUND

Notations. Boldface (such as x = 〈x1, · · · , xn〉) denotes a data sequence (ordered list); normal font
(such as x1) denotes individual values and {·} represents a multiset or bag of values.

3.1 LOCAL DIFFERENTIAL PRIVACY

The local model consists of a set of data owners and an untrusted data aggregator (analyst); each
individual perturbs their data using a LDP algorithm (randomizers) and sends it to the analyst. The
LDP guarantee is formally defined as
Definition 3.1. [Local Differential Privacy, LDP Warner (1965); Evfimievski et al. (2003); Ka-
siviswanathan et al. (2008)] A randomized algorithmM : X → Y is ε-locally differentially private
(or ε-LDP ), if for any pair of private values x, x′ ∈ X and any subset of output,

Pr
[
M(x) ∈ W

]
≤ eε · Pr

[
M(x′) ∈ W

]
(1)

The shuffle model is an extension of the local model where the data owners first randomize their
inputs. Additionally, an intermediate trusted shuffler applies a uniformly random permutation to
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all the noisy responses before the analyst can view them. The anonymity provided by the shuffler
requires less noise than the local model for achieving the same privacy.
3.2 MALLOWS MODEL

A permutation of a set S is a bijection S 7→ S. The set of permutations of [n], n ∈ N forms a
symmetric group Sn. As a shorthand, we use σ(x) to denote applying permutation σ ∈ Sn to a
data sequence x of length n. Additionally, σ(i), i ∈ [n], σ ∈ Sn denotes the value at index i in
σ and σ−1 denotes its inverse. For example, if σ = (1 3 5 4 2) and x = 〈21, 33, 45, 65, 67〉, then
σ(x) = 〈21, 45, 67, 65, 33〉, σ(2) = 3, σ(3) = 5 and σ−1 = (1 5 2 4 3).
Mallows model is a popular probabilistic model for permutations (MALLOWS, 1957). The mode of
the distribution is given by the reference permutation σ0 – the probability of a permutation increases
as we move ‘closer’ to σ0 as measured by rank distance metrics, such as the Kendall’s tau distance
(Def. A.2). The dispersion parameter θ controls how fast this increase happens.

Definition 3.2. For a dispersion parameter θ, a reference permutation σo ∈ Sn, and a rank distance
measure d : Sn × Sn 7→ R, PΘ,d(σ : σ0) = 1

ψ(θ,d)e
−θd(σ,σ0) is the Mallows model where ψ(θ, d) =∑

σ∈Sn
e−θd(σ,σ0) is a normalization term and σ ∈ Sn.

4 DATA PRIVACY AND SHUFFLING

Figure 2: Trusted shuffler mediates on y

In this section, we present dσ-privacy and a shuffling mech-
anism capable of achieving the dσ-privacy guarantee.

4.1 PROBLEM SETTING

In our problem setting, we have n data owners DOi, i ∈
[n] each with a private input xi ∈ X (Fig. 2). The data
owners first randomize their inputs via a ε-LDP mechanism to generate yi =M(xi). Additionally,
just like in the shuffle model, we have a trusted shuffler. It mediates upon the noisy responses
y = 〈y1, · · · , yn〉 to obtain the final output sequence z = A(y) (A corresponds to Alg. 1) which is
sent to the untrusted data analyst. The shuffler can be implemented via trusted execution environments
(TEE) just like Google’s Prochlo. Next, we formally discuss the notion of order and its implications.

Definition 4.1. (Order) The order of a sequence x = 〈x1, · · · , xn〉 refers to the indices of its set of
values {xi} and is represented by permutations from Sn.

When the noisy response sequence y = 〈y1, · · · , yn〉 is represented by the identity permutation
σI = (1 2 · · · n), the value at index 1 corresponds to DO1 and so on. Standard LDP releases the
identity permutation w.p. 1. The output of the shuffler, z, is some permutation of the sequence y, i.e.,

z = σ(y) = 〈yσ(1), · · · , yσ(n)〉
where σ is determined via A(·). For example, for σ = (4 5 2 3 1), we have z = 〈y4, y5, y2, y3, y1〉
which means that the value at index 1 (DO1) now corresponds to that of DO4 and so on.

4.2 DEFINITION OF dσ -PRIVACY

Inferential risk captures the threat of an adversary who infers DOi’s private xi using all or a subset
of other data owners’ released yj’s. Since we cannot prevent all such attacks and maintain utility,
our aim is to formally limit which data owners can be leveraged in inferring DOi’s private xi.
To make this precise, each DOi may choose a corresponding group, Gi ⊆ [n], of data owners.

Figure 3: An example social me-
dia connectivity graph te.g

dσ-privacy guarantees that yj values originating from a data owner’s
group Gi are shuffled together. In doing so, the LDP values corre-
sponding to subsets of DOi’s group I ⊂ Gi cannot be reliably identi-
fied, and thus cannot be singled out to make inferences about DOi’s
xi. If Alice’s group includes her whole neighborhood, LDP data
originating from her household cannot be singled out to recover her
private xi.
Any choice of grouping G = {G1, G2, . . . , Gn} can be accommodated under dσ-privacy. Each data
owner may choose a group large enough to hide anyone they feel sufficient risk from. We outline two
systematic approaches to assigning groups as follows:
• Let t = 〈t1, · · · , tn〉, ti ∈ T denote some public auxiliary information about each individual.

DOi’s group, Gi, could consist of all those DOj’s who are similar to DOi w.r.t. the public
auxiliary information ti, tj according to some distance measure d : T × T → R. Here, we define
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‘similar’ as being under a threshold2 r ∈ R such that Gi = {j ∈ [n]
∣∣d(ti, tj) ≤ r},∀i ∈ [n]. For

example, d(·) can be Euclidean distance if T corresponds to geographical locations, thwarting
inference attacks leveraging one’s household or immediate neighbors. If T represents a social
media connectivity graph, d(·) can measure the path length between two nodes, thwarting inference
attacks using specifically one’s close friends. For the example social media connectivity graph
depicted in Fig. 3, assuming distance metric path length and r = 2, the groups are defined as
G1 = {1, 7, 8, 2, 5, 6}, G2 = {2, 1, 7, 5, 6, 3} and so on.

• Alternatively, the data owners might opt for a group of a specific size r < n. Collecting private
data from a social media network, we may set r = 50, where each Gi is encouraged to include the
50 data owners DOi interacts with most frequently.

Intuitively, dσ-privacy protects DOi against inference attacks that leverages correlations at a finer
granularity than Gi. In other words, under dσ-privacy, one subset of k data owners ⊂ Gi (e.g.
household) is no more useful for targeting xi than any other subset of k data owners ⊂ Gi (e.g. some
combination of neighbors). This leads to the following key insight for the formal privacy definition.

Key Insight. Formally, our privacy goal is to prevent the leakage of ordinal information from within
a group. We achieve this by systematically bounding the dependence of the mechanism’s output on
the relative ordering (of data values corresponding to the data owners) within each group.
First, we introduce the notion of neighboring permutations.
Definition 4.2. (Neighboring Permutations) Given a group assignment G, two permutations σ, σ′ ∈ Sn
are defined to be neighboring w.r.t. a group Gi ∈ G (denoted as σ≈Giσ′) if σ(j) = σ′(j) ∀j /∈ Gi.
Neighboring permutations differ only in the indices of its corresponding group Gi. For example,
σ = (1 2 4 5 7 6 10 3 8 9) and σ′ = (7 3 4 5 6 2 1 10 8 9) are neighboring w.r.t G1 (Fig. 3) since they differ
only in σ(1), σ(2), σ(5), σ(6), σ(7) and σ(8). We denote the set of all neighboring permutations as

NG = {(σ, σ′)|σ ≈Gi σ′,∃Gi ∈ G} (2)
Now, we formally define dσ-privacy as follows.

Definition 4.3 (dσ-privacy). For a given group assignment G on a set of n entities and a privacy
parameter α ∈ R≥0, a randomized mechanism A : Yn 7→ V is (α,G)-dσ private if for all y ∈ Yn
and neighboring permutations σ, σ′ ∈ NG and any subset of output O ⊆ V , we have

Pr[A
(
σ(y)

)
∈ O] ≤ eα · Pr

[
A
(
σ′(y)

)
∈ O

]
(3)

σ(y) and σ′(y) are defined to be neighboring sequences.
dσ-privacy states that, for any group Gi, the mechanism is (almost) agnostic of the order of the
data within the group. Even after observing the output, an adversary cannot learn about the relative
ordering of the data within any group. Thus, two neighboring sequences are indistinguishable to
an adversary. An important property of dσ-privacy is that post-processing computations does not
degrade privacy. Additionally, when applied multiple times, the privacy guarantee degrades gracefully.
Both the properties are analogous to DP and are presented in App. A.4.

Note. Any data sequence x = 〈x1, · · · , xn〉 can be viewed as a two-tuple,
(
{x}, σ

)
, where {x}

denotes the bag of values and σ ∈ Sn denotes the corresponding indices of the values which
represents the order of the data. The ε-LDP protects the bag of data values, {x}, while dσ-privacy
protects the order, σ. Thus, the two privacy guarantees cater to orthogonal parts of a data sequence
(see Thm. 4.2 ). Also, α =∞ (0), r = 0 (n) represents the standard LDP (shuffle DP) setting.
4.3 PRIVACY IMPLICATIONS

The group assignment G delineates a threshold of learnability which determines the privacy/utility
tradeoff as follows.
• Learning allowed (Analyst’s goal). dσ-privacy can answer queries that are order agnostic within

groups, such as aggregate statistics of a group. In Alice’s case, the analyst can estimate the disease
prevalence in her neighborhood.

• Learning disallowed (Adversary’s goal). Adversaries cannot identify (noisy) values of individu-
als within any group. While they may learn the disease prevalence in Alice’s neighborhood, they
cannot determine the prevalence within her household and use that to recover her value xi.

To make this precise, we first formalize the privacy implications of the dσ guarantee in the standard
Bayesian framework, typically used for studying inferential privacy. Next, we formalize the privacy
provided by the combination of LDP and dσ guarantees by way of a decision theoretic adversary.

2We could also have different thresholds, ri, for every data owner, DOi.
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Bayesian Adversary. Consider a Bayesian adversary with any prior P on the joint distribution of
noisy responses, PrP [y], which models their beliefs on the correlation between the participants (such
as the correlation between Alice and her households’ disease status). Their goal is to infer DOi’s
private input xi. As with early DP works (Dwork et al., 2006), we consider an informed adversary.
Here, the adversary knows (1) the sequence (assignment) of noisy values outside Gi, yGi , and (2)

the (unordered) bag of noisy values in Gi, {yGi}. dσ-privacy bounds the prior-posterior odds gap on
xi for such as informed adversary as follows:

Theorem 4.1. For a given group assignment G on a set of n data owners, if a shuffling mechanism
A : Yn 7→ Yn is (α,G)-dσprivate, then for each data owner DOi, i ∈ [n],

max
i∈[n]
a,b∈X

∣∣∣∣ log
PrP [xi = a|z, {yGi},yGi ]
PrP [xi = b|z, {yGi},yGi ]

− log
PrP [xi = a|{yGi},yGi ]
PrP [xi = b|{yGi},yGi ]

∣∣∣∣ ≤ α
for a prior distribution P , where z = A(y) and yGi is the noisy sequence for data owners outside Gi.
See App A.5 for the proof and further discussion on the semantic meaning of the above guarantee.

Decision Theoretic Adversary. Here, we analyse the privacy provided by the combination of
LDP and dσ guarantees. Consider a decision theoretic adversary who aims to identify the noisy
responses, {zI}, that originated from a specific subset of data owners, I ⊂ Gi (such as the members
of Alice’s household). We denote the adversary by a (possibly randomized) function mapping from
the output z sequence to a set of k indices, DAdv : Yn → [n]k, where k = |I|. These k indices,
H ∈ [n]k, represent the elements of z that DAdv believes originated from the data owners in I .
DAdv wins if > k/2 of the chosen indices indeed originated from I , i.e, |σ(H) ∩ I| > k/2, where
zi = yσ(i) and σ(H) = {σ(i) : i ∈ H}. DAdv loses if most of H did not originate from I , i.e.,
|σ(H) ∩ I| ≤ k/2. We choose the above adversary because this re-identification is a key step in
carrying out inference attacks – in failing to reliably re-identify the noisy values originating from I ,
one cannot make inferences on xi specifically from the subset I ⊂ Gi.
Theorem 4.2. For A(M(x)) = z whereM(·) is ε-LDP and A(·) is α - dσprivate, we have

Pr[DAdv loses] ≥
⌊r − k

k

⌋
e−(2kε+α) · Pr[DAdv wins]

for any input subgroup I ⊂ Gi, r = |Gi| and k < r/2.
The adversary’s ability to re-identify the {zI} values comes partially from the bag of values (quanti-
fied by ε) and partially from the order (quantified by α). We highlight two implications of this fact.

• When ε is small (� 1), an adversary’s ability to re-identify the noisy values {zI} originating from
I may very well be dominated by α. For instance, if ε = 0.2 and k = 5, the adversary’s advantage
is dominated by α for any α > 2. When using LDP alone (no shuffling), α =∞ and the adversary
can exactly recover which values came from Alice’s household. As such, even a moderate α value
(obtained via dσ-privacy) significantly reduces the ability to re-identify the values.
• When the loss is dominated by ε (2kε � α), the above expression allows us to disentangle the

source of privacy loss. In this regime, adversaries get most of their advantage from the bag of
values released, not from the order of the release. That is, even if α = 0 (uniform random shuffling),
participants still suffer a large risk of re-identification simply due to the noisy values being reported.
Thus, no shuffling mechanism can prevent re-identification in this regime.

Discussion. In spirit, DP does not guarantee protection against recovering DOi’s private xi value. It
guarantees that – had a user not participated (or equivalently submitted a false value x′i) – the adversary
would have about the same ability to learn their true value, potentially from the responses of other
data owners. In other words, the choice to participate is unlikely to be responsible for the disclosure
of xi. Similarly, dσ-privacy does not prevent disclosure of xi. By requiring indistinguishability
of neighboring permutations, it guarantees that – had the data owners of any group Gi completely
swapped identities – the adversary would have about the same ability to learn xi. So most likely,
Alice’s household is not uniquely responsible for a disclosure of her xi: had her household swapped
identities with any of her neighbors, the adversary would probably draw the same conclusion on xi.
Or, as detailed in Thm.4.2, an adversary cannot reliably resolve which {z} values originated from
Alice’s household, so they cannot draw conclusions based on her household’s responses. In a nutshell,
• Inference attacks can recover a data owner DOi’s private data xi from the responses of other data

owners. The order of the data acts as the proxy for the data owner’s identity which can aid an
adversary in corralling the subset of other data owners who correlate with DOi (required to make a
reliable inference of xi).
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• DP alleviates concerns that DOi’s choice to share data (yi) will result in disclosure of xi, and
dσ-privacy alleviates concerns that DOi’s group’s (Gi) choice to share their identity will result in
disclosure of xi.

4.4 dσ -PRIVATE SHUFFLING MECHANISM Algorithm 1: dσ-private Shuffling Mech.

Input: LDP sequence y = 〈y1, · · · , yn〉;
Public aux. info. t = 〈t1, · · · tn〉;
Dist. threshold r; Priv. param. α;

Output: z - Shuffled output sequence;
1 G = ComputeGroupAssignment (t, r);
2 Construct graph G with

a) vertices V = {1, 2, · · · , n}
b) edges E = {(i, j) : j ∈ Gi, Gi ∈ G}

3 root = arg maxi∈[n] |Gi|;
4 σ0 = BFS(G, root);
5 ∆= ComputeSensitivity(σ0,G)

6 θ = α/∆;
7 σ̂ ∼ Pθ,d(σ0) ;
8 σ∗ = σ−1

0 σ̂;
9 z = 〈yσ∗(1), · · · yσ∗(n)〉;

10 Return z;

We now describe our novel shuffling mechanism
that can achieve dσ-privacy. In a nutshell, our
mechanism samples a permutation from a suitable
Mallows model and shuffles the data sequence
accordingly. We can characterize the dσ-privacy
guarantee of our mechanism in the same way
as that of the DP guarantee of classic mecha-
nisms (Dwork & Roth, 2014) – with variance
and sensitivity. Intuitively, a larger dispersion
parameter θ ∈ R (Def. 3.2) reduces randomness
over permutations, increasing utility and increas-
ing (worsening) the privacy parameter α. The
maximum value of θ for a given α guarantee
depends on the sensitivity of the rank distance
measure d(·) over all neighboring permutations
NG . Formally, we define the sensitivity as
∆(σ0 : d,G) = max

(σ,σ′)∈NG
|d(σ0σ, σ0)− d(σ0σ

′, σ0)| ,

the maximum change in distance d(·) from the ref-
erence permutation σ0 for any pair of neighboring
permutations (σ, σ′) ∈ NG permuted by σ0. The
privacy parameter of the mechanism is then proportional to its sensitivity α = θ ·∆(σ0 : d,G).

Given G and a reference permutation σ0, the sensitivity of a rank distance measure d(·) depends on
the width, ωσG , which measures how ‘spread apart’ the members of any group of G are in σ0:

ωσGi = max
(j,k)∈Gi×Gi

∣∣∣σ−1(j)− σ−1(k)
∣∣∣, i ∈ [n]; ωσG = max

Gi∈G
ωσGi

For example, for σ = (1 3 7 8 6 4 5 2 9 10) and G1 = {1, 7, 8, 2, 5, 6}, ωσG1
= |σ−1(1)− σ−1(2)| = 7. The

sensitivity is an increasing function of the width. For instance, for Kendall’s τ distance dτ (·) we have
∆(σ0 : dτ ,G) = ωσ0

G (ωσ0

G + 1)/2.
If a reference permutation clusters the members of each group closely together (low width), then
the groups are more likely to permute within themselves. This has two benefits. First, for the same
θ (θ is an indicator of utility as it determines the dispersion of the sampled permutation), a lower
value of width gives lower α (better privacy). Second, if a group is likely to shuffle within itself, it
will have better (η, δ)-preservation – a novel utility metric, we propose, for a shuffling mechanism.
Intuitively, a mechanism is (η, δ)-preserving w.r.t a subset of indices S ⊂ [n] if at least η% of its
indices are shuffled within itself with probability (1− δ). The rationale behind this metric is that it
captures the utility of the learning allowed by dσ-privacy – if S is equal to some group G ∈ G, high
(η, δ)-preservation allows overall statistics of G to be captured since η% of the correct data values
remain preserved. We present the formal discussion in App. A.7.

Unfortunately, minimizing ωσG is an NP-hard problem (Thm. A.3 in App. A.9). Instead, we estimate
the optimal σ0 using the following heuristic3 approach based on a graph breadth first search.

Algorithm Description. Alg. 1 above proceeds as follows. We first compute the group assignment,
G, based on the public auxiliary information and desired threshold r following discussion in Sec. 4.2
(Step 1). Then we construct σ0 with a breadth first search (BFS) graph traversal.
We translate G into an undirected graph (V,E), where the vertices are indices V = [n] and two indices
i, j are connected by an edge if they are both in some group (Step 2). Next, σ0 is computed via a
breadth first search traversal (Step 4) – if the k-th node in the traversal is i, then σ0(k) = i. The rationale
is that neighbors of i (members of Gi) would be traversed in close succession. Hence, a neighboring
node j is likely to be traversed at some step h near k which means |σ−1

0 (i)− σ−1
0 (j)| = |h− k| would

be small (resulting in low width). Additionally, starting from the node with the highest degree (Steps
3-4) which corresponds to the largest group in G (lower bound for ωσG for any σ) helps to curtail the
maximum width in σ0. See App. A.16 for evaluations of this heuristic’s approximation.

3The heuristics only affect σ0 (and utility). Once σ0 is fixed, ∆ is computed exactly as discussed above.
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This is followed by the computation of the dispersion parameter, θ, for our Mallows model (Steps
5-6). Next, we sample a permutation from the Mallows model (Step 7) σ̂ ∼ Pθ(σ : σ0) and we apply
the inverse reference permutation to it, σ∗ = σ−1

0 σ̂ to obtain the desired permutation for shuffling.
Recall that σ̂ is (most likely) close to σ0, which is unrelated to the original order of the data. σ−1

0

therefore brings σ∗ back to a shuffled version of the original sequence (identity permutation σI ). Note
that since Alg. 1 is publicly known, the adversary/analyst knows σ0. Hence, even in the absence of
this step from our algorithm, the adversary/analyst could perform this anyway. Finally, we permute y
according to σ∗ and output the result z = σ̂(y) (Steps 9-10).
Theorem 4.3. Alg. 1 is (α,G)-dσ private where α = θ ·∆(σ0 : d,G).

The proof is in App. A.11. Note that Alg. 1 provides the same level of privacy (α) for any two group
assignment G,G′ as long as they have the same sensitivity, i.e, ∆(σ0 : dτ ,G) = ∆(σ0 : dτ ,G′). This
leads to the following theorem which generalizes the privacy guarantee for any group assignment.

Theorem 4.4. Alg. 1 satisfies (α′,G′)-dσprivacy for any group assignment G′ with α′ = α∆(σ0:d,G′)
∆(σ0:d,G)

(proof in App. A.12.)
Note. Producing σ∗ is completely data (y) independent. It only requires access to the public auxiliary
information t. Hence, Steps 1− 6 can be performed in a pre-processing phase and do not contribute
to the actual running time. See App. A.10 for an illustration of Alg. 1 and runtime analysis.

5 EVALUATION

(a) PUDF: Attack (b) Twitch: Attack (c) PUDF: Learnability (d) Twitch: Learnability

Figure 4: Our scheme interpolates between standard LDP (orange line) and uniform shuffling (blue line) in both
privacy and data learnability. All plots increase group size along x-axis (except (d)). (a)→ (b): The fraction
of participants vulnerable to an inferential attack. (c)→ (d): The accuracy of a calibration model trained on
z predicting the distribution of LDP outputs at any point t ∈ T , such as the distribution of medical insurance
types used specifically in the Houston area (not possible when uniformly shuffling across Texas).

The previous sections describe how our shuffling framework interpolates between standard LDP and
uniform random shuffling. We now experimentally evaluate this asking the following two questions –

Q1. Does the Alg. 1 mechanism protect against realistic inference attacks?
Q2. How well can Alg. 1 tune a model’s ability to learn trends within the shuffled data, i.e., tune
data learnability?

We evaluate on four datasets. We are not aware of any prior work that provides comparable local
inferential privacy. Hence, we baseline our mechanism with the two extremes: standard LDP and
uniform random shuffling. For concreteness, we detail our procedure with the PUDF dataset (PUD)
(license), which comprises n ≈ 29k psychiatric patient records from Texas. Each data owner’s
sensitive value xi is their medical payment method, which is reflective of socioeconomic class (such
as medicaid or charity). Public auxiliary information t ∈ T is the hospital’s geolocation. Such
information is used for understanding how payment methods (and payment amounts) vary from town
to town for insurances in practice (Eric Lopez, 2020). Uniform shuffling across Texas precludes
such analyses. Standard LDP risks inference attacks, since patients attending hospitals in the same
neighborhood have similar socioeconomic standing and use similar payment methods, allowing an
adversary to correlate their noisy yi’s. To trade these off, we apply Alg. 1 with d(·) being distance
(km) between hospitals, α = 4 and Kendall’s τ rank distance measure for permutations.

Our inference attack predicts DOi’s xi by taking a majority vote of the zj values of the 25 data owners
within r∗ of ti and who are most similar to DOi w.r.t some additional privileged auxiliary information
tpj ∈ Tp. For PUDF, this includes the 25 data owners who attended hospitals that are within r∗ km of
DOi’s hospital, and are most similar in payment amount tpj . Using an ε = 2.5 randomized response
mechanism, we resample the LDP sequence y 50 times, and apply Alg. 1’s chosen permutation to
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each, producing 50 z’s. We then mount the majority vote attack on each xi for each z. If the attack
on a given xi is successful across ≥ 90% of these LDP trials, we mark that data owner as vulnerable
– although they randomize with LDP, there is a ≥ 90% chance that a simple inference attack can
recover their true value. We record the fraction of vulnerable data owners as ρ. We report 1-standard
deviation error bars over 10 trials.

Additionally, we evaluate data learnability – how well the underlying statistics of the dataset are
preserved across T . For PUDF, this means training a model on the shuffled z to predict the distribution
of payment methods used near, for instance, ti = Houston for DOi. For this, we train a calibrated
model, Cal : T → Dx, on the shuffled outputs where Dx is the set of all distributions on the domain
of sensitive attributes X . We implement Cal as a gradient boosted decision tree (GBDT) model
(Friedman, 2001) calibrated with Platt scaling (Niculescu-Mizil & Caruana, 2005). For each location
ti, we treat the empirical distribution of xi values within r∗ as the ground truth distribution at ti,
denoted by E(ti) ∈ Dx. Then, for each ti, we measure the Total Variation error between the predicted
and ground truth distributions TV

(
E(ti),Calr(ti)

)
. We then report λ(r) – the average TV error for

distributions predicted at each ti ∈ t normalized by the TV error of naively guessing the uniform
distribution at each ti. With standard LDP, this task can be performed relatively well at the risk of
inference attacks. With uniformly shuffled data, it is impossible to make geographically localized
predictions unless the distribution of payment methods is identical in every Texas locale.

We additionally perform the above experiments on the following three datasets
• Twitch (Rozemberczki et al., 2019). This dataset, gathered from the Twitch social media platform,

includes a graph of ≈ 9K edges (mutual friendships) along with node features. The user’s history
of explicit language is private X = {0, 1}. T is a user’s mutual friendships, i.e. ti is the i’th row of
the graph’s adjacency matrix. We do not have any TP here and select the 25 neighbors randomly.

• Syn. This is a synthetic dataset of size 20K which can be classified at three granularities – 8-way,
4-way and 2-way (Fig. 1a shows a scaled down version of the dataset). The eight color labels are
private X = [8]; the 2D-positions are public T = R2. For learnability, we measure the accuracy of
8-way, 4-way and 2-way GBDT models trained on z on an equal sized test set at each r.

• Adult (Dua & Graff, 2017). This dataset is derived from the 1994 Census and has ≈ 33K records.
Whether DOi’s annual income is≥ 50k is considered private, X = {≥ 50k,< 50k}. T = [17, 90]
is age and TP is the individual’s marriage status. Due to lack of space figures are in App. A.14.2.

Experimental Results.
Q1. Our formal guarantee on the inferential privacy loss (Thm. 4.1) is described w.r.t to a ‘strong’
adversary (with access to {yGi},yGi). Here, we test how well does our proposed scheme (Alg. 1)
protect against inference attacks on real-world datasets without any such assumptions. Additionally,
to make our attack more realistic, the adversary has access to extra privileged auxiliary information
TP which is not used by Alg. 10. Fig. 4a→ 4b show that our scheme significantly reduces the
attack efficacy. For instance, ρ is reduced by 2.7X at the attack distance threshold r∗ for PUDF.

Figure 5: Syn: Learnability

Additionally, ρ for our scheme varies from that of LDP4 (minimum
privacy) to uniform shuffle (maximum privacy) with increasing r
(equivalently group size as in Fig. 4b) thereby spanning the entire
privacy spectrum. As expected, ρ decreases with decreasing privacy
parameter α (Fig. 8b).
Q2. Fig.4c→ 4d show that λ varies from that of LDP (maximum
learnability) to that of uniform shuffle (minimum learnability) with
increasing r (equivalently, group size), thereby providing tunability.
Interestingly, for Adult our scheme reduces ρ by 1.7X at the same λ
as that of LDP for r = 1 (Fig. 8c). Fig. 5 shows that the distance threshold r defines the granularity
at which the data can be classified. LDP allows 8-way classification while uniform shuffling allows
none. The granularity of classification can be tuned by our scheme – r8, r4 and r2 mark the thresholds
for 8-way, 4-way and 2-way classifications, respectively.

6 CONCLUSION

We have proposed a new privacy definition, dσ-privacy that casts new light on the inferential privacy
benefits of shuffling and a novel shuffling mechanism to achieve the same.

4Our scheme gives lower ρ than LDP at r = 0 because the resulting groups are non-singletons. For instance,
for PUDF, Gi includes all individuals with the same zipcode as DOi.
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7 ETHIS STATEMENT

It is the aim of this paper to formalize the enhanced privacy guarantees offered by shuffling, to provide
intuition of what those formal guarantees semantically offer to data owners, and to demonstrate an
algorithm + experiments which offer these guarantees while meeting analyst utility requirements. We
feel that all of these aims as well as the public datasets used are ethical.

8 REPRODUCIBILITY STATEMENT

The majority of this paper formalizes a novel perspective on the privacy guarantees achieved by
shuffling (i.e. randomizing the order of the data as opposed to the values). Detailed proofs as well as
intuitive discussions are provided in the Appendix. All datasets are public. A .zip file demonstrating
code of each experiment has been uploaded as supplementary material.
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A APPENDIX

A.1 BACKGROUND CNTD.

A.2 LOCAL INFERENTIAL PRIVACY

Local inferential privacy captures what information a Bayesian adversary Kifer & Machanavajjhala
(2014), with some prior, can learn in the LDP setting. Specifically, it measures the largest possible
ratio between the adversary’s posterior and prior beliefs about an individual’s data after observing a
mechanism’s output .
Definition A.1. (Local Inferential Privacy Loss Kifer & Machanavajjhala (2014)) Let x =
〈x1, · · · , xn〉 and let y = 〈y1, · · · , yn〉 denote the input (private) and output sequences (observ-
able to the adversary) in the LDP setting. Additionally, the adversary’s auxiliary knowledge is
modeled by a prior distribution P on x. The inferential privacy loss for the input sequence x is given
by

LP(x) = max
i∈[n]
a,b∈X

(
log

PrP [y|xi = a]

PrP [y|xi = b]

)
= max

i∈[n]
a,b∈X

(∣∣∣∣ log
PrP [xi = a|y]

PrP [xi = b|y]
− log

PrP [xi = a]

PrP [xi = b]

∣∣∣∣
)

(4)

Bounding LP(x) would imply that the adversary’s belief about the value of any xi does not change
by much even after observing the output sequence y. This means that an informed adversary does
not learn much about the individual i’s private input upon observation of the entire private dataset y.

Here we define two rank distance measures
Definition A.2 (Kendall’s τ Distance). For any two permutations, σ, π ∈ Sn, the Kendall’s τ distance
dτ (σ, π) counts the number of pairwise disagreements between σ and π, i.e., the number of item
pairs that have a relative order in one permutation and a different order in the other. Formally,

dτ (σ, π) =
∣∣∣ {(i, j) : i < j,

[
σ(i) > σ(j) ∧ π(i) < π(j)

]
∨
[
σ(i) < σ(j) ∧ π(i) > π(j)

]} ∣∣∣ (5)

For example, if σ = (1 2 3 4 5 6 7 8 9 10) and π = (1 2 3 6 5 4 7 8 9 10), then dτ (σ, π) = 3.

Next, Hamming distance measure is defined as follows.
Definition A.3 (Hamming Distance). For any two permutations, σ, π ∈ Sn, the Hamming distance
dH(σ, π) counts the number of positions in which the two permutations disagree. Formally,

dH(σ, π) =
∣∣∣{i ∈ [n] : σ(i) 6= π(i)

}∣∣∣
Repeating the above example, if σ = (1 2 3 4 5 6 7 8 9 10) and π = (1 2 3 6 5 4 7 8 9 10), then
dH(σ, π) = 2.

A.3 dσ -PRIVACY AND THE DE FINETTI ATTACK

We now show that a strict instance of dσprivacy is sufficient for thwarting any de Finetti attack
Kifer (2009) on individuals. The de Finetti attack involves a Bayesian adversary, who, assuming
some degree of correlation between data owners, attempts to recover the true permutation from
the shuffled data. As written, the de Finetti attack assumes the sequence of sensitive attributes and
side information (x1, t1), . . . , (xn, tn) are exchangeable: any ordering of them is equally likely. By
the de Finetti theorem, this implies that they are i.i.d. conditioned on some latent measure θ. To
balance privacy with utility, the x sequence is non-uniformly randomly shuffled w.r.t. the t sequence
producing a shuffled sequence z, which the adversary observes. Conditioning on z the adversary
updates their posterior on θ (i.e. posterior on a model predicting xi|ti), and thereby their posterior
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predictive on the true x. The definition of privacy in Kifer (2009) holds that the adversary’s posterior
beliefs are close to their prior beliefs by some metric on distributions in X , δ(·, ·):

δ
(

Pr[xi],Pr[xi|z]
)
≤ α

We now translate the de Finetti attack to our setting. First, to align notation with the rest of the paper
we provide privacy to the sequence of LDP values y since we shuffle those instead of the x values as
in Kifer (2009). We use max divergence (multiplicative bound on events used in DP ) for δ:

Pr[yi ∈ O] ≤ eα Pr[yi ∈ O|z]

Pr[yi ∈ O|z] ≤ eα Pr[yi ∈ O]
which, for compactness, we write as

Pr[yi ∈ O] ≈α Pr[yi ∈ O|z] . (6)
We restrict ourselves to shuffling mechanisms, where we only randomize the order of sensitive values.
By learning the unordered values {y} alone, an adversary may have arbitrarily large updates to its
posterior (e.g. if all values are identical), breaking the privacy requirement above. With this in mind,
we assume the adversary already knows the unordered sequence of values {y} (which they will learn
anyway), and has a prior on permutations σ allocating values from that sequence to individuals. We
then generalize the de Finetti problem to an adversary with an arbitrary prior on the true permutation
σ, and observes a randomize permutation σ′ from the shuffling mechanism. We require that the
adversary’s prior belief that σ(i) = j is close to their posterior belief for all i, j ∈ [n]:

Pr[σ ∈ Σi,j ] ≈α Pr[σ ∈ Σi,j |σ′] ∀i, j ∈ [n],∀σ′ ∈ Sn , (7)
where Σi,j = {σ ∈ Sn : σ(i) = j}, the set of permutations assigning element j to DOi. Conditioning
on any unordered sequence {y} with all unique values, the above condition is necessary to satisfy Eq.
equation 6 for events of the form O = {yi = a}, since {yi = a} = {Σi,j} for some j ∈ [n]. For any
{y} with repeat values, it is sufficient since Pr[yi = a] is the sum of probabilities of disjoint events
of the form Pr[σ ∈ Σi,k] for various k ∈ [n] values.

We now show that a strict instance of dσ-privacy satisfies Eq. equation 7. Let Ĝ be any group
assignment such that at least one Gi ∈ Ĝ includes all data owners, Gi = {1, 2, . . . , n}.

Property 1. A (Ĝ, α)-dσ-private shuffling mechanism σ′ ∼ A satisfies
Pr[σ ∈ Σi,j ] ≈α Pr[σ ∈ Σi,j |σ′]

for all i, j ∈ [n] and all priors on permutations Pr[σ].

Proof.

Lemma 1. For any prior Pr[σ], Eq. equation 7 is equivalent to the condition∑
σ̂∈Σi,j

Pr[σ̂] Pr[σ′|σ̂]∑
σ̂∈Σi,j

Pr[σ̂] Pr[σ′|σ̂]
≈α

∑
σ̂∈Σi,j

Pr[σ̂]∑
σ̂∈Σi,j

Pr[σ̂]
(8)

where the set Σi,j is the complement of Σi,j .

Under grouping Ĝ, every permutation σa ∈ Σi,j neighbors every permutation σb ∈ Σi,j , σa ≈Ĝ σb,
for any i, j. By the definition of dσ-privacy, we have that for any observed permutation σ′ output by
the mechanism:

Pr[σ′|σ = σa] ≈α Pr[σ′|σ = σb] ∀σa ∈ Σi,j , σb ∈ Σi,j , σ
′ ∈ Sn .

This implies Eq. 8. Thus, (Ĝ, α)-dσ-privacy implies Eq. 8, which implies Eq. 7, thus proving the
property.

Using Lemma 1, we may also show that this strict instance of dσ-privacy is necessary to block all de
Finetti attacks:

Property 2. A (Ĝ, α)-dσ-private shuffling mechanism σ′ ∼ A is necessary to satisfy
Pr[σ ∈ Σi,j ] ≈α Pr[σ ∈ Σi,j |σ′]

for all i, j ∈ [n] and all priors on permutations Pr[σ].

Proof. If our mechanism A is not (Ĝ, α)-dσ-private, then for some pair of true (input) permutations
σa 6= σb and some released permutation σ′ ∼ A, we have that

Pr[σ′|σb] ≥ eα Pr[σ′|σa] .
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Under Ĝ, all permutations neighbor each other, so σa ≈Ĝ σb. Since σa 6= σb, then for some i, j ∈ [n],
σa ∈ Σi,j and σb ∈ Σi,j : one of the two permutations assigns some j to some DOi and the other
does not. Given this, we may construct a bimodal prior on the true σ that assigns half its probability
mass to σa and the rest to σb,

Pr[σa] = Pr[σb] =
1

2
.

Therefore, for released permutation σ′, the RHS of Eq. 8 is 1, and the LHS is∑
σ̂∈Σi,j

Pr[σ̂] Pr[σ′|σ̂]∑
σ̂∈Σi,j

Pr[σ̂] Pr[σ′|σ̂]
=

1/2 Pr[σ′|σb]
1/2 Pr[σ′|σa]

≥ eα ,
violating Eq. 8, thus violating Eq. 7, and failing to prevent de Finetti attacks against this bimodal
prior.

Ultimately, unless we satisfy dσ-privacy shuffling the entire dataset, there exists some prior on the true
permutation Pr[σ] such that after observing the shuffled z permuted by σ′, the adversary’s posterior
belief on one permutation is larger than their prior belief by a factor ≥ eα. If we suppose that the set
of values {y} are all distinct, this means that for some a ∈ {y}, the adversary’s belief that yi = a is
signficantly larger after observing z than it was before.

Now to prove Lemma 1:

Proof.
Pr[σ ∈ Σi,j ] ≈α Pr[σ ∈ Σi,j |σ′]

Pr[σ ∈ Σi,j ] ≈α
Pr[σ′|σ ∈ Σi,j ] Pr[σ ∈ Σi,j ]∑

σ̂∈Sn Pr[σ̂] Pr[σ′|σ̂]∑
σ̂∈Sn

Pr[σ̂] Pr[σ′|σ̂] ≈α Pr[σ′|σ ∈ Σi,j ]∑
σ̂∈Sn

Pr[σ̂] Pr[σ′|σ̂] ≈α Pr[σ ∈ Σi,j ]
−1

∑
σ̂∈Σi,j

Pr[σ̂] Pr[σ′|σ̂]

∑
σ̂∈Σi,j

Pr[σ̂] Pr[σ′|σ̂] +
∑
σ̂∈Σi,j

Pr[σ̂] Pr[σ′|σ̂] ≈α Pr[σ ∈ Σi,j ]
−1

∑
σ̂∈Σi,j

Pr[σ̂] Pr[σ′|σ̂]

∑
σ̂∈Σi,j

Pr[σ̂] Pr[σ′|σ̂] ≈α
∑
σ̂∈Σi,j

Pr[σ̂] Pr[σ′|σ̂]
( 1

Pr[σ ∈ Σi,j ]
− 1
)

∑
σ̂∈Σi,j

Pr[σ̂] Pr[σ′|σ̂]∑
σ̂∈Σi,j

Pr[σ̂] Pr[σ′|σ̂]
≈α

∑
σ̂∈Σi,j

Pr[σ̂]∑
σ̂∈Σi,j

Pr[σ̂]

As such, a strict instance of dσ-privacy can defend against any de Finetti attack (i.e. for any prior
Pr[σ] on permutations), wherein at least one group Gi ∈ G includes all data owners. Furthermore, it
is necessary. This makes sense. In order to defend against any prior, we need to significantly shuffle
the entire dataset. Without a restriction of priors as in Pufferfish Kifer & Machanavajjhala (2014),
the de Finetti attack (i.e. uninformed Bayesian adversaries) is an indelicate metric for evaluating
the privacy of shuffling mechanisms: to achieve significant privacy, we must sacrifice all utility.
This in many regards is reminiscent of the no free lunch for privacy theorem established in Kifer &
Machanavajjhala (2011). As such, there is a need for more flexible privacy definitions for shuffling
mechanisms.

A.4 ADDITIONAL PROPERTIES OF dσ -PRIVACY

Lemma 2 (Convexity). Let A1, . . .Ak : Yn 7→ V be a collection of k (α,G)-dσprivate mechanisms
for a given group assignment G on a set of n entities. Let A : Yn 7→ V be a convex combination
of these k mechanisms, where the probability of releasing the output of mechanism Ai is pi, and∑k
i=1 pi = 1. A is also (α,G)-dσprivate w.r.t. G.
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Proof. For any (σ, σ′) ∈ NG and y ∈ Y:

Pr[A
(
σ(y)

)
∈ O] =

k∑
i=1

piPr[Ai
(
σ(y)

)
∈ O]

≤ eα
k∑
i=1

piPr[Ai
(
σ′(y)

)
∈ O]

= Pr[A
(
σ′(y)

)
∈ O]

Theorem A.1 (Post-processing). Let A : Yn 7→ V be (α,G)-dσprivate for a given group assignment
G on a set of n entities. Let f : V 7→ V ′ be an arbitrary randomized mapping. Then f ◦ A : Yn 7→ V ′ is
also (α,G)-dσprivate.

Proof. Let g : V → V ′ be a deterministic, measurable function. For any output event Z ⊂ V ′, letW
be its preimage:
W = {v ∈ V|g(v) ∈ Z}. Then, for any (σ, σ′) ∈ NG ,

Pr
[
g
(
A
(
σ(y)

))
∈ Z

]
= Pr

[
A
(
σ(y)

)
∈ W

]
≤ eα · Pr

[
A
(
σ′(y)

)
∈ W

]
= eα · Pr

[
g
(
A
(
σ′(y)

))
∈ Z

]
This concludes our proof because any randomized mapping can be decomposed into a convex
combination of measurable, deterministic functions Dwork & Roth (2014), and as Lemma 2 shows, a
convex combination of (α,G)-dσprivate mechanisms is also (α,G)-dσprivate.

Theorem A.2 (Sequential Composition). If A1 and A2 are (α1,G)- and (α2,G)-dσprivate mecha-
nisms, respectively, that use independent randomness, then releasing the outputs

(
A1(y),A2(y)

)
satisfies (α1 + α2,G)-dσprivacy.

Proof. We have thatA1 : Yn → V ′ andA1 : Yn → V ′′ each satisfy dσ-privacy for different α values.
Let A : Yn → (V ′ × V ′′) output

(
A1(y),A2(y)

)
. Then, we may write any event Z ∈ (V ′ × V ′′) as

Z ′ ×Z ′′, where Z ′ ∈ V ′ and Z ′′ ∈ V ′′. We have for any (σ, σ′) ∈ NG ,
Pr
[
A
(
σ(y)

)
∈ Z

]
= Pr

[(
A1

(
σ(y)

)
,A2

(
σ(y)

))
∈ Z

]
= Pr

[
{A1

(
σ(y)

)
∈ Z ′} ∩ {A2

(
σ(y)

)
∈ Z ′′}

]
= Pr

[
{A1

(
σ(y)

)
∈ Z ′}

]
Pr
[
{A2

(
σ(y)

)
∈ Z ′′}

]
≤ eα1+α2Pr

[
{A1

(
σ′(y)

)
∈ Z ′}

]
Pr
[
{A2

(
σ′(y)

)
∈ Z ′′}

]
= eα1+α2 · Pr

[
A
(
σ′(y)

)
∈ Z

]

A.5 PROOF FOR THM. 4.1

Theorem 4.1 For a given group assignment G on a set of n data owners, if a shuffling mechanism
A : Yn 7→ Yn is (α,G)-dσprivate, then for each data owner DOi, i ∈ [n],

max
i∈[n]
a,b∈X

∣∣∣∣ log
PrP [xi = a|z, {yGi},yGi ]
PrP [xi = b|z, {yGi},yGi ]

− log
PrP [xi = a|{yGi},yGi ]
PrP [xi = b|{yGi},yGi ]

∣∣∣∣ ≤ α
for a prior distribution P , where z = A(y) and yGi is the noisy sequence for data owners outside Gi.
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Proof. We prove the above by bounding the following equivalent expression for any i ∈ [n] and
a, b ∈ X .

PrP [z|xi = a, {yGi},yGi ]
PrP [z|xi = b, {yGi},yGi ]

=

∫
PrP [y|xi = a, {yGi},yGi ] PrA[z|y]dy∫
PrP [y|xi = b, {yGi},yGi ] PrA[z|y]dy

=

∑
σ∈Sr

PrP [σ(y∗Gi)|xi = a,yGi ] PrA[z|σ(y∗Gi),yGi ]∑
σ∈Sr

PrP [σ(y∗Gi)|xi = b,yGi ] PrA[z|σ(y∗Gi),yGi ]

≤ max
{σ,σ′∈Sr}

PrA[z|σ(y∗Gi),yGi ]

PrA[z|σ′(y∗Gi),yGi ]

≤ max
{σ,σ′∈NGi}

PrA[z|σ(y)]

PrA[z|σ′(y)]

≤ eα
The second line simply marginalizes out the full noisy sequence y. The third line reduces this to a
sum over permutations of of yGi , where r = |Gi| and y∗Gi is any fixed permutation of values {yGi}.
This is possible since we are given the values outside the group, yGi , and the unordered set of values
inside the group, {yGi}. Note that the permutations σ written here are possible permutations of the
LDP input, not permutations output by the mechanism applied to the input as sometimes written in
other parts of this document.

The fourth line uses the fact that the numerator and denominator are both convex combinations of
PrA[z|σ(y∗Gi),yGi ] over all σ ∈ Sr.

The fifth line uses the fact that for any yGi ,
(σ(y∗Gi),yGi) ≈Gi (σ′(y∗Gi),yGi) .

This allows a further upper bound over all neighboring sequences w.r.t. Gi, and thus over any
permutation of yGi , as long as it is the same in the numerator and denominator.

Discussion The above Bayesian analysis measures what can be learned about DOi’s xi from
observing the private release z relative to some other known information (the conditioned information).
Under dσ-privacy, we condition on the bag of LDP values in Alice’s group {yGi} as well as the
sequence (order and value) of LDP values outside her group yGi . This implies that releasing the
shuffled sequence z cannot provide much more information about Alice’s xi than would releasing the
LDP values outside her neighborhood (her group) and the unordered bag of LDP values inside her
neighborhood, regardless of the adversary’s prior knowledge P . This is a communicable guarantee: if
Alice feels comfortable with the data collection knowing that her entire neighborhood’s responses will
be uniformly shuffled together (including those of her household), then she ought to be comfortable
with dσ-privacy. Now, we have to provide this guarantee to Bob, a neighbor of Alice, as well as Luis,
a neighbor of Bob but not of Alice. Thus, Bob, Alice and Luis have distinct and overlapping groups
(neighborhoods). Hence, the trivial solution of uniformly shuffling the noisy responses of every group
separately does not work in this case. dσ-privacy, however, offers the above guarantee to each user
(knowing that their entire neighborhood is nearly uniformly shuffled) while still maintaining utility
(estimate disease prevalence within neighborhoods). Semantically, this is very powerful, since it
implies that the noisy responses specific to one’s household cannot be leveraged to infer one’s disease
state xi.

A.6 PROOF OF THEOREM 4.2

Theorem 4.2

For A(M(x)) = z whereM(·) is ε-LDP and A(·) is α - dσprivate, we have

Pr[DAdv loses] ≥ br − k
k
ce−(2kε+α) · Pr[DAdv wins]

for any input subgroup I ⊂ Gi, r = |Gi| and k < r/2.
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Proof. We first focus on deterministic adversaries and then expand to randomized adversaries
afterwards using the fact that randomized adversaries are mixtures of deterministic ones.

Our adversary DAdv is then defined by a deterministic decision function η : Yn → [n]k. Upon
observing z, η(z) selects k elements in z which it believes originated from I ⊂ Gi.
In the following, let Prz be the probability of events conditioned on the shuffled output sequence z,
where randomness is over the ε-LDP mechanismM and the α-dσ-private shuffling mechanism A. 5

The adversary wins if it reidentifies > k
2 of the LDP values originating from I . Let H = η(z)

be the indices of elements in z selected by η. Let W = {σ ∈ Sn : |σ(H) ∩ I| > k
2} be the set

of permutations where the adversary wins and let L = {σ ∈ Sn : σ(H) ∩ I| ≤ k
2} be the set of

permutations where the adversary loses.
Pr
z

[η(z) wins] = Pr
z

[σ ∈W ]

Pr
z

[η(z) loses] = Pr
z

[σ ∈ L]

where σ is the shuffling permutation produced by A, z = σ(y) i.e. zi = yσ(i). Concretely, this is
equivalent to DOi releasing DOσ(i)’s LDP response. Since the permutation and LDP outputs are
randomized, many subgroups of size k in Gi could have produced the LDP values (zH1 , . . . , zHk)
and then been mapped to H by a permutation. Concretely, there is a reasonable probability that
Alice’s household output the LDP values of another k-member household in her neighborhood and
they output her household’s LDP values. In the worst case, this is e−2kε less likely than without
swapping values, by group DP guarantees. Since both households are part of the same group Gi,
the permutation that maps her household to elements H in the output is close in probability to that
which maps the other household to elements H in the output. As such, we have in the worst case a
e−(2kε+α) reduction in probability of the other household having swapped LDP values with Alice’s
and permuting to subset H .

The above provides intuition on how we could get the same output z many different ways, and how
Alice’s household could or could not contribute to elements H . It does not, however, explain why an
adversary who is given output z has limited advantage in choosing a subset H such that they recover
most of Alice’s household’s values. We formalize this fact as follows.

We may rewrite the probabilities of winning or losing by marginalizing out all possible LDP
sequences y. Conditioning on the output sequence z, the only possible LDP sequences y are
permutations of z. Note that the probability of any sequence y is determined by the input x and the
LDP mechanismM:

Pr
z

[η(z) loses] = Pr
z

[σ ∈W ]

=
∑
σ∈W

Pr
[
A(x) = y = σ−1(z)

]
Pr[σ|y]/Pr[z]

Note that Prz[σ|y] = Prz[σ] for the mallows mechanism, which chooses its permutations indepen-
dently of y. Now consider when η(z) loses. By similar arguments as above:

Pr
z

[η(z) loses] = Pr
z

[σ ∈ L]

=
∑
σ∈L

Pr
[
A(x) = y = σ−1(z)

]
Pr[σ|y]/Pr[z]

The odds of losing versus winning is given by

Prz[η(z) loses]
Prz[η(z) wins]

=

∑
σ′∈L Pr

[
A(x) = y = σ

′−1(z)
]

Pr[σ′|y]∑
σ∈W Pr[A(x) = y = σ−1(z)] Pr[σ|y]

We now show that for each σ in the denominator, we may construct m = b r−kk c distinct permutations
σ′ in the numerator that are close in probability to it.

Lemma 3. For every σ ∈W there exists a set of m = b r−kk c permutations, E(σ), such that
5As an abuse of notation, we assume the output space of the LDP randomizers, Y , have outcomes with

non-zero measure e.g. randomized response. The following analysis can be expanded to continuous outputs
(with outcomes of zero measure) by simply replacing the output sequence z ∈ Yn with an output event Z ⊆ Yn.
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1. E(σ) ⊆ L

2. σ−1 ≈Gi σ
′−1

3. E(σa) ∩ E(σb) = ∅ for any pair σa, σb ∈W

4. Pr
[
A(x) = y = σ−1(z)

]
≤ e2kε Pr

[
A(x) = y = σ

′−1(z)
]

for any x ∈ Xn and any
z ∈ Yn

Proof. Given σ ∈W , we construct E(σ) by first taking the inverse σ−1. Recall that, since σ ∈W ,
we have that |σ−1(I) ∩H| > k

2 . (σ−1(i) = j could be interpreted as data owner i’s LDP value will
be output at position j). We then divide the remainder of the group Gi\I into m disjoint subsets
of size k each, J1, J2, . . . , Jm. These represent the other distinct subsets of size k that Alice’s
household could swap LDP values with. We then produce m permutations, σ

′−1
1 , . . . , σ

′−1
m , by

making σ
′−1
i (I) = σ−1(Ji) and σ

′−1
i (Ji) = σ−1(I) (preserving order within those subsets) and

σ
′−1 = σ−1 everywhere else.

On the first point, we know that every σ′ ∈ E(σ) is also in L. We know this because σ
′−1
i (I) =

σ−1(Ji). Since σ ∈ W , we have that |σ−1(Ji) ∩H| < k
2 since |σ−1(I) ∩H| ≥ k

2 and I ∩ Ji = ∅
by definition. Thus, |σ

′−1
i (I) ∩H| < k

2 , so |σ′i(H) ∩ I| < k
2 and σ′i ∈ L.

On the second point, we know that the inverse permutations are neighboring σ−1 ≈Gi σ
′−1 simply

by construction – they only differ on elements in Gi.

On the third point, we know that the sets E(σa) and E(σb) are distinct since we can map any
permutation σ′ ∈ E(σa) uniquely back to σa for any σa ∈W . We do so by taking its inverse σ

′−1,
finding which subset Ji has majority elements from H i.e. |σ′−1(Ji) ∩ H| > k

2 . Swap elements
back: σ

′−1(Ji) with σ
′−1(I). Invert back to σa.

On the fourth point, we know that σ−1(z) and σ
′−1(z) differ on at most 2k indices. As such, by

group DP guarantees, we know that their probabilities must be close to a factor of e−2kε regardless
of z and x.

Using the above Lemma we may bound the odds of losing vs. winning.

Prz[η(z) loses]
Prz[η(z) wins]

=

∑
σ′∈L Pr

[
A(x) = y = σ

′−1(z)
]

Pr[σ′|y]∑
σ∈W Pr[A(x) = y = σ−1(z)] Pr[σ|y]

≥

∑
σ∈W

∑
σ′∈E(σ) Pr

[
A(x) = y = σ

′−1(z)
]

Pr[σ′|y]∑
σ∈W Pr[A(x) = y = σ−1(z)] Pr[σ|y]

≥ min
σ∈W

∑
σ′∈E(σ) Pr

[
A(x) = y = σ

′−1(z)
]

Pr[σ′|y]

Pr[A(x) = y = σ−1(z)] Pr[σ|y]

≥ br − k
k
ce−(2kε+α)

where the last line follows from the fourth point of the above Lemma (for the 2kε term) and the
fact that the inverse permutations σ′−1, σ−1 are neighboring (second point of the Lemma) so the
probabilities of the mechanism to produce σ vs. σ′ to reach z from these neighboring permutations
must be close by a factor of eα.

Since the above holds for any z and x, the bound holds on average across all outcomes z, thus

Pr[η loses] ≥ br − k
k
ce−(2kε+α) · Pr[η wins]

for any deterministic adversary with decision function η. Finally, we may write any probabilistic
adversary as mixture of decision functions. By convexity (same argument used in Lemma 2), the
above bound still holds. As such,
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Pr[DAdv loses] ≥ br − k
k
ce−(2kε+α) · Pr[DAdv wins]

A.7 UTILITY OF SHUFFLING MECHANISM

We now introduce a novel metric, (η, δ)-preservation, for assessing the utility of any shuffling
mechanism. Let S ⊆ [n] correspond to a set of indices in y. The metric is defined as follows.

Definition A.4. ((η, δ)-preservation) A shuffling mechanism A : Yn 7→ Yn is defined to be (η, δ)-
preserving (η, δ ∈ [0, 1]) w.r.t to a given subset S ⊆ [n], if

Pr
[
|Sσ ∩ S| ≥ η · |S|

]
≥ 1− δ, σ ∈ Sn (9)

where z = A(y) = σ(y) and Sσ = {σ(i)|i ∈ S}.

For example, consider S = {1, 4, 5, 7, 8}. If A(·) permutes the output according to
σ = (5 3 2 6 7 9 8 1 4 10), then Sσ = {5, 6, 7, 8, 1} which preserves 4 or 80% of its original indices.
This means that for any data sequence y, at least η fraction of its data values corresponding to
the subset S overlaps with that of shuffled sequence z with high probability (1− δ). Assuming,
{yS} = {yi|i ∈ S} and {zS} = {zi|i ∈ S} = {yσ(i)|i ∈ S} denotes the set of data values corresponding
to S in data sequences y and z respectively, we have Pr

[
|{yS} ∩ {zS}| ≥ η · |S|

]
≥ 1− δ, ∀y. For

example, let S be the set of individuals from Nevada. Then, for a shuffling mechanism that provides
(η = 0.8, δ = 0.1)-preservation to S, with probability ≥ 0.9, ≥ 80% of the values that are reported to be
from Nevada in z are genuinely from Nevada. The rationale behind this metric is that it captures the
utility of the learning allowed by dσ-privacy – if S is equal to some group G ∈ G, (η, δ) preservation
allows overall statistics of G to be captured. Note that this utility metric is agnostic of both the data
distribution and the analyst’s query. Hence, it is a conservative analysis of utility which serves as a
lower bound for learning from {zS}. We suspect that with the knowledge of the data distribution
and/or the query, a tighter utility analysis is possible.
A formal utility analysis of Alg. 10 is presented in App. A.13. Empirical evaluation of (η, δ) -
preservation is presented in App. A.14.

A.8 DISCUSSION ON PROPERTIES OF MALLOWS MECHANISM

Property 3. For group assignment G, a mechanism A(·) that shuffles according to a permutation
sampled from the Mallows model Pθ,d(·), satisfies (α,G)-dσprivacy where

∆(σ0 : d,G) = max
(σ,σ′)∈NG

|d(σ0σ, σ0)− d(σ0σ
′, σ0)|

and
α = θ ·∆(σ0 : d,G)

We refer to ∆(σ0 : d,G) as the sensitivity of the rank-distance measure d(·)

Proof. Consider two permutations of the initial sequence y, σ1(y), σ2(y) that are neighboring w.r.t.
some group Gi ∈ G, σ1 ≈Gi σ2. Additionally consider any fixed released shuffled sequence z. Let
Σ1,Σ2 be the set of permutations that turn σ1(y), σ2(y) into z, respectively:

Σ1 = {σ ∈ Sn : σσ1(y) = z}
Σ2 = {σ ∈ Sn : σσ2(y) = z} .

In the case that {y} consists entirely of unique values, Σ1,Σ2 will each contain exactly one permuta-
tion, since only one permutation can map σi(y) to z.

Lemma 4. For each permutation σ′1 ∈ Σ1 there exists a permutation in σ′2 ∈ Σ2 such that
σ′1 ≈Gi σ′2 .

Proof follows from the fact that — since only the elements j ∈ Gi differ in σ1(y) and σ2(y) — only
those elements need to differ to achieve the same output permutation. In other words, we may define
σ′1, σ

′
2 at all inputs i /∈ Gi identically, and then define all inputs i ∈ Gi differently as needed. As

such, they are neighboring w.r.t. Gi.
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Recalling that Alg. 1 applies σ−1
0 to the sampled permutation, we must sample σ0σ

′
1 (for some

σ′1 ∈ Σ1) for the mechanism to produce z from σ1(y). Formally, since σ′1σ1(y) = z we must sample
σ0σ

′
1 to get z since we are going to apply σ−1

0 to the sampled permutation.
Pr
[
A
(
σ1(y)

)
= z
]

= Pθ,d
(
σ0σ

′, σ′ ∈ Σ1 : σ0

)
Pr
[
A
(
σ2(y)

)
= z
]

= Pθ,d
(
σ0σ

′, σ′ ∈ Σ2 : σ0

)
Taking the odds, we have

Pθ,d
(
σ0σ

′, σ′ ∈ Σ1 : σ0

)
Pθ,d

(
σ0σ′′, σ′′ ∈ Σ2 : σ0

) =

∑
σ′∈Σ1

PΘ,d(σ0σ
′ : σ0)∑

σ′′∈Σ2
PΘ,d(σ0σ′′ : σ0)

=

∑
σ′∈Σ1

e−θd(σ0σ
′,σ0)∑

σ′′∈Σ2
e−θd(σ0σ′′,σ0)

≤ e−θd(σ0σa,σ0)

e−θd(σ0σb,σ0)

≤ eθ|d(σ0σa,σ0)−d(σ0σb,σ0)|

≤ eθ∆
where

σa = arg max
σ′∈Σ1

e−θd(σ0σ
′,σ0) and

σa = arg min
σ′′∈Σ2

e−θd(σ0σ
′′,σ0) .

Therefore, setting α = θ ·∆, we achieve (α,G)-dσprivacy.

Property 4. The sensitivity of a rank-distance is an increasing function of the width ωσ0

G . For

instance, for Kendall’s τ distance dτ (·), we have ∆(σ0 : dτ ,G) =
ω
σ0
G (ω

σ0
G +1)

2 .

To show the sensitivity of Kendall’s τ , we make use of its triangle inequality.

Proof. Recall from the proof of the previous property that the expression d(σ, σ0) = d
(
σ0σ, σ0

)
,

where d is the actual rank distance measure e.g. Kendall’s τ . As such, we require that

∣∣d(σ0σa, σ0)− d(σ0σb, σ0)
∣∣ ≤ ωσ0

G (ωσ0

G + 1)

2

for any pair of permutations (σa, σb) ∈ NG .

For any group Gi ∈ G, let Wi ⊆ n represent the smallest contiguous subsequence of indices in σ0

that contains all of Gi.

For instance, if σ0 = [2, 4, 6, 8, 1, 3, 5, 7] and Gi = {2, 6, 8}, then Wi = {2, 4, 6, 8}. Then the group
width width is ωi = |Wi|−1 = 3. Now consider two permutations neighboring w.r.t. Gi, σa ≈Gi σb,
so only the elements of Gi are shuffled between them. We want to bound∣∣d(σ0σa, σ0)− d(σ0σb, σ0)

∣∣
For this, we use a pair of triangle inequalities:
d(σ0σa, σ0σb) ≥ d(σ0σa, σ0)− d(σ0σb, σ0) & d(σ0σa, σ0σb) ≥ d(σ0σb, σ0)− d(σ0σa, σ0)

so, ∣∣d(σ0σa, σ0)− d(σ0σb, σ0)
∣∣ ≤ d(σ0σa, σ0σb)

Since σ0σa and σ0σb only differ in the contiguous subset Wi, the largest number of discordant pairs
between them is given by the maximum Kendall’s τ distance between two permutations of size
ωi + 1:

|d(σ0σa, σ0σb)| ≤
ωi(ωi + 1)

2
Since ωσ0

G ≥ ωi for all Gi ∈ G, we have that

∆(σ0 : d,G) ≤
ωσ0

G (ωσ0

G + 1)

2
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A.9 HARDNESS OF COMPUTING THE OPTIMUM REFERENCE PERMUTATION

Theorem A.3. The problem of finding the optimum reference permutation, i.e., σ∗0 =
arg minσ∈Sn ω

σ
G is NP-hard.

Proof. We start with the formal representation of the problem as follows.

Optimum Reference Permutation Problem. Given n subsets G = {Gi ∈ 2[n], i ∈ [n]}, find the
permutation σ∗0 = arg minσ∈Sn ω

σ
G .

Now, consider the following job-shop scheduling problem.

Job Shop Scheduling. There is one job J with n operations oi, i ∈ [n] and n machines such that oi
needs to run on machine Mi. Additionally, each machine has a sequence dependent processing time
pi. Let S be the sequence till There are n subsets Si ⊆ [n], each corresponding to a set of operations
that need to occur in contiguous machines, else the processing times incur penalty as follows. Let
pi denote the processing time for the machine running the i-th operation scheduled. Let Si be the
prefix sequence with i schedulings. For instance, if the final scheduling is 1 3 4 5 9 8 10 6 7 2 then
S4 = 1345. Additionally, let P jSi be the shortest subsequence such of Si such that it contains all the
elements in Sj ∩ {Si}. For example for S1 = {3, 5, 7}, P 1

S4 = 345.
pi = max

i∈[n]
(|P jSi | − |Sj ∩ {Si}|) (10)

The objective is to find a scheduling for J such that it minimizes the makespan, i.e., the completion
time of the job. Note that pn = maxi pi, hence the problem reduces to minimizing pn.

Lemma 5. The aforementioned job shop scheduling problem with sequence-dependent processing
time is NP-hard.

Proof. Consider the following instantiation of the sequence-dependent job shop scheduling problem
where the processing time is given by pi=pi−1 + wkl, p1 = 0 where Si[i − 1] = k, Si[i] = l and
wij , j ∈ Si represents some associated weight. This problem is equivalent to the travelling salesman
problem (TSP) Balas (2008) and is therefore, NP-hard. Thus, our aforementioned job shop scheduling
problem is also clearly NP-hard.

Reduction: Let the n subsets Si correspond to the groups in G. Clearly, minimizing ωσG minimizes pn.
Hence, the optimal reference permutation gives the solution to the scheduling problem as well.

A.10 ILLUSTRATION OF ALG. 1

We now provide a small-scale step-by-step example of how Alg. 1 operates.

Fig. 6a is an example of a grouping G on a dataset of n = 8 elements. The group of DOi includes i
and its neighbors. For instance, G8 = {8, 3, 5}. To build a reference permutation, Alg. 1 starts at
the index with the largest group, i = 5 (highlighted in purple), with G5 = {5, 2, 3, 8, 4}. As shown
in Figure 6b, the σ0 is then constructed by following a BFS traversal from i = 5. Each j ∈ G5 is
visited, queuing up the neighbors of each j ∈ G5 that haven’t been visited along the way, and so on.
The algorithm completes after the entire graph has been visited.

The goal is to produce a reference permutation in which the width of each group in the reference
permutation ωi is small. In this case, the width of the largest group G5 is as small as it can be
ω5 = 5− 1 = 4. However, the width of G4 = {4, 5, 7} is the maximum possible since σ−1(5) = 1
and σ−1(7) = 8, so ω4 = 7. This is difficult to avoid when the maximum group size is large as
compared to the full dataset size n. Realistically, we expect n to be significantly larger, leading to
relatively smaller groups.

With the reference permutation in place, we compute the sensitivity:

∆(σ0 : d,G) =
ω4(ω4 + 1)

2
= 28
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(a) Group graph

(b) BFS reference permutation σ0

Figure 6: Illustration of Alg. 1

Which lets us set θ = α
28 for any given α privacy value. To reiterate, lower θ results in more

randomness in the mechanism.

We then sample the permutation σ̂ = Pθ,d(σ0). Suppose
σ̂ = [3 2 5 4 8 1 7 6]

Then, the released z is given as
z = σ∗ = σ−1σ̂(y)

= [y1 y2 y5 y8 y3 y7 y6 y4]
One can think of the above operation as follows. What was 5 in the reference permutation (σ0(1) = 5)
is 3 in the sampled permutation (σ̂(1) = 3). So, index 5 corresponding to DO5 now holds DO3’s
noisy data y3. As such, we shuffle mostly between members of the same group, and minimally
between groups.

The runtime of this mechanism is dominated by the Repeated Insertion Model sampler Doignon et al.
(2004), which takes O(n2) time. It is very possible that there are more efficient samplers available,
but RIM is a standard and simple to implement for this first proposed mechanism. Additionally,
the majority of this is spent computing sampling parameters which can be stored in advanced with
O(n2) memory. Furthermore, sampling from a Mallows model with some reference permutation σ0

is equivalent to sampling from a Mallows model with the identity permutation and applying it to σ0.
As such, permutations may be sampled in advanced, and the runtime is dominated by computation of
σ0 which takes O(|V |+ |E|) time (the number of vertices and edges in the graph).

A future direction could be exploring even better heuristics for computing σ0. One possibility could
be based on ranked enumeration of the permutations Deep & Koutris (2021); Deep et al. (2021).
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A.11 PROOF OF THM. 4.3

Theorem 4.3 Alg. 1 is (α,G)-dσ private.

Proof. The proof follows from Prop. 3. Having computed the sensitivity of the reference permutation
σ0, ∆, and set θ = α/∆, we are guaranteed by Property 3 that shuffling according to the permutation
σ̂ guarantees (α,G)-dσprivacy.

.

A.12 PROOF OF THM. 4.4

Theorem 4.4 Alg. 1 satisfies (α′,G′)-dσprivacy for any group assignment G′ where α′ =

α∆(σ0:d,G′)
∆(σ0:d,G)

Proof. Recall from Property 3 that we satisfy (α,G) dσ-privacy by setting θ = α/∆(σ0 : d,G).
Given alternative grouping G′ with sensitivity ∆(σ0 : d,G′), this same mechanism provides

α′ =
θ

∆(σ0 : d,G′)

=
α/∆(σ0 : d,G)

∆(σ0 : d,G′)

= α
∆(σ0 : d,G′)
∆(σ0 : d,G)

A.13 FORMAL UTILITY ANALYSIS OF ALG. 1

Theorem A.4. For a given set S ⊂ [n] and Hamming distance metric, dH(·), Alg. 1 is (η, δ)-
preserving for δ = 1

ψ(θ,dH)

∑n
h=2k+1(e−θ·h · ch) where k = d(1− η) · |S|e and ch is the number of

permutations with hamming distance h from the reference permutation that do not preserve η% of S
and is given by

ch =

max(ls,bh/2c)∑
j=k+1

(
ls
j

)
·
(
n− ls
j

)
·

[
min(ls−j,h−2j)∑

i=0

(
ls − j
i

)

·
(
i+ j

j

)
· f(i, j) ·

(
n− ls − j
h− 2j − i

)
· f(h− 2j − i, j)!

]
f(i, 0) =!i, f(0, q) = q!

f(i, j) =

min(i,j)∑
q=0

[(
i

q

)
·
(

j

j − q

)
· j! · f(i− q, q)

]

ls = |S|, k = (1− η) · ls, !n = bn!

e
+

1

2
c

Proof. Let ls = |S| denote the size of the set S and k = d(1− η) · lSe denote the maximum number
of correct values that can be missing from S. Now, for a given permutation σ ∈ Sn, let h denote its
Hamming distance from the reference permutation σ0, i.e, h = dH(σ, σ0). This means that σ and σ0

differ in h indices. Now, h can be analysed in the the following two cases,

Case I. h ≤ 2k + 1

For (1− η) fraction of indices to be removed from S, we need at least k + 1 indices from S to be
replaced by k + 1 values from outside S. This is clearly not possible for h ≤ 2k + 1. Hence, here
ch = 0.
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Case II. h > 2k

For the following analysis we consider we treat the permutations as strings (multi-digit numbers are
treated as a single string character). Now, Let Sσ0 denote the non-contiguous substring of σ0 such
that it consists of all the elements of S, i.e.,

|S| = lS (11)
∀i ∈ [lS ],Sσ0

[i] ∈ S (12)
Let Sσ denote the substring corresponding to the positions occupied by Sσ0

in σ. Formally,
|Sσ| = lS (13)

∀i ∈ [lS ],Sσ0
[i] = σ(σ−1

0 (Sσ0
[i])) (14)

For example, for σ0 = (1 2 3 5 4 7 8 10 9 6), σ = (1 3 2 7 8 5 4 6 10 9) and S = {2, 4, 5, 8},
we have Sσ0 = 2548 and Sσ = 3784 where h = dH(σ, σ0) = 9. Let {Sσ} denote the set of the
elements of string Sσ. Let A be the set of characters in Sσ such that they do not belong to S, i.e,
A = {Sσ[i]|Sσ[i] 6∈ S, i ∈ [lS ]}. Let B be the set of characters in Sσ that belong to S but differ from
Sσ0

in position, i.e.,B = {Sσ[i]|Sσ[i] ∈ S,Sσ[i] 6= Sσ0
[i], i ∈ [lS ]}. Additionally, letC = S−{Sσ}.

For instance, in the above example, A = {3, 7}, B = {4, 8}, C = {2, 5}. Now consider an initial
arrangement of p+m distinct objects that are subdivided into two types – p objects of Type A and m
objects of Type B. Let f(p,m) denote the number of permutations of these p+m objects such that
them Type B objects can occupy any position but no object of Type A can occupy its original position.
For example, for f(p, 0) this becomes the number of derangements der denoted as !p = bp!e + 1

2c.
Therefore, f(|B|, |A|) denotes the number of permutations of Sσ such that dH(Sσ0

,Sσ) = |A|+ |B|.
This is because if elements of B are allowed to occupy their original position then this will reduce
the Hamming distance.

Now, let S̄σ (S̄σ0) denote the substring left out after extracting from Sσ (Sσ0) from σ (σ0). For
example, S̄σ = 1256109 and S̄σ0 = 1371096 in the above example. Let D be the set of elements
outside of S and A that occupy different positions in S̄σ and S̄σ0

(thereby contributing to the
hamming distance), i.e., D = {S̄σ0[i]|S̄σ0[i] 6∈ S, S̄σ0[i] 6= S̄σ[i], i ∈ [n − lS ]}. For instance, in
the above example D = {9, 6, 10}. Hence, h = dH(σ, σ0) = |A| + |B| + |C| + |D| and clearly
f(|D|, |C|) represents the number of permutations of S̄σ such that dH(S̄σ, S̄σ0) = |C|+ |D|. Finally,
we have

ch =

max(ls,bh/2c)∑
j=k+1

(
ls
j

)
︸ ︷︷ ︸

# ways of selecting set C

·
(
n− ls
j

)
︸ ︷︷ ︸

# ways of selecting setA

·

[

min(ls−j,h−2j)∑
i=0

(
ls − j
i

)
︸ ︷︷ ︸

# ways of selecting setB

·f(i, j)

·
(
n− ls − j
h− 2j − i

)
︸ ︷︷ ︸

# ways of selecting setD

·f(h− 2j − i, j)

]

Now, for f(i, j) let E be the set of original positions of Type A that are occupied by Type B objects in
the resulting permutation. Additionally, let F be the set of the original positions of Type B objects that
are still occupied by some Type B object. Clearly, Type B objects can occupy these |E|+ |F | = m in
any way they like. However, the type A objects can only result in f(p−q, q) permutations. Therefore,
f(p,m) is given by the following recursive function

f(p, 0) =!p

f(0,m) = m!

f(p,m) =

min p,m∑
q=0

( (
p

q

)
︸︷︷︸

# ways of selecting setE

·
(

m

m− q

)
︸ ︷︷ ︸

# ways of selecting set F

·m! · f(p− q, q)

)
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Thus, the total probability of failure is given by

δ =
1

ψ(θ, dH)

n∑
h=2k+2

(e−θ·h · ch) (15)

A.14 ADDITIONAL EXPERIMENTAL DETAILS

A.14.1 EVALUATION OF (η, δ)-PRESERVATION

(a) Variation with α (b) Variation with ω; α = 3 (c) Variation with lS ; α = 3

Figure 7: (η, δ)-Preservation Analysis

In this section, we evaluate the characteristics of the (η, δ)-preservation for Kendall’s τ distance
dτ (·, ·).

Each sweep of Fig. 7 fixes δ = 0.01, and observes η. We consider a dataset of size n = 10K and
a subset S of size lS corresponding to the indices in the middle of the reference permutation σ0

(the actual value of the reference permutation is not significant for measuring preservation). For the
rest of the discussion, we denote the width of a permutation by ω for notational brevity. For each
value of the independent axis, we generate 50 trials of the permutation σ from a Mallows model with
the appropriate θ (given the ω and α parameters). We then report the largest η (fraction of subset
preserved) that at least 99% of trials satisfy.

In Fig. 7a, we see that preservation is highest for higher α and increases gradually with declining
width ω and increasing subset size ls.

Fig. 7b demonstrates that preservation declines with increasing width. ∆ increases quadratically with
width ω for dτ , resulting in declining θ and increasing randomness. We also see that larger subset
sizes result in a more gradual decline in η. This is due to the fact that the worst-case preservation
(uniform random shuffling) is better for larger subsets. i.e. we cannot do worse than 80% preservation
for a subset that is 80% of indices.

Finally, Fig. 7c demonstrates how preservation grows rapidly with increasing subset size. For large
widths, we are nearly uniformly randomly permuting, so preservation will equal the size of the subset
relative to the dataset size. For smaller widths, we see that preservation offers diminishing returns as
we grow subset size past some critical ls. For ω = 30, we see that subset sizes much larger than a
quarter of the dataset gain little in preservation.

A.14.2 ADULT DATASET

A.15 ADDITIONAL RELATED WORK

In this section, we discuss the relevant existing work.

The anonymization of noisy responses to improve differential privacy was first proposed by Bittau et
al. Bittau et al. (2017a) who proposed a principled system architecture for shuffling. This model was
formally studied later in Erlingsson et al. (2019); Cheu et al. (2019). Erlingsson et al. Erlingsson
et al. (2019) showed that for arbitrary ε-LDP randomizers, random shuffling results in privacy
amplification. Cheu et al. Cheu et al. (2019) formally defined the shuffle DP model and analyzed
the privacy guarantees of the binary randomized response in this model. The shuffle DP model
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(a) Adult: Attack (b) Adult: Attack (α) (c) Adult: Learnability

Figure 8: Adult dataset experiments

differs from our approach in two ways. First, it focuses completely on the DP guarantee. The privacy
amplification is manifested in the from of a lower ε (roughly a factor of

√
n) when viewed in an

alternative DP model known as the central DP model. Erlingsson et al. (2019); Cheu et al. (2019);
Balle et al. (2019); Feldman et al. (2020); Bittau et al. (2017a); Balcer & Cheu (2020). However,
our result caters to local inferential privacy. Second, the shuffle model involves an uniform random
shuffling of the entire dataset. In contrast, our approach the granularity at which the data is shuffled
is tunable which delineates a threshold for the learnability of the data.

A steady line of work has sudied the inferential privacy setting Kasiviswanathan & Smith (2014);
Kifer & Machanavajjhala (2011); Ghosh & Kleinberg (2016); Dalenius (1977); Dwork & Naor
(2010); Tschantz et al. (2020). Kifer et al. Kifer & Machanavajjhala (2011) formally studied privacy
degradation in the face of data correlations and later proposed a privacy framework, Pufferfish Kifer
& Machanavajjhala (2014); Song et al. (2017); He et al. (2014), for analyzing inferential privacy.
Subsequently, several other privacy definitions have also been proposed for the inferential privacy
setting Liu et al. (2016); Yang et al. (2015); Chen et al. (2014); Zhu et al. (2015); Bassily et al. (2013).
For instance, Gehrke et al. proposed a zero-knowledge privacy Gehrke et al. (2011; 2012) which
is based on simulation semantics. Bhaskar et al. proposed noiseless privacy Bhaskar et al. (2011);
Grining & Klonowski (2017) by restricting the set of prior distributions that the adversary may
have access to. A recent work by Zhang et al. proposes attribute privacy Zhang et al. (2020) which
focuses on the sensitive properties of a whole dataset. In another recent work, Ligett et al. study a
relaxation of DP that accounts for mechanisms that leak some additional, bounded information about
the database Ligett et al. (2020). Some early work in local inferential privacy include profile-based
privacy Geumlek & Chaudhuri (2019) by Gehmke et al. where the problem setting comes with a
graph of data generating distributions, whose edges encode sensitive pairs of distributions that should
be made indistinguishable. In another work by Kawamoto et al., the authors propose distribution
privacy Kawamoto & Murakami (2018) – local differential privacy for probability distributions. The
major difference between our work and prior research is that we provide local inferential privacy
through a new angle – data shuffling.

Finally, older works such as k-anonymity Sweeney (2002), l-diversity Machanavajjhala et al. (2007),
and Anatomy Xiao & Tao (2006) and other Wong et al. (2010); Tassa et al. (2012); Xue et al. (2012);
Choromanski et al. (2013); Doka et al. (2015) have studied the privacy risk of non-sensitive auxiliary
information, or ‘quasi identifiers’ (QIs). In practice, these works focus on the setting of dataset
release, where we focus on dataset collection. As such, QIs can be manipulated and controlled,
whereas we place no restriction on the amount or type of auxiliary information accessible to the
adversary, nor do we control it. Additionally, our work offers each individual formal inferential
guarantees against informed adversaries, whereas those works do not. We emphasize this last point
since formalized guarantees are critical for providing meaningful privacy definitions. As established
by Kifer and Lin in An Axiomatic View of Statistical Privacy and Utility (2012), privacy definitions
ought to at least satisfy post-processing and convexity properties which our formal definition does.
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A.16 EVALUATION OF HEURISTIC

Figure 9: Comparison of our heuristic’s performance with that of an optimal reference permutation σ∗0 . An
optimal σ∗0 is generated with every group having size w. A graph is generated from this optimal σ∗0 from which
our heuristic (blue) attempts to reconstruct the optimal permutation. For baselining, the performance of a random
σ0 selection is plotted (orange). We observe that at worst, our heuristic picks a reference permutation with width
2.5× that of the optimal reference permutation (green). See Section 4.4 for definition of terms.

Algorithm 10 is designed to find a reference permutation σ0 with low width ωσG w.r.t. the given
grouping G. A low width is desirable, since it leads to low sensitivity ∆(σ0 : d,G), which in turn
leads to higher dispersion parameter θ = α/∆, and thus less randomness over permutations (higher
utility). Theorem A.3 proves that computing the optimal reference permutation (minimum width) is
NP-hard. As such, we propose a BFS-based heuristic.

Comparison with optimal reference permutation
To demonstrate the value of the heuristic used in Alg. 10, we provide two evaluations of its
performance. For our first evaluation, we compare the performance of our heuristic BFS reference
permutation selection (σ0) with that of the optimal reference permutation and that of a random
reference permutation. As identified by Theorem A.3, finding the optimal reference permutation for a
given grouping G is NP-hard. For these experiments, we first create an optimal reference permutation,
where each group Gi ∈ G is equally sized w and maximally compact. The optimal width, ωσG , is then
min(n,w). We then generate a graph from this optimal reference permutation. Finally, we run the
BFS reference permutation computation described in Alg. 10 attempting to approximate the optimal
σ∗0 , and compute its width.

To compare with a naive approach, we also plot the performance of a randomly chosen reference
permutation. We expect the maximum width across groups ωσG to be large for this technique. If one
of the n groups has a single entry low (near 0) in σ0 and a single entry high (near n) in σ0, the width
will be near n. The random baseline is averaged over 10 trials with a 1 standard deviation envelope
plotted (but difficult to see, since the variance is low).

Figure 9 depicts our findings. Each plot has a different group size w, listed at the top, used in the
optimal reference permutation. We find that the random baseline (orange) consistently chooses a
reference permutation such that ωσG is near n, as expected. Our method (blue), on the other hand,
closely tracks the optimal solution (green). We find that in the worst case, our algorithm’s solution
has a width ≤ 2.5× larger than the optimal. Note that for r = 0 (upper left), all methods trivially
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have a width of one, since the corresponding graph has no edges. While there may be room for
improvement, we find this to be sufficient for the present work.

Figure 10: example of our heuristic’s performance on randomly generated graphs. As r increases, so does the
connectivity of the random graphs and the average group size (green). As shown by Theorem A.3, computing
the optimal ωσG is NP-hard. The average group size (green) in G is a loose lower bound on the optimal ωσG . The
performance of a random σ0 assignment (orange) is also plotted for reference. Our heuristic BFS algorithm
(blue) consistently outperforms the random baseline.

Performance on randomly generated graphs
For our second evaluation, we observe how well our BFS heuristic (in Algorithm 10) performs on
randomly generated graphs. Here, we sample n points uniformly on the unit interval. We then say
that the ith point’s group, Gi, consists of all other points within r of it. As r increases, so does the
groups size. Since computing the optimal reference permutation is NP-hard (Theorem A.3), we do
not show the optimal width. Instead, we show a loose lower bound of the optimal width (green)
by plotting the average group size for a given r (recall that the width is greater than or equal to the
largest group size, so we expect this to be a loose lower bound, solely for reference). For comparison,
we evaluate the performance of a random σ0 choice as well. For both of these methods, we run 10
trials of generating a random graph (and picking a random σ0) at each value of n and plot the mean
along with a 1 standard deviation envelope, which is difficult to see due to low variance.

Figure 10 depicts our findings. We find that — across values of n and r — our heuristic (blue)
significantly outperforms the random baseline (orange). Additionally, we observe the trends we expect.
For a low r values, our heuristic BFS algorithm chooses a σ0 with width close to the lower bound
(green) of the optimal width ωσG . As r increases, the graph become significantly more connected.
Both the lower bound and our heuristic move closer to the width of the random baseline. Note that
for r = 0 (upper left), all methods trivially have a width of one, since the corresponding graph
has no edges. Ultimately, these findings indicate that our heuristic for computing σ0 significantly
outperforms a naive random choice, and follows the same trend as the lower bound of the optimal.
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