
Learning Algorithms for Multiple Instance Regression

Aaryan Gupta1 Rishi Saket1

1Google DeepMind , {aaryangupta,rishisaket}@google.com

Abstract

Multiple instance regression, introduced by Ray
and Page [2001], is a generalisation of supervised
regression in which the training data is available
as a bag of feature-vectors (instances) and for each
bag there is a bag-label which matches the label
of one (unknown) primary instance from that bag.
The goal is to compute a hypothesis regressor con-
sistent with the underlying instance-labels. While
most works on MIR focused on training models
on such training data, computational learnability
of MIR was only recently explored by Chauhan et
al. [UAI 2024] who showed worst case intractabil-
ity of properly learning linear regressors in MIR
by showing a inapproximability bound. However,
their work did not rule out efficient algorithms for
this problem on natural distributions and randomly
chosen labels. In this work we show that it is in-
deed possible to efficiently learn linear regressors
in MIR when given access to random bags of uni-
formly randomly sampled primary instance cho-
sen as the bag-label in which the feature vectors
are independently sampled from Gaussian distri-
butions. This is achieved by optimizing a certain
bag-level loss which, via concentration bounds,
yields a close approximation to the target linear
regressor. Lastly, we show that the bag-level loss
is also useful for learning general concepts (e.g.
neural networks) in this setting: an optimizer of
the loss on sampled bags is, w.h.p. a close approx-
imation of a scaled version of the target function.
We include experimental evaluations of our learn-
ing algorithms on synthetic and real-world datasets
showing that our method outperforms the baseline
MIR methods.

1 INTRODUCTION

In probably approximately correct (PAC) model of learn-
ing [Valiant, 1984], we are given distributionD over feature-
vectors and label pairs (x, y) which are consistent with some
unknown function f from a concept class of functions i.e.,
y = f(x). The goal is to sample iid examples from D and
efficiently compute a hypothesis h which approximates the
target function. However, in many applications the labels
of individual feature-vectors may not be available due lack
of instrumentation, uncertainty in the data or privacy con-
straints. Instead, we are only given bag-labels for bags i.e.,
a subsets of feature-vectors. These bag-labels are derived
from the labels of the feature-vectors via some aggregation
function. The goal remains the same, to find a hypothesis
which accurately predicts the feature-vector labels.

When the aggregation function is sum (equivalently avg,
since bag-sizes are known) the setting is known as learning
from label proportions (LLP) while the {0, 1}-label setting
with OR aggregation function is called multiple instance
learning (MIL). Previous works have studied the compu-
tational and statistical learning aspects of LLP [Yu et al.,
2014, Brahmbhatt et al., 2023] as well as MIL [Blum and
Kalai, 1998].

Our focus in this work is multiple instance regression (MIR)
[Ray and Page, 2001] in which the labels are real-valued, ob-
tained by choosing the label of some (undisclosed) feature-
vector in the bag, and the goal is to find a regressor with low
error w.r.t. the underlying feature-vector labels. Recent work
of Chauhan et al. [2024], to the best of our knowledge, is
the first to study MIR from the statistical and computational
perspective. Chauhan et al. [2024] considered the case of
fixed-sized MIR bags each consisting of iid sampled feature-
vectors with the bag-label being the label of a uniformly
sampled feature-vector from the bag, and showed the first
bag-to-instance generalization error bounds. More specifi-
cally, they showed that a regressor with a low value of a cer-
tain bag-attribution loss (which they define as the minimum
distance between the bag-label and the prediction on any
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of the bag’s feature-vectors) on sampled bags also has low
regression loss over the feature-vector distribution. Their
work also showed the NP-hardness of even approximately
optimizing a linear regressor on arbitrary bag distributions.
We note however that the specific bag-attribution loss used
by Chauhan et al. [2024] in their generalization error bound
is non-convex in the regressor predictions and thus is not
practical to optimize efficiently. This state of affairs indi-
cates a lack of algorithmic results for learning in MIR with
provable guarantees under reasonable distributional assump-
tions.

Our Contributions. Our results substantially bridge the
gaps in our understanding of MIR.

Specifically, for the random MIR bags considered by
Chauhan et al. [2024] as described above, with feature-
vectors being Gaussian, we provide an efficient learning
algorithm for the realizable setting that can recover the un-
known regressor when the latter is a linear function f .

Our results – stated as Theorem 1.1 in Section 1.2 – is the
first efficient PAC learning algorithm for MIR, even for
learning linear regressors.

The key idea is to use the bag-level loss on MIR bags which
for each bag in the sample, assigns its bag-label to all feature-
vectors in the bag, and then optimizes the squared-Euclidean
bag-level loss on the resultant labeled feature-vectors. This
is convex in the regressor predictions and thus over the
weights of the linear regressor. We show that in the linear
regression case, optimizing this loss yields, using concen-
tration bounds w.h.p. over the sampled bags, an arbitrarily
close approximation to a linearly transformed version of the
target regressor, where the linear transformation is invertible
and can be explicitly computed (more details are in Section
1.3).

While the above results clarify the learnability of linear re-
gressors in MIR, practical applications often require neural
regression, and one would wish to extend the above results
to general regressors like neural networks. Unfortunately,
since neural networks are not necessarily convex in their
weights, our approach of optimizing a bag-level loss does
not yield an efficient algorithm for general regressor classes
which contain neural networks. Setting aside this issue, we
do however prove (stated formally as Theorem 1.2 in Sec.
1.2) that any regressor which does optimize the bag-level
loss must be a uniformly scaled and translated version of
the target regressor. The scaling and translation factors can
be estimated efficiently, allowing us to learn the original
regressor.

It is pertinent to note that the bag-level loss that we optimize
in our results is essentially same as that in the Instance-MIR
method [Wang et al., 2008] where the bag-label is assigned
to the feature-vectors in the bag and the resultant labeled set
of feature-vectors is used for optimizing a regression loss, in

our case we use the squared-Euclidean loss. Thus, our results
theoretically justify the efficacy of Instance-MIR which has
been observed in practice (see [Wang et al., 2008]). However,
our algorithms also involve a linear transformation step
which makes them distinct from vanilla Instance-MIR.

Our experimental evaluations compare our algorithms for
different scenarios to previous baselines such as Instance-
MIR, and demonstrate the practical applicability and im-
proved performance of our methods.

Previous Related Work. Multiple instance learning (MIL),
specifically its classification setting, was proposed by Diet-
terich et al. [1997] to model drug activity detection where
the bag-label is an OR of its (unknown) instance-labels
(all labels are {0, 1}-valued), with the goal being to train
an instance-label classifier. MIL has subsequently been
used in various other applications such as medical im-
age [Wu et al., 2015] and videos [Sikka et al., 2013] analysis,
time series prediction [Maron, 1998], and information re-
trieval [Lozano-Pérez and Yang, 2000].

In MIR i.e., multiple instance regression, introduced by
Ray and Page [2001], the underlying task is regression over
the real-valued labels. For each bag, the label of a primary
instance from it is its bag-label. The earliest applications
of MIR formulations have been in remote sensing such as
aerosol optical depth prediction [Wang et al., 2008] and crop
yield prediction [Wagstaff and Lane, 2007]. More recently,
for applications like assessing image quality depending on
that of a constituent prime image, Liang et al. [2021] mod-
eled the problem as MIR to develop model training methods.
Another image analysis task of facial age estimation has
also been studied in the work of Liu et al. [2019] using
MIR techniques while MIR has also recently been used to
model the continuous response of bags of neoantigens [Park
et al., 2020]. Other applications of MIR are possible in user
modeling for online advertising, where due to privacy con-
siderations, an online purchase or conversion event cannot
be linked to a unique user clicks, rather we have a subset or
bag of clicks which could have resulted in the conversion
(see Section 2.1 of [O’Brien et al., 2022]).

Loss based methods which transform the problem into
instance-level regression include Aggregated-MIR which
assigns the average feature-vectors in each bag the bag-label,
and Instance-MIR in which the bag-label is assigned to each
instance in a bag (see Wang et al. [2008]). More sophisti-
cated EM based methods are primary-MIR (PIR) [Ray and
Page, 2001], pruning MIR [Wang et al., 2008] and mixture-
model MIR Wang et al. [2012], while Wagstaff et al. [2008],
Trabelsi and Frigui [2018] proposed clustering based meth-
ods for MIR. However, the work of Chauhan et al. [2024] is
(to the best of our knowledge) the first that investigated in
detail the learning theoretic aspects of MIR, showing (i) er-
ror bounds for generalizing regressors trained on randomly
sampled bags with iid feature-vectors to the underlying



feature-vector distribution, and (ii) the NP-hardness of even
approximately optimizing a linear regressor on arbitrary bag
distributions. Additionally Chauhan et al. [2024] provided
an optimization based model training approach for the MIR
problem, albeit without any performance guarantees.

1.1 PROBLEM DEFINITION

A bag is a finite subset of feature-vectors. Specifically, if
X is the universe of possible feature-vectors, then a q-sized
bag B is a subset of X s.t. |B| = q, for q ∈ Z+. In this
work, X = Rd for some d ∈ Z+. A labeling function
f : X → R defines the labels of the feature-vectors. We
will use yB ∈ R to denote the bag-label, which in the
MIR setting is an element of {f(x)}x∈B . Next we define
the random bag distribution (also studied by Chauhan et al.
[2024]).

Bag Distribution. Given a distribution D over Rd for some
d ∈ Z+, a target concept f : Rd → R, and a bag-size
q ∈ Z+, the bag distribution Dbag(D, f, q) is defined by
the following sampling procedure: generate a labeled bag
(B, yB) where B = {xj}qj=1 such that xj is independently
sampled from D for j ∈ [q], and yB is chosen uniformly at
random from {f (x1) , . . . , f (xq)}.

For any two functions f, h : Rd → R, we define
the `22-error under distribution D as: err2(D, f, h) :=
Ex∼D

[
(f(x)− h(x))2

]
.

We will consider concept classes of functions mapping Rd
to real-values. In particular, the class of linear regressors
Lin over Rd is given by functions of the form f(x) := rTx
for some r ∈ Rd. Note that we can incorporate a constant
term by appending 1 to the feature-vectors and an extra-
coordinate to r and therefore we can use the homogeneous
formulation of linear regressors in the rest of the paper.

For a concept class C of real-valued functions over Rd,
and parameters ε, δ > 0, we define the proper MIR learn-
ing problem PAC-MIR [C,D, q, ε, δ] as follows: for any
function f ∈ C, given access to iid samples (B, yB) from
Dbag(D, f, q), with probability 1− δ over the samples, out-
put a hypothesis h ∈ C such that err2(D, f, h) ≤ ε. We
desire that the algorithm for PAC-MIR [C,D, q, ε, δ] has
sample as well as time complexity polynomial in d, (1/ε),
and log(1/δ) along with dependence on the parameters of
D and properties of the target regressor f .

In our results stated in the next section, D is taken to
be N(µ,Σ). We assume that the second moment matrix
(µµT +Σ) is of full rank (i.e., invertible) otherwise one can
use its pesudo-inverse (see Appendix A) in our analysis.

1.2 OUR RESULTS

The first theorem provides an efficient algorithm for PAC-
MIR for linear regressors, for random bags over with Gaus-
sian feature-vectors with the bag-label being a random label
in the bag.

Theorem 1.1. For d ∈ Z+, let D be N(µ,Σ) over Rd,
q ∈ Z+ be the bag-size, ε, δ > 0 be parameters. Then,
there is an algorithmA for PAC-MIR [Lin,D, q, ε, δ] which
samples

m = O

(
dq2‖r‖22 log ( qδ )(‖µ‖+ 1)(‖µ‖2 + λmax(Σ))3

λ2min(µµT + Σ)ε

)
bags and runs in time polynomial in the number of sam-
pled bags, where f(x) := rTx is the target concept and
λmax and λmin yield the maximum and minimum eigenvalues
respectively of the operand matrices.

The above results are the first PAC learning algorithm for
non-trivial concept classes in the MIR setting. To illustrate
the main technical ideas, in Section 3 we prove Theorem
1.1 for the special case of homogeneous regressors i.e., with
no constant term, µ = 0 and Σ = I, deferring the proof of
the general case to Appendix B. While we also provide an
overview of the proof techniques later in this section, the
main idea is to leverage the following bag-level loss defined
for a bag B and label yB w.r.t. to a hypothesis h as follows:

Lbag(B, yB , h) :=
∑
x∈B

(h(x)− yB)
2 (1)

Clearly, the RHS of the above is convex in the weights of h
when h ∈ Lin, as in Theorem 1.1.

However, this approach of optimizing such losses is not
tractable for general functions such as neural-networks since
their outputs are not necessarily convex in their weights.
Nevertheless, neural networks are widely used in ML appli-
cations and our next theorem shows that the formulation in
(1) is indeed useful for accurately learning neural networks
in the MIR setting.

We consider a concept class F of regressors (e.g. 2-layer
neural-networks) with bounded outputs in [0, 1] which is
closed under the following transformation: for any f ∈ F ,
fb = bf + (1− b)E[f ] ∈ F for any b ∈ [0, 1]. It can be to
seen that value of fb at any point is in [0, 1], and common
neural network models are closed under this transformation
(see Appendix C).

Theorem 1.2. Let f ∈ F be any target regressor. Then,
for any q ∈ Z+ and ε, δ > 0, if B is a collection of m
bags sampled independently and u.a.r. from Dbag(D, f, q),
then h := argminh′∈F

∑
(B,yB)∈B Lbag(B, yB , h

′) satisfies
err2(D, f, qh+K) ≤ ε with probability (1−δ), whenm ≥
O
(
rq2

ε2

(
log
(
rq
εδ

)))
, where r = Pdim(F) is the pseudo-

dimension (see Sec. 2.1) of F . Further, K can be efficiently
estimated to arbitrary accuracy.



In effect, the above theorem, proved in Section 4, shows that
optimizing the loss in (1) over a large enough sampled set
of MIR bags recovers a scaled version of the target concept.

Discussion of Our Results. We would like to note that in
[Chauhan et al., 2024] and as well as in our work, the bag
distribution is such that each feature-vector in a q-sized bag
is chosen iid from the distribution D. The bag-label is the
label of a randomly chosen feature-vector in the bag. Such
bag distributions occur especially in privacy constrained
settings, such as user modeling for online advertising where
due to privacy considerations an online purchase or conver-
sion event cannot be linked to a unique user click, rather we
have a subset or bag of clicks which could have resulted in
the conversion (see Section 2.1 of O’Brien et al. [2022]).
Random bags afford more privacy as compared to bags in
which feature-vectors are correlated which could induce de-
pendencies between the bag-label and the labels of several
feature-vectors within the bag, thus compromising the pri-
vacy guarantee. Given the relevance to such revenue critical
applications, we believe our algorithmic contributions can
have real-world impact. Further, since random bags do not
provide any additional information via correlations, from
an algorithmic perspective they typically represent a reason-
ably challenging scenario, and any progress on developing
learning techniques on such bags can yield insights which
may be generally applicable.

Theorem 1.1 in our work considers Gaussian feature-vectors,
which is fairly standard in ML for modeling data to vali-
date algorithmic techniques (see for e.g. Dasgupta [1999],
Vempala [2010]). Further, the Gaussianity assumption is
only used for estimation bounds to obtain efficient sample
complexity, and any sub-Gaussian distribution can also be
used to derive similar guarantees. In Theorem 1.2, we ex-
tend this to neural regression, in which however the bag-loss
function is not convex due to the general non-convexity of
neural network outputs in their weights. Instead, we develop
pseudo-dimension and covering number based arguments
which absorb any distributional assumptions on the feature-
vectors. As a result, Theorem 1.2, while relying on black-
box optimization of the bag-loss (which is often feasible
in practice) is more broadly applicable than Theorem 1.1
which provides a self-contained efficient algorithm. One
can also observe that the matrix factor scaling v̂min in step
3 of Algorithm 1 for the linear N(0, I) case of Theorem
Theorem 1.1 converges to qI, which corresponds to scaling
by factor q obtained in Theorem 1.2. This correspondence
is due to the underlying commonality of the main ideas in
both theorems.

1.3 OUR TECHNIQUES

In this section we informally describe the techniques used
in proving our main results.

Theorem 1.1.

For ease of exposition we shall consider the special case
of homogeneous linear regressors f(x) = rTx in d-
dimensional space and N(0, I) as the feature-vector dis-
tribution D. The algorithm is as follows: sample a m-sized
collection of iid bags B from Dbag(D, f, q) and minimize
the sample loss which is the sum of Lbag(B, yB , h) over
all bags in B, w.r.t. the hypothesis h(x) := vTx. The loss
is convex and can be minimized in poly(m, d)-time, and
its gradient can be written using sample-dependent matri-
ces (i.e., depending on the sampled bags) as a linear form
in r and v. It can be seen that the loss is minimized at
vmin = HJr, where H is a matrix that can be derived from
the feature-vectors in the sampled bags while J is a matrix
which also depends on the choice of each bag’s feature-
vector labels chosen to be the bag-label. Crucially however,
one can show that J converges to the identity matrix with
the sample size, and therefore one can take H−1vmin as the
approximate solution. The analysis uses the fact that the
sample-dependent matrices are sums of outer products of
Gaussian vectors for which the subgaussian concentration
inequalities bound the deviation from mean. The general
case of non-homogeneous linear regressors and N(µ,Σ)
can be handled similarly, except that matrix factor also de-
pends on µ and Σ, and can be estimated from the sampled
bags.

Theorem 1.2. Using algebraic manipulations of the loss ex-
pression, we first show that expected loss Lbag(B, yB , h

′)
over a random bag B from Dbag(D, f, q) is greater than
the same loss for f̂ := f/q + (1 − 1/q)E[f ] by exactly
err2(D, f̂ , h′), for any regressor h. In particular, the ex-
pected loss EB∈Dbag [Lbag(B, yB , h

′)] is minimized by f̂ .
Further, by our assumption on F , f ∈ F ⇒ h ∈ F .
Applying the generalization error bound on each of the
q loss terms in Lbag(B, yB , h

′) we obtain generalization
error between Lbag averaged over sampled bags B and
EB∈Dbag [Lbag(B, yB , h

′)]. Using these bounds for f̂ ∈ F
as well as for the optimizer h of Lbag averaged over
sampled bags, we obtain that EB∈Dbag [Lbag(B, yB , h)] ≤
EB∈Dbag [Lbag(B, yB , h

′)] + ε. Our previous argment then
implies that err2(D, f̂ , h) ≤ ε. Using qh− (q−1)K ′ as the
hypothesis yields the desired error bound, where K ′ is an
accurate estimate of E[f ] which can be efficiently computed
by sampling additional bags.

2 PRELIMINARIES

For x ∈ Rd, let ‖x‖2 denote the Euclidean norm. For A ∈
Rd×d, let the operator norm of A be denoted by ‖A‖ =
max‖x‖2=1‖Ax‖2. We present the following theorem from
Chapter 6 of Wainwright [2019]:

Theorem 2.1. Consider X1,X2, . . . ,Xm in Rd iid from
N(µ,Σ). Then, for any ζ > 0, we have with probability



1− 2e−mζ
2/2,∣∣∣∣∣

∣∣∣∣∣ 1

m

m∑
i=1

(
XiX

T
i − E[XiX

T
i ]
)∣∣∣∣∣
∣∣∣∣∣

≤

2

√
d

m
+ 2ζ +

(√
d

m
+ ζ

)2


· (‖µ‖22 + λmax(Σ)) (2)

2.1 REAL FUNCTIONS FROM A CLASS

For a class F of real-valued functions (regressors) over
X with values in [0, 1], and any X ′ ⊆ X s.t. |X ′| =
N , let Cp(ξ,F ,X ′) denote a minimum cardinality sub-
set (cover) of F such that for each f∗ ∈ F , there exists
f ∈ Cp(ξ,F ,X ′) s.t. (Ex∈X ′ [|f∗(x)− f(x)|p])1/p ≤ ξ
for p ∈ [1,∞), and maxx∈X ′ |f∗(x)− f(x)| ≤ ξ for
p =∞.

The maximum size of Cp(ξ,F ,X ′) over all choices of
|X ′| = N is defined to be Np(ξ,F , N). We refer the reader
to Sections 10.2-10.4 of Anthony and Bartlett [2009] for
more details.

The pseudo-dimension of F , Pdim(F) is a measure of the
complexity of F . As described in Sec. 10.4 and 12.3 of
Anthony and Bartlett [2009] the pseudo dimension can be
used to bound the size of covers of F as follows:

N1(ξ,F , N) ≤ N∞(ξ,F , N) ≤ (eN/ξp)p (3)

where p = Pdim(F) and N ≥ p.

3 LINEAR REGRESSORS OVER N(0, I)

Algorithm 1: PAC Learner for f(x) := rTx over
N(0, I)

Input: Dbag(D = N(0, I), f =
Lin, q),m, q,where f(x) := rTx.
1. Sample a collection B of m iid bags from
Dbag(D, f, q).

2. Define L̂(B,v) = 1
m

∑
B∈B

∑
x∈B(yB − vTx)2,

use convex optimisation to find
v̂min = argminvL̂(B,v).

3. Output r̂ =
(

1
m

∑
B∈B

∑
x∈B xxT

)
v̂min.

For the setting of homogeneous linear regressors over
N(0, I), we provide Algorithm 1. Note that in Step 2
of Algorithm 1, L̂(B,v) =

∑
B∈B Lbag(B, yB , h) where

h(x) := vTx.

Lemma 3.1. For any ε, δ ∈ (0, 1), if m ≥
O
(
dq2 log ( qδ )‖r‖22/ε

)
, then r̂ returned in Algorithm 1 sat-

isfies ‖r̂− r‖2 ≤
√
ε with probability 1− δ.

We defer the proof of lemma 3.1 to the next subsection.

Lemma 3.2. Let ε, δ ∈ (0, 1) and suppose that r̂ returned
in Algorithm 1 satisfies ‖r̂− r‖2 ≤

√
ε, then h(x) = r̂Tx

satisfies err2(D, f, h) ≤ ε with probability 1− δ.

Proof. (of Lemma 3.2) err2(D, f, h) =
Ex∼D

[
(f(x)− h(x))2

]
= Ex∼N(0,I)[((r − r̂)Tx)2] =

Var[(r − r̂)Tx] + E[(r − r̂)Tx]2. Now, note
that (r − r̂)Tx ∼ N(0, ‖r − r̂‖22). So we get
err2(D, f, h) = ‖r− r̂‖22 ≤ ε.

Since ‖f‖2 ≥ ‖r‖2, q ≥ log q, for m ≥
O
(
dq2 log ( qδ )‖f‖22/ε

)
, we show that Algorithm 1 out-

puts h such that err2(D, f, h) ≤ ε. The convex
optimisation subroutine called inside Algorithm 1 is
poly[d, q, (1/ε), log(1/δ)], which makes Algorithm 1 poly-
nomial in poly[d, q, (1/ε), log(1/δ), ‖f‖2]. This completes
the proof of Theorem 1.1 for the setting of homogeneous
linear regressors and D = N(0, I).

3.1 PROOF OF LEMMA 3.1

Taking B = {xB1, . . . ,xBq} to be a random bag from
Dbag(D, f, q), one can assume yB = f(xB1) = rTxB1 as
each feature-vector in B is iid from N(0, I). Using this:

L̂(B,v) =
1

m

∑
B={xi | i∈[q]}∈B

[(rTxB1 − vTxB1)2

+

q∑
j=2

(rTxB1 − vTxBj)
2]

= (r− v)TA(r− v) + (q − 1)rTAr

+

q∑
j=2

(vTCjv − rTDT
j v − vTDjr) (4)

where A = 1
m

∑
B={xi | i∈[q]}∈B xB1x

T
B1,

Cj = 1
m

∑
B={xi | i∈[q]}∈B xBjx

T
Bj , and Dj =

1
m

∑
B={xi | i∈[q]}∈B xBjx

T
B1.

We define v̂min = argminvL̂(B,v) as used in Algorithm 1.
L̂(B,v) is convex in v, hence v̂min can be found by solving
∂L̂(B,v)

∂v
= 0, which yields (see Appendix A.2),

0 =
∂L̂(v̂)

∂v
= 2A (v̂min − r) +

q∑
j=2

(2Cjv̂min − 2Djr)

v̂min =

A +

q∑
j=2

Cj

−1A +

q∑
j=2

Dj

 r

=

 1

m

∑
B∈B

q∑
j=1

xBjx
T
Bj

−1A +

q∑
j=2

Dj

 r



Note that Ex∼D[A] = Ex∼D[Cj ] = I and Ex∼D[Dj ] = 0.
As defined in Algorithm 1, r̂ is

r̂ =

 1

m

∑
B∈B

q∑
j=1

xBjx
T
Bj

vmin =

A +

q∑
j=2

Dj

 r.

(5)
Note that EB[A] = EB[Cj ] = I and EB[Dj ] = 0, since
xBj (B ∈ B, j ∈ [q]) are iid N(0, I). Thus, we have

‖r̂− r‖ ≤

∥∥∥∥∥∥A− I +

q∑
j=2

Dj

∥∥∥∥∥∥ ‖r‖
≤ ‖A− I‖ ‖r‖+

q∑
j=2

‖Dj‖ ‖r‖ (6)

by triangle inequality. As m ≥ O
(
d log ( qδ )‖r‖22q2/ε

)
, us-

ing using Theorem 2.1 we obtain

Pr

[
‖A− I‖ ≤

√
ε

2q‖r‖

]
≥ 1− δ

2q
. (7)

Further, since for any fixed j ∈ {2, . . . , k}, {(xB1 −
xBj)}B∈B ∼ N(0, 2I) iid , and {(xB1 + xBj)}B∈B ∼
N(0, 2I) iid, we have

Pr

[∥∥∥∥∥ 1

m

∑
B∈B

(xB1 + xBj)(xB1 + xBj)
T − 2I

∥∥∥∥∥ ≤
√
ε

q‖r‖

]

Pr

[∥∥∥∥∥ 1

m

∑
B∈B

(xB1 − xBj)(xB1 − xBj)
T − 2I

∥∥∥∥∥ ≤
√
ε

q‖r‖

]

≥ 1− δ

4q
. (8)

Observe that (xB1 + xBj)(xB1 + xBj)
T − (xB1 −

xBj)(xB1 − xBj)
T = 4xB1x

T
Bj . Thus,

4Dj =
1

m

∑
B∈B

(xB1 + xBj)(xB1 + xBj)
T − 2I

−

[
1

m

∑
B∈B

(xB1 − xBj)(xB1 − xBj)
T − 2I

]

The above, using (8) along with the triangle inequality on
the operator norm of matrices gives us

Pr

[
‖Dj‖ ≤

√
ε

2q‖r‖

]
≥ 1− δ

2q
.

Combining (7), (8) along with (6) and a union bound over
j, we obtain

Pr[‖r̂− r‖ ≤
√
ε] ≥ 1− δ. (9)

4 PROOF OF THEOREM 1.2

For convenience, let us define

∆(h) := E(B,yB)←Dbag(D,f,q)Lbag (B, yB , h) . (10)

Take B = {xB1, . . . ,xBq} to be a random bag from
Dbag(D, f, q) where yB = f(xB1) as each feature-vector
in B is independent and u.a.r. from D. Thus,

∆(h) := E{xBj←D | j=1,...,q}

q∑
j=1

[
(h(xB1)− f(xBj))

2
]

= ExB1,xB2←D
[
(h(xB1)− f(xB1))

2

+(q − 1) (h(xB2)− f(xB1))
2] (11)

where xB1,xB2 are iid from D.

We will first do the analysis for unbiased target concept f
i.e., satisfying Ex←D [f ] = 0. The following lemma shows
that any regressor h for which ∆(h) is close to its optimal
value, must have low error w.r.t. to a scaled version of f .

Lemma 4.1. Consider any f ∈ F s.t. Ex←D [f(x)] = 0,
then, letting f̃ := f/q, for any h : X → R,

∆(h) = ∆(f̃) + err2(D, f̃ , h). (12)

In particular, f̃ minimizes ∆(h) over all regressors h.

Proof. From (11) we have

∆(h)

= E
[
(h(xB1)− f(xB1))

2
+ (q − 1) (h(xB2)− f(xB1))

2
]

= E
[(

(h(xB1)− f̃(xB1)) + (f̃(xB1)− f(xB1))
)2

+(q − 1)
(

(h(xB2)− f̃(xB2)) + (f̃(xB2)− f(xB1))
)2]

= E
[(
h(xB1)− f̃(xB1)

)2
+
(
f̃(xB1)− f(xB1)

)2
+2
(
h(xB1)− f̃(xB1)

)(
f̃(xB1)− f(xB1)

)
+ (q − 1)

[(
h(xB2)− f̃(xB2)

)2
+
(
f̃(xB2)− f(xB1)

)2
+ 2

(
h(xB2)− f̃(xB2)

)(
f̃(xB2)− f(xB1)

)]]
.

Using the fact that xB1 and xB2 are iid, E[f(x)] = 0, and

err2(D, f̃ , h) = E
[(
h(x)− f̃(x)

)2]
, the above simplifies



to

∆(h) = ∆(f̃) + err2(D, f̃ , h)

+2E
[
(1/q − 1)

(
h(xB1)− f̃(xB1)

)
f(xB1)

]
+2(q − 1)E

[
(1/q)

(
h(xB2)− f̃(xB2)

)
f(xB2)

]
= ∆(f̃) + err2(D, f̃ , h)

+2Ex←D

[
(1/q − 1)

(
h(x)− f̃(x)

)
f(x)

+ (1− 1/q)
(
h(x)− f̃(x)

)
f(x)

]
= ∆(f̃) + err2(D, f̃ , h), (13)

completing the proof.

We now move to a general target f which may have non-
zero expectation. Observing that (h(xBj)− f(xB1))

2
=

((h(xBj)− E[f ])− (f(xB1)− E[f ]))
2 and applying the

previous lemma, we obtain

∆(h) = ∆(f̂) + err2(D, f̂ , h). (14)

where f̂ = f/q+(1−1/q)E[f ]. We will now show that the
optimizer of the loss on the sampled bags, w.h.p., yields an
approximation to f̂ . As per our assumptions, Pdim(F) = r

defined over X with range [0, 1] that contains f as well as f̂ .
For the rest of the proofs we shall fix B to be a collection of
m bags sampled fromDbag(D, f, q). The loss corresponding
to ∆(h) on B is given by:

∆(B, h) :=
1

m

∑
B={xBj | j∈[q]}∈B

q∑
i=1

(h(xB1)− f(xBj))
2

(15)

Lemma 4.2. With probability at least 1 −
4q
(
32emq
εr

)r
exp

(
− (ε/q)2m

32

)
over the choice of B,

for any h ∈ F , |∆(B, h)−∆(h)| ≤ ε.

Proof. Consider a random bag B = {xB1, . . . ,xBq}.
For each j ∈ [q], applying Theorem 17.1 of An-
thony and Bartlett [2009] to the marginal distribu-
tion of (xBj , f(xB1)), we obtain that w.p. 1 −
4
(
32emq
εr

)r
exp

(
− (ε/q)2m

32

)
over B,

∣∣∣∣E(B={xB1,...,xBq}

[
(h(xB1)− f(xBj))

2
]

− 1

m

∑
B={xBj | j∈[q]}∈B

(h(xB1)− f(xBj))
2

∣∣∣∣ ≤ ε/q
(16)

where the expectation on the LHS is over a random bag B
from Dbag(D, f, q). Thus, in the following we use a union

bound to obtain

|∆(B, h)−∆(h)|

=

∣∣∣∣ q∑
i=1

[
E(B={xB1,...,xBq}

[
(h(xB1)− f(xBj))

2
]

− 1

m

∑
B={xBj | j∈[q]}∈B

(h(xB1)− f(xBj))
2

]∣∣∣∣
≤

q∑
i=1

∣∣∣∣E(B={xB1,...,xBq}

[
(h(xB1)− f(xBj))

2
]

− 1

m

∑
B={xBj | j∈[q]}∈B

(h(xB1)− f(xBj))
2

∣∣∣∣
≤ q

(
ε

q

)
= ε

with probability 1− 4q
(
32emq
εr

)r
exp

(
− (ε/q)2m

32

)
.

For convenience we define ζ :=

4q
(
32emq
εr

)r
exp

(
− (ε/q)2m

32

)
. Using the above we

prove the following lemma.

Lemma 4.3. With probability 1 − ζ, any h ∈ F s.t.
∆(B, h) ≤ ∆(B, f̂) satisfies, ∆(h) ≤ ∆(f̂) + 3ε.

Proof. From Lemma 4.2 we have that with probability 1−ζ ,

|∆(B, h)−∆(h)| ≤ ε,
∣∣∣∆(B, f̂)−∆(f̂)

∣∣∣ ≤ ε, ∀h ∈ F .
(17)

Suppose for a contradiction that there is some h′ ∈ F s.t.

∆(B, h′) ≤ ∆(B, f̂) (18)

and
∆(h′) > ∆(f̂) + 3ε. (19)

Using (19) along with (17) yields ∆(B, h′) > ∆(B, f̂) + ε
which is a contradiction to (18).

Proof. (of Theorem 1.2). Observe that if h minimizes
∆(B, h′) over all choices of h′ ∈ F , then ∆(B, h) ≤
∆(B, f̂) since by our assumption, f̂ ∈ F . Thus, applying
Lemma 4.3 we obtain ∆(h) ≤ ∆(f̂) + 3ε which by (14)
implies that err2(D, f̂ , h) ≤ 3ε. The theorem statement is
obtained by replacing ε with ε/3 in the above proof, and
substituting the value of m as in the statement of the theo-
rem so that ζ ≤ δ. The estimation of E[f ] can be done using
additional bag samples and we defer the details to Appendix
D.



5 EXPERIMENTAL RESULTS

We evaluate our approach over both synthetically generated
data and real datasets and compare against baselines for
different bag sizes.

Baseline Methodogies. The following baselines are in-
cluded as part of our experiments:

1. Instance-MIR [Ray and Craven, 2005] in which all the
feature-vectors in a bag are labeled with the bag-label
and the model is trained on the resultant data.

2. Aggregation-MIR [Wang et al., 2008] in which the
feature-vectors in a bag are averaged into a single feature-
vector which is assigned the bag label and the model is
trained on this aggregated dataset.

3. Prime-MIR [Ray and Page, 2001] which is an EM based
method which iteratively selects and updates the best
instance in a bag as primary and trains the model on the
selected primary instances.

4. BP-MIR [Wang et al., 2008] in which those instances in
a bag are removed which are farthest from the median
prediction over the nonpruned bags. This is a more so-
phisticated, as well as empirically better performing, of
the pruning based methods.

Training and Evaluation. Our model training uses the
above baselines and our proposed algorithms in a mini-
batch loop. For the optimisation step, we use the Adam
optimiser and do a hyper-parameter search over the learning
rate = {1e−2, 1e−3, 1e−4, 1e−5, 1e−6} for each config-
uration (specific dataset, methodology and bag size). For
each configuration, we run the same experiment 25 times
and report the average mse score. Note that the instances
in the specific dataset are randomly bagged for each run. A
different random seed is chosen for each trial.

Linear Regression over Synthetic Data. We empirically
evaluate Algorithm 1 for linear regression over N(0, I)
(which we refer to as A for brevity) along with Instance-
MIR, Aggregation-MIR, Prime-MIR, BP-MIR baselines. For
d ∈ {5, 25}, bag size q ∈ {2, 5, 10, 20}, and number of
bags m = 5000, we sample iid instances from N(0, I)
and do a 80/20 split into the training and test sets respec-
tively, whose instance-wise labels are given by f(x) = rTx
for a randomly sampled regression vector r from N(0, I).
The train-set is partitioned into training bags of size q and
each bag is assigned a bag-label uniformly chosen from its
instance-labels. We then compare the instance-wise mse
loss on the test set of Algorithm 1 with Instance-MIR,
Aggregation-MIR, Prime-MIR, BP-MIR.

Linear Regression over Real Data. We evaluate Algo-
rithm 2 (denoted by A) for linear regression over N(µ,Σ)
along with Instance-MIR, Aggregation-MIR, BP-MIR base-
lines on the Wine Quality dataset (Cortez et al. [2009]). We
do not include Prime-MIR in the evaluation as it does not
converge in sufficient time. Two seperate datasets are in-

Table 1: Linear Regression MIR over N(0, I) synthetic data

Algorithm d q Test Loss (mse)
A 5 2 0.0093± 0.0047
Instance-MIR 5 2 1.2± 0.57
Aggregated-MIR 5 2 0.0051± 0.0033
Prime-MIR 5 2 3.2e−14± 1.0e−14
BP-MIR 5 2 1.23± 0.09

A 5 5 0.021± 0.013
Instance-MIR 5 5 2.7± 0.52
Aggregated-MIR 5 5 0.019± 0.0099
Prime-MIR 5 5 4.72± 4.92
BP-MIR 5 5 0.70± 0.07

A 5 10 0.041± 0.021
Instance-MIR 5 10 3.2± 0.40
Aggregated-MIR 5 10 0.040± 0.024
Prime-MIR 5 10 13.82± 6.50
BP-MIR 5 10 0.38± 0.09

A 5 20 0.034± 0.028
Instance-MIR 5 20 1.3± 0.16
Aggregated-MIR 5 20 0.029± 0.016
Prime-MIR 5 20 0.004± 0.013
BP-MIR 5 20 0.092± 0.04

A 25 2 0.13± 0.040
Instance-MIR 25 2 3.7± 0.59
Aggregated-MIR 25 2 0.082± 0.023
Prime-MIR 25 2 1.48e−12± 1.05e−12
BP-MIR 25 2 3.77± 0.29

A 25 5 0.45± 0.10
Instance-MIR 25 5 10.0± 0.52
Aggregated-MIR 25 5 0.38± 0.10
Prime-MIR 25 5 2.18± 3.67
BP-MIR 25 5 2.72± 0.35

A 25 10 1.1± 0.26
Instance-MIR 25 10 14.0± 0.37
Aggregated-MIR 25 10 0.93± 0.27
Prime-MIR 25 10 3.33± 6.77
BP-MIR 25 10 2.09± 0.34

A 25 20 2.0± 0.58
Instance-MIR 25 20 16.0± 0.32
Aggregated-MIR 25 20 1.7± 0.49
Prime-MIR 25 20 2.80± 3.60
BP-MIR 25 20 1.97± 0.53

Table 2: Linear Regression MIR over red wine quality data

Algorithm q Test Loss(mse)
A 5 0.82± 0.097
Instance-MIR 5 0.87± 0.079
Aggregated-MIR 5 1.5± 0.32
BP-MIR 5 0.82± 0.07

A 10 1.40± 0.34
Instance-MIR 10 0.94± 0.057
Aggregated-MIR 10 1.89± 0.68
BP-MIR 10 1.30± 0.33



Table 3: Linear Regression MIR over white wine quality
data

Algorithm q Test Loss (mse)
A 5 0.77± 0.038
Instance-MIR 5 0.88± 0.044
Aggregated-MIR 5 1.1± 0.17
BP-MIR 5 0.81± 0.054

A 10 1.0± 0.16
Instance-MIR 10 0.92± 0.045
Aggregated-MIR 10 1.9± 0.45
BP-MIR 10 0.92± 0.13

Table 4: Neural Network MIR over synthetic data

Algorithm d q Test Loss (mse)
A2 5 5 0.014± 0.0028
Instance-MIR 5 5 0.031± 0.0026
Aggregated-MIR 5 5 0.070± 0.021
Prime-MIR 5 5 0.081± 0.023
BP-MIR 5 5 0.014± 0.0023

cluded in this one dataset, related to red and white vinho
verde wine samples, from the north of Portugal. The goal
is to model wine quality based on physicochemical tests.
The red wine dataset has 1599 wine samples and the white
wine dataset has 4898 wine samples. For both red and white
wines, we use the feature QUALITY as the label and regress
on the rest of the features. We pre-process the data by stan-
dardising each feature column and label. We randomly shuf-
fle the samples into an 80/20 split into training and test data.
We use bag sizes q ∈ {5, 10} and for each bag size, we
assign a bag-label uniformly chosen from its instance-labels
for both wines. We try and find the optimal linear regressor
r for the features x, f(x) = rTx. We then compare the
instance-wise mse loss on the test set of Algorithm 2 with
Instance-MIR, Aggregation-MIR, BP-MIR.

Neural Regression over Synthetic Data. We conduct syn-
thetic experiments for a neural network architecture with
a 5-neuron ReLU-activated hidden layer and a final linear
activation. Since the final layer is linear, for any network
f , fb = bf + (1 − b)E[f ] can also be achieved by this
architecture. For the experiments we fix dimension d = 5,
bag size q = 5, number of bags m = 1000, and do 5. To
generate the synthetic data, we sample x from N(0, I), but
this distribution is unknown to the algorithm. We initialize
a random neural network f with weights of each layer ini-
tialised from He-Normal and the biases of each layer set to
zero. We then obtain the labels for each instance, and per-
form 80/20 test-train splits and create the bags as described
above. Our goal is to recover the weights and biases of the
neural network used to generate the bag labels, given x and
the architectures.

We train a neural network h to minimises the sample loss
∆(B, h) from (15) and estimate ED[f(x)] by simply averag-
ing over the bag labels. Let the neural network for returned

by the optimiser be h and let the weights and biases of the
last (linear) layer of h be w, b respectively. We then repli-
cate the neural network h to form f̃ , and then modify the
weights and biases of the last layer of f̃ to be w′ = qw
and b′ = qb− (q − 1)ED[f(x)]. Our algorithm outputs the
scaled neural network f̃ and we compare test losses with
the Instance-MIR, Aggregation-MIR, Prime-MIR, BP-MIR
baselines. We refer to our algorithm as A2 for convenience.

Results. Table 1 contains our experimental results for linear
regression on MIR over N(0, I) synthetic data, Tables 2, 3
contain the results for linear regression on MIR over a real
dataset, and Table 4 contains the results for the synthetic neu-
ral network regression experiment. For the linear synthetic
data experiments, Prime-MIR performed exceedingly well
on bag size 2 as there are much fewer assignments of prime
instances as compared to datasets with larger bag sizes and
it is unstable for larger bags, giving rise to a high variance
term. This instability and variance of performance across
bag sizes is also noted by Ray and Page [2001]. Other than
for bag size 2, we see that our algorithm outperforms all
baselines except Aggregated-MIR, which performs equally
well. However, in wine quality linear regression, we see that
Aggregated-MIR performs worse than A, Instance-MIR,
BP-MIR, all of which perform equally well. We observe that
the test loss for A2 for synthetic neural network regression
performs the best among all baselines along with BP-MIR.
Since Instance-MIR is simply our algorithm without the
scaling step, these results validate our theoretical analysis,
and and confirm that the scaling step in our algorithm is
crucial for accurately recovering the target regressor.

The experimental code is available at https://github.
com/google-deepmind/mir_uai25. The imple-
mentations of the algorithms in this paper are in python
using the TensorFlow library. Our experiments were run on
a system with standard 8-core CPU, 64GB of memory with
one 16 GB RAM GPU.

6 CONCLUSIONS

Our work is the first to study computational learning in MIR,
providing a PAC learning algorithm for the linear regression
task on random bags and bag-labels over Gaussian feature-
vectors. Our algorithm recovers the target regressor to arbi-
trary accuracy by optimizing a bag-level squared-Euclidean
loss. This is in contrast to previous work of Chauhan et al.
[2024] who showed that linear MIR is NP-hard to approx-
imate on arbitrary bags. We also show the applicability of
our loss formulation to neural regression tasks. We conduct
experimental evaluations which show that our techniques
significantly outperform popular baselines, validating our
theoretical insights. Open directions on this topic would be
to develop techniques for more complicated bag construc-
tions and more general feature-vector distributions.

https://github.com/google-deepmind/mir_uai25
https://github.com/google-deepmind/mir_uai25
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A PRELIMINARIES FOR APPENDIX

A.1 HOEFFDING’S INEQUALITY

We state the well known Hoeffding’s inequality.

Theorem A.1. Let X1, X2, . . . , Xm be independent random variables such that ai ≤ Xi ≤ bi. Consider the sum of these
random variables Sm = X1+X2+· · ·+Xm. Then we have for all t > 0, Pr(|Sm−E[Sm]| ≥ t) ≤ 2 exp

(
− 2t2∑m

i=1(bi−ai)2

)
A.2 DIFFERENTIATION W.R.T. A VECTOR

We state basic identities for differentiation with respect to vectors. For x,y ∈ Rd and symmetric A ∈ Rd×d, we have:

∂

∂xT
(xTAy) = Ay,

∂

∂xT
(xTAx) = 2Ax

For reference see Appendix C of [W. Yang, W. Cao, T. Chung, J. Morris: Applied Numerical Methods Using Matlab, 2007].

A.3 CASE OF SINGULAR COVARIANCE MATRIX

If µµT + Σ is not invertible, observe that any x ∼ N(µ,Σ) is in the linear space spanned by the eigen-vectors of µµT + Σ
corresponding to non-zero eigenvalues. Thus, one can consider this reduced space in which case the minimimum non-zero
eigenvalue is given by the operator norm of its pseudo-inverse (see Section A.5.4 of [S. P. Boyd and L. Vandenberghe.
Convex Optimization, 2014]). The projection of µ into that space yields the new mean vector.

A.4 GAUSSIAN RANDOM VECTORS AND THEIR CONCENTRATION

We also state the equivalent of Theorem 2.1 for Gaussian distributions as given in Wainwright [2019].

Lemma A.2. Consider X1,X2, . . . ,Xm in Rd iid from N(µ,Σ). Then we have with probability 1− δ,∣∣∣∣∣
∣∣∣∣∣ 1

m

m∑
i=1

(
XiX

T
i − E[XiX

T
i ]
)∣∣∣∣∣
∣∣∣∣∣ ≤ O

(
‖Σ‖

√
log

(
1

δ

)√
d

m

)
.

B PROOF OF THEOREM 1.1

For the rest of the proof we assume that f(x) := rTx and D := N(µ,Σ).

In addition, we assume µ,Σ are unknown and estimate them in one step of the algorithm. Let Γ = µµT + Σ be the second
moment matrix of D.

Algorithm 2: PAC Learner for f(x) := rTx over N(µ,Σ)

Input: Dbag(D = N(µ,Σ), f = Lin, q),m, q,where f(x) := rTx.
1. Sample a collection B of m iid bags from Dbag(D, f, q).
2. Define L̂(B,v) = 1

m

∑
B∈B

∑
x∈B(yB − vTx)2, use convex optimisation to find v̂min = argminvL̂(B,v).

3. Estimate the sample mean µ̂ := 1
mq

∑
B∈B

∑
x∈B x, and sample second moment Γ̂ := 1

mq

∑
B∈B

∑
x∈B xxT.

4. Output r̂ = ((q − 1)µ̂µ̂T + Γ̂)−1
(

1
m

∑
B∈B

∑
x∈B xxT

)
v̂min.

Lemma B.1. For any ε, δ ∈ (0, 1), if m ≥ O
(
dq2‖r‖22 log ( qδ )(‖µ‖+1)(‖µ‖2+λmax(Σ))3

λ2
min(Γ)ε

)
, then r̂ returned in Algorithm 1

satisfies ‖r̂− r‖2 ≤
√

ε
‖µ‖22+λmax(Σ)

with probability 1− δ.

We defer the proof of lemma 3.1 to the next subsection.



Lemma B.2. Let ε, δ ∈ (0, 1) and suppose that r̂ returned in Algorithm 2 satisfies ‖r̂ − r‖2 ≤
√

ε
‖µ‖22+λmax(Σ)

, then

h(x) = r̂Tx satisfies err2(D, f, h) ≤ ε with probability 1− δ.

Proof. (of Lemma B.2) err2(D, f, h) = Ex∼D
[
(f(x)− h(x))2

]
= Ex∼N(µ,Σ)[((r− r̂)Tx)2] = Var[(r− r̂)Tx] +E[(r−

r̂)Tx]2. Now, note that (r− r̂)Tx ∼ N((r− r̂)Tµ, (r− r̂)TΣ(r− r̂)). So we get

err2(D, f, h) = (r− r̂)TΣ(r− r̂) + ((r− r̂)Tµ)2

= (r− r̂)T(Σ + µµT)(r− r̂)

≤ (λmax(Σ) + ‖µ‖2)‖r− r̂‖2 ≤ ε.

B.1 PROOF OF LEMMA B.1

Taking B = {xB1, . . . ,xBq} to be a random bag from Dbag(D, f, q), one can assume yB = f(xB1) = rTxB1 as each
feature-vector in B is iid from N(µ,Σ). Using this:

L̂(B,v) =
1

m

∑
B={xi | i∈[q]}∈B

(rTxB1 − vTxB1)2 +

q∑
j=2

(rTxB1 − vTxBj)
2


= (r− v)TA(r− v) + (q − 1)rTAr +

q∑
j=2

(vTCjv − rTDT
j v − vTDjr) (20)

where A = 1
m

∑
B={xi | i∈[q]}∈B xB1x

T
B1, Cj = 1

m

∑
B={xi | i∈[q]}∈B xBjx

T
Bj , and Dj = 1

m

∑
B={xi | i∈[q]}∈B xBjx

T
B1.

We define v̂min = argminvL̂(B,v) as used in Algorithm 2. L̂(B,v) is convex in v, hence v̂min can be found by solving
∂L̂(B,v)

∂v
= 0.

0 =
∂L̂(v̂)

∂v
= 2A (v̂min − r) +

q∑
j=2

(2Cjv̂min − 2Djr)

v̂min =

A +

q∑
j=2

Cj

−1A +

q∑
j=2

Dj

 r =

 1

m

∑
B∈B

q∑
j=1

xBjx
T
Bj

−1A +

q∑
j=2

Dj

 r

Note that EB[A] = EB[Cj ] = µµT + Σ and EB[Dj ] = µµT. As defined in Algorithm 2, r̂ is

r̂ = ((q − 1)µ̂µ̂T + Γ̂)−1

 1

m

∑
B∈B

q∑
j=1

xBjx
T
Bj

 v̂min = ((q − 1)µ̂µ̂T + Γ̂)−1

A +

q∑
j=2

Dj

 r. (21)

So we have

‖r̂− r‖ ≤

∥∥∥∥∥∥((q − 1)µ̂µ̂T + Γ̂)−1(A +

q∑
j=2

Dj)− I

∥∥∥∥∥∥ ‖r‖
≤
∥∥∥((q − 1)µ̂µ̂T + Γ̂)−1

∥∥∥
∥∥∥∥∥∥A +

q∑
j=2

Dj − (q − 1)µ̂µ̂T − Γ̂

∥∥∥∥∥∥ ‖r‖



Clearly,
∥∥∥((q − 1)µ̂µ̂T + Γ̂)−1

∥∥∥ ≤ 1
λmin(Γ̂)

. Using this we obtain,

‖r̂− r‖

≤ 1

λmin(Γ̂)

∥∥∥∥∥∥A +

q∑
j=2

Dj − (q − 1)µ̂µ̂T − Γ̂

∥∥∥∥∥∥ ‖r‖
≤ 1

λmin(Γ̂)

∥∥∥∥∥∥A− µµT −Σ +

q∑
j=2

(Dj − µµT)

∥∥∥∥∥∥ ‖r‖+
‖Γ̂− (qµµT + Σ)‖‖r‖

λmin(Σ̃)

≤ ‖A− µµT −Σ‖‖r‖
λmin(Γ̂)

+

q∑
j=2

‖Dj − µµT‖‖r‖
λmin(Γ̂)

+
‖Γ̂− µµT −Σ‖‖r‖

λmin(Γ̂)
+

(q − 1)‖µµT − µ̂µ̂T‖
λmin(Γ̂)

(22)

From the lower bound on m in the statement of Lemma B.1 and using Theorem 2.1 we bound the first term on the RHS of
(22) as follows.

Pr

[
‖A− µµT −Σ‖ ≤ λmin(Γ)

8q‖r‖2

√
ε

‖µ‖22 + λmax(Σ)

]
≥ 1− δ

4q
(23)

Further, since for any fixed j ∈ {2, . . . , k}, {(xB1 − xBj)}B∈B ∼ N(0, 2Σ) iid , and {(xB1 + xBj)}B∈B ∼ N(2µ, 2Σ)
iid, we have using Theorem 2.1

Pr

[∥∥∥∥∥ 1

m

∑
B∈B

(xB1 + xBj)(xB1 + xBj)
T − 2Σ− 4µµT

∥∥∥∥∥ ≤ λmin(Γ)

2q‖r‖2

√
ε

‖µ‖22 + λmax(Σ)

]
≥ 1− δ

8q

Pr

[∥∥∥∥∥ 1

m

∑
B∈B

(xB1 − xBj)(xB1 − xBj)
T − 2Σ

∥∥∥∥∥ ≤ λmin(Γ)

2q‖r‖2

√
ε

‖µ‖22 + λmax(Σ)

]
≥ 1− δ

8q

Observe that (xB1 + xBj)(xB1 + xBj)
T − (xB1 − xBj)(xB1 − xBj)

T = 4xB1x
T
Bj . Thus,

4Dj − 4µµT =
1

m

∑
B∈B

(xB1 + xBj)(xB1 + xBj)
T − 2Σ− 4µµT −

[
1

m

∑
B∈B

(xB1 − xBj)(xB1 − xBj)
T − 2Σ

]

Using the above along with the triangle inequality of the operator norm on matrices, and a union bound gives us

Pr

[
‖Dj − µµT‖ ≤ λmin(Γ)

8q‖r‖2

√
ε

‖µ‖22 + λmax(Σ)

]
≥ 1− δ

4q
. (24)

We again use Theorem 2.1, leveraging the lower bound on m, to bound ‖Γ̂− µµT −Σ‖, thus obtaining

Pr

[
‖Σ̂−Σ‖ ≤ λmin(Γ̂)

8‖r‖2

√
ε

‖µ‖22 + λmax(Σ)

]
≥ 1− δ

8
(25)

Now, to bound the last term ‖µ̂µ̂T − µµT‖, we first bound ‖µ̂ − µ‖. Note that µ̂ − µ ∼ N(0, Σ
m ). We use Gaussian

concentration (A.2) to obtain for m ≥ O
(
dq‖r‖2(‖µ‖+1) log( 1

δ )λmax(Σ)

λmin(Γ)

√
‖µ‖2+λmax(Σ)

ε

)
,

Pr

[
‖µ̂− µ‖ ≤ λmin(Γ)

16q‖r‖2(‖µ‖2 + 1)

√
ε

‖µ‖22 + λmax(Σ)

]
≥ 1− δ

8
(26)

Now, we use this to upper-bound the last term as follows,

‖µ̂µ̂T − µµT‖ ≤ ‖(µ̂− µ)(µ̂− µ)T + µ(µ̂− µ)T + (µ̂− µ)µT‖
≤ ‖µ̂− µ‖2 + 2‖µ‖‖µ̂− µ‖ (27)



Substituting the bound in equation (26), we get that for m ≥ O
(
dq‖r‖2(‖µ‖+1) log( 1

δ )λmax(Σ)

λmin(Γ)

√
‖µ‖2+λmax(Σ)

ε

)
,

Pr

[
‖µ̂µ̂T − µµT‖ ≤ λmin(Γ)

8q‖r‖2

√
ε

‖µ‖22 + λmax(Σ)

]
≥ 1− δ

8
(28)

Combining the bounds in (23), (24), (25), (28) we obtain that

Pr

[
‖r̂− r‖ ≤ λmin(Γ)

2λmin(Γ̂)

√
ε

‖µ‖22 + λmax(Σ)

]
≥ 1− 3δ

4
. (29)

We use Weyl’s inequality on perturbation of eigenvalues as mentioned in Equation (6.7) of [Wainwright, 2019] along
with Theorem 2.1 applied to iid samples from N(µ,Σ), to conclude that for m ≥ O

(
d log( 1

δ )(‖µ‖
2+λmax(Σ))2

λ2
min(Γ)

)
, we have

λmin(Γ̂) ≥ λmin(Γ)/2 with probability at least 1− δ
4 . Combining this with equation (29), we get that form as lower bounded

in the statement of Lemma B.1

Pr

[
‖r̂− r‖ ≤

√
ε

‖µ‖22 + λmax(Σ)

]
≥ 1− δ. (30)

C CLOSURE OF NEURAL NETWORKS UNDER TRANSFORMATION

We consider a concept classF of regressors with bounded outputs in [0, 1] which is closed under the following transformation:
for any f ∈ F , fb = bf + (1 − b)E[f ] ∈ F for any b ∈ [0, 1]. Common regression neural networks that have a final
activation which is relu are closed under this transformation. Their output can be multiplicatively scaled by simply scaling
its input weights of the final layer uniformly. A scalar translation can be achieved by adding a constant to the output.

D ESTIMATION FOR THEOREM 1.2

The estimation of E[f ] can be done using averaging the bag label ofm′ bag samples. As f(x) ∈ [0, 1], we can use Hoeffding’s
inequality (Theorem A.1) to bound the error in the estimate Em′ . We get Pr(|Em′ − E[f ]| ≥ t) ≤ 2 exp(−2t2/m′). To get
an absolute error of t with a probability of 1− δ, we would need m′ = 2t2/ log(2/δ) many bag samples. We can estimate
E[f ] very accurately with a high probability with a relatively small number of samples. Hence, we exclude the error in the
estimation of E[f ] in the analysis of Theorem 1.2 and assume that this constant is known exactly for simplicity.

E EXPERIMENTS OVER NOISY SYNTHETIC DATA

We conduct experiments on data generated by adding Gaussian noise N(0, σ2) to linear synthetic labels generated using the
same methodology as before for bag size q = 5, dimension d = 10. We compare our algorithm’s robustness to Gaussian
noise against the Instance-MIR, Aggregation-MIR in Table 5. We conduct more experiments adding N(0, σ2) Gaussian
noise to 2-layer neural network synthetic labels generated above for bag size q = 5, dimension d = 5 and report the results
in Table 6. In Tables 5 and 6, we observe that our algorithm performs favorably under Gaussian noise and is robust.

Table 5: Linear Regression MIR over noisy synthetic data

σ2 Instance-MIR A Agg-MIR

0.0 7.771± 0.109 0.166± 0.068 0.184± 0.101
0.1 7.787± 0.208 0.159± 0.060 0.125± 0.046
0.5 7.728± 0.225 0.170± 0.053 0.105± 0.054
1.0 7.711± 0.196 0.193± 0.067 0.159± 0.071
2.0 7.757± 0.231 0.165± 0.088 0.175± 0.058
5.0 7.698± 0.184 0.364± 0.153 0.346± 0.107
10.0 8.349± 0.467 1.574± 0.580 1.469± 0.815



Table 6: Neural Network MIR over noisy synthetic data

σ2 Instance-MIR A Agg-MIR

0.0 0.446± 0.025 0.168± 0.040 0.427± 0.076
0.01 0.432± 0.021 0.206± 0.051 0.369± 0.088
0.05 0.465± 0.039 0.193± 0.078 0.345± 0.092
0.1 0.442± 0.019 0.160± 0.027 0.363± 0.025
0.5 0.467± 0.026 0.235± 0.045 0.399± 0.101
1.0 0.472± 0.029 0.441± 0.042 0.558± 0.080
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