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ABSTRACT

In the field of equivariant networks, achieving affine equivariance, particularly
for general group representations, has long been a challenge. In this paper, we
propose the steerable EquivarLayer, a generalization of InvarLayer (Li et al.,
2024), by building on the concept of equivariants beyond invariants. The steerable
EquivarLayer supports affine equivariance with arbitrary input and output repre-
sentations, marking the first model to incorporate steerability into networks for
the affine group. To integrate it with canonicalization, a promising approach for
making pre-trained models equivariant, we introduce a novel Det-Pooling module,
expanding the applicability of EquivarLayer and the range of groups suitable for
canonicalization. We conduct experiments on image classification tasks involv-
ing group transformations to validate the steerable EquivarLayer in the role of a
canonicalization function, demonstrating its effectiveness over data augmentation.

1 INTRODUCTION

Convolutional neural networks (CNNs) have achieved remarkable success across domains (He et al.,
2016; Chen et al., 2017; Ren et al., 2016; Raissi et al., 2019), largely due to their property of trans-
lation equivariance. To incorporate broader symmetries into networks, Cohen & Welling (2016a)
introduce Group Equivariant CNNs (G-CNNs), which conduct convolutions on groups, preserving
rotation symmetry. Steerable CNNs (Cohen & Welling, 2016b; Weiler & Cesa, 2019) generalize
G-CNNs, allowing for arbitrary input and output representation types by viewing features as fields.
Further works extend equivariance to subgroups of Euclidean groups across diverse domains (Es-
teves et al., 2019; Weiler et al., 2018; Wang et al., 2022; Cohen et al., 2018; 2019). Recently,
canonicalization has emerged as a novel and promising method for enforcing equivariance or invari-
ance (Kaba et al., 2023). It maps inputs to a canonical form, based on the group element output by
a canonicalization function, before passing them through a non-equivariant network. This allows
models to exhibit equivariance without architectural changes or retraining, thus enabling equivariant
adaptation of pre-trained models (Mondal et al., 2023). Currently, this method has been primarily
applied to Euclidean groups, as the canonicalization function is typically constructed using equivari-
ant networks with specific non-trivial group representations. Extending equivariant networks with
steerability to more general groups can significantly broaden the applicability of canonicalization.

Achieving equivariance for more general groups, particularly the affine group, remains a significant
challenge. MacDonald et al. (2022) enable group convolution on the affine group by converting the
integral over the group into one over the Lie algebra, but it still requires group sampling, leading to
exponential memory growth. Recent work by Mironenco & Forré (2024) improves sampling effi-
ciency by decomposing large groups, yet limited to regular representations. Li et al. (2024) propose
InvarLayer, based on differential invariants, achieving affine equivariance in networks without dis-
cretizing or sampling the group for the first time. However, InvarLayer is inherently limited to the
trivial representation for input and output. It is still a challenge to design a layer that can handle
affine equivariance for arbitrary input and output representation types. A more detailed literature
review can be found in Appendix A.

∗Corresponding author.
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In this paper, we extend the InvarLayer (Li et al., 2024) framework to develop a more general equiv-
ariant layer, called the steerable EquivarLayer. This extension is analogous to the generalization
from G-CNNs (Cohen & Welling, 2016a) to steerable CNNs (Cohen & Welling, 2016b; Weiler &
Cesa, 2019), and from PDO-eConvs (Shen et al., 2020) to steerable PDOs (Jenner & Weiler, 2021).
While invariants, the core concept in InvarLayer, only generate equivariant operators that produce
features tied to the trivial group representation, we employ a generalized concept beyond invariants,
referred to as equivariants. Unlike invariants, which remain unchanged under group transforma-
tions, equivariants transform according to given group representations, thus yielding more general
equivariant operators that can map between different feature types. To construct equivariants, we
introduce the notion of an equivariant matrix, which, when multiplied with invariants, generates
equivariants. With existing methods for computing invariants (Olver, 2015; Wang et al., 2013; Li
et al., 2024), our focus turns to building equivariant matrices. We apply the tool of moving frames
to construct them, similar to the process for constructing equivariant maps in (Peter J. Olver, 2024).
Additionally, inspired by the construction of SupNorm normalized differential invariants (Li et al.,
2024), we introduce a novel normalization technique to enhance the numerical stability of equivari-
ant matrices. Based on equivariants, we design the steerable EquivarLayer, enabling flexible speci-
fication of input and output features corresponding to arbitrary group representations. The steerable
EquivarLayer supports equivariance to the affine group and its continuous subgroups, marking the
first instance of affine steerable equivariant models that allow for flexible input and output represen-
tation types, filling a gap in the field of equivariant networks.

Building on this, we apply the steerable EquivarLayer as the canonicalization function within the
canonicalization framework. Specifically, the steerable EquivarLayer outputs a matrix field that
satisfies the equivariance property required for the canonicalization function. We then introduce a
novel module, Det-Pooling, to select the appropriate output matrix, enabling the model to handle
matrix groups such as GL+(2). This approach significantly enhances the flexibility and scope of
canonicalization, extending it beyond the traditionally used rotation groups to support generalized
group equivariance across a broader range of applications.

We summarize our main contributions as follows:

• Extending the InvarLayer (Li et al., 2024) framework, we design the steerable EquivarLayer
based on equivariants, allowing arbitrary specification of input and output representations
while supporting the affine group and its continuous subgroups. This is the first time steer-
ability has been introduced to networks for the affine group.

• We propose a new normalization technique that transforms relative equivariants into abso-
lute equivariants, facilitating the construction of simpler equivariant matrices and enabling
the generation of more numerically stable equivariants.

• We introduce a novel module, Det-Pooling, which allows the application of the steerable
EquivarLayer to canonicalization. This extends the range of groups applicable to canoni-
calization, making it possible to handle more complex matrix groups.

• We demonstrate the effectiveness of our approach through image classification experiments
involving three non-Euclidean groups, including GL+(2), the rotation-scale group, and the
scale group, showing better performance compared to data augmentation. 1

2 STEERABLE EQUIVARLAYER

In this section, we introduce the steerable EquivarLayer, extending the InvarLayer framework to
support affine equivariance with arbitrary input and output representations.

2.1 BASIC CONCEPTS AND NOTATIONS

In our framework, we treat the features of each network layer as a smooth vector function on a
continuous domain. We specifically focus on the most common case of the 2D plane, u : R2 → Rc,
where each point x is associated with a vector u(x), referred to as a fiber, and c is the number of
channels. We consider a transformation group G that acts on the input space R2, specifying the
symmetry we aim to maintain as equivariance across the layers. Moreover, the features of each
layer are associated with a group representation ρ : G → GL(c), which characterizes the type of
the layer and dictates how the c channels of each feature vector u(x) transform under group actions.

1The code is available at https://github.com/Liyk127/EquivarLayer.
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This property, known as steerability, indicates that the layers respond to transformations in a manner
consistent with their respective types.

Next, we formally introduce the notions and definitions related to group actions and equivariance.
Given a group G and a function space F = {u | u : R2 → Rc} with type ρ, we denote the group
action on the function space corresponding to the group representation ρ as Lρ(g), such that

(Lρ(g) ⋄ u) (x) ≜ ρ(g) · u(g−1 · x). (1)

Here, the groupG acts on the base domain R2 in its standard way. Specifically, we focus on the affine
group and its subgroups, where g ∈ G can be represented as g = (A,b), with A ∈ R2×2 being an
invertible matrix and b ∈ R2. We consider the action of G on R2 as g · x = Ax + b. The group
action defined in (1) involves not only the transformation of positions but also the transformation
of vectors at each point. Unlike the case of scalar fields, each vector is not only moved to a new
position but also changes its orientation via the action of g ∈ G. When the type is ρ0 = I, namely
the trivial representation, the vectors retain their orientation, reducing the case to that of scalar fields.
With this understanding of group actions, we can now define the concept of equivariance:

Definition 1 LetG be a group acting on function spaces F and F ′ with types ρ and ρ′, respectively.
An operator ψ : F → F ′ is said to be equivariant if

ψ[Lρ(g) ⋄ u] = Lρ′(g) ⋄ ψ[u], ∀u ∈ F , g ∈ G. (2)

An important property of equivariance is its transitivity: the composition of multiple equivariant
operators remains equivariant. Consequently, if the mapping between every layer in a network
satisfies equivariance with corresponding types, the entire network exhibits steerability.

In (Li et al., 2024), the primary concept is invariants, which also serves as one of the key concepts
in this paper. We extend the definition from (Li et al., 2024) as follows:

Definition 2 Let G be a group acting on the function space F = {u | u : R2 → Rc} with type ρ.
We define I : R2 ×F → R as an invariant if it satisfies

I(g · x, Lρ(g) ⋄ u) = I(x,u), ∀x ∈ R2,u ∈ F , g ∈ G. (3)

We define I ≜ (I1, ..., Ik)⊤ as a k-dimensional invariant if I1, . . . , Ik are all invariants of G.

Compared to the definition in (Li et al., 2024), our formulation generalizes the group action on F ,
while the fundamental properties of invariants and methods for computing them remain unchanged.
Both the classical approach of deriving differential invariants (Fels & Olver, 1999; Olver, 2003;
2015) and the SupNorm normalization method described in (Li et al., 2024) are still applicable.

Invariants and equivariance are closely intertwined. The following proposition reveals how to con-
struct an equivariant operator from invariants:

Proposition 3 Let G be a group acting on the function space F = {u | u : R2 → Rc} with type ρ,
and let I : R2 ×F → Rc′ be a c′-dimensional invariant. Given u ∈ F , the function I(·,u) can be
viewed as an element in F ′ = {v | v : R2 → Rc′}. We define Î : F → F ′ as

Î[u] ≜ I(·,u). (4)

Then Î is an equivariant operator satisfying

Î[Lρ(g) ⋄ u] = Lρ0(g) ⋄ Î[u], ∀u ∈ F , g ∈ G, (5)
where ρ0(g) = I denotes the trivial group representation.

As shown in Proposition 3, Î yields an equivariant operator that maps features of type ρ to features
of the trivial type ρ0. However, to construct more general equivariant operators that map features
from type ρ to type ρ′, invariants alone may not suffice. This is the challenge we aim to address.

2.2 EQUIVARIANTS

To achieve steerability across network layers, we need to construct equivariant operators capable of
mapping features between any specified input and output types. To this end, we introduce a gen-
eralized concept beyond invariants, referred to as equivariants. Equivariants maintain the required
transformation properties when transitioning between different feature types. The formal definition
is provided below:

3



Published as a conference paper at ICLR 2025

Definition 4 Let G be a group acting on the function space F = {u | u : R2 → Rc} with type ρ.
We define a map E : R2 ×F → Rc′ as a type-(ρ,ρ′) equivariant if it satisfies

E(g · x, Lρ(g) ⋄ u) = ρ′(g) · E(x,u), ∀x ∈ R2,u ∈ F , g ∈ G. (6)

It is worth noting that an equivariant can be viewed as a c′-dimensional invariant when ρ′ = ρ0 is
the trivial group representation. Unlike invariants, which produce outputs that always remain un-
changed under group transformations, equivariants actively transform according to specified group
representations. This flexibility allows us to construct more general equivariant operators capable
of mapping features between arbitrary types. The relationship between equivariants and equivariant
operators can be formalized as follows:

Proposition 5 Let G be a group acting on the function space F = {u | u : R2 → Rc} with type ρ,
and let E : R2 × F → Rc′ be a type-(ρ,ρ′) equivariant. Given u ∈ F , the function E(·,u) can be
viewed as an element in F ′ = {v | v : R2 → Rc′}. Denote Ê : F → F ′ as

Ê [u] ≜ E(·,u). (7)

Then Ê is an equivariant operator that satisfies

Ê [Lρ(g) ⋄ u] = Lρ′(g) ⋄ Ê [u], ∀u ∈ F , g ∈ G. (8)

As demonstrated in Proposition 5, the equivariant operator Ê associated with the equivariant E fa-
cilitates more generalized equivariance, enabling us to specify the group actions on both input and
output features. The crucial question, therefore, is how to systematically construct such equivariants.

To address this challenge, we introduce the concept of an equivariant matrix, which establishes a
framework for constructing equivariants from invariants by creating a relationship between the two.
The formal definition is provided below:

Definition 6 Let G be a group acting on the function space F = {u | u : R2 → Rc} with type ρ.
We define a map M : R2 ×F → Rc′×c′ as a type-(ρ,ρ′) equivariant matrix if it satisfies

M(g · x, Lρ(g) ⋄ u) = ρ′(g) ·M(x,u), ∀x ∈ R2,u ∈ F , g ∈ G. (9)

Using this equivariant matrix, we can construct equivariants by combining it with invariants, as
formalized in the following theorem:

Theorem 7 Let G be a group acting on the function space F = {u | u : R2 → Rc} with type ρ.
Suppose M : R2 × F → Rc′×c′ is a type-(ρ,ρ′) equivariant matrix, and I : R2 × F → Rc is a
c-dimensional invariant. Denote E : R2 ×F → Rc′ as

E(x,u) ≜ M(x,u) · I(x,u). (10)

Then, E is a type-(ρ,ρ′) equivariant, i.e.,

E(g · x, Lρ(g) ⋄ u) = ρ′(g) · E(x,u), ∀x ∈ R2,u ∈ F , g ∈ G. (11)

There are several well-established methods for constructing invariants, such as deriving differential
invariants through the classical moving frame approach (Fels & Olver, 1999; Olver, 2003; 2015) and
utilizing the SupNorm normalization technique proposed in (Li et al., 2024). With these methods, we
can derive a set of basis invariants and further extend them through arbitrary functional combinations
to obtain a rich and comprehensive set of invariants for a given group action. Once a non-trivial
equivariant matrix M is obtained, we can combine it with different invariants I to construct a
diverse set of equivariants.

Next, we tackle the challenge of constructing equivariant matrices. To do this, we will employ the
tool of moving frames. First, we provide the definition of a moving frame.
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Definition 8 (Olver, 2015) Let G be an r-dimensional Lie group acting on an m-dimensional man-
ifold Z . A map α : Z → G is called a moving frame if it satisfies

α(g · z) = α(z) · g−1, ∀z ∈ Z, g ∈ G. (12)

The following theorem provides a method for the practical computation of a moving frame.

Theorem 9 (Olver, 2015) Let G act freely and regularly on Z , and let K be a cross-section. For
z ∈ Z , let g = α(z) be the unique group element mapping z to this cross-section:

g · z = α(z) · z ∈ K. (13)

Then α : Z → G is a moving frame for the group action.

The group action is free if, for any z ∈ Z , the only group element that leaves z unchanged is the
identity. The group action is regular if the orbits form a regular foliation of Z . A cross-section is
a subset of Z defined by fixing r coordinates, expressed as K = {z1 = c1, ..., zr = cr}, where
c1, . . . , cr are constants and r = dimG. This cross-section intersects each group orbit exactly once
and transversely, providing a unique representation for each orbit. For more detailed and rigorous
definitions, please refer to (Olver, 2015).

With Theorem 9, we can now apply it in our context. Consider the manifold Z as the jet space
defined by Z = {z | z = (x,u(x),∇u(x), · · · ,∇du(x)),x ∈ R2}. The group action on Z
is given by the prolongation of the group action on the function space F . Let ug = Lρ(g) ⋄ u.
Explicitly, the action z 7→ g · z is defined as follows:

(x,u(x),∇u(x), · · · ,∇du(x)) 7→ (g · x,ug(g · x),∇ug(g · x), · · · ,∇dug(g · x)).
With this setup, we can then compute the corresponding moving frame α. The following theorem
reveals how to use this moving frame to construct an equivariant matrix.

Theorem 10 Let G be a group acting on the function space F with type ρ. Consider the manifold
Z as the jet space of F , and let G act on Z via the prolongation of its action on F . Suppose we
have a moving frame α : Z → G. Define M : R2 ×F → Rc′×c′ as

M(x,u) = (ρ′(α(z)))
−1
, (14)

where z = (x,u(x),∇u(x), · · · ,∇du(x)) ∈ Z . Then M is a type-(ρ,ρ′) equivariant matrix.

So far, we have presented a complete framework and theoretical foundation for constructing equiv-
ariants. First, we compute the moving frame as outlined in Theorem 9. Next, we utilize Theorem 10
to derive an equivariant matrix from this moving frame. Finally, we combine the equivariant matrix
with various invariants, as shown in Theorem 7, to generate a wide variety of equivariants. This
approach provides a systematic way to build equivariant operators that can map features between
any specified input and output types, thereby enabling a high degree of flexibility in the design of
equivariant networks.

2.3 SUPNORM NORMALIZED EQUIVARIANTS

In the previous subsection, we outline a theoretical method for constructing equivariants. Building
upon this foundation, we can adopt more flexible strategies to obtain equivariants that are simpler
in form and exhibit improved numerical stability in practice. A critical aspect of this process is the
construction of equivariant matrices. Similar to the problem encountered with differential invariants,
as discussed in (Li et al., 2024), direct computation of equivariants for the affine group may lead to
complex expressions and potential division-by-zero issues. To mitigate these problems, we propose
a new SupNorm normalization technique for the construction of more robust equivariant matrices.

While Theorem 7 shows that equivariant matrices can be used to construct equivariants, the rela-
tionship between equivariants and equivariant matrices is even more intricate: each column of an
equivariant matrix is itself an equivariant. Conversely, if every column of a matrix-valued function is
an independent equivariant, the entire function qualifies as an equivariant matrix. Thus, our objective
is to ensure that each column of the matrix-valued function independently forms an equivariant.

Here, we consider the affine group G = {(s · Ã,b) | s > 0, Ã ∈ R2×2,det(Ã) = 1,b ∈
R2}, which is, more precisely, the connected component of the full affine group. The equi-affine
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group, denoted as SA(2), is the subgroup of the affine group without scaling, defined as SA(2) =

{(Ã,b) | Ã ∈ R2×2,det(Ã) = 1,b ∈ R2}. In (Li et al., 2024), SupNorm normalized differential
invariants of the affine group are constructed by normalizing relative differential invariants which
can be derived from the differential invariants of the subgroup SA(2). Inspired by this approach, we
begin with the equivariant matrix for SA(2), and aim to transform each column into an equivariant
of the affine group. To formalize this process, we begin with the definition of a relative equivariant:

Definition 11 Let G be the affine group acting on the function space F = {u | u : R2 → Rc} with
type ρ. Let s(g) denote the scaling factor of the affine group element g. We define Ē : R2×F → Rc′

as a type-(ρ,ρ′) relative equivariant with power m if it satisfies

Ē(g · x, Lρ(g) ⋄ u) =
1

(s(g))m
· ρ′(g) · Ē(x,u), ∀x ∈ R2,u ∈ F , g ∈ G. (15)

If ρ′ = ρ0 (the trivial representation), Ē is called a relative invariant.

Then, we provide the following theorem to demonstrate our new SupNorm normalization technique
for converting a relative equivariant into a full equivariant:

Theorem 12 Let Fk = {v | v : R2 → Rk} denote the set of smooth bounded functions on R2.
Define the SupNorm on Fk as ∥v∥sup ≜ supx∈R2 ∥v(x)∥∞. Let G be the affine group acting on the
function space Fc with type ρ. Suppose Ē : R2 × Fc → Rc′ is a type-(ρ,ρ′) relative equivariant
with power m1, and Ī : R2 × Fc → Rk is a relative invariant with power m2 ̸= 0. Define
E : R2 ×Fc → Rc′ as follows:

E(x,u) ≜ 1(
∥Ī(·,u)∥sup

)m1
m2

· Ē(x,u). (16)

Then E is a type-(ρ,ρ′) equivariant.

The above theorem provides a concrete method to transform relative equivariants into exact equiv-
ariants using SupNorm normalization. Next, we will demonstrate a typical example that applies
Theorem 12 for clearer understanding and practical usage. For instance, we define ρ0 as the triv-
ial representation, and ρ1(g) = A−⊤, where g = (A,b) ∈ G. By computing the type-(ρ0,ρ1)
equivariant matrix for SA(2), we obtain[

uyuxx − uxuxy ux
uyuxy − uxuyy uy

]
, (17)

where ux, uy, uxx, uyy and uxy denote the partial derivatives of the scalar function u(x, y). Al-
though this function is not directly an exact equivariant matrix for the affine group, each column is
a type-(ρ0,ρ1) relative equivariant. Specifically, the first column has a power of 2, and the second
column has a power of 0, making it a true equivariant on its own. We use a power 4 relative invariant
uxxuyy − u2xy to apply SupNorm normalization to (17), yielding the following matrix:[

1

S(u)

(
uyuxx − uxuxy
uyuxy − uxuyy

)
,

(
ux
uy

)]
, (18)

where S(u) = ∥uxxuyy − u2xy∥
1
2
sup. This resulting matrix in (18) is a type-(ρ0,ρ1) equivariant for

the affine group. In contrast to directly computing affine equivariant matrices, which may involve
complex fractional polynomial expressions prone to the division-by-zero issue, this method yields a
numerically stable equivariant matrix. Such division-by-zero problems would only occur in the rare
case where u is a constant function, a scenario that is typically negligible in practical applications.

Furthermore, this method is also applicable to continuous subgroups of the affine group. For exam-
ple, in the case of the rotation-scale group, one can compute the equivariant matrix for the rotation
group to obtain relative equivariants, which can then be normalized to form an exact equivariant
matrix using the same SupNorm normalization technique. For the scale group, one can start with
the identity matrix and apply appropriate normalization to directly obtain the equivariant matrix.

6



Published as a conference paper at ICLR 2025

Hidden
Layer

za

Figure 1: Architecture of the steerable EquivarLayer.

2.4 ARCHITECTURE OF EQUIVARLAYER

Building on the previous theoretical framework, we can derive the corresponding equivariants given
the specified group representation types, leading to the construction of the desired equivariant oper-
ators. In practice, our ultimate goal is to design a parameterized steerable equivariant layer that can
handle arbitrary specified input and output feature types.

Let the input and output group representations be denoted by ρin and ρout, with dimensions c and
c′, respectively. If ρout is the trivial representation, we can adopt the structure of InvarLayer from
(Li et al., 2024). The equivariant layer is defined as:

uout = hθ ◦ Î[uin], (19)

where I is a k-dimensional invariant formed by a set of basis invariants, Î is the corresponding
equivariant operator as defined in (4), and hθ is a learnable multi-layer perceptron (MLP) with input
dimension k and output dimension c′.

Next, we focus on the more general case where ρout is not a trivial representation, requiring equiv-
ariant operators defined by equivariants. In this scenario, the equivariant layer is defined as:

uout = M̂[uin] ·
(
hθ ◦ Î[uin]

)
, (20)

where Î and hθ follow the definitions in (19), M is a type-(ρin,ρout) equivariant matrix, and
M̂[u] ≜ M(·,u). This formulation allows the layer to handle arbitrary input and output feature
types. We refer to this general equivariant layer as a type-(ρin,ρout) EquivarLayer (see Figure 1).
The layer defined in (19), where ρout is the trivial representation, can be viewed as a special case,
specifically a type-(ρin,ρ0) EquivarLayer.

Moreover, we consider a common scenario where the input and output are multi-channel. Specifi-
cally, we focus on the setting where ρin = ⊕C1ρa and ρout = ⊕C2ρb, meaning that both the input
and output are direct sums of multiple channels of the group representations ρa and ρb, respec-
tively. While it is theoretically possible to handle this setting using the methods described earlier,
we can leverage the structure of the group representations to simplify the computation. We define
the multi-channel version of EquivarLayer (see Figure 2 in Appendix E) as follows:

uout =


M̂λ[uin] ·

(
hθ ◦ Î[uin]

)(1)

...

M̂λ[uin] ·
(
hθ ◦ Î[uin]

)(C2)

 , (21)

where M̂λ[uin] = ΣC1
i=1λi · M̂[u

(i)
in ]. Here, λi are learnable scalar parameters, M is a

type-(ρa,ρb) equivariant matrix, u
(i)
in denotes the i-th channel vector function of uin, and(

hθ ◦ Î[uin]
)(j)

represents the j-th channel vector function of hθ ◦ Î[uin]. This formulation
enables efficient processing of multi-channel inputs and outputs while preserving the desired group
equivariance.
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3 STEERABLE EQUIVARLAYER FOR CANONICALIZATION

Canonicalization is a method for achieving invariance or equivariance without imposing constraints
on the architecture of a neural network. By utilizing a canonicalization function, the input is mapped
to a canonical sample before being passed to a non-equivariant prediction network, ensuring that the
output remains invariant. In the case of equivariance, the input is mapped to its canonical form, the
prediction is made, and the result is transformed back to its original position under the group action.
Below, we give a formal definition of canonicalization in our context.

Definition 13 Let G be a group acting on the function space F with type ρ. A map φ : F → G is
called a canonicalization function if it satisfies

φ(Lρ(g) ⋄ u) = φ(u) · g−1, ∀g ∈ G,u ∈ F . (22)

To illustrate the process of canonicalization, we state the following theorem:

Theorem 14 LetG be a group acting on function spaces F and F ′ with types ρ and ρ′, respectively.
Given a prediction operator ψ0 : F → F ′, define ψ : F → F ′ as follows:

ψ[u] ≜ Lρ′((φ(u))−1) ⋄ ψ0[Lρ(φ(u)) ⋄ u]. (23)

Then ψ is equivariant, satisfying ψ[Lρ(g) ⋄ u] = Lρ′(g) ⋄ ψ[u]. If we remove Lρ′((φ(u))−1) in
(23), the operator becomes invariant.

The core component of canonicalization is the canonicalization function, which can be interpreted
as a form of equivariant mapping. In the direct approach (Kaba et al., 2023), an equivariant network
that produces a group element serves as the canonicalization function. Previous works have mostly
focused on rotation groups for canonicalization, largely due to the absence of more general steerable
equivariant networks. We aim to leverage the proposed steerable EquivarLayer to extend this concept
to more general groups. Specifically, we focus on G = GL+(2) ≜ {A | A ∈ R2×2,det(A) > 0}.
Thus, our goal is to construct a canonicalization function φ : F → R2×2 that satisfies

φ(Lρ(A) ⋄ u) = φ(u) ·A−1, ∀A ∈ G,u ∈ F . (24)

We proceed in two steps. Let ρc(A) = A−T , A ∈ G. First, construct a map ϕ1 : F → F̃ ,
satisfying ϕ1[Lρ(A) ⋄ u] = Lρc(A) ⋄ ϕ1[u], where F̃ = {v | v : R2 → R2×2}. Next, construct a
second map ϕ2 : F̃ → R2×2 such that ϕ2[Lρc

(A) ⋄ v] = ρc(A) · ϕ2[v]. Composing these maps,
ϕ = ϕ2 ◦ ϕ1 satisfies ϕ(Lρ(A) ⋄ u) = A−⊤ · ϕ(u). Thus, ϕ⊤ is a valid canonicalization function.

For the construction of ϕ1, note that the function space F̃ = {v | v : R2 → R2×2} with type ρc

can be associated with the vector-valued function space F ′ = {u | u : R2 → R4}, corresponding
to the group representation ρc ⊕ρc. Therefore, we can employ a type-(ρ,ρc ⊕ρc) EquivarLayer to
serve as ϕ1. The output of this EquivarLayer is then reshaped to match the required form in F̃ . In
practice, this equivariant network can consist of multiple layers, as long as the input feature type of
the first layer is type ρ and the output feature type of the final layer is type ρc ⊕ ρc.

For the construction of ϕ2, we need to select one matrix from a matrix-valued function while main-
taining the equivariance condition. For this purpose, we propose a module called Det-Pooling, which
selects the matrix with the largest absolute determinant from the matrix-valued function. The key
idea is that under the transformation Lρc

(A), each point is mapped to a new location and its asso-
ciated matrix are also transformed, but the matrix with the largest absolute determinant remains the
largest one. The following theorem defines ϕ2 and demonstrates its property:

Theorem 15 Assume v ∈ F̃ and that |det(v(x))| has a unique maximum over x ∈ R2. Let Det-
Pooling ϕ2 : F̃ → R2×2 be defined as

ϕ2(v) ≜ v

(
argmax
x∈R2

|det(v(x))|
)
. (25)

Then ϕ2 satisfies the equivariance property

ϕ2[Lρc(A) ⋄ v] = ρc(A) · ϕ2[v], ∀A ∈ G. (26)

8
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Det-Pooling effectively tracks the matrix with the largest absolute determinant, thus ensuring equiv-
ariance under group transformations. In addition, it reduces the likelihood of selecting a singular
matrix, as this would only occur if v(x) is singular at every point, which is a rare scenario in practice.

In summary, we can construct ϕ1 using steerable EquivarLayers and employ Det-Pooling as ϕ2,
together forming the canonicalization function. Notably, this method can also be extended to handle
subgroups of GL+(2), making it a versatile approach for broader applications.

4 EXPERIMENT

To evaluate the effectiveness of the proposed steerable EquivarLayer, we apply it to canonicalization
in combination with an unconstrained prediction network. Our experiments focus on image classi-
fication tasks using the MNIST dataset and its transformed versions under different group actions.
Specifically, we assess the performance of our method on three non-compact continuous groups: the
GL+(2) group, the rotation-scale group, and the scale group.

4.1 EXPERIMENT SETUP

We use a ResNet50 model pre-trained on the ImageNet-1K dataset as the prediction network for
our experiments, which has 23.5M parameters. The model is fine-tuned on the MNIST dataset us-
ing three distinct strategies: (1) Vanilla: Training on the original MNIST dataset without any data
augmentation. (2) Mild augmentation: Training with data augmentation, involving mild affine trans-
formations, including rotation within ±10 degrees, scaling between 0.9 – 1.1, and shear within ±5
degrees. (3) Full augmentation: Training with the same data augmentation used in the transformed
test set. These three strategies represent common training practices, and the resulting models serve
as our baselines for comparison.

For the canonicalization function, we integrate EquivarLayer with a ResNet32 architecture, where
the convolutional layers are replaced with type-(ρ0,ρ0) EquivarLayers, and the output module is
replaced with a type-(ρ0,ρc⊕ρc) EquivarLayer followed by Det-Pooling as described in Section 3.
In each experiment, each model uses EquivarLayers tailored to the corresponding group action and
contains fewer than 0.4M parameters. For convenience, we call the whole model EquivarLayer.
Inspired by (Mondal et al., 2023), we adopt a training stage for alignment. Although the canoni-
calization function can map elements within a group orbit to a canonical representative, we aim to
ensure that this representative is aligned with the orientation the prediction network is familiar with,
such as the upright position. EquivarLayer is trained independently of the prediction network by
generating random transformation matrices applied to the training images. The loss is defined as the
mean squared error (MSE) between the identity matrix and the product of EquivarLayer’s output and
the corresponding transformation matrix. During inference, the trained EquivarLayer is connected
to a pre-trained prediction network that uses mild augmentation. The EquivarLayer canonicalizes
the input images (see Figure 3 in Appendix E), which are then fed into the prediction network for
classification. More experiment details are given in Appendix C.

4.2 EVALUAION

Typically, full data augmentation helps improve a model’s performance on transformed datasets, but
it often comes at the cost of reduced performance on the original dataset. Mild augmentation, on the
other hand, may enhance performance on the original dataset, but it usually fails to achieve low test
error on transformed datasets. Our objective is to leverage canonicalization to improve performance
on transformed datasets while maintaining competitive performance on the original dataset.

4.2.1 GL+(2) GROUP

Table 1: Test error (%) on MNIST and MNIST-GL+(2).

Method MNIST MNIST-GL+(2)
Vanilla 0.87±0.07 54.22±0.98

Mild Augmentation 0.45±0.03 47.28±1.51

Full Augmentation 1.19±0.04 1.52±0.08

EquivarLayer Canonicalizer (ours) 0.81±0.08 1.32±0.08
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We conduct experiments on the original MNIST dataset and its transformed version, MNIST-
GL+(2), which undergoes random transformations from GL+(2) group including arbitrary rota-
tions between −180 to 180 degrees, scaling between 0.8 – 1.2, and shear within ±10 degrees. Each
experiment is repeated five times with independent random seeds, and we report the mean ± stan-
dard deviation of test error in Table 1.

Mild augmentation improves performance on both MNIST and MNIST-GL+(2) compared to the
vanilla model, though the results on MNIST-GL+(2) remain relatively sub-optimal. Full augmenta-
tion achieves good performance on MNIST-GL+(2) but performs the worst on the original MNIST
dataset. Our method, combining mild augmentation with canonicalization, outperforms full aug-
mentation on MNIST-GL+(2) while maintaining competitive performance on the original MNIST
dataset, second only to mild augmentation.

4.2.2 ROTATION-SCALE GROUP

Table 2: Test error (%) on MNIST and MNIST-RS.

Method MNIST MNIST-RS
Vanilla 0.87±0.07 54.18±0.93

Mild Augmentation 0.45±0.03 47.36±1.39

Full Augmentation 1.19±0.07 1.65±0.06

EquivarLayer Canonicalizer (ours) 0.71±0.08 1.06±0.07

We also evaluate our method on the rotation-scale group, where MNIST-RS includes arbitrary rota-
tions between −180 to 180 degrees and scaling between 0.8 – 1.2. The results, averaged over five
independent runs, are shown in Table 2. Our method yields the best performance on MNIST-RS
while maintaining low test error on MNIST, close to that of mild augmentation.

4.2.3 SCALE GROUP

Table 3: Test error (%) on MNIST and MNIST-Scale.

Method MNIST MNIST-Scale
Vanilla 0.87±0.07 8.72±2.18

Mild Augmentation 0.45±0.03 1.62±0.30

Full Augmentation 0.49±0.04 0.67±0.04

EquivarLayer Canonicalizer (ours) 0.44±0.03 0.64±0.06

We further evaluate our method on the scale group, where the MNIST-Scale dataset involves random
scaling transformations with factors ranging from 0.8 to 1.6. The results are presented in Table 3.
Since the scale transformation is relatively simple, mild augmentation already yields a significant
improvement on MNIST-Scale, and full augmentation achieves near-perfect test error on both the
MNIST and MNIST-Scale datasets. However, our method not only achieves the best performance on
the MNIST-Scale dataset but also slightly outperforms all baselines on the original MNIST dataset.

5 CONCLUSION

In this paper, we introduce the steerable EquivarLayer, extending the InvarLayer framework to sup-
port equivariance with arbitrary input and output feature types for the affine group and its continuous
subgroups. This marks the first time steerability is achieved in networks for the affine group. We
also develop the novel Det-Pooling module, which enables the steerable EquivarLayer’s applica-
bility to canonicalization, thus extending the method to handle more complex matrix groups. Our
experiments demonstrate the effectiveness of this approach, showing that the steerable EquivarLayer,
when used as a canonicalization function, outperforms traditional data augmentation methods.

Our framework holds great potential for future research, particularly in extending beyond the 2D
plane, as the theoretical foundations apply to higher-dimensional spaces. Exploring equivariance on
more general manifolds and applying steerable EquivarLayers to a wider variety of groups is another
promising direction. Additionally, expanding the application of this method to a broader range of
tasks, from computer vision to scientific problems, presents valuable avenues for further study.
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A RELATED WORKS

A.1 EQUIVARIANT NETWORKS

Equivariant networks have been widely applied in various fields, such as computer vision (Esteves
et al., 2019; Weiler et al., 2018; Klee et al., 2023; Xu et al., 2023; 2024), sciences (Liao & Smidt,
2022; Wang et al., 2024; Park et al., 2024b), reinforcement learning and robotics (Wang et al., 2022;
Park et al., 2022; 2024a; Hu et al., 2024; Huang et al., 2022; 2023; 2024). One primary approach to
building group equivariant networks is based on G-CNNs (Cohen & Welling, 2016a) where feature
maps are considered as functions defined on a group and the group action on the feature is essentially
a permutation over the domain. From this perspective, various equivariant operators are designed
for cycle or dihedral groups (Cohen & Welling, 2016a; He et al., 2021; Romero et al., 2020; Worrall
& Brostow, 2018; Shen et al., 2020; Cohen et al., 2019). Besides discrete groups, Cohen et al.
(2018) have extended such an approach to handle inherent SO(3) equivariance for data defined on
the sphere. Finzi et al. (2020) further proposed LieConv that is equivariant to transformations from
common Lie groups. However, it fails to handle more complex Lie groups like the affine group due
to the difficulty of sampling the Haar measure. Furthermore, MacDonald et al. (2022) overcome
this challenge by designing special sampling strategies on the affine group. However, since the
domain of feature is defined on groups, it is unavoidable to sample when dealing with the affine
group, which would aggravate the computation burden as the increasing of samples and layers.
Mironenco & Forré (2024) tackles this problem by decomposing a large group into smaller ones and
sampling them to enhance sample efficiency. It requires sampling from the GL(n)-invariant measure
of positive definite matrices. Instead, they approximate this using a log-normal distribution, which
may theoretically introduce imperfect equivariance.

Another approach to constructing equivariant networks originates from steerable CNNs (Cohen &
Welling, 2016b; Weiler & Cesa, 2019). In this framework, the feature maps are viewed as fields
and are transformed according to a specific group representation under the action of group transfor-
mation. Actually, the feature maps in the first approach precisely correspond to fields with regular
representation. This approach can directly handle continuous groups since the group transformation
can be preserved by the linear transformation of the vectors on the fields. Based on this method,
works (Cohen & Welling, 2016b; Jenner & Weiler, 2021; He et al., 2022) have developed operators
to handle rotations on the 2D plane. Weiler et al. (2018); Fuchs et al. (2020); Shen et al. (2022)
further design equivariant layers to handle transformations in 3D space like E(3) and its subgroups.
Zhdanov et al. (2023) provide a general framework for building neural networks equivariant to trans-
lations and subgroups of O(n). However, it is crucial to recognize that these methods are mainly
designed to tackle rigid transformations and are not well-suited for more general affine transforma-
tions.

Besides these two mainstream approaches, some works construct equivariant networks based on
differential invariants (Sangalli et al., 2022; 2023; Li et al., 2024). In particular, Li et al. (2024)
propose a novel equivariant layer, InvarLayer, which achieves affine equivariance without the need
for sampling from groups. However, the input and output representation types of InvarLayer are
constrained to the trivial representation. Our work is a further extension of InvarLayer, capable of
handling any given representation type of the affine group.

A.2 EQUIVARIANCE BY CANONICALIZATION FUNCTIONS

In equivariant networks, equivariance is typically achieved by imposing equivariance constraints on
each layer. Recently, Kaba et al. (2023) propose a novel method to incorporate equivariance that
no longer requires layer-wise architectural constraints. Their approach introduces canonicalization
functions that learn mappings transforming inputs into canonicalized samples. In this framework,
only these canonicalization functions need to satisfy certain equivariance constraints to incorporate
additional symmetries, thereby explicitly decoupling the equivariant and non-equivariant parts of the
networks. Mondal et al. (2023) further utilize canonicalization functions to enable the adaptation of
large pre-trained models to be equivariant.
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B DETAILED PROOFS

B.1 PROOF OF PROPOSITION 3

Proof. ∀u ∈ F , g ∈ G,x ∈ R2, we have

Î[Lρ(g) ⋄ u](x) = I(x, Lρ(g) ⋄ u)
= I(g−1 · x,u) (27)

= Î[u](g−1 · x)
= (Lρ0(g) ⋄ Î[u])(x).

Thus, Î satisfies the condition for equivariance, completing the proof. □

B.2 PROOF OF PROPOSITION 5

Proof. ∀u ∈ F , g ∈ G,x ∈ R2, we have

Ê [Lρ(g) ⋄ u](x) = E(x, Lρ(g) ⋄ u)
= ρ′(g) · E(g−1 · x,u) (28)

= ρ′(g) · Ê [u](g−1 · x)
= (Lρ′(g) ⋄ Ê [u])(x).

Hence, Ê [Lρ(g) ⋄ u] = Lρ′(g) ⋄ Ê [u]. □

B.3 PROOF OF THEOREM 7

Proof. ∀u ∈ F , g ∈ G,x ∈ R2, we have

E(g · x, Lρ(g) ⋄ u) = M(g · x, Lρ(g) ⋄ u) · I(g · x, Lρ(g) ⋄ u)
= ρ′(g) ·M(x,u) · I(x,u) (29)

= ρ′(g) · E(x,u)

This proves that E is a type-(ρ,ρ′) equivariant. □

B.4 PROOF OF THEOREM 10

Proof. By the definition of the group action on Z , we have

g · z = (g · x,ug(g · x),∇ug(g · x), · · · ,∇dug(g · x)), (30)

where ug = Lρ(g) ⋄ u. Then we will show that M(g · x, Lρ(g) ⋄ u) = ρ′(g) ·M(x,u).

M(g · x, Lρ(g) ⋄ u) = (ρ′(α(g · z)))−1

=
(
ρ′(α(z) · g−1)

)−1

=
(
ρ′(α(z)) · ρ′(g−1)

)−1
(31)

= ρ′(g) · (ρ′(α(z)))
−1

= ρ′(g) ·M(x,u).

Thus, M is a type-(ρ,ρ′) equivariant matrix. □
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B.5 PROOF OF THEOREM 12

Proof. First, we compute the SupNorm under the group action:

∥Ī(·, Lρ(g) ⋄ u)∥sup = sup
x∈R2

Ī(x, Lρ(g) ⋄ u)

= sup
x∈R2

Ī(g · x, Lρ(g) ⋄ u)

= sup
x∈R2

(
1

(s(g))m2
Ī(x,u)

)
(32)

=
1

(s(g))m2
· sup
x∈R2

Ī(x,u)

=
1

(s(g))m2
· ∥Ī(·,u)∥sup.

Next, we apply this property to E defined in (16):

E(g · x, Lρ(g) ⋄ u) =
1(

∥Ī(·, Lρ(g) ⋄ u)∥sup
)m1

m2

· Ē(g · x, Lρ(g) ⋄ u)

=
1(

1
(s(g))m2

∥Ī(·,u)∥sup
)m1

m2

· 1

(s(g))m1
· ρ′(g) · Ē(x,u) (33)

=
1(

∥Ī(·,u)∥sup
)m1

m2

· ρ′(g) · Ē(x,u)

= ρ′(g) · E(x,u).

Thus, E satisfies the definition of a type-(ρ,ρ′) equivariant. □

B.6 PROOF OF THEOREM 14

Proof. We focus on proving the equivariant case. Denote Lρ(g) ⋄u = ug . ∀g ∈ G,u ∈ F , we have

ψ[Lρ(g) ⋄ u] = Lρ′((φ(ug))
−1) ⋄ ψ0[Lρ(φ(ug)) ⋄ ug]

= Lρ′(g · (φ(u))−1) ⋄ ψ0[Lρ(φ(u) · g−1) ⋄ ug]

= Lρ′(g) ⋄ Lρ′((φ(u))−1) ⋄ ψ0[Lρ(φ(u)) ⋄ Lρ(g
−1) ⋄ Lρ(g) ⋄ u] (34)

= Lρ′(g) ⋄ Lρ′((φ(u))−1) ⋄ ψ0[Lρ(φ(u)) ⋄ u]
= Lρ′(g) ⋄ ψ[u].

Thus, ψ satisfies the equivariance condition. □

B.7 PROOF OF THEOREM 15

Proof. Denote vA ≜ Lρc
(A) ⋄ v, i.e., vA(x) = A−⊤ · v(A−1x).

Let x⋆ = argmaxx∈R2 |det(v(x))|. We first show that Ax⋆ = argmaxx∈R2 |det(vA(x))|.
∀A ∈ G and x ̸= Ax⋆ ∈ R2, we have A−1x ̸= x⋆. Then

|det(vA(x))| = |det(A−⊤ · v(A−1x))|
= |det(A−⊤)| · | det(v(A−1x))|
< |det(A−⊤)| · | det(v(x⋆))| (35)

= |det(A−⊤ · v(A−1Ax⋆))|
= |det(vA(Ax⋆))|.
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Thus, Ax⋆ = argmaxx∈R2 |det(vA(x))|. Now, for the equivariance of ϕ2, we have:

ϕ2[Lρc(A) ⋄ v] = ϕ2[vA]

= vA(Ax⋆)

= A−⊤ · v(A−1Ax⋆) (36)

= A−⊤ · v(x⋆)

= ρc(A) · ϕ2[v].
Thus, the proof is complete. □

C EXPERIMENTAL DETAILS

Experiment Configuration. In all experiments in Section 4, each training dataset consists of 50,000
images, and each test dataset consists of 10,000 images. All experiments are conducted on an
NVIDIA RTX 3090 GPU.

Prediction Networks. We utilize a ResNet50 model pre-trained on the ImageNet-1k dataset as the
prediction network for our experiments. The model is fine-tuned using SGD with a learning rate
of 10−3, decay of 5 × 10−4, and momentum of 0.9 for a duration of 50 epochs. The learning rate
scheduler reduces the learning rate at one-third and one-half of the total epochs, multiplying it by a
factor of 0.1 at each milestone. The batch size for datasets is set to 128.

Canonicalization Networks. We incorporate EquivarLayers into a ResNet32 architecture, replac-
ing the convolutional layers with type-(ρ0,ρ0) EquivarLayers. Additionally, the output module is
substituted with a type-(ρ0,ρc ⊕ ρc) EquivarLayer, followed by Det-Pooling, as described in Sec-
tion 3. During the training stage for alignment, the canonicalization network is trained by applying
randomly generated transformation matrices, corresponding to the evaluation group, to the training
images from the MNIST dataset. The model is trained using an AdamW optimizer with a learning
rate of 2 × 10−3 and employs a cosine annealing scheduler for 200 epochs. The batch size for the
datasets is set to 128.

D ADDITIONAL EXPERIMENTS

D.1 MEASUREMENT OF COMPUTATIONAL COMPLEXITY

Table 4: The memory usage, FLOPs, and inference time per image.

Input Size Memory (MB) FLOPs Time (ms)
32× 32 0.03 6.86× 104 1.7
64× 64 0.12 2.74× 105 1.8
128× 128 0.50 1.10× 106 1.8
256× 256 2.00 4.39× 106 1.8
512× 512 8.00 1.76× 107 2.8

1024× 1024 32.00 7.02× 107 8.7
2048× 2048 128.00 2.81× 108 32.4

We measure the time and space complexity of a type-(ρ0,ρc ⊕ ρc) EquivarLayer used in Sec-
tion 4.2.1 and present the numerical results in Table 4. Following (Li et al., 2024), we use torchstat
to calculate the memory usage and the FLOPs required for model inference, and perform explicit
timing measurements during inference. The results of memory usage and FLOPs indicate that the
time and space complexity of the model grows linearly with the input image size. For large in-
put sizes, the inference time increases proportionally, while for smaller input sizes, it grows more
slowly. This behavior is likely due to the underlying parallelism and optimizations in low-level
computations, as noted in (Li et al., 2024).

D.2 ADDITIONAL DATASETS

As shown in Tables 5, 6, and 7, we include additional experiments on Fashion-MNIST (Xiao et al.,
2017) and its transformed variants. Specifically, we construct three datasets, Fashion-GL+(2),
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Fashion-RS, and Fashion-Scale, by zero-padding original Fashion-MNIST images to 40 × 40 and
applying corresponding group transformations. The transformation parameters are consistent with
those detailed in Section 4. Besides, we employ the same prediction networks and canonicalization
networks as in Section 4, including ResNet50 with different data augmentation strategies and Equiv-
arLayers for three groups. During inference, EquivarLayer is connected to a pre-trained prediction
network that uses mild augmentation. ResNet50 is fine-tuned on Fashion-MNIST using SGD with
a learning rate of 10−3, weight decay of 5× 10−4, momentum of 0.9, and a batch size of 128 for 50
epochs. The learning rate scheduler reduces the rate by a factor of 0.1 at one-third and one-half of
the total epochs. The canonicalization network is trained for alignment using an AdamW optimizer
with a learning rate of 2 × 10−3 and a cosine annealing scheduler for 400 epochs. The batch size
for datasets is set to 128. The experiments are repeated five times and we report mean ± std of the
test error.

Tables 5 and 6 demonstrate that while full augmentation enhances a model’s performance on trans-
formed datasets, it often sacrifices performance on the original dataset; mild augmentation, on the
other hand, may improve performance on the original dataset but generally underperforms on trans-
formed datasets. By combining prediction networks trained with mild augmentation and our Equiv-
arLayer canonicalizers, we achieve improved performance on transformed datasets while maintain-
ing competitive results on the original dataset. Compared to full augmentation, this approach de-
livers better performance on the original dataset and achieves comparable results on transformed
datasets. In Table 7, probably due to the simplicity of scale transformations, full augmentation also
performs well on the original dataset. Nevertheless, we can still observe that canonicalization en-
hances the performance on transformed datasets for models trained with mild augmentation. It is
worth noting that the performance of this approach is closely tied to the capability of the prediction
network. Combining a powerful pre-trained model with the canonicalizer is a promising strategy,
especially since off-the-shelf pre-trained models typically do not undergo full augmentation.

Table 5: Test error (%) on Fashion and Fashion-GL+(2).

Method Fashion Fashion-GL+(2)
Vanilla 6.58±0.19 71.83±1.07

Mild Augmentation 5.46±0.08 66.35±2.01

Full Augmentation 7.62±0.16 8.38±0.10

EquivarLayer Canonicalizer (ours) 6.71±0.17 8.60±0.27

Table 6: Test error (%) on Fashion and Fashion-RS.

Method Fashion Fashion-RS
Vanilla 6.58±0.19 71.69±0.79

Mild Augmentation 5.46±0.08 65.82±1.60

Full Augmentation 7.70±0.15 8.28±0.04

EquivarLayer Canonicalizer (ours) 6.41±0.17 8.34±0.28

Table 7: Test error (%) on Fashion and Fashion-Scale.

Method Fashion Fashion-Scale
Vanilla 6.58±0.19 18.09±1.06

Mild Augmentation 5.46±0.08 10.26±0.42

Full Augmentation 5.36±0.05 5.73±0.24

EquivarLayer Canonicalizer (ours) 5.46±0.05 6.84±0.18

D.3 ADDITIONAL BASELINES

To provide a more comprehensive evaluation, we conduct additional experiments with equivariant
networks of the corresponding groups as baselines, including InvarLayers (Li et al., 2024) for the
three groups and the scale-equivariant model SESN (Sosnovik et al., 2019), involving various data
augmentation strategies. All these baseline models adopt the ResNet50 architecture and are trained
on the MNIST dataset for 50 epochs using an AdamW optimizer with a learning rate of 1×10−3 and
a cosine annealing scheduler. Furthermore, we combine EquivarLayers as canonicalization networks
with equivariant baseline models trained using mild augmentation as prediction networks. We repeat
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each experiment five times and report the mean ± std of the test error in Tables 8, 9, and 10 (Aug
= Augmentation, MA = Mild Augmentation, FA = Full Augmentation, EquivarCan = EquivarLayer
Canonicalizer).

Regarding comparisons with equivariant network baselines, we emphasize an important distinction:
while EquivarLayer and other equivariant network baselines are all equivariant models, they serve
different roles in the canonicalization experiments. These approaches are not mutually exclusive;
rather, they are complementary and can be effectively combined. These equivariant networks, when
used as prediction networks, outperform ResNet50 under the same augmentation settings. Thus, we
integrate EquivarLayers as canonicalizers with equivariant networks as prediction networks, achiev-
ing further improved performance.

As shown in Tables 8, 9, and 10, equivariant baseline models with mild augmentation, despite their
theoretical equivariance, may exhibit suboptimal performance on transformed datasets. A possible
reason is that the large number of layers and the presence of several downsampling operations may
weaken the equivariance in practice. However, when combined with canonicalization, these models
maintain competitive performance on the original dataset while significantly enhancing their perfor-
mance on transformed datasets, achieving results comparable to those of full augmentation.

Table 8: Test error (%) on MNIST and MNIST-GL+(2).

Model MNIST MNIST-GL+(2)
InvarLayer w/o Aug 0.72±0.05 41.38±1.28

InvarLayer w/ MA 0.47±0.02 36.71±0.63

InvarLayer w/ FA 0.58±0.03 0.87±0.05

EquivarCan + InvarLayer (ours) 0.63±0.05 0.92±0.02

Table 9: Test error (%) on MNIST and MNIST-RS.

Model MNIST MNIST-RS
InvarLayer w/o Aug 0.57±0.04 41.36±1.30

InvarLayer w/ MA 0.43±0.03 37.31±0.97

InvarLayer w/ FA 0.57±0.04 0.75±0.05

EquivarCan + InvarLayer (ours) 0.57±0.03 0.74±0.04

Table 10: Test error (%) on MNIST and MNIST-Scale.

Model MNIST MNIST-Scale
SESN w/o Aug 0.43±0.04 3.99±0.92

SESN w/ MA 0.34±0.04 1.03±0.20

SESN w/ FA 0.35±0.03 0.44±0.03

InvarLayer w/o Aug 0.43±0.02 4.54±0.70

InvarLayer w/ MA 0.37±0.03 1.53±0.19

InvarLayer w/ FA 0.35±0.02 0.38±0.03

EquivarCan + SESN (ours) 0.33±0.05 0.43±0.04

EquivarCan + InvarLayer (ours) 0.36±0.02 0.40±0.02

D.4 EQUIVARLAYERS OF DIFFERENT TYPES

Previously, we focused on the application of EquivarLayer to canonicalization, specifically utilizing
a type-(ρ0,ρc ⊕ ρc) EquivarLayer. Our proposed framework is general and supports EquivarLay-
ers with arbitrary input and output feature types. To validate EquivarLayers of various types, one
straightforward approach is to specify the feature types of the network’s hidden layers, analogous to
steerable CNNs in (Weiler & Cesa, 2019). For simplicity, we refer to scalar features as type-0 and
vector features as type-1. We implement several three-layer affine equivariant networks as image
classifiers, where both the input and output consist of type-0 features, and the hidden layers can in-
volve either type-0 or type-1 features. These models include EquivarLayers that map from type-0 to
type-0, type-0 to type-1, type-1 to type-0, and type-1 to type-1. We train these networks on MNIST
and evaluate them on both MNIST and MNIST-GL+(2). The results are summarized in Table 11.
Models with different types exhibit varying performance, highlighting the flexibility and expanded
design space that EquivarLayer provides for network architectures.
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Table 11: Test error (%) on MNIST and MNIST-GL+(2).

Model Type MNIST MNIST-GL+(2)
InvarLayer 0000 0.96±0.07 8.07±0.28

EquivarLayer 0100 1.06±0.09 6.56±0.73

EquivarLayer 0010 1.21±0.05 6.51±0.42

EquivarLayer 0110 1.44±0.06 6.43±0.22

D.5 EQUIVARLAYERS FOR DYNAMICAL SYSTEM PREDICTION

To further demonstrate the increased generality of our framework, we conduct numerical experi-
ments on the prediction of dynamical systems. The goal is to use our equivariant network model
to predict the evolution of a dynamical system governed by a partial differential equation (PDE).
Specifically, we consider the PDE: ∂tu = ∇xu · u, where u(t,x) = (u1(t,x), u2(t,x))

⊤, and
x = (x1, x2)

⊤. This PDE describes a vector field that exhibits affine symmetry. If the initial vector
field of the dynamical system undergoes an affine transformation, the vector field at each subsequent
time step is transformed in the same manner. Following (Wang et al., 2020), we predict the vector
field at the next time step based on the past l steps of the vector field. Here we set l to 3.

For the dataset, we randomly generate functions with specific conditions as the initial values for the
PDE and use the Runge-Kutta method to iteratively compute the evolution of the dynamical system.
We retain sequences by sampling every 5th step of iteration and employ a rolling window approach
to generate subsequences of length 4, where 3 steps are used as input to predict the next step and
1 step serves as the ground truth output. From each sequence, we extract 48 such subsequences.
Each input data point has the shape (3, 2, 64, 64), while the output has the shape (1, 2, 64, 64). We
generate 2310 sequences with different initial conditions and split the dataset into a 5:2 ratio, using
1650 sequences for training (corresponding to 79,200 data points) and 660 sequences for testing
(31,680 data points).

We use a three-layer affine equivariant EquivarLayer, where the input, output, and hidden layers
consist of vector features. As a baseline, we employ an SO(2) equivariant steerable CNN (Weiler
& Cesa, 2019), which also uses vector features in each layer, and has approximately the same num-
ber of parameters as EquivarLayer. The models are evaluated using the Root Mean Square Error
(RMSE) between the forward predictions and the ground truth over all pixels. As a reference for ab-
solute values, if the output is simply set to 0, the RMSE is 5231.071× 10−5. As shown in Table 12,
EquivarLayer achieves significantly higher precision, demonstrating its superior performance.

Table 12: RMSE (10−5) on Test Set.

Model RMSE Number of Parameters
SO(2) Steerable CNN 6.881±0.150 107 K
EquivarLayer (ours) 0.218±0.012 104 K

E ADDITIONAL FIGURES

Hidden
Layer

Figure 2: Multi-channel version of the steerable EquivarLayer.
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Transformed Images Canonicalized Images Original Images

Figure 3: Visualization of the canonicalization process.
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