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Abstract

Verifying uniform conditions over continuous spaces through random sampling is funda-
mental in machine learning and control theory, yet classical coverage analyses often yield
conservative bounds, particularly at small failure probabilities. We study uniform ran-
dom sampling on the d-dimensional unit hypercube and analyze the number of uncovered
subcubes after discretization. By applying a concentration inequality to the uncovered-
count statistic, we derive a sample complexity bound with a logarithmic dependence on the
failure probability (δ), i.e., M = O(C̃ ln( 2C̃

δ )), which contrasts sharply with the classical
linear 1/δ dependence. Under standard Lipschitz and uniformity assumptions, we present a
self-contained derivation and compare our result with classical coupon-collector rates. Nu-
merical studies across dimensions, precision levels, and confidence targets indicate that our
bound tracks practical coverage requirements more tightly and scales favorably as δ → 0.
Our findings offer a sharper theoretical tool for algorithms that rely on grid-based coverage
guarantees, enabling more efficient sampling, especially in high-confidence regimes.

1 Introduction

Many algorithms in machine learning and control theory rely on theoretical conditions that must hold
uniformly across continuous, compact spaces (Hornik et al., 1989; Lillicrap et al., 2015; Antos et al., 2007;
Bensoussan et al., 2022; Jia & Zhou, 2022; Tabuada & Gharesifard, 2020). Verifying such conditions at every
point is infeasible, as it would require checking an uncountable set. This challenge has motivated statistical
frameworks that discretize compact domains into grid cells and cast the verification task as a variant of the
coupon collector problem (Motwani & Raghavan, 1996; Younes & Simmons, 2002; Kakade, 2003).

A concrete and important example of this challenge arose in the context of Deep Contraction Drift Calculators
(DCDC) for solving Contraction Drift Equations (CDEs) (Qu et al., 2024). This algorithm requires a
Contraction Drift (CD) condition to be satisfied throughout the continuous state space X for solution
validity. In the theoretical analysis of such algorithms, a critical step involves determining sample sizes M
and N to ensure that a probability inequality of the form

P

(
sup
x∈X

[
KV (x) − V (x) + U(x)

]
≤ sup

x∈M

[
K̂N V (x) − V (x) + U(x)

]
+ ε/2

)
> 1 − δ,

where ε > 0 is the target tolerance and δ ∈ (0, 1) is the failure probability, holds with high confidence. Here,
X represents the continuous state space, M denotes a finite sample set, and the functions KV , V and U
encode the contraction drift condition essential for algorithm convergence.

The core challenge in such problems lies in bridging the gap between the supremum over the entire continuous
space X and the supremum over a finite sample set M (Shalev-Shwartz & Ben-David, 2014). Specifically,
we aim to bound the probability that

P

(
sup
x∈X

[
KV (x) − V (x) + U(x)

]
> sup

x∈M

[
KV (x) − V (x) + U(x)

]
+ ε/2

)
≤ δ

2 .
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This probability constraint ensures that the finite sample approximation is sufficiently accurate for practical
algorithm implementation (Webb et al., 2018; Caflisch, 1998; Mey & Loog, 2021).

Verifying these conditions pointwise is infeasible, as it requires checking an uncountable set. A common
strategy, therefore, is to sample M discrete points uniformly at random (Cochran, 1977; Metropolis & Ulam,
1949; Caflisch, 1998; Calafiore & Campi, 2006; Valiant, 1984; Vapnik, 2013) from the space X and verify the
condition on this finite set (Qu et al., 2024). If the desired condition holds for all M sample points, it is
inferred with some controlled probability that the condition holds over the entire space (Fournier et al., 2011;
Valiant, 1984; Vapnik, 2013; Tem, 2005). This immediately raises the critical research question: what is the
minimum number of samples M (the sample complexity) needed to "cover" the space adequately, ensuring
the reliability of this approximation?

The sample complexity M is often linked to the classical coupon collector problem (Motwani & Raghavan,
1996; Ferrante & Saltalamacchia, 2014; Azimi et al., 2017). Here, the continuous domain is discretized into
C̃ subregions (“coupons”), with C̃ typically scaling as O(ε−d) for a precision parameter ε. Standard analyses
show an expected requirement of Θ(C̃ ln C̃) (Motwani & Raghavan, 1996; Ferrante & Saltalamacchia, 2014).
When considering a failure probability δ (risk of incomplete coverage), analyses using Markov’s inequality
typically yield sample complexity bounds of M = O( C̃ ln C̃

δ ).

However, a significant deficiency of these existing bounds is their linear 1/δ dependence on the failure
probability. This means that requiring higher confidence dramatically increases the estimated sample size
M , often leading to overly conservative estimates. For instance, in the DCDC algorithm context(Qu et al.,
2024), when dealing with functions satisfying Lipschitz conditions with constant L̃, the classical approach
often overestimates the required sample size, potentially hindering practical implementation in resource-
constrained scenarios.

The primary objective of this research is to address this gap by deriving a more precise sample complexity
bound for achieving full coverage in compact spaces via uniform random sampling, specifically aiming for
an improved dependency on the failure probability δ. Our study employs a direct probabilistic analysis of
uncovered sub-regions after space discretization, leveraging Chebyshev’s inequality (Feller, 1991) rather than
the classical Markov bound. The scope is focused on uniform random sampling within a d-dimensional unit
hypercube [0, 1]d, with applications to problems like the DCDC verification task.

Our analysis establishes a sample complexity of M = O(C̃ ln( 2C̃
δ )), offering a more favorable ln(1/δ) de-

pendency compared to the classical 1/δ scaling. This improvement is particularly significant for scenarios
requiring high confidence (small δ) or addressing high-precision problems. The result is further substantiated
by comprehensive numerical experiments across various parameter regimes.

Our contributions are threefold:

• We derive a sample complexity bound with logarithmic dependence on the failure probability, M =
O(C̃ ln(2C̃/δ)), by analyzing the uncovered-subcube count under uniform sampling and standard
Lipschitz assumptions.

• We contrast this result with classical coupon-collector-based rates exhibiting linear 1/δ dependence,
clarifying when and why the proposed bound yields tighter coverage requirements.

• We validate our theoretical claims through a tripartite numerical study. Across a direct grid-coverage
simulation, a deep learning model for DCDC algorithm, and a real-world housing price regression, we
analyze the impact of varying data dimension, precision, and confidence. The findings consistently
indicate that our bound more closely reflects the actual sample sizes required for task success.

The remainder of this paper is organized as follows. Section 2 introduces the necessary mathematical
preliminaries, outlines core assumptions, and presents our main theoretical results. Section 3 describes
the numerical studies conducted to validate our theoretical findings, including the experimental setup and
analysis of parameter impacts, and discusses the implications of our results and compares them with classical
approaches. Finally, Section 4 concludes the paper by summarizing the main contributions, discussing
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limitations, and suggesting directions for future work. The appendix provides a detailed proof of Theorem
1.

2 Related Work

Coverage analysis in discrete settings traces back to classical occupancy and coupon collector problems (Mot-
wani & Raghavan, 1996; Ferrante & Saltalamacchia, 2014). In learning theory and Monte Carlo methods,
uniform guarantees over discretized spaces are typically established through union bounds or metric entropy
arguments (Shalev-Shwartz & Ben-David, 2014; Caflisch, 1998; Webb et al., 2018). In high dimensions, Lips-
chitz structure and metric entropy guide discretization complexity (Valiant, 1984; Fournier et al., 2011). Our
work focuses on the uncovered-count statistic and obtains a bound with improved ln(1/δ) dependence under
uniform sampling; it complements classical expectation-based arguments and aligns with concentration-based
perspectives (Feller, 1991). We also connect to verification-style use cases in control-inspired learning where
uniform conditions drive correctness (Mey & Loog, 2021; Qu et al., 2024).

3 Preliminaries and Main Results

3.1 Mathematical Foundations and Core Assumptions

Based on the motivating example discussed in the Introduction, we now formalize the mathematical frame-
work for our analysis. Consider the problem of random sampling on a compact space X = [0, 1]d. Our goal
is to determine the sample size M such that the probability inequality

P

(
sup
x∈X

[
KV (x) − V (x) + U(x)

]
> sup

x∈M

[
KV (x) − V (x) + U(x)

]
+ ε/2

)
≤ δ

2

holds with high confidence, where M represents a finite random sample set of size M . To address this
problem systematically, we must analyze the Lipschitz properties of the function KV − V + U . For any
x, y ∈ X , the Lipschitz analysis yields:

|KV (x) − KV (y)| = |EDf(x)V (f(x)) − EDf(y)V (f(y))|
≤ |EDf(x)V (f(x)) − EDf(x)V (f(y))| + |EDf(x)V (f(y)) − EDf(y)V (f(y))|
≤ EDf(x) |V (f(x)) − V (f(y))| + E |Df(x) − Df(y)| V (f(y))
≤ DV · EDf2 · ∥x − y∥ + sup V · ED2f · ∥x − y∥,

where DV denotes the Lipschitz constant of the function V . Therefore, the Lipschitz constant L̃ of the
function KV − V + U satisfies:

L̃
def= DV · EDf2 + sup V · ED2f + DV + DU.

Without loss of generality, let the research space be a d-dimensional unit cube X = [0, 1]d. We discretize the
space by uniformly dividing each dimension into k segments. To ensure the function variation within any
sub-region is bounded, we set k = ⌈2L̃

√
d/ε⌉. The parameter r̃ is defined as r̃ = ε

2L̃
, where ε is the precision

parameter and L̃ is the Lipschitz constant. The total number of subcubes C̃, is thus given by:

C̃ = kd =
(⌈

2L̃
√

d

ε

⌉)d

= O(ε−d). (1)

Let Z be the number of subcubes that are not covered after M independent random samples. The coverage
failure event is Z ≥ 1. For each subcube i, define the indicator random variable Ii,j :

Ii,j =
{

1, the j-th sample does not cover subcube i ;
0, the j-th sample covers subcube i.
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Assuming that the sample points are uniformly distributed in [0, 1]d, the probability that a particular subcube
i is covered by a single sample is ps = 1/C̃. Let Yi denote the indicator variable that subcube i is not covered
after M samples:

Yi =
M∏

j=1
Ii,j .

The total number of uncovered subcubes Z can be expressed as:

Z =
C̃∑

i=1
Yi. (2)

The following core assumptions underpin this study:

1. The sample points are independently and identically distributed (i.i.d.), following a uniform distri-
bution on [0, 1]d.

2. The space [0, 1]d can be divided into C̃ equal volume subcubes.

3. The probability of a single sampling covering any subcube is equal, that is, ps = 1/C̃.

3.2 Main Theorems and Corollaries

Lemma 1:(Expectation of the number of uncovered subcubes)

The expected value of the number of uncovered subcubes Z after M independent samples is:

E[Z] = C̃

(
1 − 1

C̃

)M

. (3)

Proof. : For any subcube i, the probability of being uncovered after M samples is:

E[Yi] = P (Yi = 1) =
(

1 − 1
C̃

)M

. (4)

By the linearity of expectation, combining equations (2) and (4), we obtain:

E[Z] =
C̃∑

i=1
E[Yi] = C̃

(
1 − 1

C̃

)M

.

Theorem 1 (Sample Complexity with Logarithmic Dependence). Suppose X = [0, 1]d is discretized into C̃
equal subcubes, and the sampling distribution is uniform over X . Under the assumed Lipschitz continuity of
V and U (with discretization resolution chosen accordingly), to achieve full coverage with probability at least
1 − δ, it suffices that

M = O(C̃ ln 2C̃

δ
).

A more precise lower bound is given by the following formula:

M = O( ln q1

ln(1 − 1
C̃

)
),

where q1 = 2C̃(1+δ)−
√

4C̃2+8C̃δ(C̃−1)
2(2C̃+δC̃2) .

Comparing with the classical method, the classic coupon collection model gives M2 = O(C̃ ln C̃/δ).

The method in this paper yields M1 = O(C̃ ln 2C̃
δ ). Our bound replaces the linear dependence on 1/δ with

a much milder logarithmic dependenceln(1/δ), clarifying a potentially substantial improvement in high-
confidence regimes.
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4 Numerical Studies

This section presents a series of numerical experiments designed to validate the theoretical sample complexity
bounds derived in Section 2. We conduct a comprehensive parameter analysis to assess the performance of
our proposed model against classical theories under various conditions.

4.1 Validation of Theoretical Sample Complexity

This section presents a series of numerical experiments designed to validate the theoretical sample complexity
bounds derived in Section 2. We conduct a comprehensive parameter analysis to assess the performance of
our proposed model against classical theories under various conditions. The benchmark parameters for this
study are set as follows: dimension d = 2, precision ε = 0.1, failure probability δ = 0.1, and Lipschitz
constant L̃ = 1.0. When analyzing one parameter, the others are held at their benchmark values. For each
parameter configuration, we performed 32 independent trials to ensure statistical robustness. In the first
experiment, we analyze the effect of dimension d ∈ {1, 2, 3}. The results are presented in Figure 1. The left
plot shows that the ratio of actual samples to our theoretical bound (Mactual/Mtheory) remains consistently
around an average of 0.72, indicating a tight and accurate prediction. The center plot starkly contrasts our
theoretical sample size requirement with the classic method’s, showing that the classic bound grows much
more rapidly with dimension. The rightmost plot quantifies this advantage, indicating an improvement of
over 80% across all tested dimensions, reaching up to 87.6% for d = 3.

Figure 1: Analysis of Dimension Parameter (d). Subplots show: (a) Ratio of actual to theoretical sample
complexity, (b) Comparison of theoretical and actual sample sizes, (c) Improvement of our method over the
classic method.

The second experiment details the analysis for precision ε ∈ [0.05, 0.5], with results shown in Figure 2. The
ratio analysis (left plot) shows that our theoretical bound remains a strong predictor across the entire range
of ε values, with the average ratio fluctuating around 0.80. The theoretical comparison (center plot) reveals
that the sample size required by the classic method increases dramatically for small ε, whereas our method
requires a much more manageable number of samples. The improvement plot (right) confirms a consistent
performance gain of over 85% for our method.
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Figure 2: Analysis of Precision Parameter (ε). Subplots show: (a) Ratio of actual to theoretical sample
complexity, (b) Comparison of theoretical and actual sample sizes, (c) Improvement of our method over the
classic method.

The third experiment examines the impact of the failure probability δ ∈ [0.02, 0.2], as illustrated in Figure
3. The ratio plot (left) confirms that our model’s predictions are robust, with the Mactual/Mtheory ratio
staying close to an average of 0.77. The center plot highlights the practical benefit of our model’s loga-
rithmic dependence on 1/δ. As δ approaches zero, the sample size required by the classic method becomes
prohibitively large, while our proposed requirement grows much more slowly. The improvement plot (right)
shows that the advantage of our method is most pronounced at high-confidence (low δ) requirements, with
improvements ranging from 74.6% to over 95.9%.

Figure 3: Analysis of Failure Probability Parameter (δ). Subplots show: (a) Ratio of actual to theoretical
sample complexity, (b) Comparison of theoretical and actual sample sizes, (c) Improvement of our method
over the classic method.

In summary, the numerical results across all three parameter studies robustly validate our theoretical findings.
Our proposed sample complexity bound is not only significantly tighter and more practical than classical
bounds but also accurately predicts the actual sample requirements observed in simulations.

4.2 Application in DCDC Framework

To further validate the practical utility of our theoretical bounds, we conducted an experiment within the
Deep Contraction Drift Calculators (DCDC) framework, applying it to a 2D Ornstein-Uhlenbeck process.
The experiment was configured with a precision of ε = 0.05 and a failure probability of δ = 0.01.

Based on these parameters, our theoretical sample size was calculated to be Mtheory = 43, 486, whereas
the classical method yielded a much larger requirement of Mclassic = 2, 852, 379. We established three
experimental groups: an "Insufficient" group with half of our theoretical sample size, a "Sufficient" group
using our full theoretical sample size, and a "Conservative" group using the classical sample size.
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The primary results, summarized in Figure 4, demonstrate that the "Sufficient" group achieved a CDE
satisfaction rate of 99.19%, which is comparable to the 99.15% rate of the "Conservative" group, despite
using approximately 98.5% fewer samples. This outcome strongly supports our theory’s effectiveness in a
real-world application, confirming that it provides a reliable and significantly more efficient sample complexity
bound.

Figure 4: Validation of sample complexity in the DCDC framework. The chart displays the CDE satisfaction
rate and final training loss for the Insufficient, Sufficient, and Conservative sample groups.

The training dynamics are detailed in Figure 5, which plots the average training loss on a logarithmic
scale. All three groups show robust convergence, characterized by a rapid initial decrease in loss followed by
stabilization. The "Sufficient" and "Conservative" groups achieve nearly indistinguishable final loss values,
demonstrating that the sample size derived from our theory is adequate for effective training. While the
"Insufficient" group also converges, its final loss is slightly elevated, which is consistent with its lower CDE
satisfaction rate. The tight and overlapping variance bands across all groups highlight the stability of the
learning process.

Furthermore, Figure 6 visualizes the learned Lyapunov-like function (V-function) and the CDE residual
surfaces, averaged over five trials. All three groups learned the expected bowl-shaped V-function, indicative
of a stable system. The residual plots confirm that the CDE condition (KV − V < 0) was satisfied across
most of the state space, with minor positive residuals near the origin, which is an expected artifact of the
learning process. The similarity of the surfaces between the "Sufficient" and "Conservative" groups further
reinforces that our sample complexity bound is adequate for learning the correct system dynamics.

4.3 Empirical Validation of Sample-Complexity Bounds on the California Housing Dataset

To empirically validate the theoretical sample complexity bounds derived in this paper, we conducted a series
of experiments on the California Housing dataset. This dataset is a classic regression problem, well-suited
for testing our framework’s ability to predict performance and guide sample size selection in a real-world
scenario.

The primary objective of the experiment is to verify whether the model’s performance on the test set aligns
with the predictions of our theoretical bounds. We designed the experiment around three distinct groups of
training sample sizes, determined by our theoretical calculations:
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Figure 5: Average DCDC training loss over 5 trials. The plot shows the convergence of the training process
for each sample group on a log scale.

Figure 6: Average V-function and CDE residual surfaces. The top row shows the learned V-function, and
the bottom row shows the CDE residual (KV − V ) for each sample group.
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• Insufficient Group: A sample size significantly smaller than our calculated sufficient bound
(0.1 × M1), intended to represent a scenario where the data is inadequate for achieving the de-
sired performance.

• Sufficient Group: The sample size is set to M1, our theoretically derived lower bound for achieving
the target performance with high probability.

• Conservative Group: The sample size is set to M2, a more conservative bound, which should
comfortably meet or exceed the target performance.

For each group, we trained a RandomForestRegressor model and evaluated its performance using Mean
Absolute Error (MAE), Root Mean Squared Error (RMSE), and the coefficient of determination (R2). We
also evaluated the data coverage using our proposed integrated coverage metric, which combines k-NN,
adaptive grid, and manifold-based approaches. The experiment was repeated over 10 trials with different
random seeds to ensure the statistical robustness of our findings.

The key parameters for the experiment were set as follows:

• Target MAE (εtarget): We set a target performance of 0.5 for the Mean Absolute Error.

• Confidence Level (δ): The confidence parameter was set to 0.05, implying a 95% confidence that
the true MAE is within our target.

• Intrinsic Dimension (d∗): Estimated from the data, yielding d∗ ≈ 6.03.

• Lipschitz Constant (Lest): Estimated using a Ridge model, resulting in Lest ≈ 0.45.

• Derived Epsilon (ε): Calculated as ε = εtarget/Lest ≈ 1.10.

Based on these parameters, the theoretical sample complexity bounds were calculated as:

• M1 (Sufficient) = 7,494

• M2 (Conservative) = 106,212

The corresponding sample sizes for the experimental groups were 749, 7,494, and 106,212.

The experimental results strongly support our theoretical framework. The average performance metrics
across 10 trials for each group are summarized in Table 1 and visualized in Figure 7.

Table 1: Mean Performance Metrics Across Experimental Groups

Group Sample Size MAE RMSE R2
Insufficient 749 0.440 0.632 0.692
Sufficient 7,494 0.379 0.566 0.755
Conservative 106,212 0.361 0.546 0.772

As predicted, we observe a clear trend of performance improvement with increasing sample size. The MAE
for the Sufficient group (0.379) is significantly better than the Insufficient group (0.440) and successfully
meets our target MAE of 0.5. The Conservative group shows a marginal improvement over the Sufficient
group, suggesting that the M1 bound is already effective at capturing the required sample size.

Figure 8 further details the relationship between sample size and performance. The plots show a clear trend
of diminishing returns, where performance gains (lower MAE, higher R2) and coverage rate saturate as the
sample size increases towards the ’Conservative’ level. This saturation effect underscores the efficiency of
the M1 bound, as it achieves most of the potential performance gains with a fraction of the data required
by the M2 bound.
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Figure 7: Comprehensive performance comparison across the three experimental groups. The bar chart
(top-left) and box plot (top-right) illustrate the improvement in MAE and R2 with larger sample sizes.
The scatter plots show the trade-off between sample size and MAE (bottom-left) and coverage versus R2
(bottom-right).

Figure 8: Analysis of sample efficiency. The plots show a clear trend of diminishing returns, where perfor-
mance gains (lower MAE, higher R2) and coverage rate saturate as the sample size increases. The efficiency
comparison (bottom-left) highlights how the ’Sufficient’ group offers a good balance between performance
and data cost.
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Statistical analysis confirms these observations. An ANOVA test revealed a statistically significant difference
in MAE, RMSE, and R2 across the three groups (p < 0.001 for all metrics). Subsequent Tukey’s HSD post-
hoc tests showed that all pairwise comparisons between the groups were significant. Figure 9 visualizes
these results, where a value of "1" (red) indicates a statistically significant difference (p < 0.05) between the
groups. This confirms that each increase in sample size tier led to a meaningful performance gain.

Figure 9: Heatmaps of statistical significance from Tukey’s HSD post-hoc tests. The value "1" (red) indicates
a statistically significant difference (p < 0.05) between the groups, while "0" (blue) indicates no significant
difference. All pairwise comparisons for MAE, RMSE, R2, and Integrated Coverage are shown to be signifi-
cant.

In conclusion, the experimental results on the California Housing dataset provide strong empirical evi-
dence for the validity of our theoretical sample complexity bounds. The experiment demonstrates that our
framework can effectively estimate the required sample size to achieve a predefined performance target in a
practical machine learning application, with visualizations and statistical tests confirming the significance of
our proposed sample size tiers.

5 Broader Impact

Our result supports principled, resource-aware sampling strategies for verification tasks that require uniform
guarantees over continuous domains. Positive impacts include reduced computational burden and a clearer
calibration of confidence vs. cost. Potential risks arise if assumptions (uniformity, independence, Lipschitz
structure) are violated in deployment; we recommend diagnostics to detect distribution shift or non-uniform
sampling. Environmental benefits follow from fewer samples at high confidence, reducing energy costs.

6 Conclusion and Future Work

This study establishes a tight lower bound of M = O(C̃ ln( 2C̃
δ )) for complete coverage in uniformly sampled

d-dimensional unit cubes, representing a fundamental improvement over classical coupon collector bounds.
Our analysis leverages spatial discretization and Chebyshev-based probabilistic techniques to achieve loga-
rithmic dependence on failure probability, compared to the classical linear dependence. This improvement is
particularly significant for high-confidence scenarios and high-dimensional problems, where classical bounds
become overly conservative. The theoretical results are validated through comprehensive numerical exper-
iments, demonstrating practical relevance for algorithm verification and resource allocation. Future work
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will explore tighter bounds using advanced concentration inequalities and extend the framework to adaptive
sampling schemes and broader applications in machine learning and optimization.
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A Appendix: Proof of Theorem 1

To derive the lower bound of sample complexity, we first apply the unilateral Chebyshev inequality:

P (Z − E[Z] ≥ a) ≤ V ar[Z]
a2 .

Let a = kE[Z], satisfying (k + 1)E[Z] = 1. Assuming E[Z] < 1, when 1 − E[Z] > 0, substituting into the
inequality yields:

P (Z ≥ 1) ≤ V ar[Z]
(kE[Z])2 = V ar[Z]

(1 − E[Z])2 . (5)

The requirement P (Z ≥ 1) ≤ δ/2 is given by (5), that is:

V ar[Z]
(1 − E[Z])2 ≤ δ

2 . (6)

From Lemma 1 and (3):
E[Z] = C̃(1 − 1

C̃
)M . (7)

For any subcube i, its uncovered indicator variable Yi satisfies:

E[Yi] = (1 − 1
C̃

)M , V ar[Yi] = E[Yi](1 − E[Yi]).

Since the expression for Z is:

Z =
C̃∑

i=1
Yi.

13

https://proceedings.neurips.cc/paper/2024/
https://proceedings.neurips.cc/paper/2024/
https://arxiv.org/abs/2007.06007


Under review as submission to TMLR

Therefore, the variance of Z can be obtained as:

V ar[Z] =
C̃∑

i=1
V ar[Yi] +

∑
i ̸=j

Cov(Yi, Yj).

Meanwhile, calculate Cov(Yi, Yj):

Cov(Yi, Yj) = E[YiYj ] − E[Yi] · E[Yj ]

= (1 − 2
C̃

)M − (1 − 1
C̃

)2M

= 1
C̃2M

· (C̃M (C̃ − 2)M − (C̃ − 1)2M ) < 0. (8)

Then it can be obtained that Cov(Yi, Yj) < 0, so the upper bound of variance is:

V ar[Z] =
C̃∑

i=1
V ar[Yi] +

∑
i ̸=j

Cov(Yi, Yj) ≤
C̃∑

i=1
V ar[Yi] = C̃V ar[Yi]. (9)

Substitute equations (7) and (9) into (6):

C̃E[Yi](1 − E[Yi])
(1 − C̃E[Yi])2 ≤ δ

2 . (10)

Let q = E[Yi] = (1 − 1
C̃

)M , and (10) transforms to:

C̃q(1 − q)
(1 − C̃q)2 ≤ δ

2 .

Expand and organize to obtain the quadratic inequality:

q2(2C̃ + δC̃2) − 2C̃q(1 + δ) + δ ≥ 0. (11)

Solve the inequality (11), whose discriminant is:

∆ = 4C̃2 + 8C̃δ(C̃ − 1). (12)

Since C̃ ≥ 1 and δ > 0, ∆ > 0. The quadratic equation has two real roots:

q1 = 2C̃(1 + δ) −
√

∆
2(2C̃ + δC̃2)

, q2 = 2C̃(1 + δ) +
√

∆
2(2C̃ + δC̃2)

. (13)

Since a = 2C̃ + δC̃2 > 0, the inequality solves to q ≤ q1 or q ≥ q2. Analysis shows that q2 ≥ 1, so we take
q ≤ q1. Substituting q = (1 − 1

C̃
)M for q ≤ q1 and taking the logarithm gives:

M ≥ C̃ ln 1
q1

≥ ln q1

ln(1 − 1
C̃

)
. (14)

Therefore, we can choose M = O(C̃ ln 1
q1

). To establish this bound, we first derive the asymptotic approxi-
mation for q1 when δ → 0+. Firstly, we analysis the expansion of ∆ (12):

∆ = 4C̃2 + 8C̃δ(C̃ − 1). =⇒
√

∆ = 2C̃

√
1 + 2δ(1 − 1

C̃
) .

By a Taylor expansion
√

1 + x = 1 + x

2 − x2

8 + O(x3),

14
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we can obtain that √
∆ = 2C̃(1 + δ(1 − 1

C̃
) − δ2

2 (1 − 1
C̃

)2 + O(δ3)). (15)

Substitute equation (15) into (13)

q1 = 2C̃(1 + δ) −
√

∆
2(2C̃ + δC̃2)

=
2C̃(1 + δ) − 2C̃(1 + δ(1 − 1

C̃
) − δ2

2 (1 − 1
C̃

)2 + O(δ3))
2(2C̃ + δC̃2)

=
2δ + C̃δ2(1 − 2

C̃
) + O(δ3)

4C̃(1 + δC̃
2 )

.

Then we calculate the ratio:

q1
δ

2C̃

= q1 · 2C̃

δ
=

4C̃ + 2C̃2δ(1 − 2
C̃

) + O(δ2)
4C̃(1 + δC̃

2 )

=
1 + δC̃

2 (1 − 2
C̃

) + O(δ2)
1 + δC̃

2

= 1 + O(δ)
1 + O(δ) .

Such that, when δ → 0+

lim
δ→0+

q1
δ

2C̃

= lim
δ→0+

1 + O(δ)
1 + O(δ) = 1.

Finally, we prove that
q1 ≈ δ

2C̃
.

Substitute (14) to obtain the final lower bound:

M = O(C̃ ln(2C̃

δ
)).

B Experiment Appendix

B.1 Hardware Configuration

The experiments were conducted on a workstation with the following specifications:

• CPU: AMD Ryzen® 9 9950X3D @ 4.3 GHz base / 5.7 GHz boost

• Memory: 96 GB DDR5-5600

• GPU: NVIDIA® GeForce RTX™ 5090 32 GB GDDR7

B.2 Experimental Environment for Parameter Analysis of Grid Coverage

B.2.1 Software Environment

The software stack used for the experiments is detailed below:

• Operating System: Windows 10 Pro (64-bit)

15
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• Python Version: 3.12.3

• Core Libraries:

– numpy: 1.26.4
– matplotlib: 3.9.0
– seaborn: 0.13.2
– psutil: 5.9.8

B.2.2 Dataset: Synthetic Grid Coverage Simulation

• Source: This experiment does not use an external dataset. It is a pure simulation based on the
GridCoverage class, which models the problem of covering a d-dimensional grid with randomly
sampled points.

• Scale: The simulation runs up to a maximum of 1,000,000 samples (max_samples) for each param-
eter configuration to determine the point at which full grid coverage is achieved.

• Preprocessing: Not applicable, as the experiment is a direct simulation of a mathematical model.

B.2.3 Parameter Settings

The experiment systematically analyzes the impact of three key parameters by varying one while keeping
the others fixed. The ranges and fixed values are:

• Dimension (d):

– Varied values: [1, 2, 3]
– Fixed value (when not varied): 2

• Precision (epsilon):

– Varied values: np.linspace(0.05, 0.5, 10)
– Fixed value (when not varied): 0.1

• Failure Probability (delta):

– Varied values: np.linspace(0.02, 0.2, 10)
– Fixed value (when not varied): 0.1

• Lipschitz Constant (L_tilde): Fixed at 1.0 for all simulations.

• Number of Trials (num_trials): 10 trials are run for each parameter setting to ensure statistical
robustness.

B.2.4 Running Conditions

• The script leverages multiprocessing to run experimental trials in parallel, significantly reducing the
total execution time. It is designed to utilize all available CPU cores.

• The simulation can be memory-intensive, especially for higher dimensions, but is generally manage-
able with 32 GB of RAM.

• The primary output consists of three enhanced analysis plots (dimension_enhanced_analysis.png,
epsilon_enhanced_analysis.png, delta_enhanced_analysis.png), which are saved to disk. En-
sure write permissions are available.

16



Under review as submission to TMLR

B.3 Experimental Environment for DCDC Sample Complexity Validation

B.3.1 Software Environment

The software stack used for the experiments is detailed below:

• Operating System: Windows 10 Pro (64-bit)

• Python Version: 3.12.3

• Core Libraries:

– torch: 2.3.1
– numpy: 1.26.4
– matplotlib: 3.9.0
– seaborn: 0.13.2
– tqdm: 4.66.4

B.3.2 Dataset: Synthetic Ornstein-Uhlenbeck Process

• Source: The data is synthetically generated on-the-fly by simulating a 2-dimensional Ornstein-
Uhlenbeck (OU) process. This avoids reliance on external datasets and allows for precise control
over the data-generating dynamics.

• Scale: For each experimental group (Insufficient, Sufficient, Conservative), a set of points is sam-
pled uniformly from the domain. The number of samples is determined by the theoretical sample
complexity calculations (Mtheory and Mclassic).

• Preprocessing: No explicit preprocessing is required as the data is generated in a controlled man-
ner. The training process involves sampling mini-batches from a fixed set of uniformly distributed
points within the specified bounds.

B.3.3 Parameter Settings

The key parameters for the DCDC experiment are defined in the ExperimentConfig class:

• System Parameters:

– dimension: 2
– epsilon: 0.05 (error tolerance)
– delta: 0.01 (failure probability)
– lipschitz_constant: 1.0

• Ornstein-Uhlenbeck Process:

– beta: 4.0 (mean reversion rate)
– sigma: 4.0 (volatility)
– dt: 0.01 (time step)

• Training Parameters:

– max_epochs: 50,000
– learning_rate: 7e-5
– batch_size: 256

• Network Architecture (MLPNetwork):

– hidden_dims: [512, 512, 256] with Tanh activation.
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B.3.4 Running Conditions
• A CUDA-enabled GPU is highly recommended for this experiment due to the computational de-

mands of training the deep neural network over many epochs.

• The script is self-contained and generates all necessary data.

• The experiment saves comprehensive results, including JSON files with detailed metrics, loss curves,
3D surface plots of the learned value function, and a summary report in Markdown format. Ensure
write permissions are available in the execution directory.

B.4 Experimental Environment for California Housing Sample Complexity Validation

B.4.1 Software Environment

The software stack used for the experiments is detailed below:

• Python Version: 3.12.3

• Core Libraries:
– numpy: 1.26.4
– pandas: 2.2.2
– scikit-learn: 1.5.0
– umap-learn: 0.5.6
– scipy: 1.13.1
– matplotlib: 3.9.0
– seaborn: 0.13.2
– statsmodels: 0.14.2
– plotly: 5.22.0

B.4.2 Dataset: California Housing
• Source: The experiment utilizes the California Housing dataset, available through the

scikit-learn library. This dataset is based on data from the 1990 California census.

• Scale: The dataset consists of 20,640 samples and 8 numerical features. The target variable is the
median house value for California districts.

• Preprocessing: The features are first standardized using StandardScaler to have zero mean and
unit variance. Subsequently, a whitening transformation is applied to the scaled data to remove
correlations between features and ensure they have a common variance. The data is then split into
training (80%) and testing (20%) sets.

B.4.3 Parameter Settings

The key parameters for the California Housing experiment are defined in the ExperimentConfig class:

• Target MAE (target_mae): 0.5. This defines the desired precision for the regression model, which
is used to derive the error tolerance ϵ.

• Failure Probability (delta): 0.05. This is the acceptable probability of the sample complexity
bounds not holding.

• Random State (random_state): 42. Used for ensuring reproducibility in data splitting and model
training.

• Number of Trials (n_trials): 10. The number of Monte Carlo simulations to run for robust
statistical analysis.

• Test Set Size (test_size): 0.2. Specifies that 20% of the data is reserved for testing.
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B.4.4 Running Conditions

• The experiment is designed to be self-contained and does not require external data downloads beyond
what is provided by scikit-learn.

• The execution involves multiple Monte Carlo trials, which can be computationally intensive and
time-consuming.

• The script generates and saves several output files, including detailed JSON results, statistical anal-
ysis reports, and performance visualizations (.png, .html). Ensure write permissions are available
in the execution directory.
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