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Abstract001

Large Action models are essential for enabling002
autonomous agents to perform complex tasks.003
However, training such models remains chal-004
lenging due to the diversity of agent environ-005
ments and the complexity of noisy agentic006
data. Existing infrastructure offers limited sup-007
port for scalable, agent-specific fine-tuning and008
standardized agent data processing. We in-009
troduce ActionStudio, a lightweight and ex-010
tensible data and training framework designed011
for large action models. ActionStudio unifies012
diverse agent trajectories using our proposed013
Unified Format 2.0, supports a range of train-014
ing workflows with optimized multi-node dis-015
tributed setup, and integrates robust preprocess-016
ing and real-time verification tools. ActionStu-017
dio demonstrates up to 9× higher throughput018
compared to existing agentic training frame-019
works, and our trained models yield top perfor-020
mances across public and realistic agent bench-021
marks. To support the broader research commu-022
nity, we open-source the ActionStudio frame-023
work and release actionstudio-98k, a curated024
dataset of 98k high-quality trajectories.1025

1 Introduction026

Action models are becoming increasingly critical027

for enabling autonomous agents to operate effec-028

tively across complex, multi-step tasks in diverse029

environments-from personal productivity assistants030

to real-world industrial automation systems. While031

recent open-source initiatives have advanced the032

action models development (Zeng et al., 2023; Xu033

et al., 2023; Yin et al., 2023; Zhang et al., 2024a,b),034

infrastructure for efficient agentic data processing035

and model training remains underdeveloped.036

A central challenge lies in the nature of agentic037

training data, which often comprises long-horizon038

trajectories with tool interactions, observations,039
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and user feedback originating from varied environ- 040

ments. While prior work has attempted to address 041

data standardization (Zhang et al., 2024a,b), exist- 042

ing solutions usually rely on instruction-following 043

templates that abstract away tool use (Yin et al., 044

2023; Xi et al., 2024) or adopt fixed rigid formats 045

that may not generalize across tasks. Moreover, 046

the data conversion and quality control processes 047

required to turn raw agent trajectories into training- 048

ready datasets are seldom open-sourced, which lim- 049

its reproducibility and cross-task transfer. 050

On the training side, general-purpose frame- 051

works such as Transformers (Wolf et al., 2020) and 052

LLAMA-Factory (Zheng et al., 2024) have played 053

an important role in Large language model (LLM) 054

development. However, these frameworks are pri- 055

marily designed and optimized for standard LLM 056

workflows, requiring substantial customization and 057

heavy modifications to support agent-specific data 058

and training. Even high-performing open-source 059

models like xLAM (Zhang et al., 2024b) have not 060

fully released their implementation code. This cre- 061

ates barriers for researchers and developers aiming 062

to build agentic systems in real-world settings. 063

To address these challenges, we introduce Ac- 064

tionStudio, an end-to-end, open-source framework 065

for data processing and training of large action mod- 066

els. Designed for production-scale use, ActionStu- 067

dio integrates a novel critique-and-filter pipeline, 068

deterministic rule-based checks, and a real-time 069

verifier for filtering and visualizing agent trajecto- 070

ries. The resulting dataset, ACTIONSTUDIO-98K, 071

comprises 98,000 high-quality trajectories format- 072

ted using our proposed Unified Format 2.0. The 073

framework features an extensible backend support- 074

ing supervised fine-tuning (SFT) and preference- 075

based learning (e.g., DPO), with flexible config- 076

urations including LoRA, quantization, and near- 077

linear multi-node scalability. Models trained with 078

ActionStudio achieve new state-of-the-art results 079

on NexusRaven and the CRM Agent Benchmark, 080
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outperforming both open-source agent models and081

commercial systems.082

The key contributions of our work are:083

• We present an open-source, lightweight, and effi-084

cient agentic training framework, supporting flex-085

ible workflows such as LoRA, full fine-tuning,086

and multi-node distributed training. Our frame-087

work achieves up to 9× higher throughput com-088

pared to popular agentic training frameworks.089

• We propose a critique-and-filter pipeline and a090

real-time data verifier that automate the inges-091

tion, filtering, and conversion of diverse agent092

trajectories. We also release actionstudio-98k, a093

high-quality dataset of 97,755 trajectories span-094

ning over 30,000 APIs and 300 domains, struc-095

tured using our designed Unified Format 2.0 to096

facilitate agent research.097

• We demonstrate ActionStudio’s effectiveness098

across public and realistic industry agent bench-099

marks, showing its utility and practical value for100

real-world agent applications.101

2 Related Work102

2.1 Agent Data103

While proprietary models often restrict data acces-104

sibility, the research community has significantly105

advanced open-source initiatives by releasing ex-106

tensive agent datasets (Liu et al., 2023; Zeng et al.,107

2023; Tang et al., 2023; Li et al., 2023; Xi et al.,108

2024; Liu et al., 2024a). However, due to the in-109

herent complexity and heterogeneous nature of110

agent trajectories across different environments,111

datasets often vary widely in format, creating sub-112

stantial hurdles for industrial-scale model develop-113

ment. Recent efforts such as Lumos (Yin et al.,114

2023), AgentOhana (Zhang et al., 2024a), and115

xLAM (Zhang et al., 2024b) have aimed to stan-116

dardize datasets into unified formats to reduce er-117

rors and simplify training. Nonetheless, these ini-118

tiatives have not fully open-sourced the data conver-119

sion and automation pipelines, limiting widespread120

adoption and scalability.121

2.2 Large Action Models122

Beyond proprietary model APIs, significant123

progress has been made toward developing open-124

source large action models, specifically tailored125

for complex agent-oriented tasks (Xu et al., 2023;126

Qin et al., 2024; Zhang et al., 2024b; Liu et al.,127

2024b). These models have achieved impressive 128

performance on benchmarks, showing the grow- 129

ing capability of open-source initiatives. While 130

established frameworks like Transformers (Wolf 131

et al., 2020) and LLAMA-Factory (Zheng et al., 132

2024) facilitate general language model training, 133

specialized frameworks designed explicitly for fine- 134

tuning LAMs remain limited. Our work contributes 135

directly to addressing this gap by providing an 136

efficient, lightweight training pipeline within Ac- 137

tionStudio, significantly reducing the complexity 138

and resource requirements associated with training 139

high-performing LAMs. 140

3 Framework 141

To support the development of high-performing 142

large action models (LAMs), we present Action- 143

Studio, a comprehensive framework for agentic 144

data constructing and model training under a sin- 145

gle, modular system. ActionStudio is composed of 146

two core pipelines: a data pipeline for standardiz- 147

ing and preparing diverse agentic data sources, and 148

a training pipeline for fine-tuning large language 149

models on agent tasks at various scales. 150

3.1 Data Pipeline 151

The data pipeline in ActionStudio is designed to 152

process diverse agentic data sources into standard- 153

ized, training-ready formats. It includes four major 154

components: data collection, format unification, 155

quality filtering, and format conversion. This mod- 156

ular structure ensures the framework is extensible, 157

scalable and compatible with a wide range of agent 158

environments and models. 159

3.1.1 Data Collection 160

To support agentic model training, we compile 161

a diverse set of high-quality datasets from mul- 162

tiple agent environments and domains, including 163

but not limited to function calling, tool-use, and 164

robotic agent trajectories. The datasets vary in 165

structure and components, which poses significant 166

challenges for LAM training. 167

3.1.2 Format Unification 2.0 168

Previous work (Zhang et al., 2024a,b) proposed 169

a modular schema (Unified Format 1.0) to stan- 170

dardize agentic interaction data, with fields such 171

as task_instruction, query, tools, and a list of 172

steps capturing tool calls, intermediate thoughts, 173

user feedback, and observations. While partially 174
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Figure 1: Framework of ActionStudio.

effective for general-purpose processing and aug-175

mentation, Unified Format 1.0 was not natively176

compatible with message-based interfaces expected177

by most open-source LLMs, resulting in non-trivial178

conversion and error fixing overhead for training179

and deployment. Examples of Unified Format 1.0180

and its corresponding training prompt are shown in181

Figures 5 and 6 in the Appendix.182

To address these limitations, we introduce Uni-183

fied Format 2.0, a redesigned schema that natively184

aligns with modern chat-based LLM APIs and185

HuggingFace-style chat templates. Unlike prior186

work, Unified Format 2.0 is designed to support187

both training, inference and evaluation workflows-188

including Alpaca-style (Taori et al., 2023) (input,189

output) pairs, ShareGPT-style (Zhang et al., 2023)190

multi-turn dialogues, and general chat-based inter-191

action formats. Its structure minimizes data trans-192

formation overhead, enabling direct use in common193

fine-tuning pipelines and runtime LLM interfaces.194

Unified Format 2.0 introduces new abstractions195

that modularize agent trajectories into semantically196

grounded and model-compatible components, such197

as task instructions, available tools, and user-agent198

exchanges (including tool calls and execution re-199

sults). This simplifies downstream formatting, pro-200

motes consistency across various data sources, and201

enables plug-and-play integration into both training202

and deployment systems. An example in Unified203

Format 2.0 and its converted chat format are shown204

in Figures 3 and 4 in the Appendix.205

3.1.3 Data Quality Filtering 206

Prior work (Chen et al., 2023; Zhang et al., 2024b) 207

has explored leveraging LLMs-like GPT-4-class 208

models-for automatically evaluating and filtering 209

trajectory quality, thereby reducing the reliance on 210

manual annotation. These approaches typically 211

score trajectories along dimensions such as cor- 212

rectness, hallucination, tool-use appropriateness, 213

and overall response quality. However, we observe 214

that off-the-shelf LLM evaluators tend to produce 215

overly confident or median-biased scores and often 216

fail to detect subtle or context-dependent hallucina- 217

tions, and the issues are also noted in prior studies. 218

To address these limitations, we design a novel 219

agent trajectory quality filtering method based on 220

In-Context Critique Filtering. We augment the 221

LLM evaluator with a small set of curated exem- 222

plars illustrating common failure cases and pre- 223

ferred critique behaviors. This simple yet effec- 224

tive in-context guidance leads to more fine-grained, 225

human-aligned evaluations, particularly for am- 226

biguous or borderline trajectories. In addition, we 227

fine-tune open-source models using agent critique 228

data to reduce reliance on commercial LLMs and 229

further improve performance, making quality filter- 230

ing more cost-effective and accessible. The critique 231

pipeline is complemented by rule-based filtering 232

pipeline that catch systematic errors (e.g., missing 233

function calls, wrong function names or arguments, 234

hallucinated agent actions). 235

Together, these components provide a scalable, 236

high-precision pipeline for selecting training trajec- 237

tories. Human verification in Section 4.6 demon- 238

strates the effectiveness of the approach. 239
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3.1.4 ActionStudio-98k240

To facilitate open-source agent research, we release241

actionstudio-98k, a curated collection of 97,755242

high-quality agent trajectories spanning diverse en-243

vironments and task domains. The dataset includes244

69,271 single-turn and 28,484 multi-turn trajecto-245

ries, with multi-turn examples averaging 9 steps246

per trajectory. Filtered, critiqued, and corrected247

through the ActionStudio data pipeline, the trajec-248

tories are sourced from public agent datasets such249

as (Liu et al., 2023; Zhang et al., 2023, 2024b; Liu250

et al., 2024a; Xi et al., 2024; Guo et al., 2024b) and251

cover over 30,000 APIs across more than 300 do-252

mains. The dataset includes programmatic tool-use253

sequences, embodied agent interactions, and both254

single- and multi-turn tasks, all represented in our255

unified format 2.0.256

3.2 Training Pipeline257

Our framework is designed to deliver unparalleled258

versatility and efficiency in agentic training, en-259

suring it addresses diverse needs while optimizing260

scalability and performance. The following out-261

lines how these are achieved.262

3.2.1 Data Handler263

Universal Data Parser. Training agentic models264

often involves working with highly diverse data265

structures, ranging from single-step responses to266

multi-step reasoning processes, multi-turn conver-267

sations, and various role configurations among268

users and agents (or groups of agents). To man-269

age this complexity and maximize flexibility, our270

framework uses element-wise parsing and encod-271

ing. Each part of the conversation history is parsed272

as independently as possible, while still following273

the chat template. This approach simplifies the274

process of applying fine-grained loss masking and275

supports different training objectives. As a result,276

researchers have full control over these processes,277

making it easy to fine-tune agentic models for spe-278

cific tasks. Ultimately, this design accelerates ex-279

perimentation and speeds up model development.280

Real-Time Data Verifier. Given the wide range281

of configurations and processing capabilities possi-282

ble with our framework, it is critical to have robust283

mechanisms to validate data integrity throughout284

the training pipeline. The Real-Time Data Verifier285

keeps training pipeline under-control by dynami-286

cally running three checks: the Format Checker287

instantly flags data instances with missing fields or288

wrong structures, the Chat Template Checker en- 289

sures every conversation fits the provided Chat tem- 290

plate, and the Data Samples Visualization presents 291

“before-and-after" views of each data entry at every 292

stage - before and after preprocessing, applying 293

conversational templates, and encoding. By offer- 294

ing visibility into the transformations applied at 295

each step, the verifier enables users to validate that 296

their data complies with the expected format. This 297

minimizes the risk of unexpected behaviors during 298

training, ensuring a smoother development process 299

and more reliable model performance. 300

3.2.2 Training Handler. 301

Comprehensive Support for Diverse Training 302

Setups We provide an extensive range of func- 303

tionalities to accommodate virtually any training 304

pipeline for agentic models. From Supervised In- 305

struction Fine-tuning to Human Preference Align- 306

ment, from lightweight approaches like quantized 307

training and LoRA (Low-Rank Adaptation) (Hu 308

et al., 2021) to full-scale training in mixed preci- 309

sion, our framework has it covered. This flexibility 310

allows researchers and practitioners to seamlessly 311

adapt to varying training requirements and compu- 312

tational resource constraints. 313

Highly Optimized Distributed Training at Scale. 314

Our framework is purpose-built for highly efficient 315

training of large-scale agentic models. To this end, 316

heavy effort has been invested in optimizing per- 317

formance for distributed settings. We have studied 318

communication patterns in common Transformer 319

architectures (Wolf et al., 2020), focusing on reduc- 320

ing inefficiencies in layer-to-layer interactions and 321

communications between experts under Mixture of 322

Experts settings. Additionally, we have optimized 323

GPU-to-GPU communication within a single node 324

as well as cross-node communication, reducing 325

bottlenecks and enabling seamless scalability to 326

industrial-scale training clusters. Users can also 327

benefit from widely adopted parallelization and 328

sharding strategies, such as those offered by Deep- 329

Speed (Rasley et al., 2020), ensuring compatibility 330

with industry-standard training practices. These en- 331

hancements ensure that our framework consistently 332

delivers top-tier performance and efficiency, even 333

in demanding distributed environments. 334

Dynamic Profiling for Model-Specific Optimiza- 335

tions. Recognizing the variety of architectures 336

and model sizes in the agentic training space, we 337

have implemented an initial dynamic profiling sys- 338
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tem to enhance efficiency and improve ease-of-339

use. When provided with a model checkpoint,340

our framework dynamically routes it to an opti-341

mized configuration tailored for that architecture342

and model size under the current resource situa-343

tion. This automation eliminates the need for labor-344

intensive tuning, allowing researchers to achieve345

higher efficiency with less manual effort.346

4 Experiments347

4.1 Model Training348

Utilizing the ActionStudio framework, we con-349

ducted supervised fine-tuning on selected open-350

source models including Mistral series (Jiang et al.,351

2023, 2024) and Llama 3 series (Gratt. et al., 2024).352

To showcase ActionStudio’s effectiveness across353

various sizes, we fine-tune from smaller-scale mod-354

els such as Mistral variants to larger-scale models355

like Llama-3.1-70b-inst and Mixtral-8x22b-inst.356

We set the sequence length between 8k and 16k,357

the batch size between 32 and 96 and the learning358

rate between 2e-6 and 5e-5, employing a cosine359

learning rate scheduler with 5% warm-up steps.360

Smaller models were fine-tuned on single NVIDIA361

H200 pod, while larger models were fine-tuned on362

both single and more H200 pods for comparison.363

Each H200 pod is equipped with 8 NVIDIA H200364

GPUs, each having 141GB of memory.365

4.2 Benchmarks366

To demonstrate the effectiveness of ActionStudio,367

we selected NexusRaven and CRM Agent Bench.368

NexusRaven (Srinivasan et al., 2023) provides a369

diverse benchmark for function calling, comprising370

318 test examples across 65 distinct APIs. The371

dataset is curated through a structured pipeline that372

mines function definitions, docstrings, and execu-373

tion contexts from open-source corpora. LLMs are374

then prompted to generate natural language queries,375

Chain-of-Thought (CoT) traces, and hard-negative376

function candidates to enhance evaluation difficulty.377

NexusRaven specifically evaluates model perfor-378

mance using precision, recall, and F1-score metrics379

for both function retrieval and argument inference380

tasks, offering a comprehensive assessment frame-381

work for function calling capabilities.382

The CRM Agent Benchmark 2 is a proprietary383

evaluation developed by Salesforce. It assesses pro-384

ficiency of AI models across critical and real CRM385

2https://www.salesforceairesearch.com/
crm-benchmark

agent scenarios, focusing on accuracy in agent 386

topic identification, accurate generation of func- 387

tion calls, and creation of contextually appropriate 388

free-text responses. This benchmark emphasizes 389

realistic business use cases by incorporating sev- 390

eral hundred real CRM data points with expert 391

assessments, providing valuable insights into the 392

practical utility and reliability of language mod- 393

els for commercial deployment. Importantly, for 394

all experiments, we fine-tune models exclusively 395

on public datasets, ensuring that no customer data 396

from any companies is utilized during training. 397

We set the model temperature to 0 during evalua- 398

tions to ensure deterministic and replicable results. 399

4.3 NexusRaven 400

Table 1 shows the comparative performance 401

of various models evaluated on NexusRaven. 402

ActionStudio-trained models consistently outper- 403

form baseline and prominent commercial models. 404

In particular, our fine-tuned ActionStudio-Mixtral- 405

8x22b-inst-exp model achieves the highest overall 406

F1-score (0.969), reflecting strong precision and 407

recall, significantly surpassing commercial alterna- 408

tives such as GPT-4 and GPT-4o. It also surpasses 409

recently released large-scale models such as GPT- 410

4.1 and Llama-4, both of which highlight strong 411

agentic capabilities. Similarly, other fine-tuned 412

models also exhibit robust performance. These 413

results show the effectiveness of ActionStudio’s 414

pipeline in enhancing function-calling capabilities. 415

4.4 CRM Agent Bench 416

Table 2 illustrates our performance on the realis- 417

tic industry Agent Benchmark. Our ActionStudio- 418

Llama-3.3-70b-inst-exp model achieves the high- 419

est overall performance with an average accu- 420

racy of 0.87, surpassing the base Llama-3.3-70b- 421

inst model (0.84). This reflects balanced capa- 422

bilities across all three dimensions. Similarly, 423

the ActionStudio-Llama-3.1-70b-inst-exp shows 424

robust performance. 425

Furthermore, our fine-tuned ActionStudio- 426

Mixtral-8x22b-inst-exp significantly outperforms 427

its base, Mixtral-8x22b-inst, by 11%. Models such 428

as ActionStudio-Mistral-7b-inst-exp also exhibit 429

marked improvements of 13% compared to their in- 430

struct baselines, confirming that the pipeline bene- 431

fits both large and small checkpoints. Additionally, 432

our models are also ahead of strong agentic models 433

such as o1-preview (0.85) and AgentOhana-8x22b- 434

inst (0.80). These findings show ActionStudio’s 435
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Model Papi Rapi F1api

ActionStudio-Llama-3.3-70b-inst-exp 0.950 0.953 0.951
ActionStudio-Llama-3.1-70b-inst-exp 0.940 0.943 0.942
ActionStudio-Mixtral-8x22b-inst-exp 0.969 0.969 0.969
ActionStudio-Mistral-latest-12b-inst-exp 0.953 0.956 0.954
ActionStudio-Mistral-7b-inst-exp 0.884 0.884 0.884
Llama-3.3-70b-inst (Gratt. et al., 2024) 0.917 0.934 0.925
Mistral-latest-12b-inst (Jiang et al., 2024) 0.906 0.940 0.923
Llama-3.1-70b-inst (Gratt. et al., 2024) 0.907 0.915 0.911
GPT-4o-latest (Hurst et al., 2024) 0.943 0.840 0.889
GPT-4.1-2025-04-14 (OpenAI, 2025) 0.841 0.846 0.843
DeepSeek-r1-671b (Guo et al., 2024a) 0.837 0.840 0.838
Mistral-7b-inst (Jiang et al., 2023) 0.814 0.827 0.821
Llama-4-Maverick-400b-inst (Meta, 2025) 0.796 0.796 0.796
Llama-4-Scout-109b-inst (Meta, 2025) 0.787 0.789 0.788
Mixtral-8x22b-inst (Jiang et al., 2024) 0.758 0.786 0.772
GPT-4 (Achiam et al., 2023) 0.894 0.635 0.743

Table 1: Performance comparison on NexusRaven. The best-performing result is indicated in bold, while the
second and third-best results are marked with underline.

Topic Acc Function Call Acc Free Text Acc Average Acc

ActionStudio-Llama-3.3-70b-inst-exp 0.98 0.79 0.83 0.87
ActionStudio-Llama-3.1-70b-inst-exp 0.96 0.77 0.86 0.86
ActionStudio-Mixtral-8x22b-inst-exp 0.98 0.75 0.82 0.85
ActionStudio-Mistral-latest-12b-inst-exp 0.98 0.64 0.78 0.80
ActionStudio-Mistral-7b-inst-exp 0.95 0.49 0.74 0.73

DeepSeek-r1-671b (Guo et al., 2025) 0.82 0.83 0.94 0.86
o1-preview (Jaech et al., 2024) 0.98 0.75 0.81 0.85
Llama-3.3-70b-inst (Gratt. et al., 2024) 0.99 0.72 0.80 0.84
GPT-4-turbo (Achiam et al., 2023) 0.99 0.60 0.92 0.83
Llama-3.1-70b-inst (Gratt. et al., 2024) 1.0 0.62 0.82 0.81
AgentOhana-8x22b-inst (Zhang et al., 2024a) 0.90 0.66 0.84 0.80
Mixtral-8x22b-inst (Jiang et al., 2024) 0.98 0.65 0.60 0.74
GPT-4o-mini (Hurst et al., 2024) 0.94 0.42 0.81 0.72
Mistral-latest-12b-inst (Jiang et al., 2024) 0.96 0.18 0.70 0.61
Mistral-7b-inst (Jiang et al., 2023) 0.99 0.19 0.63 0.60

Table 2: Accuracy on the CRM Agent Benchmark. The best-performing result is indicated in bold, while the
second and third-best results are marked with underline.

capability to train versatile and reliable models for436

practical and realistic agent scenarios.437

4.5 Training Efficiency438

Table 3 benchmarks raw training throughput (to-439

kens / s) for three model sizes, Llama-3.1-8b,440

Mixtral-8x7b, and Mixtral-8x22b, under the four441

most commonly used fine-tuning regimes: (i) NF4-442

quantized LoRA (Q+LoRA), (ii) BF16 LoRA, (iii)443

full BF16 fine-tuning (FT) on a single pod (FT-1),444

and (iv) full FT on multiple pods (FT-2/FT-4). For445

the LoRA setting, we update the q_proj, k_proj,446

v_proj, and o_proj layers, with lora_r set to 32447

and lora_a to 64. To contextualize these results, we448

replicated all configurations on the same cluster and449

GPU infrastructure for two competing systems that 450

support agentic model trainings, AGENTOHANA 451

(Zhang et al., 2024a) and LUMOS (Yin et al., 2023). 452

The results from the comparison highlight the effi- 453

ciency and capability of our framework. 454

Quantised LoRA. First, we can look at 455

the throughput for quantized-based trainings 456

(Q+LoRA). For the Llama-3.1-8B model, Action- 457

Studio achieves a throughput of 79k tokens/s under 458

Q+LoRA, outperforming AgentOhana (27.9k; 2.8x 459

slower) and Lumos (8.4k; 9.4x slower). On the 460

medium-sized Mixtral-8x7b, ActionStudio reaches 461

46k tokens/s, outpacing AgentOhana (25k; 1.9x 462

slower) and Lumos (5k; 9.0x slower). For the 463

larger configuration, Mixtral-8x22b, ActionStudio 464
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Training Setup Framework Q + LoRA LoRA FT 1 pod FT 2 pods FT 4 pods

Llama-3.1 8b (BS/GPU=6, Seq=8k)
ActionStudio (Ours) 79,306 76,766 64,179 125,097 224,192
AgentOhana 27,868 ( -65%) 53,718 ( -30%) 38,550 ( -40%) Not Sup. Not Sup.
Lumos 8,399 ( -89%) 59,578 ( -22%) 52,852 ( -18%) Not Sup. Not Sup.

Mixtral-8x7b (BS/GPU=8, Seq=4k)
ActionStudio (Ours) 46,193 47,404 33,661 71,858 137,146
AgentOhana 24,966 ( -46%) OOM OOM Not Sup. Not Sup.
Lumos 5,115 ( -89%) 33,608 ( -29%) 8,151 ( -76%) Not Sup. Not Sup.

Mixtral-8x22b (BS/GPU=8, Seq=4k)
ActionStudio (Ours) 14,703 14,654 OOM OOM 44,438
AgentOhana 8,375 ( -43%) OOM OOM Not Sup. Not Sup.
Lumos 1,660 ( -89%) 5,072 ( -65%) OOM Not Sup. Not Sup.

Table 3: Training throughput (tokens/s) for each setup under our ActionStudio, the AgentOhana and Lumos
frameworks. "OOM" indicates an out-of-memory error. "Not Sup." denotes that the feature configuration is
unsupported by the current version of the framework.

sustains 14.7k tokens/s, 1.8x and 8.9x faster than465

AgentOhana and Lumos, respectively.466

BF16 LoRA. Under BF16-LoRA setting, Action-467

Studio also demonstrates a clear advantage. For468

Llama-3.1-8B, we obtain 76.8k tokens/s compared469

to AgentOhana (53.7k; 1.4x slower) and Lumos470

(59.6k; 1.3x slower). For Mixtral-8x7b, our system471

reaches 47.4k tokens/s, while AgentOhana encoun-472

ters out-of-memory (OOM) errors; Lumos man-473

ages 33.6k tokens/s (1.4x slower). For Mixtral-474

8x22b, ActionStudio delivers a throughput of 14.7k475

tokens/s, while AgentOhana fails to complete train-476

ing under this regime due to OOM and Lumos gets477

5.1k tokens/s, which is 2.9x slower than us.478

Full-model tuning. Next, for full model training,479

where much more parameters needed to be updated,480

and a more efficient usage of resources needed to481

be done in order to enable this. As we can see482

from the table, ActionStudio is the only framework483

able to fully update all model parameters across all484

three model sizes, with full fine-tuning on a single485

pod is only 16-30% slower than LoRA. For smaller486

models like Llama-3.1-8b and Mixtral-8x7b, Agen-487

tOhana and Lumos can also support training, but at488

noticeable slower performance than ActionStudio.489

Multi-pod scalability. Finally, both AgentOhana490

and Lumos do not support multi-pods trainings,491

while in ActionStudio, the throughput remains to492

be linearly scaled for both 2 and 4 pods: Llama-8B493

throughput rises from 64 k (1 pod) to 125 k (2 pods)494

and 224 k (4 pods); similar scaling appears for both495

Mixtral variants. This not only demonstrate our496

capability to support larger model trainings with497

ActionStudio, but also at a very efficient speed.498

Long-context support. We stress-tested Action-499

Studio on an extreme setting, Mixtral-8x22b with500

BS/GPU=1, Seq=32k, and observed no throughput 501

loss. In fact, throughput increased slightly com- 502

pared with the standard BS/GPU=8, Seq=4k: 15.2 503

k vs. 14.7 k tokens/s for Q+LoRA (+4 %), 15.4 k vs. 504

14.7 k for BF16-LoRA (+5 %), and 46.9 k vs. 44.4 505

k for FT-4 (+5 %). These results confirm that Ac- 506

tionStudio’s memory scheduler scales seamlessly 507

to much long token contexts, enabling efficient 508

long-horizon agent training without manual tuning. 509

In summarization, across the three model sizes 510

and four tuning regimes, ActionStudio is consis- 511

tently the fastest-up to 9x quicker than AGENTO- 512

HANA and LUMOS-and the only framework that 513

(i) completes every LoRA configuration without 514

out-of-memory (OOM) failures, (ii) supports full- 515

model tuning on multiple pods with linear speed 516

scaling, and (iii) in our tests under ActionStudio 517

framework, it remains similar throughput when 518

Mixtral-8x22b is trained with a 32k-token context. 519

4.6 Ablation Study 520

Human Verifications. Figure 2 demonstrates 521

that ActionStudio reliably removes low-quality tra- 522

jectories across all datasets. To quantify this effect, 523

we commissioned an independent third-party anno- 524

tation company to audit a uniformly random sample 525

of 150 trajectories, stratified across datasets. An- 526

notators followed the four rubric items defined in 527

§3.1.3-correctness, hallucination, tool-use appro- 528

priateness, and overall response quality-and then 529

indicated whether ActionStudio’s keep/remove de- 530

cision was correct. Agreement between ActionStu- 531

dio and human judges reached 85%, roughly 15% 532

over previous LLM-based agent data critiquing 533

baseline. This shows the effectivenes of Action- 534

Studio on handling complex trajectories. Besides, 535

through detailed analysis, the residual 15% dis- 536

agreement highlights future scopes such as inte- 537
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Model / Data Topic Acc Function Call Ac Free Text Acc Average Acc

Mixtral-8x22b-inst 0.98 0.65 0.60 0.74
FT on ActionStudio (processed) 0.98 0.75 0.82 0.85
FT on Raw data 0.98 0.44 0.75 0.72
FT on AgentOhana (processed) 0.90 0.66 0.84 0.80

Table 4: Accuracy on the CRM Agent Benchmark. FT denotes full-tuning; ActionStudio and AgentOhana are
two different training frameworks (each with its own data processing pipeline). Best score per column is bold.
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Figure 2: ActionStudio’s critique–and–filter pipeline on each dataset. Original shows the total number of agent
steps, Removed the steps discarded by filtering, and Retained the remaining steps.

grating multi-turn self-consistency checks, domain-538

specific hallucination detectors, or adaptive thresh-539

olds that evolve with new agent behaviors-to push540

reliability even closer to human parity.541

Ablation on Data Pipelines. Table 4 examines542

how data quality influences full-tuning (FT) of543

the Mixtral-8x22b-inst backbone. We compare544

four settings that differ only in the data process-545

ing pipeline during FT: the untuned baseline, FT546

on ActionStudio-processed trajectories, FT on raw547

agent data trajectories, and FT on AgentOhana-548

processed trajectories.549

ActionStudio preprocessing yields the largest550

gains. Applying ActionStudio’s critique-and-filter551

pipeline lifts function-call accuracy from 0.65 to552

0.75 (+10), free-text accuracy from 0.60 to 0.82553

(+22), and the overall score from 0.74 to 0.85.554

Raw data degrades performance. Naively fine-555

tuning on unfiltered logs drives function-call accu-556

racy down to 0.44 and reduces the aggregate metric557

to 0.72-worse than baseline-illustrating noisy agent 558

trajectories can overwhelm the learning signal. 559

AgentOhana preprocessing is helpful but less 560

effective. Cleaning the same corpus with AgentO- 561

hana’s agent data pipeline partially recovers per- 562

formance (0.66 / 0.84 / 0.80) yet still lags behind 563

ActionStudio on every metric, implying that Ac- 564

tionStudio data pipeline could better target the error 565

modes of complicated agent trajectories. 566

5 Conclusion 567

We introduced ActionStudio, a lightweight and flex- 568

ible framework for training large action models. By 569

integrating structured data preprocessing, advanced 570

fine-tuning, and distributed training, ActionStudio 571

simplifies agentic model development. Evaluations 572

on NexusRaven and the CRM Agent Benchmark, 573

which specifically reflects realistic industry agent 574

scenarios, demonstrated its effectiveness and prac- 575

tical value for robust agentic model solutions. 576
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6 Limitations577

While ActionStudio provides a practical and exten-578

sible framework for developing robust large action579

models for complex agent scenarios, a few limi-580

tations remain. The current implementation pri-581

marily focuses on text-based and function-calling582

scenarios, with future support planned for multi-583

modal and embodied environments. Additionally,584

although the framework includes standardized for-585

mats and a robust data processing pipeline, model586

effectiveness still depends on the quality and di-587

versity of input datasets, which can vary across588

use cases. Despite these challenges, ActionStudio589

significantly lowers the barrier to LAM develop-590

ment and offers a scalable foundation for further591

innovation in industry and research.592
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A Appendix750

A.1 Unified Format 2.0751

To support diverse agentic tasks in a model-friendly752

way, we introduce Unified Format 2.0, an upgraded753

version of the format used in prior work. While754

Unified Format 1.0 was designed to modularize755

agentic trajectories for general-purpose processing,756

it lacked alignment with the message-passing for-757

mat expected by modern LLM APIs. Unified For-758

mat 2.0 is designed to be natively compatible with759

modern chat-based LLM APIs and HuggingFace-760

style chat templates, significantly reducing the ef-761

fort required to convert raw data into model-ready762

training samples. An example of a trajectory in763

Unified Format 2.0 is shown in Figure 3.764

Unified Format 1.0 (Zhang et al., 2024b) intro-765

duced a modular schema for representing agen-766

tic interaction data, including fields such as767

task_instruction, query, tools, and a list of768

steps that capture tool calls, intermediate thoughts,769

user follow-ups, and observations. While effective770

for general processing and augmentation, this for-771

mat was not directly aligned with the message-772

based structure expected by most open-source773

LLMs, requiring non-trivial conversion logic to774

adapt the data for training. An example showcas-775

ing Unified Format 1.0 is presented in Figure 5.776

In contrast, Unified Format 2.0 structure is based777

on the conversational schema commonly used in778

APIs like OpenAI and HuggingFace. It replaces the779

steps field with a conversation list, where each780

entry is a message with a specific role (e.g., system,781

user, assistant, or tool). Tool calls are now ex-782

plicitly represented inside assistant messages using783

a tool_calls field, and tool responses are mapped784

to messages with the role tool, linking back via a785

tool_call_id. This structure is more compatible786

with LLM APIs and chat templates, which removes787

the need for custom scripts to flatten or restructure788

training samples. Figure 4 demonstrates that with789

Unified Format 2.0, the training format can be flex-790

ibly changed by applying the corresponding chat791

template from the tokenizer. In contrary, Figure 6792

shows the fixed training format from Unified For-793

mat 1.0, which remains unchanged across different794

models, requiring substantial effort in data format795

conversion for both training phase and deployment796

phase.797

A.2 Evaluation Details for NexusRaven 798

To evaluate function-calling performance on the 799

NexusRaven benchmark, we follow a two-step pro- 800

cess: (1) parsing tool calls from the model’s output, 801

and (2) computing precision, recall, and F1 scores 802

by comparing the parsed predictions to ground- 803

truth annotations. 804

Tool Call Parsing. NexusRaven includes a cus- 805

tom parser designed to extract structured tool call 806

information from raw model outputs. Since dif- 807

ferent models may follow varying output formats 808

(e.g., enclosing tool calls in special tags, including 809

JSON blocks with markdown fencing, or append- 810

ing irrelevant tokens), the parser applies a series of 811

heuristics to sanitize the output and isolate the tool 812

call content. It then parses the cleaned text into a 813

structured format containing: 1) the function/tool 814

name, 2) the arguments as a dictionary of key-value 815

pairs, and 3) an optional tool call ID. The parser 816

handles edge cases such as missing fields, extrane- 817

ous formatting tags (e.g., <think>, <tool_call>), 818

and malformed JSON. 819

Metric Computation. After extracting the pre- 820

dicted and ground-truth tool calls, we compute 821

evaluation metrics at the API level level, which 822

includes the Precision (P_api), Recall (R_api), and 823

F1 Score (F1_api). P_api and R_api calculate the 824

proportion of predicted tool calls whose function 825

name matches one in the ground-truth, and the 826

proportion of ground-truth tool calls that were suc- 827

cessfully predicted, respectively. The F1_api is 828

the harmonic mean of API precision and recall. 829

This enables consistent and scalable comparison of 830

function-calling capabilities across models, while 831

maintaining tolerance to minor formatting differ- 832

ences. 833
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{
"unique_trajectory_id": "id",
"task_instruction": "...",
"tools": [

{
"type": "function",
"function": {

"name": "get_sleep_stats",
"description": "Get the user 's sleep statistics for a specified time period.",
"parameters": {

"type": "object",
"properties": {

"user_id": {
"type": "string",
"description": "Unique identifier of the user whose sleep statistics will be

retrieved.",
},

},
"required": [

"user_id",
]

}
}

},
],
"conversation": [

{
"role": "user",
"content": "I would like to get my sleep statistics from last night."

},
{

"role": "assistant",
"content": "",
"tool_calls": [

{
"type": "function",
"function": {

"name": "get_sleep_stats",
"arguments": {

"user_id": "1234",
}

},
"id": "808380806"

}
]

},
{

"role": "tool",
"name": "get_sleep_stats",
"content": {

"data": {
"message": "..."

}
},
"tool_call_id": "808380806"

},
{

"role": "assistant",
"content": "Your sleep statistics from last night has been retrived successfully."

}
]

}

Figure 3: Unified format 2.0 for function calling data.
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Prompt:
<|begin_of_text|><|start_header_id|>system<|end_header_id|>

Environment: ipython
Cutting Knowledge Date: December 2023
Today Date: 26 Jul 2024

<|eot_id|><|start_header_id|>user<|end_header_id|>

Given the following functions, please respond with a JSON for a function call
with its proper arguments that best answers the given prompt.

Respond in the format
{"name": function name,
"arguments": dictionary of argument name and its value}.
Do not use variables.

{
"type": "function",

"function": {
"name": "get_sleep_stats",
"description": "Get the user's sleep statistics
for a specified time period.",
"parameters": {

"type": "object",
"properties": {

"user_id": {
"type": "string",
"description": "Unique identifier of the user whose sleep
statistics will be retrieved."

}
},
"required": [

"user_id"
]

}
}

}

I would like to get my sleep statistics from last night.<|eot_id|>

Output:
[{"name": "get_sleep_stats", "arguments": {"user_id": "1234"}}]

Figure 4: Example prompt and output for function-calling from unified format 2.0, by applying Llama-3.1-70B-Instruct chat
template.
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{
"unique_trajectory_id": "id",
"task_instruction": "...",
"few_shot_examples": [],
"query": "The task or the question that the user provides.",
"tools": [

{
"name": "api_name1",
"description": "description of this api",
"parameters": {

"param1": {
"type": "string",
"description": "",

},
}

},
],
"steps": [

{
"thought": "thinking and/or planning process",
"tool_calls": [

{
"name": "api_name1",
"arguments": {

"argument1": "xxx.",
"argument2": "xxx"

}
}

],
"step_id": 1,
"next_observation": "observations or feedbacks from the environment/APIs after execution

function."
"user_input": "User follow up input at this turn if any."

},
],

}

Figure 5: Unified format 1.0 for function calling data.
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Prompt:
[BEGIN OF TASK INSTRUCTION]
Based on the previous context and API request history, generate an API
request or a response as an AI assistant.
[END OF TASK INSTRUCTION]

[BEGIN OF AVAILABLE TOOLS]
[

{
"name": "get_fire_info",
"description": "Query the latest wildfire information",
"parameters": {

"location": {
"type": "string",
"description": "Location of the wildfire.",
"required": true,

},
"radius": {

"type": "number",

"description": "The radius (in miles) around the location.",
}

},
},...

]
[END OF AVAILABLE TOOLS]

[BEGIN OF FORMAT INSTRUCTION]
Your output should be in the JSON format, which specifies a list of
function calls. The example format is as follows. Please make sure the
parameter type is correct. If no function call is needed, please make
tool_calls an empty list "[]".
{"thought": "the thought process, or an empty string", "tool_calls":
[{"name": "api_name1", "arguments": {"argument1": "value1", "argument2":
"value2"}}]}
[END OF FORMAT INSTRUCTION]

[BEGIN OF QUERY]
Can you give me the latest information on the wildfires occurring in California?
[END OF QUERY]

[BEGIN OF HISTORY STEPS]
[

{
"thought": "Sure, what is the radius (in miles) around the location of
the wildfire?",
"tool_calls": [],
"step_id": 1,
"next_observation": "",
"user_input": "User: Let me think... 50 miles."

},
]
[END OF HISTORY STEPS]

Output:
{"thought": "", "tool_calls": [{"name": "get_fire_info",
"arguments": {"location": "California", "radius": 50}}]}

Figure 6: Example prompt and output for function-calling from unified format 1.0.
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