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Abstract

Inspired by the workings of biological brains, humans have designed artificial
neural networks (ANNs), sparking profound advancements across various fields.
However, the biological brain possesses high plasticity, enabling it to develop sim-
ple, efficient, and powerful structures to cope with complex external environments.
In contrast, the superior performance of ANNs often relies on meticulously crafted
architectures, which can make them vulnerable when handling complex inputs.
Moreover, overparameterization often characterizes the most advanced ANNs. This
paper explores the path toward building streamlined and plastic ANNs. Firstly, we
introduce the Graph Perceptron (GP), which extends the most fundamental ANN,
the Multi-Layer Perceptron (MLP). Subsequently, we incorporate a self-assembly
mechanism on top of GP called Self-Assembling Graph Perceptron (SAGP). Dur-
ing training, SAGP can autonomously adjust the network’s number of neurons
and synapses and their connectivity. SAGP achieves comparable or even superior
performance with only about 5% of the size of an MLP. We also demonstrate the
SAGP’s advantages in enhancing model interpretability and feature selection.

1 Introduction

With the exceptional intelligence of the brain, humanity has created a remarkable modern civilization.
This intelligence stems from the brain’s intricate structure, resulting from long-term environmental
adaptation and natural selection. Research shows that the survival environment profoundly impacts
shaping the brain, which in turn indirectly shapes human cognitive and emotional abilities [1].

On the other hand, since the 1940s, researchers have been exploring how to simulate the behavior
of the biological brain using computers to build artificial intelligence agents. It was only in recent
decades that a framework known as artificial neural networks (ANNs) has indeed demonstrated
significant potential in this field. ANNs simulate neurons and their synaptic connections in the brain,
determining each neuron’s output by the strength of the input signals they receive.

Despite the powerful capabilities of ANNs, their design seems to deviate from the initial intent
of mimicking the biological brain. In ANNs, the number of neurons and synaptic connection
patterns are predefined, resulting in noticeable vulnerabilities when the network faces complex
environments. [2] and [3] have demonstrated, from theoretical and experimental perspectives,
respectively, the significant impact of the number of hidden layers and neurons on the ability of Multi-
Layer Perceptrons (MLPs). Moreover, modern deep models are often over-parameterized, with the
most advanced large language models reaching a parameter scale of trillions. In contrast, biological
brains continually self-assemble throughout their lifecycle, developing remarkable capabilities. For
instance, a nematode can manage all its behaviors with fewer than 500 neurons [4].
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Recently, some studies have focused on creating ANNs that can assemble themselves based on
input without relying on prior knowledge. [5] and [6] proposed learning genomes that regulate
neuronal behavior, enabling self-adjustment of synaptic connection rules without altering the number
of neurons. The neural development program (NDP, [7, 8]) first suggests regulating neuron growth
through genomes, allowing the network to develop from a single neuron and incrementally add
new neurons and synapses in response to inputs, eventually growing into a network of a predefined
size. However, NDP does not fully realize biological self-assembly. It neglects the most important
reason biological neural systems maintain their efficiency and compactness: neuronal apoptosis
[9]. Furthermore, since NDP explicitly encodes a genome for generating the network structure and
optimizes it by reinforcement learning, the high computational cost prevents it from running on even
a typical-scale dataset.

In this paper, we first introduce a generalized version of the Multi-Layer Perceptron (MLP), namely
the Graph Perceptron (GP). Building upon this, we present the Self-Assembling Graph Perceptrons
(SAGP)—the first model with full self-assembly capability. SAGP begins from the simplest form
and autonomously determines when to grow or undergo apoptosis during its developmental cycle.
Synaptic connections between neurons are dynamically adjusted. Unlike previous works, SAGP does
not explicitly model the genome that controls neuronal behavior and topology. Instead, it achieves
self-assembly by establishing assembly rules and simulating the competitive pressures found in nature.
This makes SAGP more aligned with the general paradigm of modern deep networks and results
in a significant improvement in the assembly speed by more than 10,000 times. We demonstrate
that SAGP can achieve a more streamlined perceptron topology than MLP while highlighting the
potential of the self-assembly mechanism in enhancing model interpretability and feature selection.

2 Related work

Neural network bionics
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Figure 1: An example of multi-solution reasoning.

Scientists have long sought inspiration from the
biological world to develop algorithms for solv-
ing real-world problems. Early bio-inspired
strategies, such as evolutionary and genetic al-
gorithms [10, 11], solve complex optimization
problems by simulating the process of biological
evolution. Meanwhile, artificial neural networks,
which simulate the process of neuronal interac-
tions through synaptic connections [12], have
achieved great success in numerous applications. However, ANNs, represented by MLP, are pre-
defined as layered structures with fixed sizes and usually require a large number of neurons and
dense synaptic connections for optimal performance, which is contrary to the properties of biological
neural networks (Fig. 1). Consequently, a growing body of research is focused on designing net-
works with more bio-inspired features. Spiking Neural Networks (SNNs) mimic the mechanism of
neurons transmitting information through action potentials, enabling asynchronous and low-power
information processing [13, 14]; Liquid Neural Networks (LNNs) simulate the neural connection of
the nematodes, using a small number of neurons to generate continuous-time outputs [15]. Plastic
Neural Networks (PNNs) emulate the developmental processes of organisms, dynamically adjusting
their structures based on environmental states [16].

Synaptic-level plasticity The characteristic of plastic ANNs lies in their ability to adjust their
structure in response to environmental changes. Initially, this research area focused on synaptic-level
plasticity; inspired by early neurobiological theories, researchers developed mechanisms such as
the Hebbian rule [17] and Spike-Timing Dependent Plasticity (STDP, [18]) to enable ANNs to self-
regulate synaptic strength. These classical methods are unsupervised, while more modern approaches
employ backpropagation to learn synaptic rules [19, 20] or use meta-learning to obtain genomes that
control synaptic behavior [5, 6].

Neuron-level plasticity Some methods allow neurons to adjust their state based on the environ-
ment, such as by modifying weights [21], changing activation functions [22], or learning rates [23].
Neuroevolution [24, 25] encodes the network topology as individuals in a population and finds the
optimal ones by evolution. [26] considers parameter pruning based on plastic neurons. Only recently
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has the concept of self-assembly — the dynamic increase of neurons within a single network (as
opposed to a population) — been introduced by Neural Developmental Program (NDP, [7, 8]). We
achieve a fully self-assembling model with neural competition and apoptosis mechanisms. Compared
to NDP, our model improves the assembly speed by over 104 times per epoch and shows the ability
to integrate with modern deep models. See Appendix A for more related works.

3 Self-Assembling Graph Perceptrons

This section introduces our approach, the Self-Assembling Graph Perceptrons (SAGP), in detail.
Without additional constraints, the free connections between neurons may exhibit a more general
connection pattern than the layered connections, namely, a graph-structured connection. In Section
3.1, we explore how information is updated in a graph-structured perceptron model (i.e., GP), which
forms the foundation for achieving the network’s self-assembly capability. Section 3.2 introduces the
approach by which GP achieves self-assembly through establishing assembly rules and simulating
competitive pressures.

3.1 From MLPs to graph perceptrons

Figure 2: A simple example of a Multi-Layer Per-
ceptrons, where σ represents the activation func-
tion.

Since the inception of perceptron models, they
have been conventionally regarded as layered
structures [12, 27, 28, 29]. Although fully
connected perceptron models like Hopfield
Networks [30] and Boltzmann Machines [31]
emerged in the past, they gradually became
marginalized due to practical limitations. How-
ever, we re-examine this concept inspired by the
message-passing mechanism [32].

Take a simple MLP with 2 input neurons, 2 hid-

den neurons in 1 hidden layer, and 1 output neuron as an example (Fig. 2). Let x =

[
x0

x1

]
and

z = [z0] represent the model’s input and output, respectively, then we have:

z = W T
1 · σ(W T

0 · x+ b0), (1)

where W 0 =

[
w0

00 w0
01

w0
10 w0

11

]
, b0 =

[
b00
b01

]
, and W 1 =

[
w1

00

w1
10

]
.

Now, we number all neurons sequentially in the order of input, hidden, and output layers. In this
way, the topology of the MLP and the weights of its edges can be represented by a 5× 5 adjacency
matrix A. If the i-th neuron has a synaptic connection to the j-th neuron, then Aij is the weight of
that synapse; otherwise, Aij = 0. Input neurons carry self-loops, meaning they continuously send
information to the network. We also construct a vector b of length 5 to represent the biases of all the
neurons, where the biases of input and output neurons are set to 0, as follows:

A =

[
I2×2 W 0 02×1

02×2 02×2 W 1

01×2 01×2 01×1

]
, b =

[
02

b0
01

]
. (2)

Here, 0 represents a zero matrix or vector. If we input x at the input neurons and use zero inputs for
other neurons, then, after one step of message-passing [32] on the graph described by A, we obtain
the same intermediate results at the hidden neurons as we would in MLPs:

σ

(
AT ·

[
x
02

01

]
+ b

)
=

 σ(x)
σ(W T

0 x+ b0)
01

 . (3)

By repeating this process once again, the output neuron produces the same result as the output of the
MLPs:

AT ·

 σ(x)
σ(W T

0 x+ b0)
01

+ b =

 σ(x)
W T

0 σ(x) + b0
z

 . (4)
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Figure 3: A schematic of our model (SAGP). It assembles itself by simulating neuron growth,
competition, and apoptosis.

Thus, we obtain an alternative representation of z, where we use Python-style indexing [-2:] to
denote taking the last two elements of a vector to form a new one:

z =

(
AT · σ

(
AT ·

[
x
03

]
+ b

)
+ b

)
[−2:]

. (5)

It is easy to show that similar conclusions hold for MLPs of any number of hidden layers and sizes
(See appendix B).

Based on this observation, we now define a generalized perceptron model, referred to as the Graph
Perceptrons (GP). Let the sets of input neurons, hidden neurons, and output neurons be denoted as I ,
H, and O, respectively. GP has the following adjacency matrix and biases:

A =

I |I|×|I| AI→H AI→O
0|H|×|I| AH→H AH→O
0|O|×|I| 0|O|×|H| 0|O|×|O|

 , b =

0|I|
bH
0|O|

 . (6)

GP allows direct connections from input neurons to output neurons and interconnections between any
two hidden neurons. In GP, the feature update process is described as:

∀l ∈ [0, L− 1], hl+1 = Ax̂l + b, x̂l+1 = σ(hl+1) where x̂0 =

[
x

0|H|+|O|

]
and z = hL

[−|O|:].

(7)
When AI→O = 0, AH→H = I , and L = 2, the GP degenerate to MLPs with 1 hidden layer. L
represents the number of message-passing steps. It is worth noting that when a GP has the same
topology as the MLP shown in Fig. 2, it can perform arbitrary L (L ≥ 2) message-passing steps,
not only 2. When L > 2, this can be interpreted as the output neurons not producing an output
immediately upon receiving the first message but rather waiting for further ones. We also provide a
neuron-level equivalent representation of equation (7), which is useful in subsequent discussions:

∀l ∈ [0, L− 1], ∀i ∈ H ∪O,

hl+1
i = bi +

∑
j∈N

Aij x̂
l
j , x̂l+1

i = σ(hl+1
i ), where x̂0

i =

{
xi, if i ∈ I,
0, else.

and z = [hL
i ]i∈O.

(8)
Where N = I ∪ H ∪O. The strength of GP lies in its ability to enable perceptrons to work under
any topology. It is crucial for building self-assembling neural networks, as neurons’ dynamic growth
and apoptosis lead to complex connectivity patterns.

3.2 Growth and apoptosis: Let GP assemble itself

This section introduces how to implement a GP with full self-assembly capabilities, namely SAGP.
SAGP is the first to realize a fully self-assembling neural network, capable of growing new neurons
and achieving neuronal apoptosis and synaptic pruning. This functionality is realized by setting
assembly rules and simulating competitive pressures, thus avoiding direct encoding of the genome.

Initial state The SAGP begins its development from the simplest state. GP always has a fixed number
of input and output neurons, but at this stage, no hidden neuron, i.e., |H| = 0. It also includes all
possible synapses from I to O, totaling |I| × |O|.
Neuron competition & synaptic competition During the development of the biological brain, neuron
competition [33] and synaptic competition [34] play a crucial role in acquiring cognitive and memory
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(a) Figure 4(a): Synapse-level mask (left) and neuron-
level mask (right).

m

Weaken Strengthen

(b) Figure 4(b): The competition loss weakens most
masks while only enhancing those with a competitive
advantage.

abilities. We simulate this process by learnable masks with competition loss. Two types of masks
are introduced in SAGP: neuron-level masks (denoted as mi) and synapse-level masks (denoted as
mij , Fig. 4a). Noting that if a hidden neuron has no outgoing synapses, it will never affect the output
neurons. Therefore, the node-level mask acts on all the neuron’s outgoing edges. The feature update
of the GP can be rewritten as:

hl+1
i = bi +

∑
j∈N

mj ·mij ·Aij x̂
l
j . (9)

All masks are learnable and can only take values of 0 or 1. It is achieved through a two-step
process: first, for a learnable real number m̂ ∈ R, we generate a soft mask mS ∈ [0, 1] by Gumbel
reparameterization [35]; then, we use the Straight-Through Estimator (STE, [36]) to produce a hard
mask m = mH ∈ {0, 1} that is suitable for back-propagation:

mS = Gumbel_Sigmold(m̂), (10)

mH = Stop_Grad(1(mS > 0.5)−mS) +mS, (11)

m = mH. (12)

However, what truly enables the masks to make a competitive effect is what we refer to as the
“Competition Loss”:

CompLossα(m
S) = C(α) ·mS(1−mS)α. (13)

Here, α ∈ (0, 1) is a temperature parameter, and C(α) is a scaling factor designed to ensure that
CompLossa has a maximum value of exactly 1 over [0, 1]. As shown in Fig. 4b, SparseLoss weakens
the less advantageous soft masks, driving them towards 0. In contrast, only the masks that dominate
in competition—i.e., those with larger values—are enhanced, tending towards 1. By summing up the
SparseLoss of all masks, we obtain the auxiliary loss:

AuxLoss =
γ1
|H|

∑
i∈H

CompLossα(m
S
i ) +

γ2
|I|+ |H|

∑
i∈I∪H
j∈H∪O

CompLossα(m
S
ij). (14)

γ1 and γ2 are both weighting parameters. We achieve neuron competition and synaptic competition
mechanism via back-propagation by adding AuxLoss to downstream task loss.

Neuronal apoptosis Biological organisms streamline the structure of their nervous systems through
synaptic pruning [37] and apoptosis [9]. Similarly, when training SAGP, we introduce the following
rules to remove neurons from the network to ensure the efficiency of the structure:

Apoptosis Rule: Remove hidden neuron i from set H and remove all synapses connected to i if
mS

i < β ·Meanj∈H(mS
j ).

Here, β ∈ (0, 1). The soft mask of a hidden neuron reflects its status in the competition. The
Apoptosis Rule removes neurons that are relatively weaker within the overall population, as their
influence on the outcome is negligible, thereby reducing computational overhead.

Neuronal growth Organisms tend to reproduce faster under reduced competitive pressure [38]. In
SAGP, if no neurons have been pruned over N consecutive training epochs, this may indicate that
competition has sufficiently stabilized, with each neuron occupying a corresponding niche. At this
point, we add new hidden neurons to increase competitive pressure:
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Growth Rule: Add a new neuron to H and add all possible synapses connected to this new neuron to
the network if no neurons are pruned for N consecutive epochs.

As the neural network trains, the number of hidden neurons dynamically increases or decreases
based on two rules. Synapses or neurons in the network may also become temporarily ineffective
due to insufficient competitiveness (corresponding to a small mask value). See Appendix C.3 for
implementation details.

(a) Figure 5(a) We visualize the perceptron topology
at several time points, where only the hidden neurons
and their connections are depicted, while input and
output neurons are omitted.

(b) Figure 5(b) Results of training SAGP on the FSDD
dataset. We first present the change in the number of
active neurons and synapses during training, with an
apparent three-stage characteristic observed

(c) Figure 5(c) Trends in the training and validation
losses during the training of SAGP on the FSDD
dataset.

Assembling dynamics We visualized the self-
assembly process of SAGP (Fig. 5a and Fig. 5b)
and its performance variations (Fig. 5c). The
results show that the self-assembly undergoes
three distinct stages: First, the network rapidly
expands to near its maximum size within a short
period (approximately 0 to 1000 epochs); next,
intense competition occurs between neurons and
synapses, with the majority of neuronal apopto-
sis and synaptic pruning happening during this
stage (approximately 1000 to 10000 epochs);
finally, the network topology stabilizes, with the
number of neurons remaining almost constant
while the number of synapses slowly decreases
(approximately 10000 to 50000 epochs). Even
as the network size decreases, its performance
keeps improving, indicating that the informa-
tion density in the parameters is increasing. In-
terestingly, this trend is similar to the changes
in human cortical volume: the cortex rapidly
reaches its maximum volume during childhood.
It then gradually decreases in size over a long
maturation period, enhancing its functionality
[39].

Hyperparametes Several hyperparameters are
introduced in SAGP, including L, α, γ1, γ2, β,
and N . We provide a set of empirical hyperpa-
rameters, which are consistently applied across
all experiments discussed in this paper (See Ap-
pendix C.2). While hyperparameter tuning typi-
cally yields better performance for specific tasks
or datasets, by fixing these parameters, we demonstrate the strong adaptability of SAGP in tackling
complex environments.

Complexity Let the batch size be B. The computational complexity of one forward propagation in
SAGP is O(BLS), where L and S represent the number of message-passing steps and the number of
synapses, respectively. S can be further expressed as λ(n1+n2+n3)

2, where n1, n2, and n3 represent
the numbers of input, hidden, and output neurons, respectively, and λ denotes the density of the
adjacency matrix. Therefore, the complexity of SAGP is also expressed as O(λBL(n1 + n2 + n3)

2).

4 Experiment

Overview In the experiment, we answer three questions: first, the impact of topological structure
on the perceptron model; second, the performance of SAGP on deep learning tasks; and third, the
inspiration that self-assembling neural networks provide for modern deep learning. Three domains of
the dataset are used: text, audio, and images. We also conducted experiments on deep graph models
and temporal models. See Appendix C.1 for more dataset details.

4.1 Perceptron topology

Question 1: Is a multi-layered connection like MLP always the best perceptron
topology?
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(A) Multi-layer 
connection (MLC)

(B) MLC + residual 
connection

(C) MLC + Jordan’s 
connection

(D) MLC + Elman’s 
connection

(E) Complete 
connection

(F) Restricted complete 
connection

(G) MLC+complete 
connection

(H) MLC + self 
connection

Existing perceptron topology

New perceptron topology

Input neurons

Hidden neurons

Output neurons

Figure 7: We conduct experiments on 8 different topologies of graph perceptrons to investigate the
impact of neuron connectivity patterns. Topologies (A) to (D) are reported in existing literature, while
(E) to (H) are new topologies designed by us.

Dataset Metric (A) (B) (C) (D) (E) (F) (G) (H)

Pho.

F1-mi. .877 .870 .865 .866 OOM .876 .861 .873
F1-ma. .843 .836 .828 .831 OOM .843 .821 .838
AUC-mi. .985 .986 .985 .985 OOM .987 .985 .985
AUC-ma. .988 .988 .987 .987 OOM .988 .987 .987

Com.

F1-mi. .780 .780 .787 .787 OOM .780 .779 .784
F1-ma. .714 .710 .710 .715 OOM .713 .714 .720
AUC-mi. .972 .971 .973 .971 OOM .971 .974 .973
AUC-ma. .978 .977 .978 .976 OOM .976 .978 .976

ESC.

F1-mi. .330 .348 .348 .343 .338 .368 .338 .322
F1-ma. .317 .338 .327 .324 .323 .352 .320 .304
AUC-mi. .886 .882 .878 .886 .873 .877 .879 .892
AUC-ma. .880 .875 .871 .877 .867 .873 .873 .885

FSD.

F1-mi. .937 .936 .931 .934 .936 .937 .938 .933
F1-ma. .938 .936 .931 .934 .936 .938 .939 .933
AUC-mi. .995 .996 .995 .997 .997 .996 .997 .996
AUC-ma. .996 .997 .996 .996 .996 .996 .997 .996

Fas.

F1-mi. .840 .825 .849 .845 .847 .819 .848 .855
F1-ma. .840 .824 .849 .844 .848 .817 .845 .854
AUC-mi. .989 .984 .990 .988 .989 .984 .989 .990
AUC-ma. .986 .979 .985 .984 .985 .979 .985 .987

CIF.

F1-mi. .466 .374 .465 .417 OOM .374 .462 .453
F1-ma. .461 .370 .456 .412 OOM .365 .453 .446
AUC-mi. .867 .796 .862 .867 OOM .795 .864 .860
AUC-ma. .865 .796 .866 .829 OOM .793 .864 .858

Table 1: The performance of graph perceptrons with differ-
ent topologies when the number of hidden neurons is fixed
128. OOM indicates out of memory. The best results are
highlighted.

With a fixed budget of 128 hidden neu-
rons, we investigated the performance of
8 different topologies for graph percep-
trons (Table 1). The results show that no
single topology consistently outperforms
others across different datasets and met-
rics. This suggests that mechanisms like
self-assembly, which dynamically adjust
the perceptron topology, have the poten-
tial to deliver better performance than
fixed multi-layer topology. We select the
FSDD dataset with the smallest perfor-
mance gap for further investigation. We
report the convergence speed of the GP
(Fig. 6 left) and the impact of hidden neu-
ron count on performance (Fig. 6 right).
We found that the eight topologies can be
divided into two categories: The first cat-
egory includes topologies with strict hi-
erarchical connection structures like (A),
(C), (D), and (H), which converge faster
but suffer from significant performance
degradation at low budgets. The second
category consists of topologies with non-
strict hierarchical connections like (B),
(E), (F), and (G), which converge slower but perform well even with a small number of hidden
neurons. Thus, another potential advantage of general-topology perceptrons is that they may achieve
performance comparable to multilayer-connected ones with a much smaller size. However, multi-
layer perceptrons have a computational efficiency advantage since they can be implemented using
straightforward matrix multiplications rather than message-passing mechanisms.

Figure 6: The graph perceptron’s convergence
speed (left) and its sensitivity to the number of
hidden neurons (right).

Answer 1: MLPs strike an excellent balance
between performance and cost, but GPs can
achieve the same or even higher performance
with a more streamlined topology.
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Scale Metric
|H| #Synapse F1-micro (Accuracy) F1-macro AUC-micro AUC-macro

Photo
MLP-b 512 385536 .8687±.0053 .8314±.0064 .9851±.0010 .9867±.0002

SAGP-b 0.20(0.04%) 4196(1.09%) .8704±.0047(100.20%) .8354±.0058(100.48%) .9856±.0011(100.05%) .9881±.0003(100.14%)
SAGP-l 0.00(0.00%) 4040(1.05%) .8671±.0015(99.82%) .8335±.0017(100.25%) .9855±.0004(100.04%) .9882±.0001(100.15%)

Computers
MLP-b 1024 659968 .7820±.0044 .7073±.0058 .9696±.0012 .9769±.0006

SAGP-b 0.00(0.00%) 4376(0.66%) .7687±.0032(98.30%) .6986±.0045(98.77%) .9657±.0013(99.60%) .9752±.0003(99.83%)
SAGP-l 0.00(0.00%) 3810(0.58%) .7677±.0040(98.17%) .6992±.0040(98.85%) .9660±.0013(99.63%) .9752±.0003(99.83%)

ESC-50
MLP-b 1024 379904 .3297±.0096 .2993±.0102 .8888±.0036 .8841±.0036

SAGP-b 98.20(9.59%) 20874(6.18%) .3190±.0126(96.75%) .3039±.0164(101.54%) .8715±.0027(98.05%) .8650±.0030(97.84%)
SAGP-l 106.6(10.41%) 11251(2.96%) .3438±.0153(104.28%) .3305±.0160(110.42%) .8711±.0025(98.01%) .8659±.0027(97.94%)

FSDD
MLP-b 2048 883712 .9467±.0065 .9473±.0056 .9979±.0003 .9975±.0004

SAGP-b 55.10(2.69%) 6246(0.70%) .9142±.0112(96.57%) .9149±.0111(96.64%) .9925±.0012(99.46%) .9923±.0013(99.48%)
SAGP-l 55.00(2.69%) 4312(0.49%) .9120±.0142(96.33%) .9132±.0141(96.40%) .9917±.0010(99.38%) .9919±.0011(99.44%)

Fasion
MNIST

MLP-l 1024 668672 .8668±.0049 .8651±.0046 .9924±.0005 .9894±.0006

SAGP-l 2.90(0.28%) 3247(0.49%) .8321±.0073(96.00%) .8307±.0067(96.02%) .9869±.0009(99.45%) .9818±.0012(99.23%)

CIFAR-10 MLP-l 768 920064 .5201±.0027 .5168±.0037 .8975±.0013 .8941±.0011

SAGP-l 65.60(8.54%) 90674(9.86%) .5132±.0068(98.67%) .5095±.0073(98.59%) .8918±.0032(99.42%) .8880±.0035(99.32%)

Table 2: A comprehensive comparison between SAGP and MLP. We report the network scale after
training and model performance under 4 metrics. “-l” refers to the performance on the last epoch and
“-b” refers to the performance on the best epoch.

4.2 Self-assembling graph perceptrons

Question 2: What are the advantages of a graph perceptron with full self-assembly
capacity?

|H| Average time per epoch (s) Accuracy (%)

NDP 48 1.58× 102 93.0± 2.9
SAGP 0 1.36× 10−2 99.8± 0.1

Table 3: Following the same settings as in [7], we fairly
compare NDP and SAGP on the toy dataset Digit [7].

|H| #Synapse F1-micro

Pho.
GAMLP-b 512 385536 .9284
GAMLP+SAGP-b 43.60(8.52%) 23991(6.22%) .9236(99.48%)
GAMLP+SAGP-l 25.50(4.98%) 5381(1.40%) .9164(98.71%)

Com.
GAMLP-b 1024 659968 .8546
GAMLP+SAGP-b 19.30(1.88%) 13259(2.01%) .8620(100.9%)
GAMLP+SAGP-l 0.70(0.07%) 526.3(0.08%) .8527(99.78%)

ESC.
LSTM-b 1024 379904 .3321
LSTM+SAGP-b 117.2(11.4%) 28624(7.53%) .3350(100.9%)
LSTM+SAGP-l 117.2(11.4%) 28139(7.41%) .3445(103.7%)

FSD.
LSTM-b 2048 883712 .9543
LSTM+SAGP-b 81.4(3.97%) 14481(1.64%) .9285(97.30%)
LSTM+SAGP-l 68.7(3.35%) 10652(1.21%) .9205(96.46%)

Fas. LeNet-l 1024 398336 .8979
LeNet+SAGP-l 25.5(2.49%) 5853(1.47%) .8673(96.59%)

CIF. LeNet-l 768 438784 .6521
LeNet+SAGP-l 25.8(3.36%) 26562(6.05%) .6650(102.0%)

Table 4: We replaced the MLP as the nonlinear transfor-
mation layers of several classic models with SAGP and
evaluated its performance.

We compared two perceptron models:
SAGP and MLP (Table 2). The only
previous self-assembling model NDP
was excluded from the comparison due
to resource constraints (a single train-
ing run exceeding 12 hours on a single
Nvidia RTX 4090). The suffix “-b” in-
dicates the epoch with the best perfor-
mance during training, i.e., the epoch
that achieves the lowest loss on the val-
idation set. The suffix “-l” refers to the
last training epoch when convergence is
reached. MLPs report results from the
best epoch by default unless the dataset
lacks a validation set. SAGP-b exhibits
better performance, while SAGP-l has
a smaller topology size. Compared to
MLP, SAGP uses only 0% ∼ 10.41% of
hidden neurons and 0.49% ∼ 9.86% of
synapses, achieving performance rang-
ing from 96% ∼ 110.42%. Following
the setup in [7], we compared SAGP
and NDP on a toy dataset, Digit (Table
3). We found that SAGP’s average run-
time per epoch improved by over 10,000
times. Due to neuronal apoptosis, SAGP
eventually removed all hidden neurons, achieving significantly better performance with only the
synapses between input and output neurons. We also experimented with the potential of SAGP
as a submodule in other models (Table 4). Specifically, we replaced the MLP used for generating
classification outputs in GAMLP [40], LSTM [41], and LeNet [42] with SAGP. The results show that
SAGP can achieve comparable performance while maintaining a significantly simplified topology.
Notably, reinforcement learning-trained NDP cannot be integrated into these models.

Answer 2: SAGP achieves performance comparable to MLP with a smaller topology,
while being far more efficient and flexible than NDP.
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4.3 Inspiration for deep learning

Question 3: In what fields can SAGP show its potential?

Figure 8: In the CIFAR-10 dataset, each pixel is
treated as an input neuron. We visualize the out-
degree of all pixels (left) in SAGP and display the
image in which only the top 50% of the pixels with
the largest out-degrees are retained (right).

Model Interpretability A significant challenge
of modern deep learning models is the lack of
interpretability. We visualize the out-degree
of each pixel (input neuron) in the SAGP for
CIFAR-10. We found that the pixels with high
degrees are concentrated in the image’s central
region, where the image’s main subject typically
occupies. When selecting the top 50% of pixels
by degree, the central semantics of the image are
still preserved (fig. 8). This suggests that even a
purely perceptron-based model like SAGP might
exhibit some clues about the reasoning behind
its judgments, similar to how humans respond.

Backbone Ratio XGBoost LassoNet GradEnFS Ours

GCN
5% .7794±.0064 .8301±.0062 .8041±.0056 .8345±.0050

10% .7879±.0126 .8435±.0050 .8236±.0061 .8450±.0057

20% .8270±.0043 .8543±.0054 .8451±.0085 .8529±.0059

GAT
5% .8137±.0094 .8473±.0078 .8233±.0070 .8490±.0042

10% .8305±.0118 .8480±.0068 .8359±.0054 .8517±.0047

20% .8407±.0037 .8619±.0052 .8527±.0106 .8599±.0036

Table 5: We selected the top 5%, 10%, and 20% of features based on the out-degree as subsets,
and compared them with state-of-the-art feature selection methods on the Computers dataset. The
numbers in the table represent the accuracy of the semi-supervised classification task based on the
selected features.

Figure 9: When training SAGP on the FSDD
dataset, we present the out-degree statistics for
three types of input features (left), and the results
of training an MLP with different combinations of
input features (right).

Feature selection Sometimes we want to deter-
mine which data preprocessing method is more
effective or select the most critical subset from
many features to reduce computation. These
issues are collectively referred to as feature se-
lection problems. Our experiments show that
after training with SAGP, the out-degree of in-
put features (input neurons) can indicate feature
importance. In the FSDD audio dataset, we
find that Mel-Frequency Cepstral Coefficients
(MFCC) and Mel frequency spectrogram (Mel)
features are much more effective than chroma
features (Fig. 9). On the Computers datasets, we selected the top 5%, 10%, and 20% of features
based on their out-degree, and tested them with backbone models GCN [43] and GAT [44]. The
classical non-deep semi-supervised feature selection method XGBoost [45], as well as the state-of-
the-art deep semi-supervised feature selection methods LassoNet [46] and GradEnFS [47], were
used for comparison (Table 5). The results show that SAGP significantly outperforms XGBoost and
GradEnFS, and is also competitive with LassoNet, despite SAGP not being specifically designed for
feature selection tasks.

Answer 3: The out-degree of input neurons of a well-trained SAGP can be used in
areas such as model interpretability and feature selection.

5 Conclusion

We introduced SAGP, a graph-structured perceptron model with full self-assembly capabilities
inspired by the growth process of the human brain. SAGP optimizes its topology and enhances its
functionality through neuron growth, competition, and apoptosis. We highlighted the advantages
of SAGP in terms of structural simplification and assembly speed and explored its potential in
interpretability and feature selection.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We made our main claims in the abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations are provided in Appendix D.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

13



Justification: Proofs are provided in Appendix A.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All important implementation details have been presented in the main text and
Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Appendix contains links to the code repository.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Appendix contains experimental setting and details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer:[Yes]
Justification: We repeated the experiment several times.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Main text discuss compute resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This paper complies with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Appendix contains broader impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] .
Justification: This article does not contain any data with a high risk of abuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: All assets in this article are original.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]

Justification: The new dataset introduced in this article has detailed instructions for use.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper did not use human crowdsourcing.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No human subjects were involved in this article.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
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Justification: This article only performs question answering and fine-tuning on LLM.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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