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GT2Vec: Large Language Models for Knowledge Graph
Augmented Text Embedding

Anonymous Author(s)

Abstract

Graph-structured information offers rich contextual information
that can enhance language models by providing structured rela-
tionships and hierarchies, leading to more expressive embeddings
for various applications such as retrieval, question answering, and
classification. However, existing methods for integrating graph and
text embeddings, often based on Multi-layer Perceptrons (MLPs)
or shallow transformers, are limited in their ability to fully exploit
the heterogeneous nature of these modalities. To overcome this, we
propose GT2Vec, a simple yet effective framework that leverages
Large Language Models (LLMs) to jointly encode text and graph
data. Specifically,GT2Vec employs anMLP adapter to project graph
embeddings into the same space as text embeddings, allowing the
LLM to process both modalities jointly. Unlike prior work, we also
introduce contrastive learning to align the graph and text spaces
more effectively, thereby improving the quality of learned joint
embeddings. Empirical results across six datasets spanning three
tasks—knowledge graph-contextualized question answering, graph-
text pair classification, and retrieval—demonstrate that GT2Vec
consistently outperforms existing baselines, achieving significant
improvements across multiple datasets. These results highlight
GT2Vec’s effectiveness in integrating graph and text data. Ablation
studies further validate the effectiveness of our method.
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1 Introduction

In the realm of natural language processing (NLP), text embeddings
play a pivotal role by transforming textual information into numeri-
cal representations, which facilitate a multitude of machine learning
applications on the Web, such as question answering (QA) [7, 49],
retrieval [4, 39, 44, 59], and classification tasks [7, 59]. These appli-
cations can benefit from the integration of graph-structured data to
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enhance the capabilities of NLP systems, by providing contextual
information or by augmenting the original tasks with additional
information. For example, prior work has shown that a QA sys-
tem that includes a knowledge graph as input can leverage the
relationships and hierarchies within the graph to more accurately
understand and handle complex queries [64, 68]. To effectively in-
tegrate these two modalities, it is essential to develop methods to
learn joint embeddings of graph-structured data and text data. Such
embeddings can provide a unified representation that captures im-
portant information from both modalities, leading to performance
improvements across various NLP tasks.

Prior research has introduced various ways to learn joint embed-
dings of text and graph-structured data for embedding tasks [11, 32,
64, 68]. These methods typically utilize either a Multi-layer Percep-
tron (MLP) or a shallow transformer [56] to integrate text features
and graph embeddings encoded respectively by language models
(LMs) [7, 38] and graph neural networks (GNNs) [28, 57, 63]. De-
spite their effectiveness, these approaches demonstrate a restricted
capacity to fuse the features of the two modalities. The primary
limitation arises from the limited ability of MLPs and shallow trans-
formers to manage the high-dimensional and heterogeneous nature
of joint embeddings, which can result in sub-optimal utilization of
the rich contextual information from text and graph data. Recently,
large language models (LLMs) have demonstrated significant poten-
tial for integrating and understanding modalities beyond just text.
A representative example of this capability is in Vision-Language
Models (VLMs) [2, 31, 37, 71], where visual tokens are combined
with textual input and processed together by LLMs. This integration
leverages the powerful capabilities of LLMs to handle multimodal
data, allowing for a more holistic understanding of content that
spans different forms of information. Inspired by this, we explore
the potential of employing LLMs to better integrate text and graph-
structured data, aiming to overcome the limitations observed from
current approaches.

In this paper, we present GT2Vec, a simple yet effective frame-
work to learn joint embeddings of text and graph data, leveraging
the advanced capabilities of LLMs to address the limitations of pre-
vious approaches. Our method seamlessly integrates graph and text
embeddings within the LLM framework, enhancing their alignment
and interaction. Specifically, we transform graph embeddings into
the same space as text embeddings using a multi-layer perceptron
(MLP) adapter, enabling the LLM to process both modalities to-
gether. Additionally, we propose a contrastive learning strategy
to better align the graph and text spaces, ensuring that the model
learns richer representations of the combined data. Our extensive
empirical analysis across a variety of NLP tasks highlights the key
advantage of GT2Vec: the ability to leverage LLMs’ strong language
understanding and reasoning capabilities to process multimodal
data, thus providing a more holistic and nuanced representation
of both graph-structured and textual information. This integration
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leads to significant improvements in various NLP tasks, demon-
strating the potential of GT2Vec to push the boundaries of joint
text and graph-embedding techniques.

Our contributions are summarized as follows:

• Integration of LLMs for Joint Embeddings: We propose
GT2Vec framework that leverages the strengths of LLMs
to align and integrate graph and text embeddings. GT2Vec
effectively captures the rich contextual information of both
modalities, enabling more robust joint representations.

• Contrastive Learning for Graph-Text Alignment: We
introduce a contrastive learning mechanism to explicitly
align graph and text embeddings, enabling the model to
better integrate the two modalities.

• Extensive Empirical Validation: We conduct extensive
experiments on six datasets spanning three different tasks:
knowledge graph (KG)-contextualized QA, graph-text pair
classification, and retrieval tasks.GT2Vec achieves superior
performance on all the three tasks, demonstrating its ability
to effectively integrate graph and text data for enhanced
multi-modal representation learning.

2 Problem Statement

Given an input text 𝑥 and its corresponding graph context G, where
G = {V, E} consists of a set of nodesV and edges E ⊆ V × R ×
V that connect nodes via relationships R, our goal is to extract
joint embeddings 𝜙 (𝑥,G). Here, 𝜙 is a learned function that maps
the input text 𝑥 and graph G into a unified vector representation,
capturing the multimodal information. These joint embeddings
𝜙 (𝑥,G) are then used for downstream tasks. In this paper, we focus
on three specific downstream tasks: multi-choice QA contextualized
by KG, graph-text pair classification, and retrieval tasks.

2.1 KG-Contextualized QA

Given a question 𝑞 in text form, KG context G, and answer can-
didate set with 𝑛 choices 𝒂 = {𝑎1, · · · , 𝑎𝑛}, KG-contextualized QA
tasks aim to find the correct textual answer 𝑎𝑖 from 𝒂. Each choice
𝑎𝑖 is first concatenated with the question 𝑞, leading to the input
𝑥 = [𝑞, 𝑎𝑖 ], where [·, ·] denotes the concatenation of text. We then
extract the joint embeddings 𝜙 (𝑥,G) which is fed into a MLP layer
to calculate scores. The choice with the highest score is selected as
the prediction.

2.2 Graph-Text Pair Classification

In the task of graph-text pair classification, the objective is to de-
termine the relevance between a given graph, represented as G,
and a corresponding textual description 𝑥 . This involves assessing
whether the content and structure of G are accurately reflected or
described by 𝑥 .

To achieve this, we first compute the joint embeddings 𝜙 (𝑥,G)
which capture the features and relationships contained in both the
text and the graph. Once the joint embeddings are obtained, they
are input into a MLP classifier. It outputs a prediction score which
measures the likelihood of the graph G matching the text 𝑥 .

The significance of this task lies in its ability to improve the qual-
ity of training data for tasks such as generating text from knowledge

graphs and vice versa [6, 27, 30]. By accurately classifying graph-
text pairs, the model can help reduce noise in training data, which
in turn improves the overall performance of generation tasks [30].

2.3 Retrieval

For the retrieval task, given a textual query 𝑞 accompanied by its
graph context G𝑞 , the goal is to retrieve the most relevant candidate
from a set of text-based options. Each candidate 𝑐𝑖 in the candidate
set 𝒄 = {𝑐1, · · · , 𝑐𝑚} also has an associated graph context G𝑐𝑖 . The
task involves comparing the query-graph pair (𝑞,G𝑞) against each
candidate-graph pair (𝑐𝑖 ,G𝑐𝑖 ).

To achieve this, we first generate the joint embeddings 𝜙 (𝑞,G𝑞)
for the query and 𝜙 (𝑐𝑖 ,G𝑐𝑖 ) for each candidate. These embeddings
encapsulate the features and relationships pertinent to their respec-
tive texts and graphs. The cosine similarity between the embeddings
of the query and each candidate is calculated and is then used for
the selection of the most relevant options.

3 GT2Vec

In this work, we propose a simple yet effective framework GT2Vec
to learn joint embeddings of text and graphs, as illustrated in Figure
1. Specifically, graph-structured data are first extracted into a graph
token, which is then fed into the LLM backbone together with
the text tokens (§3.1, §3.2). The LLM backbone outputs the joint
embeddings, which can be used for the downstream tasks, such as
classification and retrieval.

A key aspect of GT2Vec is the explicit alignment between the
graph and text embeddings. This alignment is crucial, as it allows
the LLM backbone to better integrate the structured knowledge
from the graph with the unstructured text, improving the quality
of the joint representations (§4). To achieve this, we introduce a
contrastive learning mechanism that explicitly maps embeddings
from both modalities into a shared space (§3.3).

While LLMs are commonly used for generation tasks in an auto-
regressive paradigm, GT2Vec takes a different route by utilizing
LLMs as powerful encoders. This allows us to directly obtain robust
joint embeddings of text and graph data by leveraging the rich
contextual understanding of LLMs.

Our proposed architecture, GT2Vec, consists of three main com-
ponents: a graph encoder, an MLP adapter, and a large language
model backbone. Below, we discuss the components’ design and
implementation details, along with the alignment mechanism.

3.1 Graph Data Encoding

GT2Vec employs a graph encoder to obtain graph embeddings,
which encapsulate essential information extracted from the contex-
tual structure of the graph. Next, we describe the two-step process,
which includes: (1) the integration of the query node in the graph;
and (2) the graph encoding.

3.1.1 Query Node Integration into Graph Structures. We first ini-
tialize node embeddings within the input graph G with a language
model (e.g., RoBERTa [38]). Following prior work [33, 64, 68], we
link entities mentioned in the query to nodes in the graph, denoting
these nodes asVlinked. We then introduce a new node termed the
query node, denoted as 𝑣𝑞 . This query node is initialized using a
language model by encoding the input query text. The query node

2
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Figure 1: Overview of GT2Vec framework. Unlike the common use of LLMs for generation tasks, we leverage LLMs to obtain

joint embeddings of both text and graph data. We encode the input graph with a GNN, which provides the graph embeddings.

The graph embeddings are then transformed into the word embedding space in the large language model. These embeddings

are then fed into a large language model, and the outputs are utilized for various downstream tasks.

𝑣𝑞 is then connected to all nodes within Vlinked, enhancing the
connection between the query and the nodes within the graph. We
denote the updated graph with G′ = {V′, E′}.

3.1.2 Graph Encoding Process. The updated graph G′ is then fed
into an encoder for feature extraction. We adopt a modified version
of graph attention network (GAT) [57, 64, 68] as the graph encoder.
Specifically, in each layer of GAT, the message-passing process is
formulated as

𝒉(ℓ+1)𝑣 = 𝑓𝑛

(∑
𝑠∈N𝑣∪{𝑣} 𝛼𝑠𝑣m𝑠𝑣

)
+ 𝒉(ℓ )𝑣 (1)

where N𝑣 denotes the neighbors of node 𝑣 , m𝑠𝑣 represents the
message from each neighbor node 𝑠 to node 𝑣 . 𝛼𝑠𝑣 is the attention
weight. 𝑓𝑛 is a 2-layer MLP. The messages m𝑠𝑣 from node 𝑠 to 𝑣 are
computed as the following:

𝒓𝑠𝑣 = 𝑓𝑟 (𝒆𝑠𝑣, 𝒖𝑠 , 𝒖𝑣) m𝑠𝑣 = 𝑓𝑚 (𝒉(ℓ )𝑣 , 𝒖𝑣, 𝒓𝑠𝑣) (2)

where 𝒖𝑠 , 𝒖𝑣 denotes node type embeddings, and 𝒆𝑠𝑣 is edge embed-
dings, 𝑓𝑟 is a 2-layer MLP, and 𝑓𝑚 is a linear projection. Additionally,
the attention weight 𝛼𝑠𝑣 , which measures the importance of each
neighbor’s message, is calculated in the following manner:

𝒒𝑠 = 𝑓𝑞 (𝒉(ℓ )𝑠 , 𝒖𝑠 ) 𝒌𝑣 = 𝑓𝑘 (𝒉
(ℓ )
𝑣 , 𝒖𝑣, 𝒓𝑠𝑣) (3)

𝛾𝑠𝑣 =
𝒒⊤𝑠 𝒌𝑣√

𝐷
𝛼𝑠𝑣 =

exp(𝛾𝑠𝑣)∑
𝑣′∈N𝑠∪{𝑠 } exp(𝛾𝑠𝑣′ )

(4)

where 𝑓𝑞 and 𝑓𝑘 are linear transformation functions, and 𝐷 is the
hidden dimension. Following 𝐿 layers of message passing, we con-
catenate the final layer embeddings of query node 𝑣𝑞 , the average
pooling of the node embeddings in the final layer, and the text
embeddings of the input query, then employ an MLP to generate
the graph embeddings 𝒈.

3.2 Fusion of Graph and Textual Data in LLM

We then integrate the graph embeddings with textual information
using the LLM to produce embeddings suitable for downstream
tasks. To facilitate this integration, we draw inspiration from prac-
tices in computer vision [37, 71], where image embeddings are first

transformed into the text space to be processed by LLMs. Simi-
larly, we also convert the graph embeddings into the text space.
We employ an MLP adapter for this purpose, which projects the
graph token embeddings into the language model space using a
two-layer MLP with ReLU activation functions, leading to the trans-
formed graph embeddings �̃�. The transformation allows us to insert
the processed graph token at the beginning of the text sequence,
formatted as [graph token, <𝑠>, 𝑡𝑜𝑘𝑒𝑛 1, 𝑡𝑜𝑘𝑒𝑛 2, ..., </𝑠>]. In this se-
quence, the graph token, output by the MLP adapter, precedes the
textual tokens, which are derived from the initial input embed-
dings of the LLM. This arrangement ensures that the initial context
for the LLM processing includes both graph-derived and textual
information.

We then feed this sequence into the LLM. The embeddings of
the </𝑠> token from the last layer of the LLM are considered as the
final output embeddings 𝒛, encapsulating the combined knowledge
of the graph and text inputs. This integration process leverages the
LLM’s capacity to synthesize information across different modali-
ties, optimizing the embeddings for subsequent applications.

3.3 Graph-Text Alignment via Contrastive

Learning

As we mentioned above, in GT2Vec, graph embeddings are con-
verted into the text space via a MLP module and then are processed
by the LLM together with the input text tokens. To better align
the graph embedding space and text space, we consider contrastive
learning for the graph-text alignment.

Contrastive learning has been broadly used in various domains
[3, 16, 22, 34, 35, 62, 66]. The key idea behind contrastive learning
is to minimize the distance between similar or positive pairs in
the embedding space, while maximizing the separation between
dissimilar or negative pairs. Although similar techniques have been
applied in graph representation learning [10, 65, 66] and language
models [9, 15, 23], these approaches typically operate within a
single modality (either graphs or text). In contrast, our GT2Vec
framework aligns the embedding spaces between text and graphs
by (1) converting graph data into textual descriptions and (2) using

3
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Figure 2: Overview of graph-text alignment through con-

trastive learning.

contrastive learning to strengthen the connections between the
textual descriptions of graphs and their corresponding original
graph representations, as shown in Figure 2.

3.3.1 Translating Graphs into Textual Descriptions. We first align
the graph embeddings with text embeddings derived from descrip-
tions of the same graph. Specifically, we start by listing all triples
within the graph in a simple format: [entity (node), relation (edge),
entity (node)]. This textual representation of the graph is then
converted into a textual format by reorganizing the entities and
relations into natural language. For example, the triples "(analyzing,
causes, new knowledge), (knowledge, causes, learn), (learn, causes,
find information)" are transformed into the following textual de-
scription: "analyzing causes new knowledge; knowledge causes learn;
learn new causes find information."

3.3.2 Contrastive Learning for Alignment. Now,we have two branches
in the GT2Vec framework: the original graph + text branch and
the graph description + text branch. These branches create a dual-
view architecture that facilitates the alignment of graph and text
embedding spaces through contrastive learning.

In the contrastive learning stage, we define positive pairs as the
embeddings from the branch processing the original graph and its
corresponding textual description that accurately reflect the same
information. Negative pairs, on the other hand, consist of unre-
lated graph-text pairs from within the same batch, ensuring that
the model learns to distinguish between semantically aligned and
unaligned graph-text pair data. Specifically, for the original graph
+ text branch, we use the way mentioned in §3.2 to generate the
joint embeddings 𝒛orig. This involves combining graph embeddings,
obtained from a graph encoder, with textual embeddings generated
by the LLM’s embedding layer to produce joint embeddings. For the
graph description + text branch, we treat the input as pure text and
use only the LLM to process it and generate the joint embeddings
𝒛new. By applying infoNCE loss [45], we have

L (infoNCE) = −∑𝑛batch
𝑖=1 log

(
exp

(
�̃�Torig (𝑖 ) ·�̃�new (𝑖 )

)
∑𝑛batch

𝑗=1 exp
(
�̃�Torig (𝑖 ) ·�̃�new ( 𝑗 )

) )
(5)

where 𝑛batch represents the number of samples in a training batch,
and �̃�orig and �̃�new denote the normalized vectors of 𝒛orig and 𝒛new,

respectively. As we present in §4, the contrastive learning method
improves GT2Vec’s ability to better align the graph and text em-
beddings, which is further beneficial to the downstream tasks.

3.4 Training

Our proposed framework, GT2Vec, can accommodate a wide array
of tasks that require the integration of graph data and text. The
training process for each task incorporates a task-specific loss func-
tion combined with a contrastive learning loss. The general form
of the combined loss for each task can be represented as follows:

L = L (task) + 𝜆L (infoNCE) (6)

where 𝜆 is a hyperparameter used to adjust the weights between
loss functions. L (task) refers to the loss directly associated with
the primary objective of the task. For KG-Contextualized QA, we
use cross-entropy loss; for graph-text pair classification, we apply
binary cross-entropy (BCE) loss; and for retrieval, we use infoNCE
loss. More details can be found in the Appendix C.2.

4 Experiments

Next, we assess the performance of GT2Vec and compare it to
strong baselines on three types of tasks: KG-contextualized QA,
graph-text pair classification, and retrieval tasks (§4.1-4.3). We also
perform extensive ablation studies to understand the impact of our
design and other choices (§4.4).

4.1 KG-contextualized QA Performance

4.1.1 Datasets and Metrics. We first evaluated GT2Vec on three
QA datasets, i.e., CommonsenseQA [53], OpenBookQA [41], and
MedQA-USMLE [26]. We split these datasets according to Yasunaga
et al. [64] and Zhang et al. [68] into train, validation, and test
splits. For evaluation, we use accuracy as the metric to measure
the performance on each dataset. For each question in the QA
datasets, a subgraph context extracted from a KG is utilized to
provide additional contextual information, following Yasunaga et
al. [64] (see Appendix B.1).

4.1.2 Baselines. We compare GT2Vec with a range of baseline
models, including both languagemodels (LM) and hybrid approaches
that integrate language models with knowledge graphs (LM+KG).

Fine-tuned LMs. We consider the following vanilla fine-tuned
language models (LMs): RoBERTa-Large [38] and E5-Mistral [60].
Additionally, for MedQA-USMLE dataset, we use several domain-
specific models, including SapBERT [36] and BioBERT [29].

Existing LM+KGmodels.Our LM+KGbaselines include: GreaseLM
[68] QAGNN [64], RelationNetwork (RN) [50], RGCN [51], GconAttn
[61], and MHGRN [11]. Unlike these models that leverage GNNs as
the backbone, our framework GT2Vec adopts more powerful LLMs
for better performance. We adopt E5-Mistral [60] as GT2Vec’s LLM
backbone.

4.1.3 Training Details. During training, we adopt parameter effi-
cient finetuning techniques, including Linear Probe (LP) [48] and
Low-Rank Adaptation (LoRA) [19], for E5-Mistral and GT2Vec. LP
freezes the pre-trained LLM and trains a linear classifier on top,
while LoRA introduces low-rank adaptation layers for efficient fine-
tuning. we employ full parameter fine-tuning for the other baselines.

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

GT2Vec: Large Language Models for Knowledge Graph Augmented Text Embedding Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 1: Test accuracy comparison on CommonsenseQA and OpenBookQA. The baseline results are mainly sourced from Zhang

et al. [68] and Yasunaga et al. [64]. Bold indicates the best result, and underline indicates the second best. LP means linear

probe.

Methods CommonsenseQA

OpenBookQA

(w/o Scientific Facts)

OpenBookQA

(w/ Scientific Facts)

Language Models Only
RoBERTa-Large [38] 68.69 ± 0.56 64.80 ± 2.37 78.40 ± 1.64
E5-Mistral, LP [60] 69.49 ± 0.28 74.80 ± 0.35 81.67 ± 0.31
E5-Mistral, LoRA [60] 78.73 ± 0.16 85.60 ± 0.20 91.87 ± 0.12

LM + KG
RGCN [51] 68.41 ± 0.66 62.45 ± 1.57 74.60 ± 2.53
GconAttn [61] 68.59 ± 0.39 64.75 ± 1.48 71.80 ± 1.21
MHGRN [11] 71.11 ± 0.10 66.85 ± 1.19 81.87 ± 1.86
QA-GNN [64] 73.41 ± 0.92 67.80 ± 2.75 82.77 ± 1.56
GreaseLM [68] 74.20 ± 0.40 65.60 ± 0.40 83.87 ± 1.29

GT2Vec, LP (Ours) 81.09 ± 0.73 86.67 ± 1.10 93.33 ± 0.42
GT2Vec, LoRA (Ours) 81.39 ± 0.11 88.13 ± 0.42 93.67 ± 0.31

Table 2: Test accuracy comparison on MedQA-USMLE. The

baseline results are mainly sourced from Zhang et al. [68].

Bold indicates the best result, and underline indicates the

second best. LP means linear probe.

Methods Test Acc

Language Models Only
BERT-Base [7] 34.3
BioBERT-Base [29] 34.1
RoBERTa-Large [38] 35
BioBERT-Large [29] 36.7
SapBERT [36] 37.2
E5-Mistral, LP [60] 39.4 ± 1.1
E5-Mistral, LoRA [60] 51.1 ± 0.3

LM + KG
QA-GNN [64] 38
GreaseLM [68] 38.5

GT2Vec, LP (Ours) 49.9 ± 0.9
GT2Vec, LoRA (Ours) 53.4 ± 0.3

Further details on the training process such as hyperparameters
can be found in Appendix D.

4.1.4 Results. We first conduct comparison experiments on Com-
monsenseQA and OpenBookQA datasets, as illustrated in Table 1. In
both datasets, our framework outperforms all other methods signifi-
cantly. Specifically, on CommonsenseQA, it surpasses the strongest
baseline E5-Mistral, achieving a test accuracy of 81.39%. On Open-
BookQA, GT2Vec also demonstrates superior performance, achiev-
ing 88.13% test accuracy. When further integrating the extra corpus
of scientific facts provided by OpenbookQA [5], our model reaches
a remarkable 93.67% accuracy, outperforming all the baseline mod-
els that also utilized scientific facts. The remarkable performance
can be attributed primarily to the robust capabilities of the LLM

Table 3: Test accuracy comparison on WebNLG dataset.

Methods Test Acc

LM + KG
RGCN [51] 63.20 ± 0.49
MHGRN [11] 84.98 ± 0.53
QA-GNN [64] 75.55 ± 3.54
GreaseLM [68] 82.50 ± 4.29

GT2Vec, LP (Ours) 88.43 ± 1.33
GT2Vec, LoRA (Ours) 89.70 ± 0.34

backbone integrated within our framework. The LLM backbone
not only enhances language understanding but also integrates the
contextual knowledge derived from graphs, thereby substantially
improving KG-contextualized QA performance.

We further evaluate GT2Vec on the MedQA-USMLE dataset to
assess its generalization capability across specialized domains and
report the results in Table 2. GT2Vec achieves a test accuracy of
53.4%, outperforming all the baselines including domain-specific
models. This result further reinforces the adaptability of GT2Vec
across different domains showcasing its ability to excel not only in
general and scientific question answering but also in knowledge-
intensive and highly specialized fields.

4.2 Graph-Text Pair Classification Performance

Building upon the strong results achieved in the KG-contextualized
QA tasks, we further evaluateGT2Vec in a different task: graph-text
pair classification. Our objective in evaluating this task is to assess
GT2Vec’s ability to generalize beyond QA scenarios, demonstrating
its versatility in handling a broader range of graph-text embedding
tasks. We evaluate models on the WebNLG [14] dataset and use
accuracy as the evaluation metric, measuring the proportion of
correctly classified graph-text pairs.
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Table 4: Comparision results (NDCG@10) on retrieval tasks.

Methods/Datasets SciFact FIQA

Language Models Only
BERT-Base [7] 13.3 2.2
RoBERTa-Large [38] 43.3 20.4
E5-Small [59] 65.6 34.8
E5-Base [59] 73.1 36.4
E5-Large [59] 72.6 38.6
GTR-XXL [43] 66.2 46.7
SGPT [42] 74.7 37.2
E5-Mistral, 0-shot [60] 76.1 53.5
E5-Mistral, LoRA [60] 75.9 53.2

LM + KG
QA-GNN [64] 41.4 19.5
GreaseLM [68] 48.9 29.3

GT2Vec, LP (Ours) 82.9 54.1
GT2Vec, LoRA (Ours) 80.8 56.2

The results of the graph-text pair classification task are presented
in Table 3. GT2Vec significantly outperforms all baseline models by
at least 4.72%, achieving a test accuracy of 89.70%.While models like
GreaseLM and MHGRN perform well by incorporating knowledge
graphs, they lack the deeper contextual understanding due to the
limitations of their less powerful backbone models, such as shallow
transformers or GNNs.

4.3 Retrieval Performance

Next, we further evaluate GT2Vec’s performance on retrieval tasks,
where the objective is to retrieve relevant sentences or documents
based on a query with graph-context. We conduct experiments on
two datasets, SciFact [58] and FiQA [40], and report NDCG@10 as
the primary evaluation metric.

As shown in Table 4, GT2Vec achieves the best performance on
both datasets. A closer examination of the LM+KG baselines reveals
interesting trends. Both models use RoBERTa-Large in their archi-
tectures. From the results, GreaseLM outperforms the RoBERTa-
Large model by a margin of 5.6% on SciFact and 8.9% on FiQA,
which aligns with our earlier findings that graph context can be
useful for enhancing retrieval performance. However, QA-GNN
shows a performance degradation compared to RoBERTa-Large,
particularly on FiQA (19.5 vs. 20.4). The reason for this drop may
be attributed to QA-GNN’s use of a simple MLP for combining the
graph and text embeddings. This weaker integration mechanism is
likely insufficient for fully leveraging the graph context, resulting in
suboptimal performance. In contrast, GreaseLM employs a shallow
transformer, which offers better capacity for fusing multimodal
information, leading to moderate gains.

4.4 Ablation Studies

To better understand the contributions of different components in
GT2Vec, we perform an ablation study on the CommonsenseQA
and OpenBookQA datasets under the linear probe setting. More
results can be found in Appendix D.2.

Effect of LLM Backbone Choice. GT2Vec exhibits flexibility in
adopting various LLMs as its backbone. To evaluate the impact of
different LLM backbones on performance, we compare four series
of models: the E5 series [59, 60], LLaMA-2 [55], LLaMA-3 [8], and
Mistral [24], as illustrated in Figure 3(a). We first observe that in-
creasing the model size within each series consistently enhances
the performance. This trend highlights that larger models, with
more parameters, are typically able to better capture complex rela-
tionships in multi-modal data, leading to higher performance. Ad-
ditionally, LLaMA-3 significantly improves over LLaMA-2. Specifi-
cally, the performance of LLaMA-3-3B matches that of LLaMA-2-7B
and LLaMA-3-8B achieves results comparable to LLaMA-2-13B, in-
dicating that the new LLaMA-3 architecture brings considerable
advancements compared to its predecessor LLaMA-2.
Effect of Graph Encoder Depth.We evaluate the effect of varying
the number of GAT layers in the graph encoder on the performance
of GT2Vec using the CommonsenseQA and OpenBookQA datasets.
As shown in Figure 3(b), both datasets exhibit slight fluctuations in
test accuracy as the number of GAT layers increases from 3 to 7.
This suggests that the method is quite robust to changes in GAT
depth, with only small variations in performance.
Effect of Graph-Text Alignment. We further investigate the
effectiveness of graph-text alignment by studying how the align-
ment evolves during training. Specifically, we calculate the mean
Euclidean distance between the normalized graph and text embed-
dings on the dev set (shown as the red dashed line) and compare
it to the corresponding development accuracy (purple solid line)
across different training epochs, as illustrated in Figure 3(c). This
figure shows a clear inverse relationship between the two curves:
as the graph-text distance decreases, accuracy improves. Notably,
at epoch 2, the graph-text distance reaches its minimum, while the
dev accuracy peaks. This trend suggests that better alignment be-
tween graph and text embeddings contributes directly to improved
model performance, highlighting the effectiveness of our graph-text
alignment strategy in GT2Vec.

5 Related Work

Graphs and Language Models for Multi-Modal Embedding

Tasks. Integration of graph data with language models has been
an evolving field, aiming to combine structured graph data with
unstructured textual information for enhanced data analysis. His-
torically, early attempts in this area employed an MLP or a shal-
low transformer to merge the information from both modalities
[11, 33, 64, 68], which may not fully exploit the rich contextual
information from text and graph data.

The advent of LLMs has brought a transformative shift to the NLP
field. LLMs, with their extensive pre-training on diverse corpora,
offer unprecedented capabilities for deep semantic understanding
and reasoining [13, 70]. Recent research has begun to explore the
potential of LLMs for enhancing multimodal embedding tasks of
graphs and text [17, 21, 54, 69, 73]. These studies primarily focus
on augmenting the graph representation capabilities within the
LLM framework. While these efforts mark significant advance-
ments, they predominantly concentrate on graph representation
learning rather than direct NLP tasks. Additionally, these methods
do not explicitly align the semantic spaces of graphs and text. In
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Figure 3: (a) The effect of LLM backbone choice on accuracy for the CommonsenseQA dataset. The figure shows three series: E5,

LLaMA-3, and LLaMA-2, along with a single Mistral-7B model. (b) The effect of graph encoder depth (number of GNN layers) on

test accuracy for CommonsenseQA and OpenBookQA datasets. The shaded areas represent the standard deviation, indicating

the variance in performance across different trials. (c) Graph-text embedding distance (red dashed) and dev accuracy (purple

solid) on CommonsenseQA across training epochs.

contrast, our approach not only integrates LLMs for handling com-
plex multimodal inputs but also introduces an explicit alignment
mechanism between graph and text embeddings. This alignment is
crucial for enhancing the semantic integration and boosting perfor-
mance across diverse NLP tasks by capturing complex intermodal
relationships.

There are recent studies that have explored using LLMs and
graph data for generative tasks beyond embedding tasks [1, 18,
20, 25, 47, 67, 72]. Our work, however, concentrates on embedding
tasks, which is an orthogonal direction. Unlike generative tasks,
which primarily focus on creating new content via next-token pre-
diction, embedding tasks are aimed at developing rich, informative
representations that can be used directly to enhance performance
in downstream applications such as classification and retrieval.
Contrastive Learning. Contrastive learning has gained significant
attention in recent years as a method to learn representations by
maximizing agreement between positive pairs while pushing nega-
tive pairs apart in the embedding space [3, 16, 34, 35, 66]. Pioneering
works like SimCLR [3] and MoCo [16] have demonstrated the ef-
fectiveness of contrastive learning in the visual domain. Similar
approaches have been applied to graphs [10, 65, 66] and language
models [9, 15, 23], but these methods typically operate within a
single modality (e.g., graphs or text). In contrast, our approach in-
troduces contrastive learning to align the graph embedding space
with the text embedding space. By transforming graphs into textual
descriptions and applying contrastive learning, we ensure that em-
beddings from both modalities align closely, enhancing the model’s
ability to perform tasks that require both graph-based reasoning
and text comprehension.

6 Conclusion

In this paper, we introduce GT2Vec, a simple yet effective frame-
work designed to integrate graph and text data using a novel align-
ment strategy and LLMs. We have demonstrated that GT2Vec en-
hances the semantic coherence between these two modalities, re-
sulting in significantly improved performance on several NLP tasks
and datasets. By aligning graph embeddings directly with text em-
beddings, GT2Vec ensures a deeper integration of structured and
unstructured data.
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A Ethical Use of Data and Informed Consent

All datasets used in this work are publicly available and widely used
in the research community. No personally identifiable information
(PII) or sensitive data is included in these datasets. Our research
strictly adheres to the ethical guidelines of using publicly available
datasets, and no additional data was collected from human subjects.

B Dataset Details

B.1 KG-Contextulized QA

CommonsenseQA [53] is a 5-way multiple-choice QA dataset
focused on applying commonsense knowledge in answering ques-
tions. It includes 12,102 questions, each with one correct answer
and four distractor answers.

OpenBookQA [41] is a 4-way multiple choice QA dataset that
requires reasoning with elementary science knowledge, containing
5,957 questions.

MedQA-USMLE [26] is a 4-way multiple choice QA task that
requires biomedical and clinical knowledge. The questions are orig-
inally from practice tests for the United States Medical License
Exams (USMLE). The dataset contains 12,723 questions.

For each question in the QA datasets, a subgraph context ex-
tracted from a KG is utilized to provide additional contextual infor-
mation, following Yasunaga et al. [64]. Specifically, for Common-
senseQA and OpeBookQA, we used the ConceptNet [52], which
contains 799,273 nodes and 2,487,810 edges. Node embeddings are
initialized by Roberta-Large [38] and kept frozen during the training
process, following Yasunaga et al. [64]. The query node embeddings
mentioned in Section 3.1 are calculated by the LLM backbone. For
MedQA-USMLE dataset, we used the UMLS knowledge graph used
in Yasunaga et al. [64], which contains 9,958 nodes and 44,561 edges.
Node embeddings are initialized using SapBERT [36], following
Yasunaga et al. [64].

B.2 Graph-Text Pair Classification

To evaluate GT2Vec on graph-text pair classification, we curated
a dataset based on WebNLG [14]. The original WebNLG dataset
is used to assess models’ ability in text-to-graph and graph-to-text
generation. Concretely, each data contains a graph-text pair where
the graph is a set of triples from DBpedia and the text is the cor-
responding description of the triples. For example, the graph data
are "(John_E_Blaha birthDate 1942_08_26), (John_E_Blaha birth-
Place San_Antonio), (John_E_Blaha occupation Fighter_pilot)", while
the corresponding text is "John E Blaha, born in San Antonio on
1942-08-26, worked as a fighter pilot."

In this paper, we use the v3.0 release data to construct the dataset
for graph-text pair classification. First, we curated the dataset by
identifying relations that appear in the training, dev, and test sets.
We then filtered the dataset to retain only those graph triples that
contain these relations for all three sets. To further increase the
complexity of the task, we generated a series of new, randomly com-
bined positive samples. Specifically, we merged multiple graph-text
pairs from the original dataset, creating data with larger graphs and
longer text by concatenating their respective triples and sentences.

Next, we generated an equal number of negative samples. To
this end, we followed a similar process to create positive pairs but

10

https://openreview.net/forum?id=1tZbq88f27
https://openreview.net/forum?id=xdg4CS5mkl
https://openreview.net/forum?id=xdg4CS5mkl


1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

GT2Vec: Large Language Models for Knowledge Graph Augmented Text Embedding Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

introduced mismatches. In this case, while the graph triples were
taken from one pair, the text was taken from a different, unrelated
pair. This ensured that the graph and text did not align, resulting
in non-matching pairs that serve as negative examples. We finally
constructed 10,000 training, 4,000 validation, and 2,000 test data.

B.3 Retrieval

SciFact [58] is a scientific fact-checking dataset aimed at verifying
scientific claims using relevant research papers. It contains 920
training queries, and 300 test queries, with a corpus of 5,183 docu-
ments. In our experiment, we split 100 samples from the training
set to serve as validation queries, ensuring that the remaining train-
ing data is used for model training while still providing a separate
validation set for tuning and evaluation.

FiQA [40] is a financial-domain retrieval dataset designed to
address complex financial question answering and information
retrieval tasks. It contains 14,166 training queries, 500 development
queries, and 648 test queries, with a total of 57,638 documents in
the corpus.

C Methodology Details

C.1 Additional Framework Details

GT2Vec utilizes a dual-view architecture for graph-text alignment,
incorporating two parallel branches. The first branch processes the
original graph together with the text, while the second branch pro-
cesses a textual description of the graph along with the input text.
In our experiments, both branches are employed to generate em-
beddings that are used for downstream tasks, and both contribute
to the task-specific loss L (task) . This dual-branch approach has
several advantages: it allows the model to learn complementary
information from both the structured graph and its textual descrip-
tion, enhancing the overall representation. During the evaluation,
however, we simplify the process by using only the graph+text
branch, and it has shown to provide sufficient performance for the
downstream tasks, eliminating the need for the graph description
branch.

C.2 Training Objective

In this part, we detail the task-specific loss function L (task) for
each downstream task.

C.2.1 KG-Contextualized QA. For the KG-contextualized QA task,
we apply the cross-entropy loss function, which is crucial for classifi-
cation tasks involving multiple-choice questions. This loss function
is computed as follows:

L (task) = −
𝑛batch∑︁
𝑖=1

𝑛choice∑︁
𝑗=1

𝑦
(𝑖 )
𝑗

log(𝑦 (𝑖 )
𝑗

) (7)

where 𝑛batch is the number of samples in a batch and 𝑛choice is the
number of answer choices per question. 𝑦 (𝑖 )

𝑗
is a binary indicator (1

if the choice 𝑗 is the correct answer for sample 𝑖 , and 0 otherwise).
𝑦
(𝑖 )
𝑗

is the predicted probability that choice 𝑗 is the correct answer
for sample 𝑖 .

C.2.2 Graph-Text Pair Classification Tasks. In the graph-text pair
classification task, we use binary cross-entropy loss to determine

Table 5: Ablation Study on different branches of GT2Vec:

This table reports the test accuracy of GT2Vec when using

only the graph + text branch or only the graph description +

text branch.

Models CommonsenseQA OpenBookQA

GreaseLM [68] 74.20 ± 0.40 83.87 ± 1.29

Only graph + text 79.69 ± 0.85 84.80 ± 1.06
Only description + text 78.32 ± 0.61 84.00 ± 0.92
GT2Vec 81.09 ± 0.73 86.67 ± 1.10

Table 6: The effect of graph encoder choice on test accuracy.

Graph Encoder CommonsenseQA OpenBookQA

GCN [28] 80.95 ± 0.28 84.67 ± 1.27
GAT [57] 81.09 ± 0.73 86.67 ± 1.10
GIN [63] 80.23 ± 0.57 85.40 ± 0.92

the match/mismatch status between the graph and text pairs:

L (task) = −∑𝑛batch
𝑖=1

(
𝑦 (𝑖 ) log𝑦 (𝑖 ) + (1 − 𝑦 (𝑖 ) log(1 − 𝑦 (𝑖 ) )

)
(8)

Here, 𝑦 (𝑖 ) is the true label (1 if the pair matches, 0 otherwise) and
𝑦 (𝑖 ) is the predicted probability of a match as output by the MLP
classifier.

C.2.3 Retrieval Tasks. For retrieval tasks, we apply infoNCE loss
[45] for training. Specifically, given a batch of positive pairs (𝑑𝑖 , 𝑝𝑖 ),
we assume that (𝑑𝑖 , 𝑝𝑖 ) is a positive pair and (𝑑𝑖 , 𝑝 𝑗 ) for 𝑖 ≠ 𝑗 a
negative pair. By applying infoNCE loss, we have

L (𝑡𝑎𝑠𝑘 ) = −∑𝑛batch
𝑖=1 log

(
𝑒sim(𝑎𝑖 ,𝑝𝑖 )/𝜏

𝑒sim(𝑎𝑖 ,𝑝𝑖 )/𝜏+∑𝑗≠𝑖 𝑒
sim(𝑎𝑖 ,𝑝 𝑗 )/𝜏

)
(9)

where sim(·, ·) is the consine similarity between the embeddings. 𝜏
is the temperature scaling parameter.

Table 7: LoRA Hyperparameters

Hyperparameter Value

Rank (𝑟 ) 8
Alpha (𝛼) 16
Dropout 0.05
Target Modules {q_proj, k_proj, v_proj, o_proj,

gate_proj, up_proj, down_proj}

D Experiment Details

D.1 Additional Implementation Details

We implement models using PyTorch [46] and PyTorch Geometric
[12]. All experiments are conducted on a single A100 80GBGPU. For
baselines that we implemented ourselves, we followed the settings

11
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Table 8: Hyperparameters for training GT2Vec.

Hyperparameter CommonsenseQA OpenBookQA MedQA-USMLE WebNLG SciFact FiQA

GNN hidden dim 256 256 256 256 256 512
Number of GNN layers 3 5 5 5 3 3
GAT attention heads 2 2 2 2 2 2
Dropout rate 0.2 0.2 0.2 0.2 0.2 0.2
Context length 128 128 256 256 512 512

Learning rate 1 × 10−5 1 × 10−5 1 × 10−5 1 × 10−4 1 × 10−5 5 × 10−6
Optimizer RAdam RAdam RAdam RAdam RAdam RAdam
Weight decay 1 × 10−2 1 × 10−2 1 × 10−2 1 × 10−2 1 × 10−2 1 × 10−2
Learning rate schedule constant constant constant constant constant constant
Number of epochs 5 5 15 5 15 1
Batch size 8 8 8 32 16 256
Max gradient norm 1.0 1.0 1.0 1.0 1.0 1.0
𝜆 in Eq. (6) 0.05 0.05 0.05 0.05 0.05 0.05

Knowledge graphs ConceptNet ConceptNet UMLS DBPedia ConceptNet ConceptNet
Max number of nodes in subgraphs 200 200 200 200 200 200
Number of relations 38 38 34 748 38 38

Table 9: Ablation study results on test accuracy.

Methods CommonsenseQA OpenBookQA

GreaseLM [68] 74.20 ± 0.40 83.87 ± 1.29

GT2Vec w/o graph 69.49 ± 0.28 74.80 ± 0.35
GT2Vec w/o alignment 79.69 ± 0.85 84.80 ± 1.06
GT2Vec 81.09 ± 0.73 86.67 ± 1.10

and hyperparameters described in the original papers to ensure fair
comparisons. Detailed hyperparameter settings for GT2Vec can be
found in Table 7 and Table 8.

D.2 Additional Results

D.2.1 Effect of graph context information. When GT2Vec is input
with only textual input, excluding graph context information, there
is a significant drop in performance, with accuracy decreasing to
69.49% on CommonsenseQA and 74.80% on OpenBookQA. This
sharp decline underscores the critical role that graph context plays
in enhancing the model’s ability to understand and reason with the
data. The graph provides structured knowledge that complements
the unstructured text, and without it, the model relies solely on
the textual input, which limits its capacity to effectively handle
complex embedding tasks.

D.2.2 Effect of Graph-Text Alignment. Removing contrastive learn-
ing from GT2Vec leads to a performance drop, with the accuracy
decreasing from 81.09% to 79.69% on CommonsenseQA, and from
86.67% to 84.80% on OpenBookQA. This highlights the importance
of contrastive learning in aligning graph and text embeddings, en-
suring better integration of multimodal information.

D.2.3 Effect of Different Branches in GT2Vec. To better under-
stand the contributions of each branch in GT2Vec, we perform an

ablation study, as shown in Table 5. This analysis evaluates the per-
formance of GT2Vec when using only the graph + text branch or
only the graph description + text branch and compares it to the full
version of GT2Vec, which integrates both branches. We find that
while each branch individually yields comparable performance,
the combination of both branches—enhanced by our graph-text
alignment technique—leads to significant performance gains. This
demonstrates the effectiveness of our proposed methods.

D.2.4 Effect of Graph Encoder Choice. We also investigate the im-
pact of different graph encoders on the performance of GT2Vec, as
shown in Table 6. We observe that the performance with GAT
achieves the best results on both CommonsenseQA and Open-
BookQA.

Table 10: Impact of different graph node embedding initial-

izationmodels on accuracy for the CommonsenseQA dataset.

Model Output Dimension Accuracy

RoBERTa-Large [38] 1,024 81.09 ± 0.73
E5-Small [59] 384 80.37 ± 0.38
E5-Base [59] 768 80.77 ± 0.05
E5-Large [59] 1,024 80.79 ± 0.30
E5-Mistral [60] 4,096 80.42 ± 0.90

D.2.5 Impact of Node Embedding Initialization. To assess the im-
pact of different node embedding initialization models on perfor-
mance, we conducted experiments on the CommonsenseQA dataset.
As shown in Table 10, the results reveal minimal differences in ac-
curacy across models with varying output dimensions, indicating
that the choice of initialization model has limited influence on per-
formance. For instance, RoBERTa-Large, E5-Base, and E5-Large
achieve nearly identical results, with an accuracy of around 81%.
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Interestingly, even when using lighter models for node embed-
ding initialization, such as E5-Small, which has a smaller output
dimension (384), the performance remains competitive. This demon-
strates that even when the node initialization model differs from

the actual backbone used in GT2Vec, there is no significant per-
formance degradation. For example, compared with E5-Mistral
node embedding initialization, the lighter E5-Small model offers
the advantage of reduced computational cost without compromis-
ing much on accuracy.
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