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Abstract

In educational assessment, scoring rubrics are
essential to the practitioner’s toolbox since they
define the exact criteria for scoring learner re-
sponses. However, in past NLP research on au-
tomatic short-answer scoring, scoring rubrics
are rarely used as explicit scoring references
and, if used, mostly treated as supplementary
input. With this study, we aim to explore
different possible implementations for rubric-
based short answer scoring where models are
explicitly conditioned towards using a provided
rubric as a scoring reference. For this purpose,
we propose GRASP, a novel pointer-based ar-
chitecture that uses bilinear attention to pre-
dict the alignment between pooled span em-
beddings of student answers and rubric criteria
from a single encoder forward pass. Moreover,
we explore SBERT and Cross Encoders for pair-
wise ranking, and include five-shot prompting
generative LLMs as baseline. We compare all
methods using a novel German short answer
scoring dataset and the established English
ASAP-SAS. Results reveal that the effective-
ness of the different methods depends on the
nature of the dataset. For ASAP-SAS, pairwise
ranking achieves a competitive performance
close to the state of the art, while GRASP un-
derperforms. However, for the German dataset,
this is reversed. There, GRASP significantly
outperforms the other methods and generalises
better to unseen questions.

1 Introduction

Automatic short-answer scoring (ASAS), also
known as automatic short-answer grading (ASAG),
short-answer assessment (ASAA) or constructed re-
sponse assessment, refers to a set of techniques for
automatically scoring student answers within tests
or other assessment forms, such as those provided
by intelligent tutoring systems (Bai and Stede,
2023; Bexte et al., 2024; Burrows et al., 2015).
Modern short-answer scoring systems are mainly
built in two abstract setups. In the first established

setup, learner responses are directly classified by
ML models with corresponding scores as labels, re-
spectively, as regression targets, which Bexte et al.
(2022) refer to as instance-based. In the second
setup, student answers are compared to reference
answers or representative clusters of those (Bexte
et al., 2022; Zehner et al., 2016). This is imple-
mented with the help of either transformer-based
language models trained in a natural language infer-
ence setup (Sung et al., 2019; Camus and Filighera,
2020) or various methods relying on embedding
spaces and vector arithmetic (Bexte et al., 2022;
Zehner et al., 2016), which Bexte et al. (2022) fit-
tingly refers to as similarity-based.

However, both approaches slightly differ from
human assessors’ typical method of scoring stu-
dent responses. In the majority of cases, human
assessors rely on scoring rubrics, documents that
outline the criteria a response must meet to receive
a specific score (Reddy and Andrade, 2010). When
using instance-based scoring, models must infer
scoring criteria during training and establish a la-
tent form of these within their internal representa-
tions. This usually limits the models to questions
seen during training. By contrast, similarity-based
scoring allows for a more generalised use of the re-
sulting models and even a certain degree of domain
transfer capabilities (Sung et al., 2019; Camus and
Filighera, 2020). However, such models are still
limited to cases where the quality of a response can
be measured by its similarity to a given reference
answer, and not all types of assessment questions
necessarily fit into this category, as, for example,
Bloom’s taxonomy suggests (Bloom et al., 1956).

The reliance on sample solutions for giving
scoring models domain transfer capabilities stems
from days when natural language processing relied
mostly on linear models and feature engineering.
In traditional feature engineering, differences be-
tween a reference answer and a student response
are more straightforward to represent than whether



a student response complies with the criteria de-
fined in a rubric (Burrows et al., 2015). However,
transformer-based language models (Vaswani et al.,
2017) have demonstrated remarkable language un-
derstanding capabilities, which leads to the ques-
tion of whether these models can successfully un-
derstand rubrics and learn how to use them as pri-
mary scoring references.

» With this paper, we provide a formal definition
for rubric-based short answer scoring.

* We introduce GRASP (Guided Rubric Align-
ment with Span Pooling). This encoder-based
architecture frames rubric-based short answer
scoring as a span alignment task. Unlike prior
work using rubrics as auxiliary features (e.g.,
Li et al. 2023a), GRASP treats rubrics as dy-
namic span-aligned scoring anchors, enabling
true rubric-conditioned scoring and transfer.

We also implement the task as a pairwise rank-
ing problem using task-specific fine-tunes of
the well-known SBERT and Cross Encoder
architectures (Reimers and Gurevych, 2019).

We introduce the ALICE-LP dataset, a novel
large-scale German-language dataset specifi-
cally aimed at rubric-based short answer scor-
ing, which was collected in German middle-
and high schools in the context of STEM edu-
cation units.

* We also provide secondary evaluations of our
systems on the public ASAP-SAS dataset.

* Our findings suggest that the performance of
the different approaches seems to be dataset-
dependent, with GRASP excelling for ALICE-
LP, demonstrating the best transfer capabili-
ties to unseen questions, while falling short for
ASAP-SAS. On the other hand, we observed
a reversed pattern for SBERT and Cross En-
coders.

2 Background
2.1 Rubrics

Rubrics define scoring rules for one or multiple
scoring dimensions used to score responses in the
context of various assessment forms (Reddy and
Andrade, 2010; Panadero and Jonsson, 2013). Usu-
ally, a rubric defines for a given question what
criteria a text response must meet to be considered

evidence for a certain performance level (e.g., full,
partial, or no credit). They are widely used in pri-
mary, secondary, and post-secondary education and
have become the de facto standard in performance
assessment and standardised testing (Panadero and
Jonsson, 2013). The primary purpose of rubrics is
to provide coherent criteria that help practitioners
systematically assess learners’ responses (Reddy
and Andrade, 2010). In the context of Evidence-
Centered Design (Mislevy et al., 2003), a popu-
lar conceptual framework for implementing assess-
ments that consider the validity of score interpreta-
tions from the beginning, rubrics play a central role
since they define exactly what evidence looks like
for the respective performance level. Table 1 shows
an example rubric from the ALICE-LP dataset.

2.2 Automatic Short Answer Scoring

Automatic short-answer scoring refers to the task of
automatically assigning a short written response of
up to one paragraph a corresponding performance
level, signalling the quality of that response ac-
cording to task-specific scoring criteria (Bai and
Stede, 2023; Bexte et al., 2024; Burrows et al.,
2015). Over the past decades, this has been ap-
proached in various ways (Burrows et al., 2015;
Bai and Stede, 2023). Older approaches often mea-
sure the amount of word overlap (Siddiqi and Har-
rison, 2008; Cutrone and Chang, 2010) or look
at the overlap on the level of various syntactic
or semantic formalisms between a sample solu-
tion and a given response (Bachman et al., 2002;
Mitchell et al., 2002; Hahn and Meurers, 2012).
Another approach relies on assigning scores based
on similarity of a response to representative clus-
ters from a given training set (Zehner et al., 2016).
Newer approaches rely on multiple forms of em-
bedding spaces to compare responses with sample
solutions (Bexte et al., 2022), or various text classi-
fiers aimed at classifying student responses or pairs
of responses and reference answers (Ramachan-
dran et al., 2015; Saha et al., 2018; Riordan et al.,
2017; Sung et al., 2019; Kumar et al., 2019; Ca-
mus and Filighera, 2020; Ormerod, 2022; Gombert
et al., 2023; Li et al., 2021; Filighera et al., 2022;
Pad¢ et al., 2023). An established approach is to
fine-tune transformer encoder language models to
classify either tuples of responses and sample solu-
tions or triples of the same with the question text
added as a third element (Sung et al., 2019; Ca-
mus and Filighera, 2020; Fernandez et al., 2022;
Gombert et al., 2023).



Level Criteria
0 The students do not describe the conversion (into thermal energy/heat).
1 The students use the term conversion without addressing thermal energy,
or mention thermal energy in connection with energy loss.
2 The students describe that the remaining energy was converted to thermal energy/heat.

Table 1: an example rubric depicting possible performance levels and the corresponding criteria for a task on energy

conversion.

Also, there has been ongoing research on sys-
tems that promote semiautomatic scoring where
human assessors are supported by automated sys-
tems comparing responses to sample solutions (Li
et al., 2023b; Andersen et al., 2023). Moreover, Ko-
rtemeyer (2024) explored the degree to which zero-
shot prompting GPT-4 with a hand-crafted prompt
can solve the problem of automatic short answer
scoring, with the result that the model performed
significantly worse than most transformer-encoder-
based approaches relying on fine-tuning such as
the ones proposed by Camus and Filighera (2020)
or Sung et al. (2019).

These results were also further confirmed by
a more systematic study by Ferreira Mello et al.
(2025), who compared a range of feature-based
and neural models to various LLM prompting
techniques and came to the conclusion that even
older feature-based models outperformed zero-shot
prompting in nearly all cases. Results by Chamieh
et al. (2024) paint a similar picture. Compared to
this, Claude Sonnet, when paired with retrieval-
augmented generation, seems to achieve a more
desirable zero-shot performance similar to or bet-
ter than previously published results achieved by
smaller fine-tuned models (Wang and Ormerod,
2024).

2.3 Automatic Short Answer Scoring using
Rubrics

Scoring rubrics have already been explored as
model input in various past works. Marvaniya
et al. (2018) implemented a system that uses scor-
ing rubrics as input to feature-based scoring sys-
tems. However, what they call scoring rubrics are
effectively collections of reference answers repre-
sentative of clusters of similar answers encountered
in the training set for a given task, instead of a de-
scription of individual scoring criteria, and, thus,
their approach is rather similarity-based. Wang
et al. (2019) implemented a BiILSTM-based system
that computes word-level alignment scores between
words in a student’s answer and those in a corre-
sponding rubric. They find that their model out-

performs a regular BiLSTM-based scoring model
published by Riordan et al. (2017) in low-resource
settings, thus providing substantial evidence for the
potential of scoring rubrics in short answer scoring.

Li et al. (2023a) proposed an architecture based
on a recurrent relational network fed with BERT
embeddings of responses, reference answers, ques-
tion texts, and scoring rubrics if the latter are con-
tained in a given dataset. However, their work does
not specifically focus on how scoring rubrics influ-
ence the overall outcome. Sonkar et al. (2024) eval-
uated multiple models using rubrics for a closely
related task setup called "long answer scoring,"
i.e., the scoring of answers that consist of a few
paragraphs of text without being complete essays.
For this purpose, they successfully fine-tuned var-
ious established transformer encoders in a natu-
ral language inference setup and prompted vari-
ous foundational LLMs. Wei et al. (2025) found
that rubric-based prompting of LLMs surpasses the
performance of regular few-shot learning and can,
moreover, benefit data synthesis of artificial short
answer scoring data.

3 Method

In general, scoring rubrics can vary strongly from
assessment to assessment and question to question.
They vary in the number of performance levels they
distinguish and the exact criteria for assigning them.
They might be formulated holistically or include
multiple scoring dimensions that are scored individ-
ually. Moreover, for some questions, rubric defini-
tions corresponding to higher scores might seman-
tically entail definitions for lower scores and add
upon those, but this is not the case for all rubrics,
since there can be cases where particular perfor-
mance levels correspond to distinct criteria without
any overlap. To flexibly address such diverse cases,
the architecture must satisfy the following proper-
ties:

1. It must accommodate rubrics with varying
dimensionality and number of performance
levels.



2. It must allow for generalisation towards un-
seen rubrics if trained on sufficiently enough
data, so the resulting models can, in theory, be
applied to unseen questions and domains.

An implementation that supports these features
is to interpret the task as a ranking problem. Put
formally, let:

* A be a student answer (open-ended text),

* Rq={ri,r2,...,rn} be the set of all perfor-
mance level-wise text spans associated with a
given scoring rubric for the question q. Each
r; € Rq1s a textual description of the rubric
criteria that must be met to assign a perfor-
mance level n for a given scoring dimension.

The goal is to learn a retrieval function
f:AXRy—R (1)

that assigns a alignment scores between all
ro, ..., ', and the given student answer.
At inference time, f induces a ranking,

R = sort(r € Ry, by f(A,r)), 2)

and the performance level associated with the high-
est ranked 7, is selected.

3.1 GRASP: Guided Rubric Alignment with
Span Pooling

First, we introduce GRASP, Guided Rubric
Alignment with Span Pooling, an encoder-based ar-
chitecture. Inspired by the Pointer Networks archi-
tecture (Vinyals et al., 2015) and pre-transformer
age models for span/section alignment using bilin-
ear attention (Chen et al., 2016; Lu et al., 2016), we
model the rubric selection task as a span alignment
problem over a variable-length input set. GRASP
treats rubric spans as dynamic scoring anchors and
computes direct attention-based alignment in a uni-
fied encoder pass. To our knowledge, this is the
first model to operationalise short-answer scoring
as rubric-level span selection.

GRASP can be implemented with any trans-
former encoder language model. This model re-
ceives a given student answer, the corresponding
question, its context (if given), and all rubric de-
scriptions in a single forward pass. Using bilinear
attention (Lu et al., 2016), the model computes the
attention between the student answer span and each
rubric span, allowing it to assess contextual rele-
vance and effectively map the answer to the most

relevant rubric. The rubric with the highest align-
ment score is then selected, and the corresponding
performance level is assigned to the student’s an-
swer, akin to pointer networks choosing output
positions (Vinyals et al., 2015).

Compared to dual-encoder models such as Col-
BERT (Khattab and Zaharia, 2020), our approach
employs full cross-attention between the answer
and all rubric spans, enabling deeper interaction
and richer contextual relevance modelling. This de-
sign facilitates flexible handling of rubrics with
varying performance levels and supports input-
conditioned prediction, allowing the model to adapt
to diverse evaluation criteria.

Starting with a transformer encoder model, let
H € R7*? be the matrix of contextualized token
embeddings obtained from this model over the in-
put sequence x of length 7", with hidden size d:

H = Encoder(x) 3)

H contains student answer, question text (plus ad-
ditional context, if given), and the performance
level-wise criteria. Each performance-level wise
description of criteria r; € R, corresponds to a
token span [b;, €;), and its representation r; is com-
puted via mean pooling:

82'—1

1
 H, fori=1,....N (4
t=b;

ei—b,-

r, =

The student answer also corresponds to a span
[ba, €q) and is pooled similarly:

1 eq—1

a=_—— > H 5)

t=bg

Each rubric receives a relevance score «; relative
to the answer using a bilinear attention function:

a; = I'ZT Wa (6)
We then calculate a softmax over all «;:
exp(ay
pi = # 7

N
Zj:l exp(a;)
Finally, the model is trained using cross-entropy
loss with the target rubric index y € {0, ..., N —1}:

L = —log py (8)
During inference, we then determine the perfor-
mance level (i.e., score) assigned to the student
answer using argmax:

g = ar max i =
gz‘:L...,N pi

5 = Score(r;) (9)

Figure 1 depicts this architecture.
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Figure 1: This figure depicts GRASP, our novel pointer-style architecture for rubric-conditioned scoring. The model
aligns student answer spans to rubric criteria spans in a single encoder pass via bilinear attention. Ay, ... A,, refers

to the tokens of the student answer, (1, ..., @), to the tokens of the question text, and R; 1, ...

, R, refers to the

tokens of the different rubric spans. For multi-label settings, e.g., when using GRASP with analytic rubrics, softmax

might be replaced with sigmoid.

3.2 Pairwise Ranking via SBERT

An established approach for solving ranking prob-
lems (e.g., in information retrieval) is the use of sen-
tence embeddings (Reimers and Gurevych, 2019).
In the context ofASAG Ranking is conducted by
embedding a student’s answer and the rubric cri-
teria of each performance level individually into
a shared vector space to acquire embeddings for
both, whose distance we can then measure. During
inference, a final performance level is assigned by
ranking the different rubric embeddings by their
similarity to the student answer embedding and se-
lecting the best-ranked. To tackle our problem in
this way, we use regular cosine similarity loss as
the distance metric.

To train the model, we restructure the given train-
ing set so it consists of pairs of student answers and
rubric criteria with a corresponding target similar-
ity score that is set to 1 in case of compliance and to
0, otherwise. Question spans are included in both
such inputs to provide context. These are added
after the answer, respectively, rubric criteria, sepa-
rated by a separation token. During inference, we
determine similarity using pairwise comparisons
and rank by the achieved cosine similarity. Com-
pared to GRASP, this requires multiple forward
passes.

3.3 Pairwise Ranking via Cross-Encoder

The second established approach stemming from
the context of SBERT (Reimers and Gurevych,
2019) is the usage of cross-encoders. Cross-
encoders are fine-tuned transformer encoders that

directly predict a distance score for two given input
sentences, unlike SBERT, where a comparison is
carried out between embeddings generated by an
encoder using vector arithmetic. By rule of thumb,
cross-encoders are assumed to be more precise in
their comparison (Bexte et al., 2022). To fine-tune
cross-encoders, we convert the dataset in the same
way as we did for SBERT. Questions are included
here as well (however, here, only once, since sim-
ilarity is of course computed within a single for-
ward pass) to provide context. We then train the
model using Binary Cross-Entropy Loss to classify
whether a student answer complies with a the cri-
teria for a performance level. We then rank by the
resulting confidence scores.

3.4 Prompting LLMs

In line with work as conducted by Kortemeyer
(2024), Ferreira Mello et al. (2025), and Wang
and Ormerod (2024), we also evaluated prompting
LLMs (for the exact prompts, see Appendix) for
our purpose. In this context, we focus on five-shot
prediction. Accordingly, examples for the five-shot
were randomly sampled from the training data.

4 Experiments

4.1 Datasets

4.1.1 ALICE-LP

This is a novel German language dataset we devised
for training and evaluating rubric-based automated
short-answer scoring systems. Its name stands for
BLINDED. We collected this dataset at German
middle and high schools (Gemeinschaftsschule and



Input Category
Question

Example

Name consequences that the gas shortage could have for

Germany and your school.

The school might have to close because it can no longer be heated.
It could also be that students just have to wear jackets during lessons.
(2) Students identify at least two links between a gas supply stop
and the supply of electricity and/or heating.

(1) Students identify one link between a gas supply stop and

the supply of electricity and/or heating.

(0) Students do not identify a link between a gas supply stop and
the supply of electricity and/or heating.

Answer

Rubric

Score 1/2

Table 2: An example question with one example student answer taken from the ALICE-LP dataset (translated from

German to English).

Set #Questions  #Answers #Levels (0/1/2) Set #Questions  #Answers #Levels (0/1/2/3)
Train 40 10,317 4,981/3,222/2,114 Train 10 17,043 6,731/5,579/3,992/741
UA 40 1,167 563/363/241 Test 10 5,024 2,053/1,590/1,329/252
uQ 15 3,924 2,245/1,060/619

Table 3: Distributions in the ALICE-LP dataset.

Gymnasium) in the state of BLINDED. All par-
ents of the students whose data we used signed a
data sharing and reuse agreement and data from
students whose parents did not sign the agreement
was excluded from the dataset. The data collec-
tion was permitted by the ethics committee of the
BLINDED institute.

The dataset includes answers from three do-
mains: biology, mathematics, and physics to an
overall of 55 questions. All questions within the
dataset follow the paradigm of evidence-centred
design (Mislevy et al., 2003) and aim at forma-
tively assessing students’ overall learning progres-
sion (Kubsch et al., 2022) within Moodle courses
while simultaneously acting as learning activities.
Each question was devised by didactics experts
who also implemented the Moodle courses and
comes with detailed scoring guidelines, including
scoring rubrics.

The dataset was scored using the INCEpTION
annotation tool (Klie et al., 2018). All annotators
were student assistants enrolled in a teacher edu-
cation programme and familiar with the covered
topics. The dataset was scored in four phases, each
dealing with a subset of the contained questions.
Each phase was further grouped into a pilot phase
and an annotation phase. In the pilot phase, for
each domain and individual question, the corre-
sponding human annotators were trained to score
answers using a smaller subset of the data until a
desirable Cohen’s x > (.75 was reached per ques-
tion. Where needed, initial scoring rubrics and
question-wise guidelines were revised for better

Table 4: Distributional properties of the ASAP-SAS
dataset.

clarity, and the annotators were retrained using the
updated guidelines. Following this, the remaining
student answers were distributed among the dif-
ferent annotators. Due to the size of the overall
dataset, multiple annotators needed to be replaced
during the annotation process, resulting in minor
fluctuations across the four phases.

For the present study, the dataset is divided into
a training set, which contains 40 different ques-
tions, and two test sets, namely unseen answers,
containing 20% of answers to each questions of the
40 seen during training sampled with stratification,
and unseen questions, containing 15 questions from
each domain which were not present in the training
set. This setup was inspired by the SciEntsBank
(Dzikovska et al., 2013) and Short Answer Feed-
back (Filighera et al., 2022) datasets (which we did
not consider for this work since they do not include
rubrics), and allows us to separately assess how
well models perform for seen in-domain questions,
and how well they can transfer their knowledge
to unseen questions. Table 3 shows the overall
distributional properties of the dataset.

4.1.2 ASAP-SAS

ASAP-SAS is a widely used benchmark dataset for
short answer scoring released initially in the con-
text of a Kaggle competition'. Besides being one of
the most established benchmarks in automatic short
answer scoring, we primarily included this dataset
since it comes with rubrics, which are provided

"https://www.kaggle.com/competitions/asap-sas/data



Model UA UuQ

GBERT-large GRASP 86.687 81.327
GELECTRA-large GRASP 87.80"  80.09°
GELECTRA-large CrossEnc 83.79 7734
GBERT-large SBERT 85.82 77.14
GELECTRA-large SBERT 8577  77.08
GBERT-large CrossEnc 81.44  75.12
GPT-40 5-shot 61.80  63.80
Qwen 3-8B 5-shot 55.51 60.57
GPT-3.5 Turbo 5-shot 5044  54.76
Mistral-7b-Instruct-v0.3 5-shot ~ 47.59  53.63
Llama-3.1-8B-Instruct 5-shot 49.15 51.66

Table 5: Best weighted F1 scores achieved by the dif-
ferent assessed approaches for the three ALICE-LP test
sets. UA = unseen answers. UQ = unseen questions.
TSignificantly better than the SBERT and Cross Encoder
models as well as the LLMs (p < .001, randomisation
test).

as supplementary material. It consists of answers
to 10 questions covering various topics, including
STEM and reading comprehension, and was col-
lected from US-based high schools. Questions are
scored on a range from 0 to 2 or 0 to 3 and reflected
in both the train and test sets. All reading compre-
hension questions also supply the corresponding
texts as context. Where present, we included these
as part of the question spans. The established way
of evaluating systems using this dataset is to calcu-
late item-wise quadratic weighted kappa scores and
use those to calculate a Fisher-normalised mean for
the overall dataset. Scores from a second human
assessor are provided so that human agreement can
be calculated and compared to systems evaluated
with this dataset. Table 4 shows the distributional
properties.

4.2 Dataset-wise Evaluation

As the first evaluation step, we compared the pro-
posed approaches. For the German ALICE-LP
dataset, we used GBERT and GELECTRA (Chan
et al., 2020), established transformer encoder mod-
els pre-trained specifically for German as the basis
for all encoder-based implementations.> For the En-
glish ASAP dataset, we used the recently released
ModernBERT (Warner et al., 2024) as the base
encoder.> The reason for this choice over more
established transformer language models, such as
RoBERTa (Liu et al., 2019a), is that ModernBERT

’These models were trained by us on a local workstation
computer with a Ryzen 5900X and an Nvidia GeForce RTX
3080. Gradient Accumulation was used to realise larger batch
sizes without OOM.

3These models were trained by us via Lambda.ai using an
Nvidia GH200 unit.

Model Meangisher QWK
ModernBERT-large GRASP 70.09
ModernBERT-large SBERT 76.96
ModernBERT-large CrossEnc 77.95
Ramachandran et al. (2015) 77.87%
Riordan et al. (2019) 77.88
Kumar et al. (2019) 80.15*
Ormerod (2022) 80.61*
Human Agreement 90.30

Table 6: Best Fisher-weighted mean Quadratic
Weighted Kapppa scores achieved by the different as-
sessed approaches for the ASAP-SAS test set. Addition-
ally, we list the best published results for this dataset.
In the appendix, we included brief descriptions of these
baselines. *Calculated based on the task-wise results
the authors report. Their papers only report regular
means and individual task results.

achieved state-of-the-art performance on multiple
established benchmarks while providing a con-
text window of 8,192 tokens, which allows us for
the reading comprehensions questions in ASAP
to include the full corresponding texts in the in-
put as part of the question spans. As LLM base-
lines, we use Mistral-7b-Instruct-3.0 (Jiang et al.,
2023) and Llama-3.1-8B-Instruct namely Llama-
3.1-8b-Instruct (Grattafiori et al., 2024), Qwen-
3-8b (Qwen Team, 2025), GPT-40 and GPT-3.5-
Turbo.

As visible in Table 5, GRASP performs well for
the ALICE-LP dataset. It significantly outperforms
the other approaches, especially for the unseen
questions dataset. This suggests that the perfor-
mance of GRASP better translates to unseen ques-
tions than the other approaches. The results for
five-shot prompting are in line with the earlier find-
ings by Ferreira Mello et al. (2025) that zero-shot
prompting generative LLMs is, as of now, a subpar
operationalisation for short-answer scoring.

Table 6, on the other hand, shows that the su-
perior performance of GRASP over SBERT and
Cross Encoders is seemingly not achievable for the
ASAP-SAS dataset. Here, ranking via both SBERT
and Cross Encoders outperforms GRASP by a large
margin, with our Cross Encoders approach placing
third on the overall ASAP-SAS leaderboard and be-
ing the best approach that works without any form
of ensembling, as used by Ormerod (2022), or data
augmentation, as used by Kumar et al. (2019), as
of now. Overall, the performance of the different
approaches for ASAP-SAS shows a reversed pattern
compared to ALICE-LP.

We hypothesised that the comparably bad perfor-
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Figure 2: Learning curves depicting the influence of
the percentage of questions used to train a model on
downstream performance for unseen answers and un-
seen questions. Curves were calculated using GBERT
as base.

mance of GRASP for this dataset could be due to
the low number of only 10 questions. Since GRASP
works by predicting alignment between student an-
swers and rubrics, we hypothesised that the model
might need to be trained with a diverse set of ques-
tions and rubrics to better regularise the overall task
of rubric-based short answer scoring without over-
fitting one dataset. ASAP-SAS comes with many
more answers per individual question, compared to
ALICE-LP. Table 7 (Appendix) shows the question-
wise performance for the ASAP dataset. It is visible
that, for some items, GRASP does not fall far be-
hind or performs better than at least one of the other
approaches (3, 5, 9, 10), while this is not the case
for the rest.

4.3 Influence of the Number of Training
Questions on Downstream Performance

To further evaluate whether the number of different
questions seen during training could be a factor
for the success of GRASP, we conducted a learn-
ing curve study on the ALICE-LP dataset in which
we conducted random sampling on a per-question
basis, training models on 20%, 40%, 60%, 80%,
and 100% of the full number of questions con-
tained in the training set. This was conducted for
the GBERT versions of GRASP, Cross Encoders
and SBERT. Figure 2 depicts the corresponding
learning curves. It is visible that, overall, Cross
Encoders falls behind in all settings. For 60% and
80% of the questions, SBERT seems preferrable for
unseen answers. However, in most other settings,
GRASP is on par or better than SBERT for both
subsets. The gap is particularly large for the 20%
case.

5 Conclusion

In this paper, we introduced the task paradigm
of rubric-based short answer scoring, a short an-
swer scoring setup that, instead of relying on ref-
erence answers, as in similarity-based scoring
(Bexte et al., 2022) or plain text classification, as in
instance-based scoring (Bexte et al., 2022), aims at
conditioning models to explicitly select a given per-
formance level from a provided rubric by assessing
a given student answer against the different perfor-
mance level-wise criteria it defines. With GRASP,
our work introduces a new operational paradigm
for short answer scoring: rubric-conditioned span
alignment. Though composed of known compo-
nents, GRASP’s architecture uniquely combines
them in a way that directly mirrors human rubric
use and supports generalisation to unseen rubrics.

We evaluated GRASP against two pairwise rank-
ing setups implemented via SBERT and Cross
Encoders (Reimers and Gurevych, 2019). This
was conducted with the help of a novel German
language dataset, namely ALICE-LP, and the es-
tablished ASAP-SAS dataset. While GRASP ex-
celled for ALICE-LP and outperformed the other
two methods, especially with regards to transfer to
unseen rubrics, it fell short for ASAP-SAS, where
pairwise ranking via Cross Encoder could achieve
the overall third-best reported performance, and
the best out of any published approaches that do
not rely on data ensembling or augmentation tech-
niques. Overall, the results suggest that research on
rubric-based short answer scoring is highly promis-
ing, and all three proposed implementations can
prove valuable, depending on the exact nature of
the data used, with GRASP particularly seeming to
excel in transfer to unseen questions and rubrics.

For future work, we aim to explore the applica-
bility of the proposed approaches to richer analytic
rubrics and multilingual rubric adaptation, building
toward truly generalizable scoring models. More-
over, to kickstart research on rubric-based short
answer scoring in the community, we plan on mak-
ing the ALICE-LP dataset publicly available in the
context of a shared task*. Overall, we can con-
clude that rubric-based short answer scoring as a
new paradigm for short-answer scoring can achieve
promising results while closely mirroring human
rubric use.

*Until then, access for purposes such as replication studies
will only be granted on request, which, at the same time dis-

qualifies the corresponding researchers for participation in the
planned shared task



Limitations

Generative LLM baselines: We did not exten-
sively evaluate generative LLMs for the problem of
rubric-based short answer scoring, and, to not fully
exclude them, resorted to the well-known GTP-
40, GPT-3.5-Turbo and smaller 7B and 8B models
without extensive prompt tuning. This is because,
going by the results of Kortemeyer (2024), Fer-
reira Mello et al. (2025), and Chamieh et al. (2024),
even larger LLMs seem to struggle with automatic
short answer scoring compared to fine-tuned trans-
former encoders and even older feature-based ap-
proaches, which is not just the case for short answer
scoring but also for other NLP tasks (Laskar et al.,
2023; Saattrup Nielsen et al., 2025). In this context,
it needs to be remarked that, of course, compar-
ing few-shot prompting to fine-tuned models is a
somewhat skewed comparison. Thus, we mainly
included LLM prompting to better relate our paper
to the overall ongoing research context, and, since
few-shot prompting requires much fewer training
examples, LLMs can be seen as representative for
what is possible in rubric-based short answer scor-
ing without a need for extensive data collection.

Moreover, since LLMs have an environmental
impact, and this impact is proportional to their
number of parameters, on average (Bender et al.,
2021), it was also a clear motivation for us to
find approaches that work with fine-tuning smaller
encoder-based models, which is more environ-
mentally friendly. We still hypothesise that, with
enough prompt tuning and advanced prompting
techniques, especially larger generative LLMs with
a number of parameters > 70b parameters could
likely also perform very well in short answer scor-
ing. However, exploring this would have required
a fundamental different focus.

Influence of variety in performance-level
granularity: The two datasets we used for this
study both do not possess a high variety in terms
of performance-level granularity. ALICE-LP only
has performance levels from 0O to 2, and ASAP-SAS
comes with levels on a scale from 0 to 2 and 0 to 3.
For this reason, we could not study the degree to
which the performance level granularity influences
the performance of GRASP and the other models.

Limited hyperparameter search: Due to lim-
ited resources, we only tested a small range of
hyperparameters for GRASP, SBERT and Cross
Encoders (3, 6, 10 epochs; 5e-6, le-5, 2e-5, Se-5
learning rate; 2, 4, 8 batch size). We report the best

hyperparameter combinations in the appendix.

Ethical Statement

Automatic short answer scoring is an educational
NLP task. The EU AI act (European Parliament
and Council of the European Union, 2024) labels
Al technology (including NLP technology) in edu-
cation rightfully as a high-risk application. While
the individual risk depends highly on the exact con-
text in which the corresponding technology is used
and must be assessed case-by-case, mispredictions
can tremendously impact learner success even in
low-stakes scenarios.

For example, there is clear empirical evidence
that negative feedback (and the predicted perfor-
mance levels, if low, are nothing but that, if pre-
sented to a given learner) can hurt the intrinsic mo-
tivation of learners (Fong et al., 2019). If a system
based on one of our presented approaches wrong-
fully scores correct answers as wrong, learner moti-
vation might thus unnecessarily suffer. Even worse,
when such mistakes happen in high-stakes assess-
ments, it might negatively affect students’ overall
life path since, in many countries, access to uni-
versity programs and jobs is highly coupled with
assessment results, e.g., in the form of GPA scores.
Deployment in such scenarios, therefore, requires
extensive evaluation.

On the other hand, if a model is, for example,
used in formative assessment and mispredicts a
given wrong student answer as being correct, the
corresponding student might not revise possible
misconceptions present in their answer. If this hap-
pens too often throughout a given unit, students
might develop misunderstandings about the con-
tent. Moreover, there is already existing research
on teacher dashboards that comprehensively sum-
marise student performance so teachers can plan
interventions based on that (Karademir et al., 2024).
If a non-reliable short answer scoring system pow-
ers such a dashboard, teachers might make the
wrong interventions, which, in turn, could hurt stu-
dent learning.

Another aspect that needs to be further assessed,
which was out of the scope of this particular study,
is whether the underlying models replicate unde-
sired biases. An example of this might be a possible
bias against students with dysgraphia or dyslexia.
If dyslexic or dysgraphic writing is not sufficiently
represented in a given training set, systems might
encounter problems dealing with the same, hurt-



ing downstream predictive performance for student
answers formulated by affected students.
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A Appendix
A.1 ASAP-SAS past work baselines

Ormerod (2022) fine-tunes a range of transformer
encoder models in a regular classification setup and
then uses them to form an ensemble model. For
this purpose, the class-wise logits of the three top-
performing models, namely DeBERTa-V3-base
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(He et al., 2023), ELECTRA-large (Clark et al.,
2020), and RoBERTa-large (Liu et al., 2019b), are
fed into a multinomial logistic regression classifier,
which predicts the final scores based thereon.

Kumar et al. (2019) feed Random Forests clas-
sifiers trained per individual question with an ex-
tensive and diverse set of features such as word
embeddings, PoS tags, word overlap scores, key-
words and sentence length. Moreover, they conduct
data augmentation for each question and generate
additional zero-level answers by taking highly rated
answers and randomly mixing their word order.

Riordan et al. (2019) use a recurrent neural net-
work based on bidirectional GRUs (Chung et al.,
2014) whose outputs are max-pooled and fed to a
linear classification head. Inputs to this network are
static word embeddings concatenated with charac-
ter embeddings produced by a preceding character
encoder layer based on a CNN. The motivation
for the latter is to account for misspellings which
the static word embeddings would not be able to
represent.

Ramachandran et al. (2015) use various strate-
gies to extract regular expressions from the top-
performing answers for each question in the train-
ing set. These question-wise regular expressions
check for aspects such as word- or phrase-wise
overlaps. Each regular expression constitutes a
binary feature. Using this feature set, a separate
Random Forests classifier is fit for each question.

A.2 ASAP-SAS task-wise results

Question | SBERT CrossEnc  GRASP
1 86.58 85.09 76.94
2 77.76 78.77 73.22
3 69.66 65.06 66.31
4 71.65 76.30 64.89
5 78.86 81.70 80.73
6 85.67 85.43 77.00
7 69.68 70.90 52.81
8 65.27 67.50 61.61
9 79.81 83.87 77.86
10 75.95 75.92 74.98
Mean 76.09 77.05 70.64
Meangisher 76.96 77.95 70.09

Table 7: Quadratic Weighted Kappa values achieved for
the individual ASAP-SAS questions.
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A.3 Best Hyperparameters

Hyperparameter | GRASP | SBERT | Cross Encoders
Learning Rate Se-6 2e-5 2e-5
Batch Size 4 4 4
Epochs 6 3 3

Table 8: The best hyperparameter combinations for the
ALICE-LP models.

Hyperparameter | GRASP | SBERT | Cross Encoders
Learning Rate le-5 2e-5 2e-5
Batch Size 8 8 8
Epochs 10 3 3

Table 9: The best hyperparameter combinations for the
ASAP-SAS models.

A.4 Prompt for the generative LLLMs

The following task prompt was used to prompt the
generative LLM baselines. For ALICE-LP, we used
a literal German translation of this prompt to match
the language of the dataset.

Your task is to assess the answer to the
question using the rubric to determine
the right score. Compare the answer

with the criteria provided in the rubric
for each score and assign the most
appropriate score. Always end your
response with the appropriate score

from the rubric, e.g., "Score: 0",
"Score: 1", or "Score: 2".

Question: "{question}”
Rubric: "{rubric}"”
Answer: "{answer}"
Score: {score}

Few-shot learning is implemented by repeating
this prompting scheme for each datapoint, wrapped
in the corresponding special tokens that signify user
and assistant parts of the prompt. Moreover, as a
system prompt, the model was given the following:

You are a teacher who conscientiously
assesses the work of your students.
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