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Abstract001

In educational assessment, scoring rubrics are002
essential to the practitioner’s toolbox since they003
define the exact criteria for scoring learner re-004
sponses. However, in past NLP research on au-005
tomatic short-answer scoring, scoring rubrics006
are rarely used as explicit scoring references007
and, if used, mostly treated as supplementary008
input. With this study, we aim to explore009
different possible implementations for rubric-010
based short answer scoring where models are011
explicitly conditioned towards using a provided012
rubric as a scoring reference. For this purpose,013
we propose GRASP, a novel pointer-based ar-014
chitecture that uses bilinear attention to pre-015
dict the alignment between pooled span em-016
beddings of student answers and rubric criteria017
from a single encoder forward pass. Moreover,018
we explore SBERT and Cross Encoders for pair-019
wise ranking, and include five-shot prompting020
generative LLMs as baseline. We compare all021
methods using a novel German short answer022
scoring dataset and the established English023
ASAP-SAS. Results reveal that the effective-024
ness of the different methods depends on the025
nature of the dataset. For ASAP-SAS, pairwise026
ranking achieves a competitive performance027
close to the state of the art, while GRASP un-028
derperforms. However, for the German dataset,029
this is reversed. There, GRASP significantly030
outperforms the other methods and generalises031
better to unseen questions.032

1 Introduction033

Automatic short-answer scoring (ASAS), also034

known as automatic short-answer grading (ASAG),035

short-answer assessment (ASAA) or constructed re-036

sponse assessment, refers to a set of techniques for037

automatically scoring student answers within tests038

or other assessment forms, such as those provided039

by intelligent tutoring systems (Bai and Stede,040

2023; Bexte et al., 2024; Burrows et al., 2015).041

Modern short-answer scoring systems are mainly042

built in two abstract setups. In the first established043

setup, learner responses are directly classified by 044

ML models with corresponding scores as labels, re- 045

spectively, as regression targets, which Bexte et al. 046

(2022) refer to as instance-based. In the second 047

setup, student answers are compared to reference 048

answers or representative clusters of those (Bexte 049

et al., 2022; Zehner et al., 2016). This is imple- 050

mented with the help of either transformer-based 051

language models trained in a natural language infer- 052

ence setup (Sung et al., 2019; Camus and Filighera, 053

2020) or various methods relying on embedding 054

spaces and vector arithmetic (Bexte et al., 2022; 055

Zehner et al., 2016), which Bexte et al. (2022) fit- 056

tingly refers to as similarity-based. 057

However, both approaches slightly differ from 058

human assessors’ typical method of scoring stu- 059

dent responses. In the majority of cases, human 060

assessors rely on scoring rubrics, documents that 061

outline the criteria a response must meet to receive 062

a specific score (Reddy and Andrade, 2010). When 063

using instance-based scoring, models must infer 064

scoring criteria during training and establish a la- 065

tent form of these within their internal representa- 066

tions. This usually limits the models to questions 067

seen during training. By contrast, similarity-based 068

scoring allows for a more generalised use of the re- 069

sulting models and even a certain degree of domain 070

transfer capabilities (Sung et al., 2019; Camus and 071

Filighera, 2020). However, such models are still 072

limited to cases where the quality of a response can 073

be measured by its similarity to a given reference 074

answer, and not all types of assessment questions 075

necessarily fit into this category, as, for example, 076

Bloom’s taxonomy suggests (Bloom et al., 1956). 077

The reliance on sample solutions for giving 078

scoring models domain transfer capabilities stems 079

from days when natural language processing relied 080

mostly on linear models and feature engineering. 081

In traditional feature engineering, differences be- 082

tween a reference answer and a student response 083

are more straightforward to represent than whether 084
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a student response complies with the criteria de-085

fined in a rubric (Burrows et al., 2015). However,086

transformer-based language models (Vaswani et al.,087

2017) have demonstrated remarkable language un-088

derstanding capabilities, which leads to the ques-089

tion of whether these models can successfully un-090

derstand rubrics and learn how to use them as pri-091

mary scoring references.092

• With this paper, we provide a formal definition093

for rubric-based short answer scoring.094

• We introduce GRASP (Guided Rubric Align-095

ment with Span Pooling). This encoder-based096

architecture frames rubric-based short answer097

scoring as a span alignment task. Unlike prior098

work using rubrics as auxiliary features (e.g.,099

Li et al. 2023a), GRASP treats rubrics as dy-100

namic span-aligned scoring anchors, enabling101

true rubric-conditioned scoring and transfer.102

• We also implement the task as a pairwise rank-103

ing problem using task-specific fine-tunes of104

the well-known SBERT and Cross Encoder105

architectures (Reimers and Gurevych, 2019).106

• We introduce the ALICE-LP dataset, a novel107

large-scale German-language dataset specifi-108

cally aimed at rubric-based short answer scor-109

ing, which was collected in German middle-110

and high schools in the context of STEM edu-111

cation units.112

• We also provide secondary evaluations of our113

systems on the public ASAP-SAS dataset.114

• Our findings suggest that the performance of115

the different approaches seems to be dataset-116

dependent, with GRASP excelling for ALICE-117

LP, demonstrating the best transfer capabili-118

ties to unseen questions, while falling short for119

ASAP-SAS. On the other hand, we observed120

a reversed pattern for SBERT and Cross En-121

coders.122

2 Background123

2.1 Rubrics124

Rubrics define scoring rules for one or multiple125

scoring dimensions used to score responses in the126

context of various assessment forms (Reddy and127

Andrade, 2010; Panadero and Jonsson, 2013). Usu-128

ally, a rubric defines for a given question what129

criteria a text response must meet to be considered130

evidence for a certain performance level (e.g., full, 131

partial, or no credit). They are widely used in pri- 132

mary, secondary, and post-secondary education and 133

have become the de facto standard in performance 134

assessment and standardised testing (Panadero and 135

Jonsson, 2013). The primary purpose of rubrics is 136

to provide coherent criteria that help practitioners 137

systematically assess learners’ responses (Reddy 138

and Andrade, 2010). In the context of Evidence- 139

Centered Design (Mislevy et al., 2003), a popu- 140

lar conceptual framework for implementing assess- 141

ments that consider the validity of score interpreta- 142

tions from the beginning, rubrics play a central role 143

since they define exactly what evidence looks like 144

for the respective performance level. Table 1 shows 145

an example rubric from the ALICE-LP dataset. 146

2.2 Automatic Short Answer Scoring 147

Automatic short-answer scoring refers to the task of 148

automatically assigning a short written response of 149

up to one paragraph a corresponding performance 150

level, signalling the quality of that response ac- 151

cording to task-specific scoring criteria (Bai and 152

Stede, 2023; Bexte et al., 2024; Burrows et al., 153

2015). Over the past decades, this has been ap- 154

proached in various ways (Burrows et al., 2015; 155

Bai and Stede, 2023). Older approaches often mea- 156

sure the amount of word overlap (Siddiqi and Har- 157

rison, 2008; Cutrone and Chang, 2010) or look 158

at the overlap on the level of various syntactic 159

or semantic formalisms between a sample solu- 160

tion and a given response (Bachman et al., 2002; 161

Mitchell et al., 2002; Hahn and Meurers, 2012). 162

Another approach relies on assigning scores based 163

on similarity of a response to representative clus- 164

ters from a given training set (Zehner et al., 2016). 165

Newer approaches rely on multiple forms of em- 166

bedding spaces to compare responses with sample 167

solutions (Bexte et al., 2022), or various text classi- 168

fiers aimed at classifying student responses or pairs 169

of responses and reference answers (Ramachan- 170

dran et al., 2015; Saha et al., 2018; Riordan et al., 171

2017; Sung et al., 2019; Kumar et al., 2019; Ca- 172

mus and Filighera, 2020; Ormerod, 2022; Gombert 173

et al., 2023; Li et al., 2021; Filighera et al., 2022; 174

Padó et al., 2023). An established approach is to 175

fine-tune transformer encoder language models to 176

classify either tuples of responses and sample solu- 177

tions or triples of the same with the question text 178

added as a third element (Sung et al., 2019; Ca- 179

mus and Filighera, 2020; Fernandez et al., 2022; 180

Gombert et al., 2023). 181
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Level Criteria
0 The students do not describe the conversion (into thermal energy/heat).
1 The students use the term conversion without addressing thermal energy,

or mention thermal energy in connection with energy loss.
2 The students describe that the remaining energy was converted to thermal energy/heat.

Table 1: an example rubric depicting possible performance levels and the corresponding criteria for a task on energy
conversion.

Also, there has been ongoing research on sys-182

tems that promote semiautomatic scoring where183

human assessors are supported by automated sys-184

tems comparing responses to sample solutions (Li185

et al., 2023b; Andersen et al., 2023). Moreover, Ko-186

rtemeyer (2024) explored the degree to which zero-187

shot prompting GPT-4 with a hand-crafted prompt188

can solve the problem of automatic short answer189

scoring, with the result that the model performed190

significantly worse than most transformer-encoder-191

based approaches relying on fine-tuning such as192

the ones proposed by Camus and Filighera (2020)193

or Sung et al. (2019).194

These results were also further confirmed by195

a more systematic study by Ferreira Mello et al.196

(2025), who compared a range of feature-based197

and neural models to various LLM prompting198

techniques and came to the conclusion that even199

older feature-based models outperformed zero-shot200

prompting in nearly all cases. Results by Chamieh201

et al. (2024) paint a similar picture. Compared to202

this, Claude Sonnet, when paired with retrieval-203

augmented generation, seems to achieve a more204

desirable zero-shot performance similar to or bet-205

ter than previously published results achieved by206

smaller fine-tuned models (Wang and Ormerod,207

2024).208

2.3 Automatic Short Answer Scoring using209

Rubrics210

Scoring rubrics have already been explored as211

model input in various past works. Marvaniya212

et al. (2018) implemented a system that uses scor-213

ing rubrics as input to feature-based scoring sys-214

tems. However, what they call scoring rubrics are215

effectively collections of reference answers repre-216

sentative of clusters of similar answers encountered217

in the training set for a given task, instead of a de-218

scription of individual scoring criteria, and, thus,219

their approach is rather similarity-based. Wang220

et al. (2019) implemented a BiLSTM-based system221

that computes word-level alignment scores between222

words in a student’s answer and those in a corre-223

sponding rubric. They find that their model out-224

performs a regular BiLSTM-based scoring model 225

published by Riordan et al. (2017) in low-resource 226

settings, thus providing substantial evidence for the 227

potential of scoring rubrics in short answer scoring. 228

Li et al. (2023a) proposed an architecture based 229

on a recurrent relational network fed with BERT 230

embeddings of responses, reference answers, ques- 231

tion texts, and scoring rubrics if the latter are con- 232

tained in a given dataset. However, their work does 233

not specifically focus on how scoring rubrics influ- 234

ence the overall outcome. Sonkar et al. (2024) eval- 235

uated multiple models using rubrics for a closely 236

related task setup called "long answer scoring," 237

i.e., the scoring of answers that consist of a few 238

paragraphs of text without being complete essays. 239

For this purpose, they successfully fine-tuned var- 240

ious established transformer encoders in a natu- 241

ral language inference setup and prompted vari- 242

ous foundational LLMs. Wei et al. (2025) found 243

that rubric-based prompting of LLMs surpasses the 244

performance of regular few-shot learning and can, 245

moreover, benefit data synthesis of artificial short 246

answer scoring data. 247

3 Method 248

In general, scoring rubrics can vary strongly from 249

assessment to assessment and question to question. 250

They vary in the number of performance levels they 251

distinguish and the exact criteria for assigning them. 252

They might be formulated holistically or include 253

multiple scoring dimensions that are scored individ- 254

ually. Moreover, for some questions, rubric defini- 255

tions corresponding to higher scores might seman- 256

tically entail definitions for lower scores and add 257

upon those, but this is not the case for all rubrics, 258

since there can be cases where particular perfor- 259

mance levels correspond to distinct criteria without 260

any overlap. To flexibly address such diverse cases, 261

the architecture must satisfy the following proper- 262

ties: 263

1. It must accommodate rubrics with varying 264

dimensionality and number of performance 265

levels. 266
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2. It must allow for generalisation towards un-267

seen rubrics if trained on sufficiently enough268

data, so the resulting models can, in theory, be269

applied to unseen questions and domains.270

An implementation that supports these features271

is to interpret the task as a ranking problem. Put272

formally, let:273

• A be a student answer (open-ended text),274

• Rq = {r1, r2, . . . , rn} be the set of all perfor-275

mance level-wise text spans associated with a276

given scoring rubric for the question q. Each277

ri ∈ Rq is a textual description of the rubric278

criteria that must be met to assign a perfor-279

mance level n for a given scoring dimension.280

The goal is to learn a retrieval function281

f : A×Rq → R (1)282

that assigns a alignment scores between all283

r0, ..., rn and the given student answer.284

At inference time, f induces a ranking,285

R′ = sort(r ∈ Rq, by f(A, r)), (2)286

and the performance level associated with the high-287

est ranked rn is selected.288

3.1 GRASP: Guided Rubric Alignment with289

Span Pooling290

First, we introduce GRASP, Guided Rubric291

Alignment with Span Pooling, an encoder-based ar-292

chitecture. Inspired by the Pointer Networks archi-293

tecture (Vinyals et al., 2015) and pre-transformer294

age models for span/section alignment using bilin-295

ear attention (Chen et al., 2016; Lu et al., 2016), we296

model the rubric selection task as a span alignment297

problem over a variable-length input set. GRASP298

treats rubric spans as dynamic scoring anchors and299

computes direct attention-based alignment in a uni-300

fied encoder pass. To our knowledge, this is the301

first model to operationalise short-answer scoring302

as rubric-level span selection.303

GRASP can be implemented with any trans-304

former encoder language model. This model re-305

ceives a given student answer, the corresponding306

question, its context (if given), and all rubric de-307

scriptions in a single forward pass. Using bilinear308

attention (Lu et al., 2016), the model computes the309

attention between the student answer span and each310

rubric span, allowing it to assess contextual rele-311

vance and effectively map the answer to the most312

relevant rubric. The rubric with the highest align- 313

ment score is then selected, and the corresponding 314

performance level is assigned to the student’s an- 315

swer, akin to pointer networks choosing output 316

positions (Vinyals et al., 2015). 317

Compared to dual-encoder models such as Col- 318

BERT (Khattab and Zaharia, 2020), our approach 319

employs full cross-attention between the answer 320

and all rubric spans, enabling deeper interaction 321

and richer contextual relevance modelling. This de- 322

sign facilitates flexible handling of rubrics with 323

varying performance levels and supports input- 324

conditioned prediction, allowing the model to adapt 325

to diverse evaluation criteria. 326

Starting with a transformer encoder model, let 327

H ∈ RT×d be the matrix of contextualized token 328

embeddings obtained from this model over the in- 329

put sequence x of length T , with hidden size d: 330

H = Encoder(x) (3) 331

H contains student answer, question text (plus ad- 332

ditional context, if given), and the performance 333

level-wise criteria. Each performance-level wise 334

description of criteria ri ∈ Rq corresponds to a 335

token span [bi, ei), and its representation ri is com- 336

puted via mean pooling: 337

ri =
1

ei − bi

ei−1∑
t=bi

Ht for i = 1, . . . , N (4) 338

The student answer also corresponds to a span 339

[ba, ea) and is pooled similarly: 340

a =
1

ea − ba

ea−1∑
t=ba

Ht (5) 341

Each rubric receives a relevance score αi relative 342

to the answer using a bilinear attention function: 343

αi = r⊤i Wa (6) 344

We then calculate a softmax over all αi: 345

pi =
exp(αi)∑N
j=1 exp(αj)

(7) 346

Finally, the model is trained using cross-entropy 347

loss with the target rubric index y ∈ {0, ..., N−1}: 348

L = − log py (8) 349

During inference, we then determine the perfor- 350

mance level (i.e., score) assigned to the student 351

answer using argmax: 352

î = arg max
i=1,...,N

pi ⇒ ŝ = Score(rî) (9) 353

Figure 1 depicts this architecture. 354
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Selected Rubric

Alignment Scores + Softmax

Bilinear Attention Layer

Answer Span Rubric 1 Span ⋯ Rubric n Span

Transformer Encoder

A₁ ⋯ Aₙ [SEP] Q₁ ⋯ Qₙ [SEP] R₁₁ ⋯ R₁ₙ [SEP] ⋯ Rₙ₁ ⋯ Rₙₘ [SEP]

Figure 1: This figure depicts GRASP, our novel pointer-style architecture for rubric-conditioned scoring. The model
aligns student answer spans to rubric criteria spans in a single encoder pass via bilinear attention. A1, ...An refers
to the tokens of the student answer, Q1, ..., Qn to the tokens of the question text, and R1,1, ..., Rm,n, refers to the
tokens of the different rubric spans. For multi-label settings, e.g., when using GRASP with analytic rubrics, softmax
might be replaced with sigmoid.

3.2 Pairwise Ranking via SBERT355

An established approach for solving ranking prob-356

lems (e.g., in information retrieval) is the use of sen-357

tence embeddings (Reimers and Gurevych, 2019).358

In the context ofASAG Ranking is conducted by359

embedding a student’s answer and the rubric cri-360

teria of each performance level individually into361

a shared vector space to acquire embeddings for362

both, whose distance we can then measure. During363

inference, a final performance level is assigned by364

ranking the different rubric embeddings by their365

similarity to the student answer embedding and se-366

lecting the best-ranked. To tackle our problem in367

this way, we use regular cosine similarity loss as368

the distance metric.369

To train the model, we restructure the given train-370

ing set so it consists of pairs of student answers and371

rubric criteria with a corresponding target similar-372

ity score that is set to 1 in case of compliance and to373

0, otherwise. Question spans are included in both374

such inputs to provide context. These are added375

after the answer, respectively, rubric criteria, sepa-376

rated by a separation token. During inference, we377

determine similarity using pairwise comparisons378

and rank by the achieved cosine similarity. Com-379

pared to GRASP, this requires multiple forward380

passes.381

3.3 Pairwise Ranking via Cross-Encoder382

The second established approach stemming from383

the context of SBERT (Reimers and Gurevych,384

2019) is the usage of cross-encoders. Cross-385

encoders are fine-tuned transformer encoders that386

directly predict a distance score for two given input 387

sentences, unlike SBERT, where a comparison is 388

carried out between embeddings generated by an 389

encoder using vector arithmetic. By rule of thumb, 390

cross-encoders are assumed to be more precise in 391

their comparison (Bexte et al., 2022). To fine-tune 392

cross-encoders, we convert the dataset in the same 393

way as we did for SBERT. Questions are included 394

here as well (however, here, only once, since sim- 395

ilarity is of course computed within a single for- 396

ward pass) to provide context. We then train the 397

model using Binary Cross-Entropy Loss to classify 398

whether a student answer complies with a the cri- 399

teria for a performance level. We then rank by the 400

resulting confidence scores. 401

3.4 Prompting LLMs 402

In line with work as conducted by Kortemeyer 403

(2024), Ferreira Mello et al. (2025), and Wang 404

and Ormerod (2024), we also evaluated prompting 405

LLMs (for the exact prompts, see Appendix) for 406

our purpose. In this context, we focus on five-shot 407

prediction. Accordingly, examples for the five-shot 408

were randomly sampled from the training data. 409

4 Experiments 410

4.1 Datasets 411

4.1.1 ALICE-LP 412

This is a novel German language dataset we devised 413

for training and evaluating rubric-based automated 414

short-answer scoring systems. Its name stands for 415

BLINDED. We collected this dataset at German 416

middle and high schools (Gemeinschaftsschule and 417
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Input Category Example
Question Name consequences that the gas shortage could have for

Germany and your school.
Answer The school might have to close because it can no longer be heated.

It could also be that students just have to wear jackets during lessons.
Rubric (2) Students identify at least two links between a gas supply stop

and the supply of electricity and/or heating.
(1) Students identify one link between a gas supply stop and
the supply of electricity and/or heating.
(0) Students do not identify a link between a gas supply stop and
the supply of electricity and/or heating.

Score 1/2

Table 2: An example question with one example student answer taken from the ALICE-LP dataset (translated from
German to English).

Set #Questions #Answers #Levels (0/1/2)
Train 40 10,317 4,981/3,222/2,114
UA 40 1,167 563/363/241
UQ 15 3,924 2,245/1,060/619

Table 3: Distributions in the ALICE-LP dataset.

Gymnasium) in the state of BLINDED. All par-418

ents of the students whose data we used signed a419

data sharing and reuse agreement and data from420

students whose parents did not sign the agreement421

was excluded from the dataset. The data collec-422

tion was permitted by the ethics committee of the423

BLINDED institute.424

The dataset includes answers from three do-425

mains: biology, mathematics, and physics to an426

overall of 55 questions. All questions within the427

dataset follow the paradigm of evidence-centred428

design (Mislevy et al., 2003) and aim at forma-429

tively assessing students’ overall learning progres-430

sion (Kubsch et al., 2022) within Moodle courses431

while simultaneously acting as learning activities.432

Each question was devised by didactics experts433

who also implemented the Moodle courses and434

comes with detailed scoring guidelines, including435

scoring rubrics.436

The dataset was scored using the INCEpTION437

annotation tool (Klie et al., 2018). All annotators438

were student assistants enrolled in a teacher edu-439

cation programme and familiar with the covered440

topics. The dataset was scored in four phases, each441

dealing with a subset of the contained questions.442

Each phase was further grouped into a pilot phase443

and an annotation phase. In the pilot phase, for444

each domain and individual question, the corre-445

sponding human annotators were trained to score446

answers using a smaller subset of the data until a447

desirable Cohen’s κ > 0.75 was reached per ques-448

tion. Where needed, initial scoring rubrics and449

question-wise guidelines were revised for better450

Set #Questions #Answers #Levels (0/1/2/3)
Train 10 17,043 6,731/5,579/3,992/741
Test 10 5,024 2,053/1,590/1,329/252

Table 4: Distributional properties of the ASAP-SAS
dataset.

clarity, and the annotators were retrained using the 451

updated guidelines. Following this, the remaining 452

student answers were distributed among the dif- 453

ferent annotators. Due to the size of the overall 454

dataset, multiple annotators needed to be replaced 455

during the annotation process, resulting in minor 456

fluctuations across the four phases. 457

For the present study, the dataset is divided into 458

a training set, which contains 40 different ques- 459

tions, and two test sets, namely unseen answers, 460

containing 20% of answers to each questions of the 461

40 seen during training sampled with stratification, 462

and unseen questions, containing 15 questions from 463

each domain which were not present in the training 464

set. This setup was inspired by the SciEntsBank 465

(Dzikovska et al., 2013) and Short Answer Feed- 466

back (Filighera et al., 2022) datasets (which we did 467

not consider for this work since they do not include 468

rubrics), and allows us to separately assess how 469

well models perform for seen in-domain questions, 470

and how well they can transfer their knowledge 471

to unseen questions. Table 3 shows the overall 472

distributional properties of the dataset. 473

4.1.2 ASAP-SAS 474

ASAP-SAS is a widely used benchmark dataset for 475

short answer scoring released initially in the con- 476

text of a Kaggle competition1. Besides being one of 477

the most established benchmarks in automatic short 478

answer scoring, we primarily included this dataset 479

since it comes with rubrics, which are provided 480

1https://www.kaggle.com/competitions/asap-sas/data
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Model UA UQ
GBERT-large GRASP 86.68† 81.32†

GELECTRA-large GRASP 87.80† 80.09†

GELECTRA-large CrossEnc 83.79 77.34
GBERT-large SBERT 85.82 77.14
GELECTRA-large SBERT 85.77 77.08
GBERT-large CrossEnc 81.44 75.12
GPT-4o 5-shot 61.80 63.80
Qwen 3-8B 5-shot 55.51 60.57
GPT-3.5 Turbo 5-shot 50.44 54.76
Mistral-7b-Instruct-v0.3 5-shot 47.59 53.63
Llama-3.1-8B-Instruct 5-shot 49.15 51.66

Table 5: Best weighted F1 scores achieved by the dif-
ferent assessed approaches for the three ALICE-LP test
sets. UA = unseen answers. UQ = unseen questions.
†Significantly better than the SBERT and Cross Encoder
models as well as the LLMs (p < .001, randomisation
test).

as supplementary material. It consists of answers481

to 10 questions covering various topics, including482

STEM and reading comprehension, and was col-483

lected from US-based high schools. Questions are484

scored on a range from 0 to 2 or 0 to 3 and reflected485

in both the train and test sets. All reading compre-486

hension questions also supply the corresponding487

texts as context. Where present, we included these488

as part of the question spans. The established way489

of evaluating systems using this dataset is to calcu-490

late item-wise quadratic weighted kappa scores and491

use those to calculate a Fisher-normalised mean for492

the overall dataset. Scores from a second human493

assessor are provided so that human agreement can494

be calculated and compared to systems evaluated495

with this dataset. Table 4 shows the distributional496

properties.497

4.2 Dataset-wise Evaluation498

As the first evaluation step, we compared the pro-499

posed approaches. For the German ALICE-LP500

dataset, we used GBERT and GELECTRA (Chan501

et al., 2020), established transformer encoder mod-502

els pre-trained specifically for German as the basis503

for all encoder-based implementations.2 For the En-504

glish ASAP dataset, we used the recently released505

ModernBERT (Warner et al., 2024) as the base506

encoder.3 The reason for this choice over more507

established transformer language models, such as508

RoBERTa (Liu et al., 2019a), is that ModernBERT509

2These models were trained by us on a local workstation
computer with a Ryzen 5900X and an Nvidia GeForce RTX
3080. Gradient Accumulation was used to realise larger batch
sizes without OOM.

3These models were trained by us via Lambda.ai using an
Nvidia GH200 unit.

Model MeanFisher QWK
ModernBERT-large GRASP 70.09
ModernBERT-large SBERT 76.96
ModernBERT-large CrossEnc 77.95
Ramachandran et al. (2015) 77.87*
Riordan et al. (2019) 77.88
Kumar et al. (2019) 80.15*
Ormerod (2022) 80.61*
Human Agreement 90.30

Table 6: Best Fisher-weighted mean Quadratic
Weighted Kapppa scores achieved by the different as-
sessed approaches for the ASAP-SAS test set. Addition-
ally, we list the best published results for this dataset.
In the appendix, we included brief descriptions of these
baselines. *Calculated based on the task-wise results
the authors report. Their papers only report regular
means and individual task results.

achieved state-of-the-art performance on multiple 510

established benchmarks while providing a con- 511

text window of 8,192 tokens, which allows us for 512

the reading comprehensions questions in ASAP 513

to include the full corresponding texts in the in- 514

put as part of the question spans. As LLM base- 515

lines, we use Mistral-7b-Instruct-3.0 (Jiang et al., 516

2023) and Llama-3.1-8B-Instruct namely Llama- 517

3.1-8b-Instruct (Grattafiori et al., 2024), Qwen- 518

3-8b (Qwen Team, 2025), GPT-4o and GPT-3.5- 519

Turbo. 520

As visible in Table 5, GRASP performs well for 521

the ALICE-LP dataset. It significantly outperforms 522

the other approaches, especially for the unseen 523

questions dataset. This suggests that the perfor- 524

mance of GRASP better translates to unseen ques- 525

tions than the other approaches. The results for 526

five-shot prompting are in line with the earlier find- 527

ings by Ferreira Mello et al. (2025) that zero-shot 528

prompting generative LLMs is, as of now, a subpar 529

operationalisation for short-answer scoring. 530

Table 6, on the other hand, shows that the su- 531

perior performance of GRASP over SBERT and 532

Cross Encoders is seemingly not achievable for the 533

ASAP-SAS dataset. Here, ranking via both SBERT 534

and Cross Encoders outperforms GRASP by a large 535

margin, with our Cross Encoders approach placing 536

third on the overall ASAP-SAS leaderboard and be- 537

ing the best approach that works without any form 538

of ensembling, as used by Ormerod (2022), or data 539

augmentation, as used by Kumar et al. (2019), as 540

of now. Overall, the performance of the different 541

approaches for ASAP-SAS shows a reversed pattern 542

compared to ALICE-LP. 543

We hypothesised that the comparably bad perfor- 544
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Figure 2: Learning curves depicting the influence of
the percentage of questions used to train a model on
downstream performance for unseen answers and un-
seen questions. Curves were calculated using GBERT
as base.

mance of GRASP for this dataset could be due to545

the low number of only 10 questions. Since GRASP546

works by predicting alignment between student an-547

swers and rubrics, we hypothesised that the model548

might need to be trained with a diverse set of ques-549

tions and rubrics to better regularise the overall task550

of rubric-based short answer scoring without over-551

fitting one dataset. ASAP-SAS comes with many552

more answers per individual question, compared to553

ALICE-LP. Table 7 (Appendix) shows the question-554

wise performance for the ASAP dataset. It is visible555

that, for some items, GRASP does not fall far be-556

hind or performs better than at least one of the other557

approaches (3, 5, 9, 10), while this is not the case558

for the rest.559

4.3 Influence of the Number of Training560

Questions on Downstream Performance561

To further evaluate whether the number of different562

questions seen during training could be a factor563

for the success of GRASP, we conducted a learn-564

ing curve study on the ALICE-LP dataset in which565

we conducted random sampling on a per-question566

basis, training models on 20%, 40%, 60%, 80%,567

and 100% of the full number of questions con-568

tained in the training set. This was conducted for569

the GBERT versions of GRASP, Cross Encoders570

and SBERT. Figure 2 depicts the corresponding571

learning curves. It is visible that, overall, Cross572

Encoders falls behind in all settings. For 60% and573

80% of the questions, SBERT seems preferrable for574

unseen answers. However, in most other settings,575

GRASP is on par or better than SBERT for both576

subsets. The gap is particularly large for the 20%577

case.578

5 Conclusion 579

In this paper, we introduced the task paradigm 580

of rubric-based short answer scoring, a short an- 581

swer scoring setup that, instead of relying on ref- 582

erence answers, as in similarity-based scoring 583

(Bexte et al., 2022) or plain text classification, as in 584

instance-based scoring (Bexte et al., 2022), aims at 585

conditioning models to explicitly select a given per- 586

formance level from a provided rubric by assessing 587

a given student answer against the different perfor- 588

mance level-wise criteria it defines. With GRASP, 589

our work introduces a new operational paradigm 590

for short answer scoring: rubric-conditioned span 591

alignment. Though composed of known compo- 592

nents, GRASP’s architecture uniquely combines 593

them in a way that directly mirrors human rubric 594

use and supports generalisation to unseen rubrics. 595

We evaluated GRASP against two pairwise rank- 596

ing setups implemented via SBERT and Cross 597

Encoders (Reimers and Gurevych, 2019). This 598

was conducted with the help of a novel German 599

language dataset, namely ALICE-LP, and the es- 600

tablished ASAP-SAS dataset. While GRASP ex- 601

celled for ALICE-LP and outperformed the other 602

two methods, especially with regards to transfer to 603

unseen rubrics, it fell short for ASAP-SAS, where 604

pairwise ranking via Cross Encoder could achieve 605

the overall third-best reported performance, and 606

the best out of any published approaches that do 607

not rely on data ensembling or augmentation tech- 608

niques. Overall, the results suggest that research on 609

rubric-based short answer scoring is highly promis- 610

ing, and all three proposed implementations can 611

prove valuable, depending on the exact nature of 612

the data used, with GRASP particularly seeming to 613

excel in transfer to unseen questions and rubrics. 614

For future work, we aim to explore the applica- 615

bility of the proposed approaches to richer analytic 616

rubrics and multilingual rubric adaptation, building 617

toward truly generalizable scoring models. More- 618

over, to kickstart research on rubric-based short 619

answer scoring in the community, we plan on mak- 620

ing the ALICE-LP dataset publicly available in the 621

context of a shared task4. Overall, we can con- 622

clude that rubric-based short answer scoring as a 623

new paradigm for short-answer scoring can achieve 624

promising results while closely mirroring human 625

rubric use. 626

4Until then, access for purposes such as replication studies
will only be granted on request, which, at the same time dis-
qualifies the corresponding researchers for participation in the
planned shared task

8



Limitations627

Generative LLM baselines: We did not exten-628

sively evaluate generative LLMs for the problem of629

rubric-based short answer scoring, and, to not fully630

exclude them, resorted to the well-known GTP-631

4o, GPT-3.5-Turbo and smaller 7B and 8B models632

without extensive prompt tuning. This is because,633

going by the results of Kortemeyer (2024), Fer-634

reira Mello et al. (2025), and Chamieh et al. (2024),635

even larger LLMs seem to struggle with automatic636

short answer scoring compared to fine-tuned trans-637

former encoders and even older feature-based ap-638

proaches, which is not just the case for short answer639

scoring but also for other NLP tasks (Laskar et al.,640

2023; Saattrup Nielsen et al., 2025). In this context,641

it needs to be remarked that, of course, compar-642

ing few-shot prompting to fine-tuned models is a643

somewhat skewed comparison. Thus, we mainly644

included LLM prompting to better relate our paper645

to the overall ongoing research context, and, since646

few-shot prompting requires much fewer training647

examples, LLMs can be seen as representative for648

what is possible in rubric-based short answer scor-649

ing without a need for extensive data collection.650

Moreover, since LLMs have an environmental651

impact, and this impact is proportional to their652

number of parameters, on average (Bender et al.,653

2021), it was also a clear motivation for us to654

find approaches that work with fine-tuning smaller655

encoder-based models, which is more environ-656

mentally friendly. We still hypothesise that, with657

enough prompt tuning and advanced prompting658

techniques, especially larger generative LLMs with659

a number of parameters ≥ 70b parameters could660

likely also perform very well in short answer scor-661

ing. However, exploring this would have required662

a fundamental different focus.663

Influence of variety in performance-level664

granularity: The two datasets we used for this665

study both do not possess a high variety in terms666

of performance-level granularity. ALICE-LP only667

has performance levels from 0 to 2, and ASAP-SAS668

comes with levels on a scale from 0 to 2 and 0 to 3.669

For this reason, we could not study the degree to670

which the performance level granularity influences671

the performance of GRASP and the other models.672

Limited hyperparameter search: Due to lim-673

ited resources, we only tested a small range of674

hyperparameters for GRASP, SBERT and Cross675

Encoders (3, 6, 10 epochs; 5e-6, 1e-5, 2e-5, 5e-5676

learning rate; 2, 4, 8 batch size). We report the best677

hyperparameter combinations in the appendix. 678

Ethical Statement 679

Automatic short answer scoring is an educational 680

NLP task. The EU AI act (European Parliament 681

and Council of the European Union, 2024) labels 682

AI technology (including NLP technology) in edu- 683

cation rightfully as a high-risk application. While 684

the individual risk depends highly on the exact con- 685

text in which the corresponding technology is used 686

and must be assessed case-by-case, mispredictions 687

can tremendously impact learner success even in 688

low-stakes scenarios. 689

For example, there is clear empirical evidence 690

that negative feedback (and the predicted perfor- 691

mance levels, if low, are nothing but that, if pre- 692

sented to a given learner) can hurt the intrinsic mo- 693

tivation of learners (Fong et al., 2019). If a system 694

based on one of our presented approaches wrong- 695

fully scores correct answers as wrong, learner moti- 696

vation might thus unnecessarily suffer. Even worse, 697

when such mistakes happen in high-stakes assess- 698

ments, it might negatively affect students’ overall 699

life path since, in many countries, access to uni- 700

versity programs and jobs is highly coupled with 701

assessment results, e.g., in the form of GPA scores. 702

Deployment in such scenarios, therefore, requires 703

extensive evaluation. 704

On the other hand, if a model is, for example, 705

used in formative assessment and mispredicts a 706

given wrong student answer as being correct, the 707

corresponding student might not revise possible 708

misconceptions present in their answer. If this hap- 709

pens too often throughout a given unit, students 710

might develop misunderstandings about the con- 711

tent. Moreover, there is already existing research 712

on teacher dashboards that comprehensively sum- 713

marise student performance so teachers can plan 714

interventions based on that (Karademir et al., 2024). 715

If a non-reliable short answer scoring system pow- 716

ers such a dashboard, teachers might make the 717

wrong interventions, which, in turn, could hurt stu- 718

dent learning. 719

Another aspect that needs to be further assessed, 720

which was out of the scope of this particular study, 721

is whether the underlying models replicate unde- 722

sired biases. An example of this might be a possible 723

bias against students with dysgraphia or dyslexia. 724

If dyslexic or dysgraphic writing is not sufficiently 725

represented in a given training set, systems might 726

encounter problems dealing with the same, hurt- 727
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ing downstream predictive performance for student728

answers formulated by affected students.729
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A Appendix1108

A.1 ASAP-SAS past work baselines1109

Ormerod (2022) fine-tunes a range of transformer1110

encoder models in a regular classification setup and1111

then uses them to form an ensemble model. For1112

this purpose, the class-wise logits of the three top-1113

performing models, namely DeBERTa-V3-base1114

(He et al., 2023), ELECTRA-large (Clark et al., 1115

2020), and RoBERTa-large (Liu et al., 2019b), are 1116

fed into a multinomial logistic regression classifier, 1117

which predicts the final scores based thereon. 1118

Kumar et al. (2019) feed Random Forests clas- 1119

sifiers trained per individual question with an ex- 1120

tensive and diverse set of features such as word 1121

embeddings, PoS tags, word overlap scores, key- 1122

words and sentence length. Moreover, they conduct 1123

data augmentation for each question and generate 1124

additional zero-level answers by taking highly rated 1125

answers and randomly mixing their word order. 1126

Riordan et al. (2019) use a recurrent neural net- 1127

work based on bidirectional GRUs (Chung et al., 1128

2014) whose outputs are max-pooled and fed to a 1129

linear classification head. Inputs to this network are 1130

static word embeddings concatenated with charac- 1131

ter embeddings produced by a preceding character 1132

encoder layer based on a CNN. The motivation 1133

for the latter is to account for misspellings which 1134

the static word embeddings would not be able to 1135

represent. 1136

Ramachandran et al. (2015) use various strate- 1137

gies to extract regular expressions from the top- 1138

performing answers for each question in the train- 1139

ing set. These question-wise regular expressions 1140

check for aspects such as word- or phrase-wise 1141

overlaps. Each regular expression constitutes a 1142

binary feature. Using this feature set, a separate 1143

Random Forests classifier is fit for each question. 1144

A.2 ASAP-SAS task-wise results 1145

Question SBERT CrossEnc GRASP
1 86.58 85.09 76.94
2 77.76 78.77 73.22
3 69.66 65.06 66.31
4 71.65 76.30 64.89
5 78.86 81.70 80.73
6 85.67 85.43 77.00
7 69.68 70.90 52.81
8 65.27 67.50 61.61
9 79.81 83.87 77.86

10 75.95 75.92 74.98
Mean 76.09 77.05 70.64

MeanFisher 76.96 77.95 70.09

Table 7: Quadratic Weighted Kappa values achieved for
the individual ASAP-SAS questions.
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A.3 Best Hyperparameters1146

Hyperparameter GRASP SBERT Cross Encoders
Learning Rate 5e-6 2e-5 2e-5
Batch Size 4 4 4
Epochs 6 3 3

Table 8: The best hyperparameter combinations for the
ALICE-LP models.

Hyperparameter GRASP SBERT Cross Encoders
Learning Rate 1e-5 2e-5 2e-5
Batch Size 8 8 8
Epochs 10 3 3

Table 9: The best hyperparameter combinations for the
ASAP-SAS models.

A.4 Prompt for the generative LLMs1147

The following task prompt was used to prompt the1148

generative LLM baselines. For ALICE-LP, we used1149

a literal German translation of this prompt to match1150

the language of the dataset.1151

Your task is to assess the answer to the1152

question using the rubric to determine1153

the right score. Compare the answer1154

with the criteria provided in the rubric1155

for each score and assign the most1156

appropriate score. Always end your1157

response with the appropriate score1158

from the rubric, e.g., "Score: 0",1159

"Score: 1", or "Score: 2".1160

1161

Question: "{question}"1162

Rubric: "{rubric}"1163

Answer: "{answer}"1164

Score: {score}1165

Few-shot learning is implemented by repeating1166

this prompting scheme for each datapoint, wrapped1167

in the corresponding special tokens that signify user1168

and assistant parts of the prompt. Moreover, as a1169

system prompt, the model was given the following:1170

You are a teacher who conscientiously1171

assesses the work of your students.1172
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