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ABSTRACT

The role of Large Language Models (LLMs) has not been extensively explored in
analog circuit design, which could benefit from a reasoning-based approach that
transcends traditional optimization techniques. In particular, despite their growing
relevance, there are no benchmarks to assess LLMs’ reasoning capability about
circuits. Therefore, we created the CIRCUIT dataset consisting of 510 question-
answer pairs spanning various levels of analog-circuit-related subjects. The best-
performing model on our dataset, GPT-4o, achieves 48.04% accuracy when eval-
uated on the final numerical answer. To evaluate the robustness of LLMs on our
dataset, we introduced a unique feature that enables unit-test-like evaluation by
grouping questions into unit tests. In this case, GPT-4o can only pass 27.45%
of the unit tests, highlighting that the most advanced LLMs still struggle with
understanding circuits, which requires multi-level reasoning, particularly when
involving circuit topologies. This circuit-specific benchmark highlights LLMs’
limitations, offering valuable insights for advancing their application in analog
integrated circuit design.

1 INTRODUCTION

The application of Large Language Models (LLMs) in analog integrated circuit design could pio-
neer a new era of AI applications in domains traditionally dominated by human expertise. Analog
semiconductor chips are the core building blocks in sensing and communication systems. Contrary
to digital chip development, where computer-aided design automation has been widely adopted for
a few decades, analog design, often perceived more as a craftsmanship than a well-established engi-
neering procedure, relies heavily on the designer’s experience and intuition to navigate in the trade
space of efficiency, noise, linearity, and speed to meet certain specifications. This domain’s depth,
requiring a blend of acumen and creativity, underscores the high barriers to entry and the exten-
sive training required to master its intricacies, which exacerbated the critical labor shortfall of the
semiconductor industry in this decade (Ravi, 2023).

The advent of AI-assisted design automation in analog circuit design holds considerable promise to
tackle the aforementioned challenge. It offers the potential to significantly streamline design cycles,
enabling engineers to focus more on strategic, high-level design considerations and the exploration
of novel ideas and applications. Traditional analog design automation (Wang et al., 2018; Settaluri
et al., 2020; Liu et al., 2022; Xue et al., 2023; Zhang et al., 2019) has relied on numerical-based opti-
mization and machine learning techniques to train surrogate models for designing circuits with fixed
topologies and semiconductor processes, resulting in reduced generalization capabilities and often
suffering from limited interpretability. A shift towards a reasoning and knowledge-based approach,
facilitated by LLMs that transcend traditional optimization techniques, could leverage circuit do-
main expertise to innovate and refine the design of diverse analog circuits.

A natural starting point towards this ambitious goal is to evaluate existing LLMs’ proficiency in
executing various analog circuit design tasks. To that end, we introduce the CIRCUIT (Circuit
Interpretation and Reasoning Capabilities) dataset , which focuses on simple topology understanding
– a precursor to performing any complex design task. The dataset is designed to be scalable, enabling
a seamless incorporation of more advanced analog circuit design tasks in future iterations. We
evaluate leading LLMs’ performance on the dataset with a unique, template-based evaluation metric.
Furthermore, we conduct automatic and human evaluation and error analysis of the LLM responses.
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Figure 1: A simplified overview of the CIRCUIT dataset and experiment setup. Analog circuit
problems, sourced from various materials, are adapted into the CIRCUIT dataset, comprising 510
problems. We assess the performance of three Large Language Models (GPT 4o, GPT Turbo, Gem-
ini 1.5 Pro) in understanding analog circuits and their topologies from diagrams and netlists, using
four distinct prompt designs. The LLMs’ responses are then evaluated both automatically and man-
ually, with unique evaluation metrics designed to reveal higher-level insights and capture the effects
of data homogeneity. Quantitative analysis and human error analysis were done to assess model
performance in reasoning about analog circuits.

2 RELATED WORK

Task-specific evaluation plays a crucial role in advancing research in LLM applications by providing
precise insights into model capabilities and limitations within defined contexts. The scalability of
general-purpose models has demonstrated enhanced task performance in various domains, includ-
ing language (Brown et al., 2020), mathematics (Aojun Zhou, 2023; Mao et al., 2024), and code
generation (Chen et al., 2021)1.

In the realm of digital circuit design, noteworthy progress has been made in harnessing LLMs for
tasks such as generating Verilog Code, as explored by Mingjie Liu (2023). Moreover, Cadence’s
JedAI 2 platform exemplifies the first application of LLM technology in chip design, illustrating the
feasibility of integrating LLMs into digital design workflows.

In the realm of analog design, LLMs have already been integrated into frameworks that automate
aspects of the design process (Chang et al., 2024; Lai et al., 2024). While these works focus on
leveraging LLMs directly for circuit design, an essential precursor is to evaluate the knowledge
and reasoning capabilities of LLMs on fundamental analog circuit knowledge. Without a deep
understanding of their foundational capabilities, the effectiveness and versatility of LLMs in real-
world circuit design may be limited. To address this gap, we introduce the CIRCUIT dataset, which
serves as a critical first step in the analog design pipeline.

When reviewing existing datasets for other domains, we notice that evaluation proves difficult on
complex tasks. Coding tasks utilize unit testing with automatic evaluation, while other fields neces-
sitate human evaluation. LLMs have also been used as evaluating agents. (Mao et al., 2024; Lin
et al., 2021) While LLMs can evaluate large volumes of data, do not suffer from fatigue, and are
cheaper to utilize, our initial experiments showed that they struggle with understanding and inter-
preting complex reasoning about analog circuits. Inspired by unit testing, we introduce a simple
dataset design and evaluation metric combination that shows promise for the assessment of LLMs
across various fields and tasks. This framework is inherently scalable, adaptable to more complex
analog design tasks, and transferable to other reasoning domains.

1HumanEval
2JedAI

2

https://paperswithcode.com/sota/code-generation-on-humaneval
https://community.cadence.com/cadence_blogs_8/b/corporate/posts/cadence-creates-industry-s-first-llm-technology-for-chip-design
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Template:
Determine the current I in Amperes in the
circuit in the figure.

Numerical Setup:
Assume that V = 5 V and R = 100 Ohms.

Netlist:
V N1 0
R N1 0 ; I

Figure 2: Example datapoint from the CIRCUIT dataset. Each datapoint includes a template ques-
tion, which may or may not have an associated diagram. In most cases, diagrams are further sup-
plemented by netlists that describe the circuit’s components and connections. Additionally, each
datapoint is associated with a unique numerical setup.

3 CIRCUIT DATASET

3.1 DATASET CURATION

The CIRCUIT dataset comprises circuit problems, many of which include associated diagrams. The
dataset was made using templates – problems adapted from sources listed in Appendix A modified to
fit different numerical setups and ensure each only asks for a single numerical answer. Figure 2 is an
example of a dataset question. The diagram and the template are adapted so that the numerical setup
can accommodate different values and ensure different answers to the template question. Therefore,
we were able to create multiple numerical setups for each template used for the creation of the
dataset. Each template question together with its numerical setups served as a single unit test in the
dataset. This design enables a more nuanced evaluation of the models’ understanding of different
circuit topologies and provides quantifiable insights into how data homogeneity influences model
performance.

Initial experiments indicated that LLMs found it challenging to interpret circuit diagrams, particu-
larly the direction and orientation of circuit components. To aid in understanding circuit topologies,
we incorporated netlists into the prompts. Netlist syntax was slightly modified to better suit our
needs, detailed in Appendix B. This modification and the inclusion of a syntax explanation in the
prompts were aimed at enhancing LLMs’ performance on our dataset.

Figure 2 illustrates an example of a data point consisting of a template question along with its
associated diagram, netlist, and a numerical setup. In this scenario, the LLM is tasked with applying
Ohm’s law (V = IR) to calculate the current. The specific setup prompts for a calculation of I =
V
R = 5V

100Ω = 0.05A, testing the LLM’s understanding of this simple circuit topology. Our dataset
extends this approach by using various values for V and R for numerical setups, thus methodically
exploring the output curve I in a unit-test-like fashion. That is, to test the understanding of this
topology, we create multiple data points with different numerical setups, each maintaining the same
structure, template question, diagram, and netlist but altering V and R values in the numerical setup
to produce data points with different correct answers. Providing correct answers to each numerical
setup strongly suggests an understanding of the topology, without requiring a detailed examination
of the solution methodology, much like how unit tests in programming verify that a function is
correctly implemented.

3.2 DATASET STATISTICS

The CIRCUIT dataset consists of 510 questions derived from 102 templates, with 5 numerical
setups each. 93 templates include diagrams, 79 of which include netlists. Templates are divided into
four categories—basic, analog, power, and radio-frequency (RF)—and are graded by levels based
on the corresponding MIT course and the typical class year. For example, MIT 6.002 (Circuits and
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Figure 3: Templates distribution across categories and levels. The heatmap displays the distribu-
tion of templates in the CIRCUIT dataset across four categories (Analog, Basic, Power, and Radio
Frequency) and three levels (1, 3, and 5). The numbers inside each cell represent the total count
of templates, with percentages indicating the proportion of templates relative to the entire dataset
(totaling 102 templates). The color intensity corresponds to the number of templates, as indicated
by the color bar on the right.

Electronics) problems are level 1 since the class is typically taken by freshmen. The category-level
distribution of the dataset is given in Figure 3.

4 EVALUATION

4.1 METRICS

As previously described, each template ti is associated with n = 5 distinct numerical setups in the
dataset. These setups yield straightforward numerical outcomes and aim to cover the comprehensive
output range pertinent to the respective circuit.

We evaluate using both global and template-level accuracies. Global accuracy is defined as:

Aglobal =
# correctly answered questions

# total questions
for the entire dataset and its subsets.

Template accuracy, which leverages the unit-test-like structure of our dataset, is gauged by the
pass@k/n metric. This metric evaluates the model’s understanding of a single circuit topology
through n numerical setups (n = 5 for our dataset), which make up a unit test. A template is con-
sidered accurate (i.e. a unit test is passed) if at least k of its n setups are correctly solved. Therefore,
the template accuracy is defined as:

Atemplate,k/n =

∑m
i=1 Ati,k

m
, where Ati,k =


1 if at least k out of n setups

are answered correctly
0 otherwise

and reported for various values of k across all 102 templates (m = 102) and their subsets.

4.2 METHODS

Our straightforward numerical setups allow for the automatic evaluation of LLM performance. We
prompt LLMs to give their final numerical answers in a specified format (details in Appendix C)

4
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and facilitate parsing via regex from the responses. Additionally, we conduct human evaluations on
a subset of responses for error and qualitative analyses.

5 EXPERIMENTS

5.1 MODELS

We evaluated gpt-4-turbo (OpenAI, 2024), gpt-4o (OpenAI, 2024) and gemini-1.5-pro
(Team et al., 2024) on our dataset, setting the maximum tokens to 1,536 for each. Detailed prompt
design is available in Appendix C. Following well-established prompting techniques (Brown et al.,
2020; Schulhoff et al., 2024), four different prompts were tested for each model: zero-shot and one-
shot, with and without netlists. Models were instructed to give their final numerical answers with a
precision of six decimal places.

5.2 EXPERIMENTS

In each experiment, models were provided with diagrams for questions that included them. In the
first 3 experiments, models received all questions from the CIRCUIT dataset with a 0-shot prompt.
In the next 3, models were given 395 questions that had associated netlists and the same 0-shot
prompt, along with netlists and customized instructions for interpreting only the elements present in
each netlist. In the third set of 3 experiments, models were given all questions with a 1-shot prompt.
In the final 3 experiments, models received all questions, a 1-shot prompt with a netlist example,
netlists, and the necessary netlist instructions. Details of the prompt design are in Appendix C.
Responses from all experiments were quantitatively analyzed, with a subset reviewed for errors and
qualitative insights by human evaluators.

5.3 EVALUATION

We used an automatic evaluation method to assess model responses and reported both global and
template accuracies. Responses were deemed correct if the absolute difference from the ground truth
was less than 0.001. Additionally, we conducted a human evaluation of best-accuracy responses to
verify automatic evaluation results, analyze errors, and understand the qualitative aspects of the
responses. Errors were categorized into mathematical, response formatting, and reasoning. The
models sometimes displayed clear misunderstandings of the circuit topology, which we classified as
topology errors, a specific type of reasoning error. A common topology error was misunderstanding
element orientation or direction, the rate of which we also reported. More details on error types and
subtypes can be found in Appendix D. Human evaluation deemed responses as correct if they were
devoid of errors.

6 RESULTS

6.1 QUANTITATIVE ANALYSIS

6.1.1 AUTOMATIC EVALUATION

We assessed model performance across the entire CIRCUIT dataset using automatic evaluation, with
results detailed in Table 1. A key observation is that the best-performing prompt varies by model and
by the specific accuracy metric. For instance, GPT 4-turbo achieves the highest global accuracy
with the 1-shot prompt, while its highest 5/5 template accuracy occurs with the 1-shot prompt with
a netlist example. In contrast, Gemini 1.5-pro performs best with the plain 0-shot prompt
across all metrics, indicating a potential struggle to integrate additional information from netlists or
example-based problem-solving strategies provided in the 1-shot prompts. The most consistent and
highest-performing model across both global and template accuracies appears to be GPT 4o, which
leverages netlists effectively but does not seem to gain further advantage from the 1-shot prompt.

One important pattern we observe is that template accuracy decreases as the value of k in pass@k/n
increases. This reflects the increasing difficulty in achieving correctness across all five numerical
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setups in a given template. Notice that pass@3/5 template accuracy closely aligns with global ac-
curacy indicating that relying solely on global accuracy can obscure deeper insights into a model’s
performance on the given dataset.

Table 2 provides further granularity by separating results into two subsets: questions with and with-
out associated netlists. GPT 4o outperforms other models in both subsets. Notably, questions
without netlists yield higher average scores, likely due to their emphasis on reasoning which does
not require the model to understand complex circuit topologies. All models benefit from the 1-
shot example in this subset, with GPT 4-turbo showing the most significant improvement when
the netlist is included in the 1-shot example. For questions with netlists, model preferences di-
verge. While GPT 4o performs best with the 0-shot prompt including netlists, its template accu-
racy for higher values of k remains strong even with the 1-shot prompt including netlists. Gemini
1.5-pro does not seem to benefit from additional information in the prompts, and GPT 4-turbo
shows mixed results between global and template metrics.

The global accuracies indicate that, despite the complexity and the specialized knowledge required
for the CIRCUIT dataset, the models show reasonable performance. However, the template accura-
cies reveal that the range of circuit topologies the models can grasp is limited.

6.1.2 HUMAN EVALUATION

Automatic evaluation predominantly assesses model outputs by comparing them to numeric ground
truths and typically does not penalize incorrect reasoning. Concerns about this method also include
mathematical errors and incorrect response formatting. GPT 4o was selected for a detailed human
evaluation because it demonstrated superior performance in the automatic assessment.

Results outlined in Table 3 affirm that the trends observed in human evaluations are consistent with
those from automatic evaluation. To further understand the correlation between automatic and hu-
man evaluations, we analyzed the occurrence of false positives—instances where responses were
deemed correct by automatic metrics but identified as incorrect upon human review. Approximately
5% of the automated evaluations resulted in false positives, impacting even the most rigorous tem-
plate accuracies. Despite these occasional discrepancies, automatic evaluation proves to be a de-
pendable tool for understanding model performance.

Human evaluation involved a thorough error analysis, detailed in Table 4, with error categorization
methodologies explained in Appendix D. The primary error types identified were mathematical,
formatting, and reasoning—the latter encompassing all errors not directly related to mathematical
or formatting issues. Within reasoning errors, misunderstandings related to topology emerged as a
significant subcategory, and issues with direction or orientation of elements were recognized as a
specific concern within topology errors. Our analysis indicates that mathematical and formatting
errors constitute a minor portion of the total errors, and the predominant challenges for models
stem from reasoning errors. This highlights the complexity of our dataset which requires a deep
understanding of underlying concepts and their applications.

Additionally, global per-category and per-level accuracies on human-evaluated responses are sum-
marized in Table 5 and Table 6 respectively. These results highlight the challenges in understanding
more complex topologies, as evidenced by significantly lower performance on questions with netlists
and at higher levels. Furthermore, the consistently higher accuracy in the ’Basic’ category across
configurations suggests that GPT-4o is better equipped to handle introductory-level circuits than
more advanced ones.

6.2 QUALITATIVE ANALYSIS

GPT 4o’s responses revealed that the model generally employed appropriate tools and formulas
and understood which elements were present in the given circuit. However, it struggled with com-
plex circuit topologies; even with netlists, higher-level reasoning remained challenging. Sometimes,
even when given a netlist, GPT’s response would not indicate its use. We also noticed that netlists
often helped GPT understand a part of or the entire given topology. Errors often stemmed from
misconceptions about interactions and connections between components and subcircuits. GPT also
struggled with directions and element orientations, such as current flow direction from a current
source. Sometimes, GPT made minor reasoning errors which didn’t affect the correctness of the
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final solution. While GPT occasionally made mathematical errors, these were primarily confined to
approximation errors, often division and logarithmic and exponential calculations, and sometimes
careless mistakes in equation manipulation, reinforcing that the primary challenge lies in reason-
ing rather than basic mathematics. Nevertheless, the fixed error on the final numerical answer was
sometimes too stringent for GPT’s approximations. GPT occasionally displayed conceptual misun-
derstandings, failed to follow given instructions, or applied general knowledge without adapting to
specific contexts. Hallucinations about non-existent configurations were also noted. For instance,
when given an op-amp in negative feedback, GPT hallucinated its non-inverting input was grounded.

This qualitative analysis underlines the nuanced challenges GPT faces with our dataset and gives us
a glimpse into the data GPT was trained on. More specific examples can be found in Appendix E.

7 DISCUSSION & LIMITATIONS

7.1 DISCUSSION

Through our experiments, we gained valuable insight into the capabilities of existing LLMs in un-
derstanding and reasoning about various analog circuit topologies. Our quantitative and qualitative
analyses indicate that these models possess reasoning abilities and relevant expert knowledge to
tackle the problems in our dataset. Their understanding of circuit topologies can be improved when
netlists and 1-shot examples are provided, but substantial work remains to be done to improve their
performance further on our dataset. Addressing these basic shortcomings in topology understanding
is crucial before advancing to more complex analog design tasks—both of which represent exciting
directions for future work.

Our dataset design together with the pass@k/n metric enables an automatic evaluation framework
for quick, cost-effective, reliable, and comprehensive automatic evaluation of LLMs’ capabilities.
pass@k/n offers a more nuanced understanding of model performance than a mere global accuracy
score. On our dataset, it reveals that these models are proficient in only a narrow subset of topologies,
and a closer look found this subset focused on very simple topologies. Enhancing this pass@k/n’s
potential to yield deeper insights into model understanding could be explored in future work by en-
riching templates with more detailed annotations. Uniquely, the metric can be adjusted for different
levels of strictness (k), allowing researchers to evaluate model performance under varying levels of
precision. The unit-test-like pass@k/n metric can be beneficial in domains beyond analog circuits
where a deep understanding of nuanced subject matter is critical, and where datasets can be struc-
tured with multiple subcomponents per main category to assess comprehensive knowledge. Future
work could investigate applying our dataset design and metric to new domains, different unit test de-
signs for distinct evaluation goals, and strategies for evaluating intermediate steps in LLM reasoning
to enable a more detailed assessment.

A key aspect of the CIRCUIT dataset design is its transparency regarding data homogeneity achieved
through our unit test setup. When we compare global accuracy to template accuracy, we see the po-
tential pitfall of relying solely on global metrics in dataset evaluation. Global accuracy provides an
aggregate view of model performance but can mask nuanced failures that become apparent when as-
sessing models on a template level. The CIRCUIT dataset’s explicit design allows us to observe this
distinction more clearly, as it isolates a model’s ability to handle both the homogeneity (consistent
core structures) and variability (changing numerical setups) inherent in real-world problems. This
approach contrasts with traditional datasets, where either the homogeneity may not be explicit or the
variability across problem instances may not be systematically controlled. By designing datasets like
CIRCUIT, where the relationship between template structure and numerical variability is clear, we
can gain deeper insights into model robustness and generalization capabilities. Template pass@k/n
accuracies on our dataset show low generalization capabilities across variability in numerical se-
tups. This is concerning for analog circuit design because it suggests that models struggle to adapt
to different component values and configurations, which are critical for reliable performance in real-
world circuit applications. Therefore, we encourage making homogeneity a more explicit aspect of
dataset design and look forward to the insights future work may uncover.

Error analysis showed that most incorrect responses stemmed from reasoning errors, while math-
ematical inaccuracies were rare. There is a potential role for integrating a Python interpreter to
mitigate mathematical errors, as noted by Gao et al. (2023). Qualitative analysis further revealed the
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Table 1: Accuracies for the Entire CIRCUIT Dataset. The CIRCUIT dataset comprises 102
templates. Accuracy is reported using two metrics: global (Glob.), which measures performance
across the entire dataset, and template, which measures performance based on the smallest number
of correct numerical setups per template (5/5, 4/5, and 3/5). The highest accuracies are bolded,
and the best-performing prompt highlighted in green. The table presents the performance of three
models (GPT-4-turbo, GPT-4o, and Gemini 1.5-pro) across various prompt configurations: 0-shot
(0-s), 0-shot with netlists and instructions (0-s w/ netlists) where applicable, 1-shot (1-s), and
1-shot with netlists and instructions (1-s w/ netlists).

Model Prompt

Accuracies (%)
Entire dataset (102 templates)

Glob.
Template

5/5 4/5 3/5

GPT
4-turbo

0-s 38.4 18.6 30.4 40.2
0-s w/ netlists 38.2 19.6 32.4 35.3
1-s 39.2 15.7 32.4 40.2
1-s w/ netlists 38.2 22.6 31.4 34.3

GPT 4o

0-s 46.7 27.5 35.3 48.0
0-s w/ netlists 48.0 27.5 37.3 47.1
1-s 39.6 23.5 33.3 38.2
1-s w/ netlists 43.1 24.5 34.3 43.1

Gemini
1.5-pro

0-s 36.3 18.6 29.4 33.3
0-s w/ netlists 34.7 13.7 25.5 33.3
1-s 32.0 10.8 21.6 30.4
1-s w/ netlists 32.2 13.8 23.5 33.3

Table 2: Accuracies on CIRCUIT Dataset Subsets: questions which have associated netlists
(Questions With Netlists) and questions which do not have associated netlists (Questions With-
out Netlists). The table presents the performance of three models across various prompt configura-
tions and accuracy metrics, as described in Table 1, for the two subsets of the dataset. Note that out
of 102 templates in the dataset, 23 templates do not have associated netlists, while 79 templates do.

Model Prompt

Accuracies (%)
Questions Without Netlists Questions With Netlists

Glob.
Template

Glob.
Template

5/5 4/5 3/5 5/5 4/5 3/5

GPT
4-turbo

0-s
61.7 39.1 56.5 60.9

31.7 12.7 22.8 34.2
0-s w/ netlists 31.4 13.9 25.3 27.9
1-s 62.6 39.1 56.5 69.6 32.4 8.9 25.3 31.7
1-s w/ netlists 63.5 43.5 60.9 65.2 30.9 16.5 22.8 25.3

GPT 4o

0-s
67.0 47.8 65.2 69.6

40.8 21.5 26.6 41.8
0-s w/ netlists 42.5 21.5 29.1 40.5
1-s 67.8 56.5 65.2 65.2 31.4 13.9 24.1 30.4
1-s w/ netlists 63.5 34.8 52.2 69.6 37.2 21.5 29.1 35.4

Gemini
1.5-pro

0-s
55.7 26.1 56.5 56.5

30.6 16.5 21.5 26.6
0-s w/ netlists 28.6 10.1 16.5 26.6
1-s 56.5 26.1 43.5 65.2 24.8 6.3 15.2 20.3
1-s w/ netlists 53.0 21.7 43.5 56.5 26.1 11.4 17.7 26.6
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Table 3: The table shows the accuracy of GPT-4o responses evaluated automatically versus by
humans, using the metrics described in Table 1. It presents results for two prompts—0-shot with
netlists and instructions, and 1-shot with netlists and instructions—on the subset of the dataset
with associated netlists (Questions With Netlist – 79 templates). Additionally, it includes results
for the 1-shot prompt on the subset without associated netlists (Questions W/O Netlists – 23
templates). The response subsets selected for human evaluation were chosen based on the results
from Table 2.

Dataset
Subset Prompt

GPT 4o Response Accuracies (%)
Automatic Human

Glob.
Template

Glob.
Template

5/5 4/5 3/5 5/5 4/5 3/5

Questions
With Netlists

0-s w/ netlists 42.5 21.5 29.1 40.5 36.5 17.7 27.9 35.4
1-s w/ netlists 37.2 21.5 29.1 35.4 31.9 19.0 27.9 31.7

Questions
W/O Netlists 1-s 67.8 56.5 65.2 65.2 63.5 52.2 65.2 65.2

nature of the reasoning errors, pointing towards significant opportunities for improving the interpre-
tative and reasoning capabilities of these models in future work.

Although the slight improvement in model accuracy with netlists suggests some sensitivity to addi-
tional contextual information, the overall impact remains modest. Interestingly, 1-shot prompting
improved accuracy mainly on questions without associated netlists. The benefit of the 1-shot exam-
ple isn’t fully realized for questions involving netlists, possibly because the model sometimes fails
to explicitly utilize the given netlist in its reasoning. Future work should explore the integration of
more detailed contextual aids.

7.2 LIMITATIONS

This study, while insightful, faces several key limitations. The dataset’s size and imbalance across
categories, levels, and netlist presence could affect the generalizability of our findings, highlighting
the need for a more representative dataset through expansion, particularly the number of numerical
setups and better balancing. The dataset could be further enhanced by incorporating more challeng-
ing problems that better reflect contemporary circuit topologies. Additionally, the limited model
selection and narrow focus in human evaluation limits our understanding of broader model capabil-
ities.

8 CONCLUSION

We introduced CIRCUIT, the pioneering dataset designed specifically for assessing LLMs in the
domain of analog circuit interpretation and reasoning. This work not only demonstrated the utility of
meticulous and homogeneity-transparent dataset design but also highlighted the nuanced capabilities
and limitations of leading LLMs through a comprehensive set of evaluations. The development
of the pass@k/n metric and the strategic use of netlists significantly advanced our understanding
of how models handle complex circuit topologies. Looking ahead, we encourage addressing the
challenges posed by our dataset, expanding its scope, exploring our dataset design and metrics in
other challenging domains, and further refining and developing our methodologies.
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Table 4: Human Error Analysis of GPT-4o Responses. The table presents the error rates across
different error types (Math, Formatting, Reasoning, Topology, and Direction) for GPT-4o re-
sponses analyzed by humans. Error rates are calculated as the ratio of data points with the
specified error to the total data points per subset. It presents results for two prompts—0-shot with
netlists and instructions, and 1-shot with netlists and instructions—on the subset of the dataset with
associated netlists (Questions With Netlists – 79 templates). Additionally, it includes results for
the 1-shot prompt on the subset without netlists (Questions W/O Netlists – 23 templates). This
breakdown helps identify which types of errors are most prevalent across different prompt configu-
rations and for questions with associated netlists versus questions without netlists.

Dataset
Subset Prompt

GPT 4o Response Error Rate (%) by Error Type
Math Formatting Reasoning Topology Direction

Questions
With Netlists

0-s w/ netlists 7.1 1.3 58.5 36.2 4.1
1-s w/ netlists 8.4 0.5 61.8 39.2 3.5

Questions
W/O Netlists 1-s 1.7 0.0 34.8 16.5 4.4

Table 5: Category Accuracies from Human Analysis of GPT-4o Responses. The table shows the
global accuracy on subsets of GPT-4o responses across four categories (Analog, Basic, Power, and
Radio Frequency), based on human analysis results. It presents results on two subsets of the dataset
and different prompts, similar to Table 4. The highest accuracy for questions with netlists is bolded.

Dataset
Subset Prompt GPT 4o Global Accuracy (%) per Category

Analog Basic Power Radio Frequency

Questions
With Netlists

0-s w/ netlists 30.6 49.4 30.0 20.0
1-s w/ netlists 28.2 45.0 26.7 10.0

Questions
W/O Netlists 1-s 33.3 80.0 100.0 60.0

Table 6: Level Accuracies from Human Analysis of GPT-4o Responses. The table shows the
global accuracy on subsets of GPT-4o responses across three levels (1, 3, 5), based on human anal-
ysis results. It presents results on two subsets of the dataset and different prompts, similar to Table
4. The highest accuracy for questions with netlists is bolded.

Dataset
Subset Prompt GPT 4o Global Accuracy (%) per Level

1 3 5

Questions
With Netlists

0-s w/ netlists 49.4 31.2 18.5
1-s w/ netlists 45.0 28.2 9.2

Questions
W/O Netlists 1-s 85.0 60.0 48.0
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A DATASET SOURCES

Problem statements and diagrams from the following sources were selected and modified to allow
for multiple numerical setups:

1. Gray, P. E., Hurst, P. J., Lewis, S. H., & Meyer, R. G. Analysis and Design of Analog
Integrated Circuits.

2. Massachusetts Institute of Technology. MIT OpenCourseWare: 6.01 Introduction to Elec-
trical Engineering and Computer Science I.

3. Massachusetts Institute of Technology. 6.002 Circuits and Electronics, Fall 2021.

4. Razavi, B. RF Microelectronics (2nd ed.). Prentice Hall.

5. Author 1 Original problems.

6. Massachusetts Institute of Technology. MIT OpenCourseWare: 6.061/6.690 Introduction
to Power Systems.

7. Analog Devices. Real Analog - Circuits 1-12.

8. Bowick, C. RF Circuit Design (2nd ed.).

9. Kassakian, J. G. Principles of Power Electronics (2nd ed.).

10. Razavi, B. Design of Analog CMOS Integrated Circuits.

B NETLISTS

If a model is given a netlist in the prompt, we give it NETLIST INSTRUCTIONS START to which
we concatenate only the relevant explanations from the NETLIST INSTRUCTION DICTIONARY.
The traditional netlist syntax does not accommodate in simplicity for certain elements in our circuit
diagrams, hence we adapt it as shown below. Some netlists contain comments, so we concatenate
their explanations as well, as necessary.

NETLIST_INSTRUCTION_START = "To better understand the given circuit diagram also take a look at the following \
netlist-like description of the circuit. \
Some elements and nodes are have no label/name on the diagram, but they are given names in \
the netlists. Note that <value> of an element in the netlist is given in standard units and it is optional \
(it can be included but does not have to be in the netlist descritption of an element).\n\
In the netlist, the elements are listed as:\n"

NETLIST_INSTRUCTION_DICTIONARY = {
"R" : "Resistor: R<string> node_1 node_2 <value>\n",
"C" : "Capacitor: C<string> node_1 node_2 <value>\n",
"L" : "Inductor: L<string> node_1 node_2 <value>\n",
"V" : "Voltage source: V<string> node_+ node_- <value>\n",
"I" : "Current source: I<string> node_from node_to <value>\n",
"S" : "Simple switch: S<string> node_1 node_2\n",
"D" : "Diode: D<string> n_anode n_cathode\n",
"H" : "Current-controlled voltage source: H<string> node_+ node_-

<name of the current controlling the source> <transresistance>\n",
"G" : "Voltage-controlled current source: G<string> node_1 node_2

<name of the voltage controlling the source> <transconductance>\n",
"OPA" : "Simple Op-Amp: OPA<string> node_output node_input_+ node_input_- <gain (optional)>\n",
"M" : "MOS Transistor: M<string> n_drain n_gate n_source n_body NMOS/PMOS\n",
"Q" : "BJT: Q<string> n_collector n_base n_emitter PNP/NPN\n",
"Y" : "Anonymous element: Y<string> node_1 node_2\n",
"K" : "Mutual Inductors: K<string> <inductor1> <inductor2>

<number of turns in inductor1>:<number of turns in inductor2>\n"
}

NETLIST_INSTRUCTION_INLINE_COMMENT = "The netlist contains inline comments labeled with \";\", \
mostly indicating voltages or currents labeled on the diagram. If there is a minus sign, that means \
the voltage or the current is measured in the opposite direction from the nodes listed for that \
element. For example, if there is a line \"E N1 N2 ; v\", the voltage v is measured node N1 to N2. \
That is, N1 is the positive node of the measured voltage v, and N2 is the negative node. \
On the other hand, if there is a line \"E N1 N2 ; -v\", the voltage v is measured node N2 to N1. \
If the comment is about a current, it is the current measured through the listed element E flowing from \
N1 to N2 if there is a line \"E N1 N2 ; i\", and flowing from N2 to N1 if there is a line \"E N1 N2 ; -i\"\
Furthermore, note that the positive current direction is into drain node for an NMOS element and \
out of drain node for a PMOS element.\n"

NETLIST_INSTRUCTION_COMMENT = "The netlist also includes comments marked with \"*\".\n"
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C PROMPT DESIGN

Here we explain the prompt design.

System instructions begin with the following 0-shot prompt which describes the desired final answer
format:

You are an electrical engineering expert. Solve a given problem step by
step. At the end of your solution, write "Final Numerical Answer: N"
where N is your final numerical answer. If the problem did not have
enough information needed to solve it, put "Unknown" in place of N.
If the problem setup is invalid, and thus the problem does not have
a solution, put "None" in place of N. The final numerical answer, if
different from Unknown and None, should be with precision up to 6 decimal
places. The numerical answer should be a decimal number with 6 digits
after the decimal point. Don’t write fractions or numbers in any other
format. Don’t write any further explanations after the Final Numerical
Answer.
Here is an example of the answer format:
Question:
What is x = 2 + 2 * 2?
Step by step solution:
Following the PEMDAS rule, we first multiply 2 * 2 = 4. Then, we add 2 +
4 to get x = 6.
Final Numerical Answer: 6.000000

To create a 1-shot prompt from a 0-shot prompt, we add an example problem that is similar to the
CIRCUIT data. Depending on whether the model in the experiment was given netlists or not, the
model would receive one of the following versions of the problem’s solution:

# Version 1: No netlist given in the prompt

Here is an example problem and solution:
Example Problem:
Consider the circuit in the example diagram. Determine v in Volts.

Solution:
We are asked to find the voltage v across the current source in the
figure. We can see in the figure that the circuit consists of a
current source I1 and a resistor network. If we can find the equivalent
resistance of the resistor network, we can determine the voltage v using
Ohm’s law. From the figure, we can see that R1 and R2 are connected
in parallel. Their combination is connected in series to a parallel
combination of R3 and R4. And this parallel combination is connected in
series with R5. Therefore, we find that Req = R12 +R34 +R5 = R12 +R34 +100Ω.
Since R1 and R2 are parallel to each other, we find that R12 = 1

1
R1

+ 1
R2

=

1
1

500
+ 1

500

= 1
2

500

= 500
2

= 250Ω. Similarly, R34 = 1
1

R3
+ 1

R4

= 1
1

300
+ 1

100

= 1
100+300
100(300)

= 30000
400

=

75Ω.
Thus, Req = R12 +R34 +R5 = 250Ω + 75Ω + 100Ω = 425Ω.
Using Ohm’s Law, we find that v = I1Req = 2A(425Ω) = 850V.

Final Numerical Answer: 850.000000

# Version 2: Netlist given in the prompt

Here is an example problem and solution:
Example Problem:
Consider the circuit in the example diagram. Determine v in Volts.
Netlist:
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‘‘‘
I1 0 N1 2
R1 N1 N2 500
R2 N1 N2 500
R3 N2 N3 300
R4 N2 N3 100
R5 N3 0 100
‘‘‘

Solution:
We are asked to find the voltage v across the current source in the
figure. We can see in the figure that the circuit consists of a
current source I1 and a resistor network. If we can find the equivalent
resistance of the resistor network, we can determine the voltage v using
Ohm’s law. From the figure, we can see that R1 and R2 are connected
in parallel. Their combination is connected in series to a parallel
combination of R3 and R4. And this parallel combination is connected
in series with R5. We confirm this in the netlist. R1 and R2 share two
same nodes N1 and N2, so they are connected in parallel. R3 and R4 share
two same nodes N2 and N3, so they are connected in parallel. R1, R2,
R3, and R4 share node N2, so the parallel combinations R12 and R34 are
connected in series. Finally, R3, R4, and R5 share a node N3, so the
parallel combination R34 and R5 are connected in series. Therefore, we
find that Req = R12 +R34 +R5 = R12 +R34 + 100Ω. Since R1 and R2 are parallel
to each other, we find that R12 = 1

1
R1

+ 1
R2

= 1
1

500
+ 1

500

= 1
2

500

= 500
2

= 250Ω.

Similarly, R34 = 1
1

R3
+ 1

R4

= 1
1

300
+ 1

100

= 1
100+300
100(300)

= 30000
400

= 75Ω. Thus,

Req = R12 + R34 + R5 = 250Ω + 75Ω + 100Ω = 425Ω. Using Ohm’s Law, we find
that v = I1Req = 2A(425Ω) = 850V.

Final Numerical Answer: 850.000000

The model would also be given the 1-shot example diagram.

The models would then receive the problem template and numerical setup. For example, if we were
asking the model to solve the problem in Figure 2, we would add:

Calculate the current I in Amperes in the given circuit.
Assume V = 5V and R = 100Ω.

If the model was provided with a netlist, it would additionally receive the necessary netlist explana-
tions detailed in Appendix B as well as the netlist. For the above example, that would be:

To better understand the given circuit...
(the rest of netlist instructions)
The netlist:
V N1 0
R N1 0 ; I
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D ERROR TYPES

We categorized errors made by the model into the following types:

• Math Errors: Any type of mistake related to mathematical computation, precision, or mis-
understanding of mathematical concepts. This includes errors in basic arithmetic, formula
application, or incorrect assumptions about numerical values.

• Formatting Errors: These occur when the model outputs an answer in an incorrect format
(correct format detailed in Appendix C). For example, the model may respond with ”FNA:
...” instead of using the correct label, ”Final Numerical Answer:” or might misapply other
required conventions.

• Reasoning Errors: Any mistake that is not a Math or a Formatting error. These include
two subcategories:

– Topology Errors: The model misunderstood the structural layout or connection of
elements in the circuit. For instance, it could misidentify an element or incorrectly
interpret how components are interconnected within the system.

– Direction Errors: The model misunderstood the orientation of an element, the direc-
tion of a current, etc. This involves confusion over how elements are aligned or how
power/current flows through the circuit.

The main error types are Math, Formatting, and Reasoning. That means, all direction and topology
errors count as reasoning errors.
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E QUALITATIVE ANALYSIS EXAMPLES

Here, we present several concrete qualitative analysis examples. Portions of GPT’s responses have
been redacted for clarity or brevity, indicated by ellipses (”...”).

E.1 MISUNDERSTANDING TOPOLOGIES

GPT had trouble understanding even slightly complex topologies. Sometimes, netlists would not
help its understanding.

Consider the problem ID 46 adapted from MIT 6.002 (source listed in Appendix A):

Template:
Find the power in Watts delivered
to R_3 in the circuit in the figure.

Numerical Setup:
Assume that V_1 = 80 V, V_2 = 100 V,
V_3 = 40 V, R_1 = 2 Ohm, R_2 = 12 Ohm,
and R_3 = 4 Ohm.

In experiment 5, GPT was given the 0-shot prompt, and we can see the topology misunderstand-
ing from the KVL equations in the response below. The left loop does not include R3 but does
include another resistor and another voltage source. Additionally, the signs in the KVL equations
are inconsistent.

EXPERIMENT 5, QUESTION ID 46

GPT’s RESPONSE:

Let’s analyze and solve for the power delivered to R3 in
the given circuit step by step.
Step 1: Identify the Loop Equations

We will use Kirchhoff’s Voltage Law (KVL) for the two
loops with given voltage sources and resistors.
Loop 1 (left loop):

−V1 + I1R1 + I3R3 = 0

Loop 2 (right loop):

V2 + I2R2 − V3 − I3R3 = 0

Step 2: Write the Equations in Terms of Currents
Expressing the above in terms:
...

A similar misunderstanding can be seen in experiment 7 where GPT was given the 1-shot prompt.
The left-loop is missing an element and the signs in the KVL equations are inconsistent.
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EXPERIMENT 7, QUESTION ID 46

GPT’s RESPONSE:

First, we need to find the currents through the resistors
in the given circuit.
1. Apply Kirchhoff’s Voltage Law (KVL) around the left
loop (containing V1, R1, and R2):

V1 − I1R1 − V3 = 0

...
2. Apply Kirchhoff’s Voltage Law (KVL) around the right
loop (containing V3, R2, V2, and R3):

V3 + I1R2 − V2 − I2R3 = 0

...

Looking at experiment 6, where GPT was given the 0-shot prompt and the netlist, GPT could not
reason about this topology even with a netlist. In step 2, it aready makes some mistakes: V1 =
−80V , V3 ̸= 0, V4 ̸= −40V , and N4 is not directly connected to V3.

Netlist given to the model:
V1 0 N1
R1 N1 N2
R2 N2 N3
V3 N3 0
V2 N2 N4
R3 N4 0

EXPERIMENT 6, QUESTION ID 46

GPT’s RESPONSE:

1. Nodal Analysis:
Let’s define the following nodes:
- V0 = 0 V
- V1 is the potential of node N1
- V2 is the potential of node N2
- V3 is the potential of node N3
- V4 is the potential of node N4

From the netlist and the given values:
- V 1 = 80 V
- V 2 = 100 V
- V 3 = 40 V
- R1 = 2 Ω
- R2 = 12 Ω
- R3 = 4 Ω

2. Node Voltages:
- V1 is at 80 V because it’s directly connected to V 1.
- V3 = 0 V because it’s connected to the ground.
- V4 is at -40 V because it’s directly connected to V 3.
...

Sometimes, when netlists were provided, GPT would not explicitly use them.

Consider the topology in problem IDs 121-125, focusing on the setup in ID 121. The topology
consists of a voltage source connected to a resistor network, and the model is asked to find the total
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current supplied by the voltage source. GPT had a difficult time understanding the complex resistor
network with and without netlists. Interestingly, its responses do not indicate the use of netlists.

In experiment 5, GPT was given the 0-shot prompt and could not understand the resistor connections,
which can be seen from the response below (displayed without equations for easier following).

EXPERIMENT 5, QUESTION ID 121

GPT’s RESPONSE:

Step by step solution:
1. Calculate the equivalent resistance of R2 and R3 in
parallel:
...
2. Add R4 in series with R23:
...
3. Calculate the equivalent resistance of R5 and R6 in
parallel:
...
4. Calculate the equivalent resistance of R7 and R8 in
parallel:
...
5. Add R78 in series with R6:
...
6. Combine R234 and R678 in parallel:
...
7. Add R1 in series with the equivalent resistance R234678:
...
8. Use Ohm’s Law to find the current I: ...
Final Numerical Answer: 4.342778

In experiment 6, GPT was given the 0-shot prompt and the netlist. It misunderstood the resistor
network, and it did not explicitly use the provided netlist (displayed without equations for easier
following).

EXPERIMENT 6, QUESTION ID 121

GPT’s RESPONSE:

1. Combine R2 and R4 (parallel combination):
...
2. Combine R24 and R3 (series combination):
...
3. Combine R243 and R5 (series combination):
...
4. Combine R7 and R8 (parallel combination):
...
5. Combine R78 and R6 (series combination):
...
6. Combine R2435 and R786 (parallel combination):
...
7. Combine R1 and Rtotal branch (series combination):
...
8. Use Ohm’s Law to find the current I:
...

Final Numerical Answer: 4.399751

Similar can be observed in experiments 7 and 8, where GPT was given the 1-shot prompt without
and with the netlist respectively; however, it did not explicitly use the netlist given in experiment 8.
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E.2 UTILIZING NETLISTS SUCCESSFULLY

Netlists sometimes helped GPT successfully reason about a topology.

Consider the problem ID 174. The topology consists of a current source, a voltage source, and two
resistors, and the model is asked to find the current through one of the resistors. In experiment 5,
GPT-4o was given the 0-shot prompt and misunderstood the topology of this circuit, particularly
confusing current directions. In experiment 7, GPT-4o was given the 1-shot prompt and misun-
derstood the topology of this circuit, interpreting resistors to be connected in series. However, in
experiment 6, GPT-4o was given the 0-shot prompt and the netlist for this circuit, which it utilized
to successfully understand the topology, as shown below in GPT’s response.

EXPERIMENT 6, QUESTION ID 174

GPT’s RESPONSE:

Step by step solution:

1. From the netlist:
- A current source U = 0.6A is connected between ground (0) and node N1.
- R1 = 10Ω is connected between N1 and ground (0).
- R2 = 20Ω is connected between N1 and N2.
- A voltage source V = 30V is connected between ground (0) and N2.

2. Current U = 0.6A flows from ground to N1.

3. Apply Kirchhoff’s Current Law (KCL) at node N1:

IU = IR1 + IR2

where
- IU is the current from the current source, which is 0.6A.
- IR1 is the current through R1.
- IR2 is the current through R2.

4. Calculate the current through R1:

IR1 =
VN1

R1
=

VN1

10

5. Calculate the current through R2:

IR2 =
VN1 − VN2

R2
=

VN1 − 30

20

Using KCL:

0.6 =
VN1

10
+

VN1 − 30

20

6. Simplify the equation to solve for VN1:
Multiply through by 20 to clear the denominators:

12 = 2VN1 + VN1 − 30

12 = 3VN1 − 30

Add 30 to both sides:

42 = 3VN1

Divide by 3:

VN1 = 14V

7. Calculate IR1, the current through R1:

IR1 =
VN1

10
=

14

10
= 1.4A

8. The current I labeled in the diagram is the current through

R1, which is IR1.

Final Numerical Answer: 1.400000

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

E.3 MISUNDERSTANDING DIRECTIONS

GPT would sometimes misunderstand element orientations, such as the positive and negative nodes
of a voltage source, or current directions.

Consider the problem ID 179. In experiment 8, GPT was given a 1-shot prompt and a netlist.
However, it misunderstood the current source orientation – the current is flowing from ground to
N2.

EXPERIMENT 8, QUESTION ID 179

GPT’s RESPONSE:

...
1. From the netlist and the circuit diagram (Figure
134-01): - U = 0.4V - R1 = 4Ω - I1 = 1A (current flowing
from N2 to ground through the current source)
...

Consider the problem ID 31. In experiment 6, GPT was given a 0-shot prompt and a netlist. How-
ever, it misunderstood the labeled current directions, as can be seen in its KCL application. The
correct equation is i3 = i2 + i4.

EXPERIMENT 6, QUESTION ID 31

GPT’s RESPONSE:

...
Step 3: Write the node voltage equation at node N2 using
Kirchhoff’s Current Law (KCL):

i3 + i4 = i2

...

In the same experiment, consider the problem ID 47. GPT misunderstood voltage source V1 ori-
entation and wrongly deduced a node potential (further topology misunderstandings can be seen as
well).

EXPERIMENT 6, QUESTION ID 47

GPT’s RESPONSE:

To find the power delivered to R3, we need to determine
the voltage across it and the current through it.

1. Nodal Analysis:
Let’s define the following nodes:
- V0 = 0 V
- V1 is the potential at node where V1 is connected.
- V2 is the potential at the node where V2, R1 and R2 are
connected.

2. Assign Potential Values:
- Node at ground: V0 = 0 V
- Node N1: V (N1) = 20 V from V1

- Node N2 to ground V (N2, 0) = 40 V from V3

...
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E.4 MINOR REASONING ERRORS

GPT would sometimes correctly solve a problem but display minor reasoning errors in the process,
resulting in human evaluation labeling its response as incorrect.

Consider the problem ID 15. The topology consists of a voltage source and a small resistor network,
and the model is asked to find the current through one of the resistors. In experiment 8, GPT was
given a 1-shot prompt and a netlist. Its solution was overall correct. However, it wrongly claimed
that the voltage drop across the parallel combination of R2 and R3 is the same as the voltage across
R1. This could be interpreted as a conceptual misunderstanding of voltage dividers. It didn’t use
this wrong conclusion, so its final answer was correct.

EXPERIMENT 8, QUESTION ID 15

GPT’s RESPONSE:

To determine the current i3 in the given circuit, we can use various circuit analysis
techniques. Let’s follow Ohm’s Law and the principles of series and parallel circuits.
1. Given Data:
- V1 = 10V
- ...

2. Identify Series and Parallel Connections:
- Voltage source V1 is connected to R1 and the combination of R2 and R3.

3. Calculating Equivalent Resistance:
Since R2 and R3 are connected in parallel, we calculate their equivalent resistance
(R23):

1

R23

=
1

R2

+
1

R3

...

4. Total Resistance in the Circuit:
Now, calculate the total resistance in the circuit, which is the sum of R1 and R23:

Rtotal = R1 + R23

...

5. Total Current itotal:
Using Ohm’s Law, the total current itotal supplied by the voltage source V1 is:

itotal =
V1

Rtotal

...

6. Current through R2 and R3 (Parallel Combination):
The voltage drop across the parallel combination of R2 and R3 is the same as the
voltage across R1.
Voltage drop across R1:

VR1 = itotal × R1

VR1 = 0.750000 × 5 = 3.750000V

Hence, voltage across R2 (which is same as VR3):

VR2 = Vtotal − VR1

VR2 = 10 − 3.750000 = 6.250000V

7. Current i3 through R2:
Using Ohm’s law again for R2:

i3 =
VR2

R2

i3 =
6.250000

10

i3 = 0.625000A

Final Numerical Answer: 0.625000
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E.5 MATH ERRORS

Most math errors GPT made were approximation errors, usually in division and exponent and loga-
rithm calculations. Occasionally, GPT also made small errors in equation manipulation and compu-
tation.

Consider the problem ID 444. The model was asked to find the small-signal output resistance of
a given circuit. In experiment 8, GPT was given a 1-shot prompt and a netlist. GPT makes a
computation mistake in the last calculation step concluding Rout =

1
250×10−3 S = 1

0.25 k = 4 k.

EXPERIMENT 8, QUESTION ID 444

GPT’s RESPONSE:

...

Rout =
1

250× 10−3 S
=

1

0.25
k = 4 k

Therefore, the small-signal output resistance Rout is:

Final Numerical Answer: 4.000000

Consider the problem ID 265. The model was asked to find the linear scale loss in a given cir-
cuit. In experiment 6, GPT was given a 0-shot prompt and a netlist. In the last step, it made an
approximation, which resulted in the final answer being outside the allowed error range.

EXPERIMENT 6, QUESTION ID 265

GPT’s RESPONSE:

...

=
6806.25

6187.5
≈ 1.099

Final Numerical Answer: 1.099000

Consider the problem ID 326. The model was asked to determine the overall noise figure of a given
circuit. In experiment 8, GPT was given a 1-shot prompt and a netlist. GPT had a small error in the
logarithm calculation.

EXPERIMENT 8, QUESTION ID 326

GPT’s RESPONSE:

... 4. Convert Back to Noise Figure in dB:

NFtotal = 10 log10(1.904893) = 10× 0.280173

NFtotal ≈ 2.801732 dB

Final Numerical Answer: 2.801732

E.6 NOT FOLLOWING INSTRUCTIONS, NOT ADAPTING TO THE CONTEXT

Sometimes, GPT would not follow the given instructions or fail to consider the problem context.

Consider the problem ID 71. In experiment 6, GPT was given the 0-shot prompt and the netlist. The
topology consists of a capacitor connected to a simple resistor network, and the model is asked to
find the voltage across the capacitor. GPT claims it was not given the value of t, even though the
value was given in the setup. GPT also failed to follow the formatting instructions in the prompt –
the model should format the answer as Final Numerical Answer:Unknown in the case that
insufficient information was provided.
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EXPERIMENT 6, QUESTION ID 71

GPT’s RESPONSE:

...
Since the solution requested is to find vb(t) and an
explicit time was not provided, the final answer must be
left in the general solution form, which is:
vb(t) = 5 exp(−2t)

Therefore, for a general time t:

Final Numerical Answer:

vb(t) = 5 exp(−2t)
...

Consider the problem ID 486. In experiment 8, GPT was given the 1-shot prompt and the netlist. The
model fails to recognize the correct sign of the gain. Instead, it applied the standard common-source
amplifier gain expression without adapting it to the specific circuit context.

EXPERIMENT 8, QUESTION ID 486

GPT’s RESPONSE:

To determine the small signal voltage gain of the circuit in figure 242-01, we need to
analyze the small signal equivalent circuit. Given:
- ...
- Assuming that M1, M2, and M3 have the same width and length.

We’ll follow these steps to calculate the voltage gain:
1. Identify the operating principles and small-signal parameters.
2. Construct the small-signal model.
3. Calculate the small-signal gain.

Step 1: Operating Principles and Small-Signal Parameters
- M1 is an NMOS transistor.
- M2 and M3 are PMOS transistors used in current mirror configuration.
- gm represents the transconductance of the transistor M1.

Step 2: Small-Signal Model

The small-signal equivalents can be represented as follows:
- M1 operates with a transconductance gm1 = 10mS.
- M2 and M3 form a current mirror.

Step 3: Gain Calculation
1. Small-Signal Equivalent Circuit:
- ...

2. Small-Signal Resistance at Drain of M3:
...

3. Small-Signal Current through M1:
...

4. Current Mirror (PMOS):
The current through M2 is mirrored by M3.

5. Small-Signal Voltage Gain:

The voltage gain Av =
Vout
Vin

can be computed as:

Av = −gm1 · RL

Given:
gm1 = 10mS = 0.01S

and
RL = 100Ω

we have:
Av = −(0.01S) · (100Ω)

Simplifies to:
Av = −1

Final Numerical Answer:
FinalNumericalAnswer : −1.000000
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E.7 HALLUCINATIONS

Sometimes, GPT would introduce nonsensical conclusions throughout its solution. These conclu-
sions usually seem like hallucinations about common configurations.

Consider the problem ID 199. The topology features an op-amp in a negative feedback configuration,
and the model is ask to find the current through one of the resistors in the circuit. In experiment
6, GPT was given the 0-shot prompt and the netlist. The model eventually produces the correct
solution. However, in its solution, it says that the ”voltage drop across the 100 Ω resistor is not
needed since Vp can be assumed to be at virtual ground if Vn = Vp.” This is a common configuration
for op-amps in negative feedback, but it is not true for the given topology, and the model does not
use it later in the solution.

EXPERIMENT 6, QUESTION ID 199

GPT’s RESPONSE:

To calculate the current through resistor R1 in the given
circuit , follow these steps:

Step-by-Step Solution:

1. Identify Voltages and Nodes:
- The non-inverting input of the op-amp (Vp) is connected
to node N1 through a 100 resistor and a 10 V source.
- The inverting input of the op-amp (Vn) is connected to
node Vn.
- Node N3 is the output node of the op-amp.

2. Op-Amp Ideal Assumptions: - For the ideal op-amp,
the voltage at the inverting input (Vn) is equal to the
voltage at the non-inverting input (Vp).
- The input differential voltage is zero, so Vn = Vp.

3. Calculate Vp: - Since the non-inverting input (Vp) is
connected to the junction of the 100 resistor and the 10
V source, we need to find this voltage.
- Voltage drop across the 100 resistor is not needed
since Vp can be assumed to be at virtual ground if Vn = Vp.

4. Voltage at Vp:
- Given Vp directly after the resistor is simply 10 V
considering ideal conditions of the circuit.

5. Calculate Vn:
- Given Vn = Vp = 10 V

6. Use Ohm’s Law to determine current through R1:
- Vn is at 10 V, and one side of resistor R1 is at 0 V
(GND).
- Current through R1 is calculated by IR1 = Vn

R1
.

Calculation:

IR1 =
Vn

R1
=

10 V

2 Ω
= 5 A

Final Numerical Answer:
Final Numerical Answer: 5.000000

In the same experiment and concerning the same topology in problem ID 197, GPT hallucinated that
Vp is determined by a voltage divider. This is also a common configuration for op-amps in negative
feedback. Similarly as ID 199, GPT did not use this conclusion in the solution, so its final answer
was correct.
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