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ABSTRACT

It’s recently reported that by employing the superior In-context Learning (ICL)
ability of autoregressive Transformer, a method named Algorithm Distillation (AD)
could distill the whole Reinforcement Learning process into neural network then
generalize to unseen scenarios with performance comparable to the distilled al-
gorithm. However, to enable ICL, it’s vital for self-attention module to have a
context that spans cross-episodes histories and contains thousands of tokens. Such
a long-range context and the quadratic memory complexity of self-attention pose
difficulty on applying AD into many common RL tasks. On the other hand, design-
ing memory efficient Transformers for long-range document modeling is itself a
fast-developing and fruitful field, which leads to a natural question: Could Efficient
Transformers exhibit similar in-context learning ability and be used for Memory-
Efficient Algorithm Distillation? In this paper, we firstly build a benchmark suite
that is thorough, efficient and flexible. Thanks to it, we perform extensive ex-
periments and verify an existing method named ERNIE-Docs (ED) could offer
competitive performance with significantly reduced memory footprint. With sys-
tematic ablation studies, we further investigate various facets influencing the ICL
ability of ED and provide our own insights into its hyperparameter tuning.

1 INTRODUCTION

Building decision-making agents that could generalize to various environments and tasks has been
a long-standing goal of Reinforcement Learning (RL). Recently, following the trends in Computer
Vision (CV) (Dosovitskiy et al., 2021) and Natural Language Processing (NLP) (Brown et al., 2020;
Devlin et al., 2019), multiple works have explored on pretraining deep autoregressive Transformers
on large-size behavior dataset to obtain agents with strong generalization and adaptation ability (Reed
et al., 2022; Lee et al., 2022; Octo Model Team et al., 2024). Among them, Algorithm Distillation
(AD) takes an unique approach and proposes that by employing the superior In-Context Learning
(ICL) ability of autoregressive Transformer, the whole RL process could be distilled into a neural
network then be ‘replayed’ on new, possibly unseen scenarios.(Laskin et al., 2023)1

Analogous to causal Language Modeling (LM), AD requires an autoregressive Transformer with
context spanning cross-episodes interaction histories to perform credit assignment, exploration-
exploitation balance and policy improvement that are vital to a RL algorithm. Differently and
crucially, all of these abilities are implicitly modeled in the weights of Transformer network instead
of being designed by human experts and implemented as hard-coded programming languages as in
Haarnoja et al. (2018); Fujimoto et al. (2018); Schulman et al. (2017).

However, this cross-episodes context encompasses thousands of tokens, resembling long-range
document modeling in NLP: In typical RL settings, an episode contains hundreds of transitions each
comprising 4 components (state, action, reward and terminal):

2 ∼ 4 (cross-episode context length is needed)× 500 (transitions in an episode)
×4 (components in a transition) = 4k ∼ 8k (tokens)

Combined with the quadratic memory cost of self attention, this requires excessively large memory
footprint (around 40-160GB under batch size 10, embedding size 128 and half-precision) and prevents
RL researchers from readily reproducing and improving algorithms in AD’s setting.

1We use term ‘AD’ to denote both the problem setting and vanilla Transformer used in the original paper.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

On the other hand, designing memory & computation Efficient Transformer (ET) for long-range
document modeling is itself an important and developing research field in NLP where many well-
established works have emerged (Dai et al., 2019; Ding et al., 2021; Tay et al., 2022). Therefore, a
natural question arises: Could Efficient Transformers exhibit similar in-context learning ability and
be used for Memory-Efficient Algorithm Distillation? If so, it could combine the best of both worlds
and significantly boost future researches in this line.

However, to the best of our knowledge, there is still no works investigating this question. The reasons
are multi-fold: 1) It still lacks a consensus on how to design benchmarks to thoroughly test the ICL
ability of a given algorithm. 2) As of a meta-RL setting, the implementation of above benchmark
shall be computation-efficient for parallel data collection and evaluation.

Therefore, in this work, we firstly design an efficient and flexible benchmark suite to thoroughly test
the ICL performance of a given method. After this, with comprehensive experiments, we discover
ERNIE-Docs (ED) (Ding et al., 2021), an improved variant of Transformer-XL (Dai et al., 2019),
could obtain competitive performance with a significantly reduced memory requirement. Finally,
with systematic ablation studies, we examine various factors influencing the ICL performance of ED
and provide our own insights in its hyperparameter tuning. In summary, our contributions are:

• We provide a benchmark suite covering the whole AD process from data collection to meta training
& evaluation. With 8 representative settings, we could thoroughly test a method’s ICL ability in
cases of sparse reward, credit assignment, dense information and exploration-exploitation balance.

• We employ JAX (Bradbury et al., 2018) for computation efficiency and achieve parallel execution
on 10k different environments. Our code is also compatible with Pytorch (Paszke et al., 2019) for
its broader Transformer-related ecosystem.

• Based on our benchmark, we find ERNIE-Docs obtains competitive performance with a signifi-
cantly reduced memory requirement. We also perform systematic ablation studies to demonstrate
how various factors affect its performance and provide our own insights.

2 RELATED WORK

Sequence Modeling in Reinforcement Learning. Interpreting RL as a problem of sequence
modeling and employing Transformer for it has been a popular research direction since the recent
success of Transformer in NLP field (Radford et al.; Devlin et al., 2019). Chen et al. (2021) and Janner
et al. (2021) firstly introduced Transformer into model-free and model-based RL respectively and
achieved promising results in many tasks. As a pioneering work, Laskin et al. (2023) firstly reported
that by using autoregressive Transformer, in-context RL could be achieved with generalization to
unseen scenarios. Following their work, Dai et al. (2023); Zisman et al. (2024); Sinii et al. (2024)
investigated various facets to improve AD, such as training on noisy dataset and generalizing to
unseen action space. Differently, our work targets on the memory cost of vanilla AD.

Meta Reinforcement Learning. Meta RL aims at empowering RL algorithms the ability to quickly
adapt to new environments and tasks with limited amount of on-site samples. Generally, it could be
classified into 2 branches (Beck et al., 2023): 1) in-weight meta RL where methods like MAML (Finn
et al., 2017), ProMP (Rothfuss et al., 2022) perform gradient descend on parameters of neural network
for fast adaptation. 2) in-context meta RL where adaptation emerges as context of environment
interactions gets populated or updated as in methods like RMA (Kumar et al., 2021) and Prompt-DT
(Xu et al., 2022). Different from these works whose goal is fast adaptation of episode return, AD
aims to distill existing RL algorithms then generalize to new scenarios.

Transformer for Long-range Tasks. Designing Efficient Transformers to increase the performance
on long-range tasks has been a very important field (Burtsev et al., 2021; Tay et al., 2022). Dai
et al. (2019) proposed integrating recurrence with Transformer’s attention mechanism and achieved
superior performance on long-range tasks. Later work like Rae et al. (2019) also studied to ‘compress’
past information into recurrence module and further improved Transformer’s performance over
tasks on long-range document modeling while not drastically increasing context length. Besides,
methods like (Gu & Dao, 2023; Wang et al., 2020) tried to design new attention mechanisms with
only linear complexity to context length. Since this field is both fruitful and fast-developing, in this
work we choose to explore how these promising methods could be used in AD’s setting such that RL
researchers could be freed to explore on ideas more related to RL’s problems.

2
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3 PROBLEM FORMULATION

3.1 PRELIMINARY

Algorithm Distillation. Consider a meta-RL setting, where a MDPMi is sampled from a given
distribution. For each sampled MDP, we use a RL algorithm A (e.g. Q-Learning (Sutton & Barto,
2018) for discrete setting or SAC (Haarnoja et al., 2018) for continuous setting) to search for the
optimal policy π whose performance is measured by episode return

∑h
i=0 Ri(s, a) where h is the

maximum episode length and Ri is the reward for ith transition. Then, by collecting the whole history
τi, we get a dataset D = {τi = (s0, a0, r0, d0, ..., sT , aT , rT , dT )}ni=1 where s is state, a is action, r
is reward, d is terminal and τi is the learning history ofA onMi. Note τ may contain many episodes
(T ≫ h) in which the performance of π gradually improves.

AD proposes by performing autoregressive training, A could be distilled into a neural network ϕ:

J = argmax
ϕ

Eτ∼D;s,a,r,d∼τ [ϕ(at|s0:t, a0:t−1, r0:t−1, d0:t−1)] (1)

Then the weight-frozen ϕ could be used on unseenMj and yield similar learning process as A.

Self Attention. For a token sequence x ∈ Rs×d of length s, self attention firstly transforms x into
three matrices: query Q = xWQ, key K = xWK and value V = xWV , where WQ,WK ,WV ∈
Rd×d. Then scaled dot attention is applied between any 2 elements in x:

Self-Attention(Q,K, V ) = Softmax(
QKT

√
d

)V (2)

Recurrence Transformer. Transformer-XL (XL) (Dai et al., 2019) proposes to integrate recurrence
into attention to obtain longer context length. As shown in Figure 1, the token sequence is split into
equal-length chunks and the Transformer processes these chunks sequentially from beginning to
ending. During this, the hidden state of a previous chunk is preserved and acts as additional memory
(key and value) when processing the following chunk. For the ith transformer layer Li, the input and
output are:

hi
kc:(k+1)c = Li(q = hi−1

kc:(k+1)c, k = v = [sg(hi−1
(k−1)c:kc), h

i−1
kc:(k+1)c]) (3)

where hi
k represents hidden embedding output by ith layer for kth chunk, c is chunk length, sg

is stop-gradient, q,k,v are query, key, value, respectively and [·, ·] concatenates 2 vectors. As an
improved version of XL, ERNIE-Docs (ED) (Ding et al., 2021) chooses to shift the preserved hidden
embeddings one-layer down for attention computation (difference to XL is in red):

hi
kc:(k+1)c = Li(q = hi−1

kc:(k+1)c, k = v = [sg(hi
(k−1)c:kc), h

i−1
kc:(k+1)c]) (4)

Through this simple yet effective modification, ED could have a context that is theoretically indefi-
nitely long, as shown in Figure 1, right.

Layer 1

Layer 2

Layer 3

Layer 1

Layer 2

Layer 3

Layer 1

Layer 2

Layer 3

Layer 1

Layer 2

Layer 3

Layer 1

Layer 2

Layer 3

Layer 1

Layer 2

Layer 3

Transformer-XL ERNIE-Docs

Figure 1: Framework of Transformer-XL and ERNIE-Docs. The double line represents stop gradient.
The output of last layer is omitted for simplicity
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3.2 MEMORY COST ANALYSIS

We present a formal analysis of memory cost for vanilla Transformer and Recurrence Transformer
(abbreviated as RT and denoting XL and ED). For the sake of simplicity, only attention module is
focused as other modules like tokenizer, feedforward and layernorm layer are the same in our settings.

Vanilla Transformer. Let’s consider an input x of shape (b, s, d) where b is batch size, s is sequence
length and d is hidden dimension. For a mutli-head attention layer with n heads. This requires the
following amount of memories:

3(d2 + d) (weights & biases) + 3(d2 + d) (gradients of weights & biases)

+ 3bsd (Q, K, V) + nbs2 (QKT ) + nbs2 (attention score) + bsd (final output)

= 6d2 + 6d+ 4bsd+ 2nbs2 ∝ s2
(5)

Recurrence Transformer. Let’s consider a chunk length of c and a recurrence length of m. Then for
each step of RT processing, the chunk input xc is in shape (b, c, d) and recurrence xm is in shape of
(b,m, d). The amount of memories for RT is:

bmd (recurrence) + 3(d2 + d) (weights & biases) + 3(d2 + d) (gradients of weights & biases)

+ bcd (Q) + 2b(c+m)d (K, V) + nbc(c+m) (QKT )
+ nbc(c+m) (attention score) + bcd (final output)

= 3bmd+ 6(d2 + d) + 4bcd+ 2nbc(c+m) ∝ c(c+m)

(6)

From above analysis, the memory cost is proportional to s2 for vanilla Transformer and is proportional
to c(c + m) for RT methods. However, in the setting of AD, cross-episode context is needed for
vanilla self-attention based Transformer and encompasses thousands of tokens. On the other hand, the
recurrence module in RT could serve as an additional memory for important information and reduce
the need of contiguous context which is unnecessarily long. That is to say, with c +m ≪ h < s
where h is episode length, the memory cost of RT could be greatly reduced than vanilla Transformer.

4 BENCHMARK DESIGN

It’s still an open question over how to design a benchmark suite to test the ICL ability of AD methods.
Firstly, the benchmark needs to be thorough enough and include representative RL settings. Besides,
as an in-context meta RL setting, the benchmark needs to be computation-efficient and support
parallel environment interactions for both data collection and meta evaluation. Finally, the benchmark
shall also be flexible and compatible towards the most ecosystems.

In this work, taking all above considerations into account, we design a benchmark suite that is
computation-efficient thanks to environment parallelism in JAX and flexible since it also supports
building algorithm in pure Pytorch. We also carefully design environments & tasks to thoroughly test
given methods’ ICL performance. An illustrative framework of our benchmark is shown in Figure 2.
The further details could be found in Appendix A.3.

rasdrasdrasd
rasdrasdrasd

Data Collection Memory Efficient Algorithm Distillation

d s r da s a rs a r d

Figure 2: Framework of benchmark process
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Environments. We choose GridWorld where the observation is 2-dimensional coordinates (x,y)
and action contains 5 options: up, down, left, right, none, as shown in Figure 3.

•

Figure 3: Environments

DarkRoom (dr). The grid is 9x9 large. The episode length
is 20. The agent spawns in the middle of it with a randomly
placed invisible goal. This environment tests the agent’s ability
to explore in an unknown environment to find the ‘goal’ then
remember its location for exploitation.

• DarkKeyToDoor (dktd). The grid is 9x9 large. The episode
length is 50. An agent spawns in the middle of it. A key and
a door are randomly placed and invisible to agents. Note this
environment is more challenging compared to DarkRoom because it features 2-phase sequential
tasks as the ‘key’ could only be interacted once and the ‘door’ could only be opened when agent
holds the key.

• DarkRoomLarge (drl). A larger verion of DarkRoom. The grid size is 13x13. The episode
length is 50. Note the increase in grid size generally results in exponentially increased difficulty in
exploration and memorization.

• DarkKeyToDoorLarge (dktdl). A larger version of DarkKeyToDoor. The grid size is 11x11.
The episode length is 70.

Tasks. 3 representative tasks are designed: normal, dense and quick to test the algorithm’s RL ability
like credit assignment and sparse reward, as shown in Figure 4.

•

Figure 4: Illustration of tasks

normal (n). In DarkRoom, if the agent finds
the goal, a reward of +1 is granted and the
episode terminates. For DarkKeyToDoor,
if the agent finds the key, a reward of +1 is
granted only once. Then if the agent finds the
door with key on hand, another +1 reward is
granted and the episode terminates. For other
cases, the reward is 0. This is a sparse reward
setting and also tests the memorization ability of agent as it needs to remember the location of
‘target’ (‘goal’ for DarkRoom or ‘key’/‘door’ for DarkKeyToDoor) and discover that the ‘key’
only grants one-time reward.

• dense (d). For both DarkRoom and DarkKeyToDoor, the reward for each step is the negative
L1 distance from agent to current ‘target’. The episode still terminates once the goal is found
or door is opened. For other cases, reward is 0. This setting features dense reward and is often
overlooked in previous works.

• quick (q). For all steps, the reward is -1. Only when the agent finishes the task, the episode
would terminate which encourages agent to finish the episode as soon as possible. This is the most
challenging setting and when used with DarkKeyToDoor, a strong ability of credit assignment
is required since agent gets no immediate signal when finding the ‘key’.

In total, we select 8 settings from above environments and tasks : dr, drln, drlq, drld, dktd, dktdln,
dktdlq, dktdld with the format {env. name}{task variant}. Note for certain setting, the
gridsize and episode length may be slightly modified, please refer to Appendix A.3 for details.

Algorithms. We choose the following algorithms for testing on above setting. Their details are in
Appendix A.4:

• SOURCE. This is the original algorithm used to collect the dataset. We use Q-Learning for all tasks.
Notably, for DarkKeyToDoor, the state of SOURCE is augmented with one extra dimension:
has key or not for Markovian property while in dataset and the following training/evaluation of
AD methods, this extra dimension is removed. In our settings, the learning curve of SOURCE is
regarded as ORACLE and shall be mimicked by other methods.

• ADF. This is the original AD algorithm implemented manually by us. The F means we use long
context length which is often ∼2.5 times of episode length following recommendations in the
original paper (Laskin et al., 2023).

• ADR. This is the AD method with a reduced context length for a fair comparison to other memory-
efficient algorithms. In most cases, the context length of ADR is less than a half of episode length.
For details, please refer to Appendix A.4.4.
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• MEM. This is the method introduced in Burtsev et al. (2021). Specifically, we use MemCtrl where
a set of learnable embeddings acts as global memories, gets prepended to all sequence before
attention layers and discarded after its processing.

• XL. This is the Transformer-XL method as described above and in Dai et al. (2019). Notably, this
method (and the following ED) requires Truncated-Backprop-Through-Time (TBPTT) training.

• ED. An improved version of XL with theoretically indefinitely long context length.

In the following contents, we use Efficient Transformer (ET) to denote methods of MEM, XL and ED
for simplicity.

Training & Evaluation. As this is a setting of in-context meta RL, for each of 8 settings defined
above, we firstly collect a dataset containing training process of SOURCE on 10k environments
with various locations of ‘target’. Then, we train each above algorithm on the dataset and evaluate
on 100 new environments whose ‘target’ locations are disjoint against training ones, i.e. out-of-
distribution (OOD) evaluation. For comparing the performance of each algorithm, we plot its curve
of trajectory return against ICL process2, and the more its curve mimics the curve of SOURCE, the
better performance it exhibits.

Extensibility. Thanks to the flexibility and broad ecosystem of JAX and Pytorch, our benchmark
could be easily extended to support more environments, tasks & algorithms. For example, via
MujoCo’s MJX (Todorov et al., 2012), environment parallelism with domain randomization could be
easily enabled for continuous settings like Walker, HalfCheetah and Humanoid. Plus, it’s also
compatible with Pytorch with which many existing Efficient Transformers are implemented. Hence,
we plan to publish this benchmark and would continue to add representative environments, tasks &
algorithms into it for more comprehensive results.

Figure 5: Results of main experiments. The shaded area is 95% confidence interval

2The ICL process here is indeed the in-context RL process which spans many episodes with gradually
improved episode returns.
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5 EXPERIMENTS

5.1 MAIN RESULTS

We present our main experiment results of training above 6 algorithms on 8 settings. The learning
curves are shown in Figure 5 and the memory consumptions of these methods are present in Table 1.

Table 1: Memory consumption of various methods

Settings Episode Length ADF α ADR α MEM β XL β ED β

dr 20 50 | 12.75 GB γ 10 | 6.42 GB 10 | 10 | 6.93 GB
dktd 50

125 | 37.33 GB 25 | 10.65 GB 25 | 50 | 13.96 GB

drln
50drlq

drld
dktdln 70
dktdlq 50
dktdld 70
α For AD methods, the format is {context length} | {memory consumption}.
β For ET methods, the format is {chunk length} | {recurrence capacity} | {memory
consumption}.
γ This is the total GPU memory consumption measured on device.

From the results, several interesting observations could be drawn:
Dense information helps Algorithm Distillation. Notably, for drld and dktdld, most algorithms
obtain quite decent ICL performance, even for MEM and ADR. We conjecture this is due to the rich
guidance provided by the reward signal in dense task hence a sub-episode context could sufficiently
prompt algorithm for the correct behavior.
Tasks requiring credit assignment are challenging. For dktdlq, almost all algorithms fail, showing
this is a quite challenging setting since the acquisition of ‘key’ provides no immediate signal to agent.
Even for ADF, the performance is inferior compared to SOURCE, indicating a context length of more
than 2.5 episode length may be needed. How to increase the ICL performance of AD methods and
reduce their memory cost on this setting would certainly be a very important and promising directions
for RL researchers.
Context Length is critical for vanilla AD method. From above results, we find compared to ADF,
ADR often obtains significantly worse performance, except on dense-information tasks. This aligns
with our expectation that the self-attention context in AD needs to span multiple episodes to enable
a decent AD performance. However, combined with quadratic memory cost of self-attention, this
long-range context causes difficulty for researches to experiment with, as also shown in Table 1 where
the ADF needs significantly more GPU memory than other methods.
ED for Memory-Efficient Algorithm Distillation. For ET methods, we find:

• MEM obtains quite similar performance compared to ADR, indicating its global memory doesn’t
help in algorithm distillation.

• XL, with just slight differences to ED, also obtains insufficient performance, even compared to ADR.
Even after architecture tuning, we still find the performance of XL is unstable and argue this results
from its limited ability to utilize information in recurrence.

• ED, on most of settings could obtain a competitive performance compared to ADF and SOURCE
thanks to its clever usage of recurrence memory. On the other hand, there is still room for further
improvements as its learning curve tends to slightly drop near the ending phase, suggesting it
struggles to perform exploitation compared to SOURCE and ADF. With some hyperparameter tuning
and architecture tweaking, this drop could be mitigated in some extend, as shown in Section 5.2.4.
Nevertheless, further investigation and mitigation to this phenomenon would still be an interesting
and valuable future work.

7
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5.2 ABLATION STUDIES

To better illustrate how various facets affect Memory-Efficient Algorithm Distillation, we design
several ablation studies testing the positional encoding, Transformer model size, attention module
and context length & memory capacity.

5.2.1 POSITIONAL ENCODING

Positional Encodings (PE) like sinusoidal encoding (Vaswani et al., 2017), learnable embedding and
RoPE (Su et al., 2023) are critical components for attention-based Transformer models and have been
widely studied in NLP.

Figure 6: Performance when using different PEs

Figure 7: Global PE controls algorithm behavior

Interestingly, in our experiments, we find the us-
age of global positional encoding has unique ad-
vantages over local-context-based ones common
in NLP. Without change in embedding mecha-
nism, the ‘global’ PE assigns to all the tokens in
the whole learning process a positional embed-
ding while context-based PE only considers to-
kens in the context window. We argue global PE
is more suitable for in-context RL as it’s intuitive
for RL algorithms to take different strategies in
different learning phase, such as exploration in
the beginning and exploitation in the ending.

Besides, we also design 2 experiments to verify
this: 1) Global PE helps training. As shown in
Figure 6, we test 4 PEs on standard ADF method.
The 4 abbreviations represent global-learnable
(gl), global-sinusoidal (gs), local-learnable (ll)
and local-sinusoidal (ls), respectively. From the
results, global positional encoding significantly
helps stabilize and ease the training of Algo-
rithm Distillation. 2) Additionally, global PE
could tune the behavior of distilled algorithm.
By tweaking the positions passed to the PE module, we could tune the algorithm to be more ex-
ploratory or more exploitative without changing the input sequence. As shown in Figure 7, when
we tweak the positions passed to Transformer model to be larger, the performance of AD tends to
increase since it focuses more on exploitation. While if we tweak the position to be smaller, the
AD becomes more exploratory. Therefore, we choose global learnable PE in main results and the
followings.

Takeaway

Global Positional Encoding helps training and controls exploration-exploitation behavior.

5.2.2 TRANSFORMER MODEL SIZE

Previous works in NLP and AD have found that with the increase of model size, Transformer
models exhibit better in-context learning ability. In this section, we also study whether this phe-
nomenon happens on ED for memory-efficient AD. Specifically, for drn and dkldln, we test the
effects of reducing the model size 3 over the ICL ability of ED. The results are shown in Figure 8,
where the format of the legend is {algo name} {number of attention head}-{token
dim.}-{feedforward dim.} and ‘edo’ means the original ED used in the main experiment
which has the largest model size.

From the results, we could find with the model size increasing, the ICL performance of ED is also
increased. Even for drn which is a rather small environment, a model with 64 attention heads, 512

3the number of attention heads are also reduced to maintain a similar attention head dimension.
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Figure 8: Performance of large model vs small model

token dimension and 2048 feedforward dimension is needed for a decent performance. On dktdln,
the effect of increasing model size also exists but is in a less significant extend.

Takeaway

Larger model enables better performance for ED-based Memory-Efficient AD.

5.2.3 RECURRENCE-BASED ATTENTION

Figure 9: Recurrence attention ratio

Attention mechanism is key to the success of Transformer
models. In this work, as a recurrence-based Transformer
method, ED also utilizes attention to extract important in-
formation from recurrence memory. Therefore, we also
test how various attention settings influence its ICL per-
formance in the following experiments.

Does ED attend to the recurrence memory? It would be
natural to expect the outstanding ICL performance of ED
results from the usage of its recurrence memory. Therefore,
we visualize the attention ratio of ED for all 8 settings. In
details, we sum the softmaxed attention scores for tokens
in ED’s recurrence memory: 1 means ED only attends to
recurrence memory and ignores chunk tokens while 0 represents vice versa, then average this ratio
over all attention heads and all 100 environments in evaluation set and plot it against the learning
progress, as shown in Figure 9.

From the results, it clearly shows ED attends to its recurrence memory as all the attention ratios are
between 0.3∼0.6. Besides, several interesting observations could be drawn from it: 1) For dktdlq
where ED obtains no performance due to the challenge of credit assignment, its attention ratio is
also the lowest, indicating ED fails to extract useful information from the recurrence memory. 2)
For dktdld and drlq where ED obtains near-optimal performance, the attention ratio shows a notable
increase near the ending of progress. While for the other settings where ED’s performance declines at
the ending of process, their attention ratios doesn’t show such increase.

Figure 10: Effects of amounts of attention heads

How does the number of attention head in-
fluences ICL performance? In this section,
we test the effects of number of attention heads
of ED over its ICL ability. Specifically, we
change the attention head number from 64 to
32 and 128 respectively. Note we don’t change
the embedding dimension hence this would re-
sult in changes in dimension of attention head.
The results are shown in Figure 10 where the
format of legend is {algo name} {amount
of attention head} and ‘edo’ is the orig-
inal ED used in main experiment with 64 heads.

9
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From the results, we could find in drn, a relatively simpler setting, the amount of attention heads
doesn’t have a significant influence on ED’s ICL performance. While in dktdln, increasing the amount
of attention head (which also reduces the dimension of attention head) has a negative impact over
the ICL ability. On the other hand, slightly decreasing it to 32 could increase performance slightly.
Note this doesn’t conflict with the results presented in Section 5.2.2 as we change both the number of
attention head and its dimension there. Taking these together, we recommend setting attention head
dimension to be 8 or 16 with at least 32 or 64 attention heads as a good start.

Takeaway

Use 32 or 64 attention heads with dimension of 8 or 16 for a good start.

5.2.4 CHUNK LENGTH & RECURRENCE CAPACITY

In this section, we study the effects of chunk length & recurrence capacity over the performance of
ED’s ICL performance. Specifically, we designed 5 settings: 1-1, 1-2, 1-3, 2-1, 2-2, 2-3 where the
first digit represents the relative ratio on chunk length while the latter digit represents the relative
ratio on recurrence capacity. The results are shown in Figure 11 where the format of legend is {algo
name} {chunk length}-{recurrence capacity} and ‘edo’ is the original setting.

Figure 11: Effects of chunk length & recurrence capacity

The experiments show intricate results: 1) Increasing recurrence capacity alone may not result in bet-
ter performance as in drn, ed 10-20 and ed 10-30 obtain worse performance than edo 10 10,
and ed 20-20 and ed 20-30 also show decreased performance compared to ed 20-10. 2) For
dktdln, however, several settings obtain boosted performance compared to edo 25-50: ed 50-50,
ed 25-100 and ed 25-150 while ed 50-50 and ed 50-100 obtain significantly worse perfor-
mance. In summary, we recommend setting them to be 1:1 with careful tuning of values.

Takeaway

Keep balanced ratio between chunk length and recurrence capacity and tune the value.

6 CONCLUSION

In this work, we study the problem of reducing the excessive memory requirement of Algorithm
Distillation (AD) via existing Efficient Transformers (ET). With our efficient, flexible and versatile
benchmark, we discover the ERNIE-Docs (ED) could serve as a simple yet effective method for
Memory-Efficient Algorithm Distillation and illustrate how various factors like positional encoding,
model size, attention module and context length & memory capacity influence its performance.

Besides, there is still room to further improve ED’s performance and better interpret/visualize its
internal attention mechanism which we choose to leave as future works. Also, because ET is an
fast-developing field and limited by computation resources, we cannot test all promising ET methods
in this work. Nevertheless, we will release our benchmark code for further researches in the line of
Memory-Efficient AD.
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A APPENDIX

A.1 PSEUDO-CODE FOR AD’S TRAINING & EVALUATION PROTOCOL (NEWLY ADDED)

We list the training & evaluation protocol of AD-like algorithms used in this work in Algorithm 1.

Algorithm 1: Training & Evalutaion Protocol of AD-like algorithms
Input: Dataset Dτ obtained by running RL algorithm A on k different environments for T timesteps

which span multiple episode length h (typical setting: k = 104, T = (100 ∼ 1000)h)
Output: a transformer-based nerual network ϕA showing comparable learning process of A on new

scenarios

1 ϕA ← random init.
2 while training not converged do
3 τ ← sample chunk(Dτ)
4 ϕ← SGD(ϕA,τ) // autoregressive training
5 if time to evluate then
6 rewards← Evaluate(ϕ)
7 true rewards← Evaluate(A)
8 compare(true rewards,rewards)
9 end

10 end
11 return ϕA

12 Function evaluate(ϕ or A)
13 /* evaluate RL algorithm (ϕ or A) on n OOD envs. for the same T

timesteps */
14 t← 0
15 o← reset(envs)
16 rewards← []
17 while t < T do
18 a← ϕ or A(o)
19 o, a, r, d← step(envs,a)
20 ϕ or A ← append context(ϕ or A,o,a,r,d) // only needed for ϕ
21 rewards← append(rewards,r)
22 end
23 return returns
24 end

The important parts of above pseudo-code are marked in red: We need to perform the evaluation
of a whole learning process instead of a single episode to evaluate the performance of given AD
algorithms.

A.2 HARDWARE RESOURCES

All the experiments are ran under half-precision bfloat16 with 3 seeds on a computing server
equipped with 12∼16 CPUs and a Nvidia A100-80G GPU card.

For parallel data collection, ∼2hours are needed for each run.

For training and evaluation of AD algorithms, wall clock time varies from ∼2h to ∼44h depending
on the environment & task settings.

A.3 ENVIRONMENT SETTINGS

A.3.1 DETAILS OF EXPERIMENT SETTINGS

We list details of environments and tasks settings in Table S1:
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Table S1: Detailed settings of environments & tasks

settings train envs eval envs grid size episode length episodes to collect total steps collectedα

dr

1e4 1e2

9 20 125 2.5e3
dktd 9 50 150 7.5e3
drln 13 50 150 1.25e4
drlq 13 50 250 8.75e3
drld 15 50 175 1.4e4

dktdln 11 70 200 2e4
dktdlq 9 50 400 2.45e4
dktdld 11 70 350 2.2e4

α: This is the total environment transitions the algorithm collects and equals to episode length × episodes to collect.

A.4 ALGORITHM DETAILS

A.4.1 ALGORITHM HYPERPARAMETERS FOR DATA COLLECTION

We use Q-Learning for data collection in all GridWorld environments. Its hyperparameters are
listed in Table S2:

Table S2: Q-Learning’s hyper-
parameters

hyperparameters values
discount 0.97

learning rate 1.0

A.4.2 NETWORK STRUCTURE & TRAINING HYPERPARAMETERS

For AD & ET methods, we use the same network structure for a fair comparison. The details of
network structure and hyperparameters are listed in Table S3. Their difference mainly locates in the
context/chunk length and memory recurrence as detailed in the following sections.

Table S3: Network structure & training hyperparameters

hyperparameters values
Layers 4

Hidden dimension 512
Dropout 0.1

Feedforward dimension 2048
Attention head 64

Optimizer AdamW
Optimizer weight decay 1e-4

Optimizer betas (0.9, 0.999)
Learning rate 2e-4

Learning rate scheduler linear warm-up & cosine decay
Batch size 256

LayerNorm postnorm
Loss function CrossEntropyLoss
Label smooth 0.1

A.4.3 DETAILS OF ADF TRAINING HYPERPARAMETERS

We list the hyperparameter details of algorithm ADF in Table S4.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table S4: Details of ADF training hyperparameters

setting episode length context length training steps
dr 20 50 1e5

dktd 50 125 2e5
drln 50 125 2e5
drlq 50 125 3e5
drlq 50 125 2e5

dktdln 70 125 α 4e5
dktdlq 50 125 6e5
dktdld 70 125 α 6e5

A.4.4 DETAILS OF ADR TRAINING HYPERPARAMETERS

We list the hyperparameter details of algorithm ADR in Table S5.

Table S5: Details of ADR training hyperparameters

setting episode length context length training steps (ADF × 5)
dr 20 10 5e5

dktd 50

25

1e6
drln 50 1e6
drlq 50 1.5e6
drld 50 1e6

dktdln 70 2e6
dktdlq 50 3e6
dktdld 70 2e6

A.4.5 HYPERPARAMETERS OF MEMORY-EFFICIENT ALGORITHMS

We list the hyperparameter details of Memory-Efficient algorithms (MEM, XL and ED) in Table S6.

Table S6: Details of ET training hyperparameters

settings chunk length memory capacity ADR context length training steps (ADF × 5 / ratio) α

dr 10 10 10 5e5 / 1.5
dktd

25 50 25

1e6 / 1.7
drln 1e6 / 1.7
drlq 1.5e6 / 1.7
drld 1e6 / 1.7

dktdln 2e6 / 1.7
dktdlq 3e6 / 1.7
dktdld 2e6 / 1.7

α: we slightly reduced the training steps since the ET methods’ effective context is larger than ADR’s.
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