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Abstract001

Due to the limited computational resources,002
most Large Language Model (LLM) develop-003
ers can only fine-tune Small Language Models004
(SLMs) on their own data. However, these pri-005
vate SLMs typically have limited effectiveness.006
To enhance the performance of private SLMs,007
this paper proposes to ask general LLMs for008
help. The general LLMs can be APIs or larger009
LLMs whose inference cost the developers can010
afford. Specifically, we propose the G-Boost011
framework, in which a private SLM adaptively012
performs collaborative inference with a general013
LLM under the guidance of process reward. Ex-014
periments demonstrate that our framework can015
significantly boost the performance of private016
SLMs.017

1 Introduction018

Large Language Models (LLMs) have achieved019

remarkable performance across various natural lan-020

guage processing tasks (OpenAI, 2023; Yang et al.,021

2024; DeepSeek-AI et al., 2025). They demonstrate022

exceptional generalization and reasoning capabil-023

ities, making them effective in a wide range of024

applications. However, these capabilities come at025

a significant cost. Fine-tuning LLMs for specific026

domains often demands significant computational027

resources, which only a few organizations can af-028

ford. Additionally, data privacy concerns further029

prevent organizations from fully relying on exter-030

nal LLM services.031

Due to resource constraints and privacy concerns,032

many developers can only fine-tune small language033

models (SLMs) on their private datasets. These034

fine-tuned SLMs can often adapt well to specific035

domains and sometimes even outperform general036

LLMs in domain-specific tasks. However, as shown037

in Fig. 1. limited by smaller parameter sizes, SLMs038

exhibit weaker general language capabilities. They039

often struggle with queries that require complex040

reasoning or deep understanding.041
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Figure 1: This figure highlights the performance con-
straints of private SLMs in domain-specific adaptation.
Private SLMs are limited by their small parameter size,
whereas general LLMs lack domain-specific expertise.
G-Boost integrates their complementary strengths to
enhance the performance of private SLMs.

Recently, various collaborative inference meth- 042

ods have been proposed to overcome the per- 043

formance limitations of small models. A widely 044

adopted approach involves combining small and 045

large models to perform hybrid inference (Ong 046

et al., 2024; MS et al., 2024; Zheng et al., 2025), 047

where the two models dynamically alternate to 048

generate outputs. This technique achieves near- 049

LLM performance while reducing computational 050

costs. Another strategy follows a two-stage process, 051

where LLMs provide guidance and small models 052

refine the predictions (Zhan et al., 2025; Yao et al., 053

2024). While effective to some extent, these meth- 054

ods often rely on the assumption that LLMs con- 055

sistently outperform SLMs. However, in domain- 056

specific tasks, general LLMs frequently lack the 057

specialized knowledge required, which limits their 058

ability to enhance private SLMs. 059

Researchers have also explored the integration 060

of multiple LLMs to leverage the combined ex- 061

pertise of individual models, thereby improving 062
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Figure 2: Overall Framework of G-Boost: G-Boost comprises two reasoning modes: Private SLM Inference and
SLM-LLM Collaborative Inference. Guided by a process reward model, it employs tree search to adaptively integrate
these modes, dynamically optimizing reasoning paths.

their cross-domain performance (Chen et al., 2024;063

Mohammadshahi et al., 2024; Jiang et al., 2023).064

Nevertheless, this approach yields limited bene-065

fits in single-domain tasks and rarely surpasses the066

capabilities of specialized domain experts. As a re-067

sult, such methods also fail to significantly enhance068

domain-specific SLMs.069

We propose the G-Boost framework, where the070

private LLM collaborates with the general LLM071

under the guidance of a Process Reward Model072

(PRM) (Lightman et al., 2024). This framework073

combines the domain knowledge of the private074

LLM with the broad language capabilities of the075

general LLM, thereby enhancing the private LLM’s076

performance on domain-specific tasks. Specifically,077

the framework uses a logits fusion approach to inte-078

grate the private LLM’s domain expertise with the079

general LLM’s broad knowledge, enabling collab-080

orative reasoning. Meanwhile, the PRM evaluates081

the logical consistency and quality of intermediate082

reasoning steps. Based on the reward value, Monte083

Carlo Tree Search (MCTS) (Coulom, 2006) is ap-084

plied to dynamically optimize the reasoning path.085

By continuously adjusting the collaboration strat-086

egy during reasoning, G-Boost effectively lever-087

ages the strengths of both the private and general088

LLMs, enabling precise and reliable exploration of089

reasoning paths.090

To validate the effectiveness of the pro-091

posed G-Boost framework, we conducted exper-092

iments on widely recognized benchmarks, includ-093

ing GSM8K (Cobbe et al., 2021) and MATH- 094

500 (Lightman et al., 2024). The results demon- 095

strate that G-Boost consistently enhances the per- 096

formance of private SLM, surpassing both general 097

LLMs and static collaborative inference methods. 098

These findings highlight the potential of adaptive 099

collaboration between private SLM and general 100

LLM to achieve superior performance in domain- 101

specific tasks. 102

2 Related Works 103

Collaborative Inference Between SLM and 104

LLM. Recent research in collaborative inference 105

between small and large language model has made 106

significant progress, aiming to balance efficiency 107

and performance. Routing mechanism is a common 108

approach to dynamically select between SLM and 109

LLM during inference. Query-level routing allo- 110

cates the entire query to either SLM or LLM based 111

on query complexity (Ong et al., 2024; Ding et al., 112

2024; Aggarwal et al., 2024), thereby reducing in- 113

ference costs. However, this approach exhibits lim- 114

ited flexibility for fine-grained tasks. To further en- 115

hance efficiency, token-level routing assigns only 116

critical tokens to LLM, while SLM generates the 117

remaining tokens more efficiently (Zheng et al., 118

2025). Another category of methods is cascaded 119

inference, in which LLM generates initial drafts or 120

guiding prompts, and SLM refines or further elabo- 121

rates on them (Zhan et al., 2025; Yao et al., 2024). 122

This two-stage inference reduces cost while utiliz- 123
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ing the generative capabilities of LLM. In contrast,124

speculative decoding (Leviathan et al., 2023; Chen125

et al., 2023a) accelerates inference by allowing126

SLM to generate draft tokens, which LLM sub-127

sequently verifies collectively in a single forward128

pass. This approach guarantees outputs identical to129

those of the original model, with no loss in effec-130

tiveness. Additionally, some methods enable black-131

box LLM adaptation through collaborative infer-132

ence. For instance, CombLM (Ormazabal et al.,133

2023) and Proxy-Tuning (Liu et al., 2024) transfer134

domain-specific knowledge from SLM to LLM via135

logit arithmetic. While this improves domain per-136

formance to some extent, it can also introduce new137

bias, and the overall effectiveness remains limited.138

Existing collaborative inference methods between139

small and large models primarily focus on acceler-140

ating inference, aiming to achieve near-LLM per-141

formance at reduced costs. However, these methods142

often assume that LLM consistently outperforms143

SLM. In domain-specific tasks, general LLMs of-144

ten lack the required expertise, limiting their ability145

to effectively enhance private SLMs.146

Multi-LLM Collaboration. Multi-LLM col-147

laboration focuses on integrating the expertise of148

multiple LLMs to enhance performance in cross-149

domain or complex tasks. Unlike collaborative in-150

ference between small and large models, the pri-151

mary motivation here is to leverage the complemen-152

tary capabilities of multiple LLMs rather than opti-153

mizing costs. A key strategy in multi-LLM collab-154

oration is routing mechanisms, which dynamically155

assign tasks to the most appropriate LLMs based on156

their capabilities. For example, RouterDC (Chen157

et al., 2024) trains a router using dual contrastive158

learning to select the best LLM for each query,159

while Routoo (Mohammadshahi et al., 2024) builds160

complementary model ensembles by predicting161

model performance. Similarly, (Chai et al., 2024)162

represents expert LLMs as tokens in a meta-LLM163

vocabulary, enabling dynamic routing to special-164

ized LLMs during generation. In addition to rout-165

ing, cascaded inference is often employed, where166

LLMs are invoked sequentially based on task com-167

plexity or resource constraints. For instance, Frugal-168

GPT(Chen et al., 2023b) first uses lighter models169

for simpler tasks and escalates to more powerful170

LLMs only when necessary, ensuring efficiency171

while maintaining performance. Another strategy is172

model ensembling, which combines outputs of mul-173

tiple LLMs to improve overall performance. For174

example, LLM-Blender (Jiang et al., 2023) ranks175

outputs of different LLMs and combines the top- 176

ranked ones to produce higher-quality results. 177

3 Problem Setup 178

Consider a domain-specific task with a private train- 179

ing dataset Dp. Due to limited computational re- 180

sources, the user fine-tunes an open-source SLM 181

π−
s locally on dataset Dp, resulting in a domain- 182

adapted private SLM π+
s . Both π−

s and π+
s are de- 183

ployed on the edge device. While the private SLM 184

exhibits strong domain-specific capabilities, its lan- 185

guage understanding and generalization abilities 186

are limited due to its smaller parameter size. 187

To enhance the performance of the private SLM, 188

the user can leverage a general LLM πl, which 189

shares the same vocabulary as the private SLM π+
s . 190

The general LLM πl may be accessed via an in- 191

ference API or deployed locally if computational 192

resources permit. It provides strong in-context un- 193

derstanding capabilities but lacks domain-specific 194

knowledge. The goal of our framework is to enable 195

adaptive collaboration between the private SLM 196

π+
s and the general LLM πl to achieve better per- 197

formance on domain-specific tasks. 198

4 Methodology 199

To leverage general LLM to enhance private SLM, 200

we propose the G-Boost framework. It dynamically 201

integrates the domain-specific expertise of private 202

SLMs with the general language capabilities of 203

LLMs, enabling collaborative reasoning for com- 204

plex queries. 205

We model the collaborative reasoning process 206

between the private SLM and the general LLM 207

as a search problem in a tree-structured space. In 208

this tree, the root node corresponds to the input 209

query, while the remaining nodes represent indi- 210

vidual reasoning steps. To define these steps, we 211

divide the reasoning process into fixed-length seg- 212

ments of size L. A path from the root node to a leaf 213

node represents a reasoning path up to a specific 214

step. When a reasoning path reaches a final answer, 215

the corresponding leaf node is designated as a ter- 216

mination node, marking the end of the reasoning 217

process. Besides, each edge denotes an inference 218

action, either by the private SLM alone or collab- 219

oratively with the general LLM. The objective of 220

the framework is to construct an optimal reasoning 221

path by dynamically selecting the most appropri- 222

ate inference action at each reasoning step, thereby 223

effectively combining the strengths of the private 224
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SLM and the general LLM.225

Specifically, the G-Boost framework employs226

MCTS to explore the collaborative reasoning space,227

systematically searching for the optimal sequence228

of reasoning actions. To guide MCTS, we intro-229

duce the PRM, which provides fine-grained feed-230

back on the logical consistency and task relevance231

of intermediate reasoning steps. During the search232

process, PRM evaluates the quality of newly gener-233

ated reasoning steps, enabling MCTS to prioritize234

promising reasoning paths while avoiding flawed235

paths. Under the guidance of process reward, the236

system dynamically refines the search tree. For a237

given query q, the iterative reasoning process builds238

a search tree, with each iteration consisting of four239

steps: selection, expansion, evaluation, and back-240

propagation.241

4.1 Selection242

At the start of each iteration, G-Boost identifies the243

most promising reasoning path to extend within244

the collaborative reasoning tree, where the pri-245

vate SLM π+
s and the general LLM πl work to-246

gether to address q. Starting from the root node,247

the system traverses the tree by iteratively select-248

ing child nodes based on the Upper Confidence249

Bounds applied to Trees (UCT) algorithm (Kocsis250

and Szepesvári, 2006). This policy balances the251

exploitation of high-quality reasoning paths with252

the exploration of underexplored ones.253

The UCT value of a node s is computed as:254

UCT(s) = Vs + C

√
lnNparent(s)

Ns
, (1)255

where Vs is the value of the node (accumulated in256

the evaluation stage), Ns is the visit count of the257

node, Nparent(s) is the visit count of its parent node,258

and C is the exploration constant that balances259

exploration and exploitation.260

The trajectory from the root node to the current261

leaf node is defined as:262

τ = {s0, s1, . . . , sd}, (2)263

where s0 is the root node and sd is the current264

leaf node. Among the nodes in this trajectory, the265

system identifies candidate nodes for expansion266

based on whether they have unexpanded reasoning267

actions:268

Scandidate = {s | s ∈ τ and s has269

unexpanded actions}. (3)270

The node with the highest value from this set is 271

selected for expansion: 272

sk = argmax
s∈Scandidate

Vs, (4) 273

where k represents the index of the step in the 274

reasoning path. By focusing on nodes with high 275

potential values, the system ensures that promising 276

reasoning paths are prioritized, while still exploring 277

less-visited paths to avoid missing potential high- 278

quality solutions. 279

4.2 Expansion 280

After selecting the leaf node sk, the algorithm ex- 281

pands the search tree by generating a new reasoning 282

step. The newly generated child node is denoted as 283

sk+1, which introduces new reasoning content and 284

extends the search tree. We consider two modes for 285

next step generation: SLM-LLM collaborative 286

inference and Private SLM inference. 287

4.2.1 SLM-LLM Collaborative Inference 288

SLM-LLM collaborative inference leverages the 289

complementary strengths of the private SLM and 290

general LLM to enhance reasoning quality. The 291

private SLM provides domain-specific expertise, 292

while the general LLM contributes broad language 293

capabilities. This collaboration aims to overcome 294

the limitations of individual models, balancing gen- 295

eralization and specialization for more accurate 296

reasoning. 297

Inspired by Proxy-Tuning (Liu et al., 2024), we 298

propose a logit fusion strategy to integrate the out- 299

put distributions of the private SLM and the general 300

LLM. At each decoding step, the system refines 301

the general LLM’s logits by incorporating the logit 302

offsets derived from the fine-tuned private SLM 303

and its base version. This refinement aligns the gen- 304

eral LLM’s predictions with the domain-specific 305

knowledge of the private SLM, while retaining the 306

general LLM’s robust in-context reasoning and gen- 307

eralization capabilities. 308

In this mode, the user invokes the general LLM 309

πl. The system generates step sk+1 by combining 310

the logit distributions of the private SLM π+
s and 311

the general LLM πl. The probability distribution 312
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for the next token is given by:313

P̃ (xt | q,s1:k, s<t
k+1) (5)314

= softmax
(
zc(xt | q, s1:k, s<t

k+1)315

+ z+e (xt | q, s1:k, s<t
k+1)316

− z−e (xt | q, s1:k, s<t
k+1)

)
,317

where s<t
k+1 denotes the tokens already generated318

for step sk+1 up to position t.319

The probability of generating the complete step320

sk+1 is computed as:321

π̃(sk+1 | q, s1:k) =
L∏

t=1

P̃ (xt | q, s1:k, s<t
k+1). (6)322

The next step sk+1 is sampled from this distribu-323

tion:324

sk+1 ∼ π̃(· | q, s1:k) ， (7)325

where sk+1 represents the reasoning step generated326

exclusively by the collaborative probability distri-327

bution, based on the query q and the sequence of328

previously generated steps s1:k.329

4.2.2 Private SLM Inference330

While the collaborative inference aims to lever-331

age the complementary strengths of both models,332

the general LLM πl often lacks domain-specific333

knowledge, which can lead to errors or reasoning334

instability. To address this, we incorporate private335

SLM inference as an alternative to generate the336

next step, relying solely on the fine-tuned SLM for337

independent reasoning.338

In this mode, the private SLM π+
s , fine-tuned on339

the user’s private dataset Dp, generates reasoning340

steps without involving the general LLM. While341

limited by its smaller model size, this approach342

avoids errors introduced by the general LLM and343

ensures stability in the reasoning process when col-344

laborative inference proves unreliable, enriching345

the overall search process. The next reasoning step346

in this mode are generated according to the follow-347

ing distribution:348

sk+1 ∼ π+
s (· | q, s1:k). (8)349

4.3 Evaluation350

The evaluation stage estimates the value of the351

newly expanded node, assessing its potential qual-352

ity within the reasoning process. In this work, we re-353

place traditional rollout methods with PRM-based354

evaluation, which provides a more efficient and ac- 355

curate assessment of the expanded node. Unlike 356

rollouts, which simulate entire reasoning paths, 357

PRM directly evaluating intermediate reasoning 358

steps. This approach not only enhances the stabil- 359

ity and accuracy of the evaluation but also reduces 360

runtime overhead. Due to PRM’s gradual adoption 361

as a standard model for reasoning evaluation, we 362

utilize an open-source PRM to evaluate the newly 363

expanded node sk+1. The PRM is specifically fine- 364

tuned to deliver granular feedback for each rea- 365

soning step. It takes the query q and the sequence 366

of reasoning steps s1:k+1 as input. The reward for 367

node sk+1 is then calculated as follows: 368

r = PRM(q, s1:k+1), (9) 369

Compared to traditional rollout methods, PRM di- 370

rectly evaluates intermediate reasoning steps in a 371

fine-grained manner. This avoids randomness and 372

cumulative error from simulating full paths, provid- 373

ing more stable and efficient quality feedback. 374

4.4 Backpropagation 375

After getting the reward, we propagate it from the 376

newly expanded node to the root node, updating the 377

statistical information of all nodes along the path. 378

These updates refine the search tree and enable 379

more accurate decision-making in future searches. 380

Specifically, starting from the expanded node sk+1, 381

the reward r is backpropagated along the path to 382

the root node. For a node s on the path, its value 383

Vs is updated using the following formula: 384

Vs =
(Ns − 1)Vs + r

Ns
, (10) 385

and its visit count is updated as: 386

Ns ← Ns + 1. (11) 387

This update process ensures that the search grad- 388

ually focuses on high-value paths, improving the 389

overall quality of the reasoning path over time. 390

By leveraging PRM to guide reasoning steps and 391

using MCTS to efficiently search the collaborative 392

reasoning space, this method generates reasoning 393

paths that are logically consistent and of high qual- 394

ity. This significantly improves the effectiveness of 395

edge-cloud collaborative reasoning. 396

5 Experiments 397

5.1 Datasets 398

We conduct experiments focusing on mathematical 399

reasoning tasks using two widely recognized bench- 400
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Algorithm 1: G-Boost Framework
Input: Input query q, fine-tuned private SLM π+

s ,
base SLM π−

s , general LLM πl, process
reward model PRM, step length L, exploration
constant C, maximum iterations T ,
collaboration probability pcollab

1 # Initialize the search tree with the root node
2 Initialize root node s0 with Vs0 = 0, Ns0 = 0
3 # Main MCTS loop
4 for t = 1 to T do
5 # Selection
6 s← s0
7 while s is not a leaf node do
8 s← argmax

s′∈children(s)

(
Vs′ + C

√
lnNs
Ns′

)
9 end

10 τ ← path from root to s
11 Scandidate ← {s′ | s′ ∈

τ and s′ has unexpanded actions}
12 sk ← argmax

s′∈Scandidate

Vs′

13 # Expansion
14 if rand() < pcollab then
15 # SLM-LLM collaborative inference
16 Generate step sk+1 using π̃(sk+1 | q, s1:k)

as in Eq. (5)
17 else
18 # Private SLM inference
19 Generate step sk+1 using π+

s (· | q, s1:k)
20 end
21 Add sk+1 as a child of sk with Vsk+1 = 0,

Nsk+1 = 0
22 # Evaluation
23 r ← PRM(q, s1:k+1)
24 # Backpropagation
25 s← sk+1

26 while s ̸= s0 do
27 Ns ← Ns + 1

28 Vs ← (Ns−1)Vs+r
Ns

29 sk ← parent(s)
30 end
31 end

Output: Optimal terminate reasoning path τ∗ with
highest value

marks: GSM8K and MATH-500. Both datasets are401

in English. GSM8K contains over 1,000 grade-402

school-level word problems designed to test ba-403

sic arithmetic and problem-solving skills, while404

MATH-500 is a subset of the MATH dataset, com-405

prising 500 high-school-level problems spanning406

various mathematical domains. In addition, for fine-407

tuning SLMs on domain-specific tasks, we use408

MetaMathQA (Yu et al., 2024) as the private train-409

ing dataset. It is a high-quality mathematical rea-410

soning dataset in English, constructed by augment-411

ing the training sets of GSM8K and MATH. Meta-412

MathQA contains 395,000 examples, providing a413

substantial amount of data for fine-tuning and im-414

proving the performance of SLMs on mathematical415

reasoning tasks.416

5.2 Experimental Setup 417

In our experiments, we use two model pairs: 418

Qwen2.5-1.5B with Qwen2.5-14B (Yang et al., 419

2024); TinyLlama-1B (Zhang et al., 2024) with 420

LLaMA2-13B (Touvron et al., 2023). The smaller 421

models, TinyLlama-1B and Qwen2.5-1.5B, serve 422

as the base SLMs, while the larger models, 423

LLaMA2-13B and Qwen2.5-14B, act as the gen- 424

eral LLMs. To minimize potential data leakage 425

and ensure the integrity of the evaluation, all mod- 426

els are based on their pre-trained versions. The 427

base SLMs are fine-tuned on the MetaMathQA 428

dataset to specialize in mathematical reasoning 429

tasks, while the general LLMs are used in their pre- 430

trained form. Besides, we adopt the open-source 431

PRM Math-Shepherd (Wang et al., 2024) in the pro- 432

posed framework, which is specifically designed 433

to provide fine-grained feedback for mathematical 434

reasoning processes. 435

To evaluate the effectiveness of the proposed G- 436

Boost framework, we compare the performance of 437

the pre-trained SLM, the fine-tuned SLM, and the 438

fine-tuned SLM guided by PRM to perform MCTS. 439

Moreover, we evaluate the collaborative inference 440

method Proxy-Tuning, whose decoding approach is 441

incorporated into G-Boost. However, Proxy-Tuning 442

performs collaborative decoding throughout the en- 443

tire inference process without dynamic adjustment 444

capabilities. In contrast, G-Boost, guided by PRM, 445

dynamically explores the action space of collabo- 446

rative reasoning and adaptively optimizes the rea- 447

soning trajectory. All experiments are conducted 448

on four NVIDIA GeForce RTX 4090 GPUs, each 449

with 24 GB of memory. We set the sampling tem- 450

perature to 0.9 and run each experiment three times 451

with different random seeds, taking the average of 452

the results. 453

5.3 Main Results 454

As shown in Tab. 1, the G-Boost framework consis- 455

tently outperforms both the fine-tuned SLM and the 456

general LLM across all tasks, demonstrating the ef- 457

fectiveness of leveraging general LLMs to enhance 458

private SLMs. Compared to Tuned-MCTS, which 459

relies solely on the fine-tuned SLM guided by PRM 460

without collaborative inference, G-Boost achieves 461

significant accuracy improvements of 8.1% and 462

5.0% on GSM8K for Qwen2.5 and LLaMA2, re- 463

spectively, and 8.6% and 2.4% on MATH-500. Sim- 464

ilarly, against Proxy-Tuning, which lacks the dy- 465

namic adjustment provided by PRM-guided MCTS, 466
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Model Task SLM LLM SLM+LLM

Base Tuned Tuned-MCTS Base Proxy-Tuning G-Boost

Qwen2.5
GSM8K 8.1 73.5 76.3 62.2 81.3 84.4

MATH-500 27.2 33.6 35.8 31.8 36.8 44.4

LLaMA2
GSM8K 1.2 48.2 59.9 6.5 54.2 64.9

MATH-500 1.4 12.6 16.8 2.4 14.8 19.2

Table 1: Performance comparison on GSM8K and MATH-500. SLM+LLM denotes collaborative inference
methods, including Proxy-Tuning (static) and G-Boost (dynamic). Tuned-MCTS refers to private SLM guided by
MCTS without collaboration. Bold values indicate the best performance per task.
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Figure 3: The impact of exploration constant in UCT.
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Figure 4: The impact of step length.

G-Boost improves accuracy by 3.1% and 10.7% on467

GSM8K, and 7.6% and 4.4% on MATH-500 for the468

two models. These results highlight the advantage469

of adaptively integrating the general LLM’s rea-470

soning capabilities with the private SLM’s domain471

expertise, enabling precise and reliable exploration472

of reasoning paths.473

5.4 Further Analysis474

We perform additional analyses to gain deeper in-475

sights into the behavior of the proposed G-Boost476

framework and to further explore its underlying477

mechanisms. All experiments in this section are478

conducted on the Qwen2.5 models.479

Exploration constant in UCT. The exploration480

constant c in the UCT formula balances exploration481

and exploitation during MCTS. We evaluate its im-482

pact on G-Boost across MATH-500 and GSM8K.483

As illustrated in Fig. 3, performance peaks at in-484

termediate c values, where the framework effec-485

tively balances exploration of alternative reasoning486

paths and exploitation of high-quality ones. Smaller 487

c values overly prioritize exploitation, potentially 488

missing optimal paths, while larger values encour- 489

age excessive exploration, leading to inefficiency. 490

The results suggest the importance of tuning explo- 491

ration constant to achieve a robust trade-off, with 492

the framework showing stability across a reason- 493

able range of values. 494

Step length. The step length parameter deter- 495

mines the granularity of reasoning steps in the G- 496

Boost framework, influencing both the efficiency 497

and quality of collaborative inference. As shown 498

in Fig. 4, shorter step lengths enable more detailed 499

reasoning but may increase the complexity of the 500

search space, while longer step lengths simplify 501

the search process but risk overlooking nuanced 502

reasoning paths. The framework exhibits relatively 503

stable performance across a range of step lengths, 504

suggesting its adaptability to different granularities. 505

Moderate step lengths tend to yield better results, 506

as they strike a balance between capturing suffi- 507

cient reasoning detail and maintaining manageable 508

computational complexity. 509

Maximum iteration number. The maximum it- 510

eration number T controls the depth of exploration 511

in the MCTS process, influencing the quality of rea- 512

soning paths generated by the G-Boost framework. 513

As demonstrated in Tab. 2, increasing T initially 514

improves performance, as more iterations enable 515

broader exploration of the reasoning space and help 516

identify higher-quality paths. However, beyond a 517

certain point, further increases in T provide only 518

marginal gains, indicating that the framework tends 519

to converge toward stable reasoning paths within a 520

reasonable number of iterations. This behavior is 521

consistent with the nature of MCTS, where early it- 522

erations play a more significant role in shaping the 523

search tree, while additional iterations contribute 524

less to further improvements. The framework ex- 525
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hibits robustness across a range of T values, with526

performance remaining relatively stable even as T527

varies. This suggests that the G-Boost framework528

can achieve effective reasoning without requiring529

excessively large iteration counts.530

Table 2: The impact of the maximum iterations

T 16 24 32 40 64

GSM8K 82.9 84.5 84.6 85.0 85.7
MATH-500 39.0 39.6 42.4 42.4 42.2

Collaboration probability The collaboration531

probability pcollab governs the decision-making pro-532

cess for invoking the general LLM during node533

expansion in the G-Boost framework. The results534

in Tab. 3 reveals that, the choice of pcollab signif-535

icantly impacts the interplay between the private536

SLM’s domain expertise and the general LLM’s537

broader reasoning capabilities. At lower values of538

pcollab, the framework tends to rely more heavily539

on the private SLM, which may limit its ability540

to handle queries requiring general reasoning or541

complex logic. On the other hand, higher values542

of pcollab increase the involvement of the general543

LLM, but this can sometimes lead to suboptimal544

outcomes due to its lack of domain-specific knowl-545

edge. The framework achieves its best performance546

at intermediate values of pcollab, where it strikes an547

effective balance between specialization and gen-548

eralization. This balance allows the framework to549

dynamically adapt to the strengths of each model,550

ensuring that domain-specific tasks benefit from551

both the private SLM’s precision and the general552

LLM’s versatility.553

Table 3: The impact of collaboration probability

pcollab 0.1 0.3 0.5 0.7 0.9

GSM8K 83.7 84.4 84.1 84.3 84.2
MATH-500 41.8 42.2 42.4 41.8 41.2

Expand strategy The expand strategy in the554

G-Boost framework determines how nodes are ex-555

tended during the tree search process, influencing556

both the efficiency and quality of reasoning. We557

compare two approaches: Single expansion (ex-558

panding one child node at a time) and Full expan-559

sion (expanding all child nodes simultaneously).560

According to Tab. 4, Single expansion consistently561

outperforms Full expansion. While Full expansion562

might theoretically accelerate convergence by ex- 563

ploring multiple branches concurrently, it risks al- 564

locating limited search budget to less promising 565

or invalid branches, which can dilute the focus on 566

high-quality reasoning paths. In contrast, Single 567

expansion allows the framework to concentrate re- 568

sources on the most promising steps, guided by the 569

process reward model, leading to more efficient and 570

reliable exploration. This suggests that, under con- 571

strained search budgets, a more selective expansion 572

strategy better aligns with the framework’s goal of 573

balancing domain-specific expertise and general 574

reasoning capabilities.

Table 4: The effect of different expand strategies.

Expand Single Full

GSM8K 84.4 84.3
MATH-500 44.4 42.0

575

6 Conclusions 576

This paper presents G-Boost, a novel framework 577

for enhancing the performance of private SLM by 578

adaptively collaborating with general LLM under 579

the guidance of process reward. G-Boost addresses 580

the limitations of private SLMs, such as weaker 581

general reasoning capabilities, by dynamically in- 582

tegrating the domain-specific expertise of private 583

SLMs with the broad language understanding of 584

general LLMs. Through a tree-structured search 585

process guided by PRM, G-Boost dynamically ex- 586

plores the collaborative reasoning space, balancing 587

specialization and generalization to achieve supe- 588

rior performance on domain-specific tasks. Exten- 589

sive experiments on mathematical reasoning bench- 590

marks, demonstrate that G-Boost significantly out- 591

performs both fine-tuned private SLMs and gen- 592

eral LLMs, as well as static collaborative inference 593

methods like Proxy-Tuning. This work highlights 594

the potential of reward-guided adaptive collabo- 595

ration for boosting private LLMs and opens new 596

avenues for exploring efficient and flexible edge- 597

cloud reasoning frameworks in specialized tasks. 598

Limitations 599

While the G-Boost framework demonstrates signif- 600

icant improvements in enhancing private SLMs, it 601

has certain limitations. For instance, the efficiency 602

of the collaborative inference process could be im- 603

proved. Future work could focus on optimizing 604

8



computational workflows to reduce latency. Addi-605

tionally, while the framework has shown promising606

results, its effectiveness across a broader range of607

domains remains to be fully explored. Future re-608

search could prioritize expanding evaluations to609

diverse domains to validate and potentially extend610

the applicability of the framework.611

Ethical Considerations612

This framework aims to improve the performance613

of private SLMs for users facing resource or pri-614

vacy constraints, promoting more accessible and615

privacy-aware language model applications. All616

datasets utilized in this work are under the MIT617

License. Our approach is based on open-source lan-618

guage models and also involves interaction with619

general language models, which may include those620

accessed via API. Our work did not explicitly han-621

dle any bias that exists in the aforementioned pre-622

trained models or datasets.623
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