

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ONE-STEP FLOW FOR IMAGE SUPER-RESOLUTION WITH TUNABLE FIDELITY-REALISM TRADE-OFFS

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent advances in diffusion and flow-based generative models have demonstrated remarkable success in image restoration tasks, achieving superior perceptual quality compared to traditional deep learning approaches. However, these methods either require numerous sampling steps to generate high-quality images, resulting in significant computational overhead, or rely on common model distillation, which usually imposes a fixed fidelity-realism trade-off and thus lacks flexibility. In this paper, we introduce OFTSR, a novel flow-based framework for one-step image super-resolution that can produce outputs with tunable levels of fidelity and realism. Our approach first trains a conditional flow-based super-resolution model to serve as a teacher model. We then distill this teacher model by applying a specialized constraint. Specifically, we force the predictions from our one-step student model for same input to lie on the same sampling ODE trajectory of the teacher model. This alignment ensures that the student model's single-step predictions from initial states match the teacher's predictions from a closer intermediate state. Through extensive experiments on datasets including FFHQ (256×256), DIV2K, ImageNet (256×256) and real world SR datasets, we demonstrate that OFTSR achieves state-of-the-art performance for one-step image super-resolution, while having the ability to flexibly tune the fidelity-realism trade-off. Code and pre-trained models will be publicly available.

1 INTRODUCTION

Recently, diffusion and flow-based generative models have demonstrated the ability to generate images with higher quality (Ramesh et al., 2022; Nichol & Dhariwal, 2021; Dhariwal & Nichol, 2021) than earlier generative models such as Generative Adversarial Networks (GANs) (Goodfellow et al., 2020; Karras et al., 2019), Normalizing Flows (NFs) (Dinh et al., 2016) and Variational Autoencoders (VAEs) (Kingma & Welling, 2013; Razavi et al., 2019). Beyond visual generation, diffusion models have shown remarkable success across a variety of tasks, including image editing (Hertz et al., 2022; Brooks et al., 2023; Kawar et al., 2023), 3D content generation (Poole et al., 2022; Wang et al., 2023a; Liu et al., 2023b; Wu et al., 2022; Wang et al., 2024a), and image restoration (Kawar et al., 2022; Chung et al., 2022; Wang et al., 2022b; Zhu et al., 2023; Delbracio & Milanfar, 2023; Lin et al., 2023), with particularly notable advancements in image super-resolution (SR) (Saharia et al., 2021; Chen et al., 2023; Yue et al., 2024b; Wang et al., 2024b).

Existing diffusion and flow-based SR methods can be broadly divided into two approaches: training-free methods (Zhu et al., 2023; Kawar et al., 2022; Wang et al., 2022b; Chung et al., 2022; Alkhouri et al., 2024; Mardani et al., 2023; Song et al., 2023a), and training-based methods (Saharia et al., 2021; Luo et al., 2023b; Liu et al., 2023a; Yue et al., 2023; Wang et al., 2024c; Yue et al., 2024b; Liu et al., 2024; Delbracio & Milanfar, 2023). Training-free methods decompose the conditional probability into a prior term and a likelihood term, with each term associating directly to a specific subproblem (Zhu et al., 2023). During iterative sampling, the prior subproblem is naturally handled by pre-trained unconditional diffusion models, which serve as powerful regularizers to guide the solution toward realistic High Resolution (HR) images. Meanwhile, the likelihood subproblem is addressed through specialized optimization techniques or analytical approximations to ensure fidelity to the observed Low Resolution (LR) image. On the other hand, training-based methods directly model the conditional probability using paired data, either by training from scratch (Saharia et al., 2021; Delbracio & Milanfar, 2023) or by incorporating additional control modules into

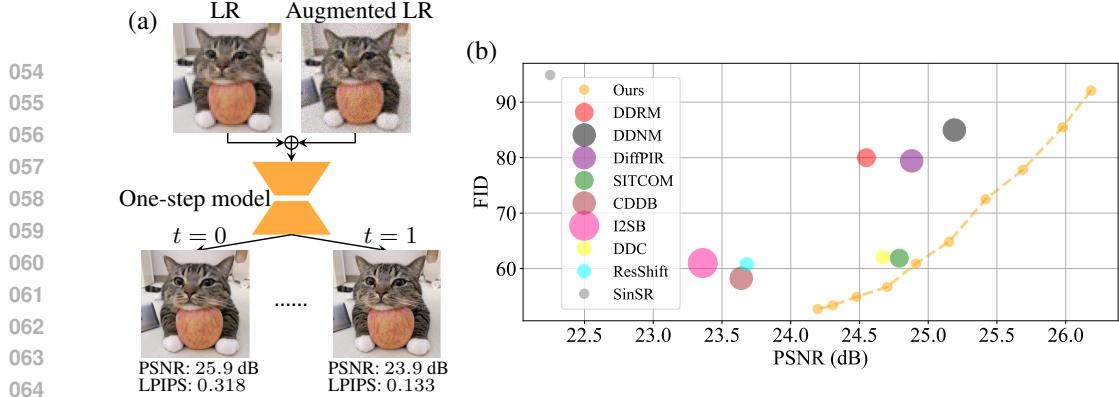


Figure 1: (a) Our final model takes the concatenation of a low-resolution image with its noise-augmented version as input, and is able to generate high-resolution outputs with either high realism or high fidelity by adjusting the interpolation parameter t . We indicate the PSNR and LPIPS value on the output images. (b) Comparison of different diffusion and flow based image super-resolution methods on the ImageNet 256×256 dataset. Bubble radius indicates the NFEs used by the methods.

existing generative priors (Wang et al., 2024b; Yu et al., 2024; Lin et al., 2023; Rombach et al., 2022). Several other bridge-based methods (Luo et al., 2023b; Liu et al., 2023a; Yue et al., 2023; Chung et al., 2024) have also been proposed for general image-to-image translation tasks, sharing similarities with direct learning approaches.

Despite the promising results of above methods, they require many iterative sampling steps to achieve high perceptual quality, and reducing the number of iterations often results in higher fidelity but lower perceptual quality. In this sense, their fidelity-realism trade-offs is achieved at the cost of more sampling steps. In order to achieve high perceptual quality with fewer sampling steps, some attempts (Wang et al., 2024c; Lee et al., 2024; Wu et al., 2024; Xie et al., 2024; Li et al., 2024) have been made to distill the diffusion sampling process into a single step with diffusion distillation approaches (Luhman & Luhman, 2021; Salimans & Ho, 2022; Liu et al., 2022; Song et al., 2023b; Yan et al., 2024; Yin et al., 2024b;a; Sauer et al., 2025). However, while these methods improve efficiency, they sacrifice flexibility by limiting control over the fidelity-realism trade-off, reducing their applicability in domains where different tasks require varying levels of fidelity and realism, such as medical imaging, remote sensing and film upscaling (Greenspan, 2009; Li et al., 2023a; Wang et al., 2022a; Mentzer et al., 2020; Joshi et al., 2025).

In this paper, we propose OFTSR that achieves one-step image SR and preserves the capability to produce outputs with tunable fidelity-realism trade-offs. Specifically, OFTSR uses a two-stage pipeline. In stage one we train a noise-augmented conditional rectified flow to expand the support of the initial distribution: noise-perturbed LR images form the initial distribution while the LR images are used as conditions, enabling diverse HR reconstructions from a single LR. In the second stage, a distillation strategy is proposed to restrict the student model’s predictions to match the same Ordinary Differential Equation (ODE) induced by the teacher model from the first stage.

Our main contributions can be summarized as follows:

- **Noise-augmented Conditional Rectified Flow for Image Restoration:** We introduce an enhanced conditional rectified flow model for image restoration. By leveraging an noise-augmented LR conditioning strategy, our approach enables more effective LR-conditioned diffusion restoration, serving as both a general restoration framework and the foundational stage for our proposed distillation algorithm.
- **One-Step Diffusion Distillation with Flexible Fidelity-Realism Trade-off:** We introduce a distillation strategy applicable to empirical probability flow ODEs of *any* pre-trained conditional diffusion or flow model. Unlike prior methods that limit flexibility, ours enables one-step sampling while preserving control over fidelity and perceptual realism for SR.
- **State-of-the-Art (SOTA) Performance on Benchmark Datasets:** Extensive experiments on DIV2K (Agustsson & Timofte, 2017), FFHQ (Karras et al., 2019), ImageNet (Deng et al., 2009) and several real world SR dataset including RealSR (Cai et al., 2019), RealSet80 (Yue et al., 2024b) and RealLQ250 (Ai et al., 2025) show that OFTSR achieves competitive one-step reconstruction, surpassing recent SOTA methods in both perceptual quality and fidelity.

108 2 BACKGROUND
109110 2.1 DIFFUSION AND FLOW-BASED GENERATIVE MODELS
111

112 Drawing inspiration from non-equilibrium thermodynamics, diffusion models operate through two
113 core processes: a forward diffusion process that gradually adds Gaussian noise to data until it be-
114 comes pure noise, and a reverse denoising process that systematically reconstructs the original data
115 by removing noise (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020b). Let \mathbf{x}_t repre-
116 sent the data \mathbf{x} at timestep t . The forward process can be formally described by the Itô Stochastic
117 Differential Equation (SDE) (Song et al., 2020b):
118

$$d\mathbf{x}_t = f_t \mathbf{x}_t dt + g_t d\mathbf{w}, \quad (1)$$

119 where \mathbf{w} is the standard Wiener process, $f_t : \mathbb{R} \rightarrow \mathbb{R}$ is the drift coefficient, and $g_t : \mathbb{R} \rightarrow \mathbb{R}$ is a
120 scalar function called the diffusion coefficient.
121

122 For every diffusion process described by Eq. (1), there exists a corresponding deterministic Probabilistic
123 Flow Ordinary Differential Equation (PF-ODE) that maintains the same marginal probability
124 density:
125

$$\frac{d\mathbf{x}_t}{dt} = f_t \mathbf{x}_t - \frac{1}{2} g_t^2 \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t), \quad (2)$$

126 where $p_t(\cdot)$ represents the marginal probability density at time t . The term $\nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t)$ is known
127 as the score function, which can be approximated by a neural network $\mathbf{s}_\theta(\mathbf{x}, t)$ with parameters θ .
128 This network is typically trained using score matching techniques (Hyvärinen & Dayan, 2005; Song
129 & Ermon, 2019; Song et al., 2020a).
130

131 To generate data samples, the process begins with Gaussian noise drawn from an initial Gaussian
132 distribution p_0 and solves Eq. (2) numerically from $t = 0$ to $t = 1$. By utilizing the learned score
133 function $\mathbf{s}_\theta(\mathbf{x}_t, t)$, the empirical PF-ODE can be obtained as: $\frac{d\mathbf{x}_t}{dt} = f_t \mathbf{x}_t - \frac{1}{2} g_t^2 \mathbf{s}_\theta(\mathbf{x}_t, t)$.
134

135 Rectified flow (Liu et al., 2022; Liu, 2022; Lipman et al., 2022; Esser et al., 2024) is a generative
136 modeling framework based on ODEs. Given an initial distribution p_0 and a target data distribution
137 p_1 , rectified flow trains a neural network to parameterize a velocity field using the following loss
138 function:
139

$$\mathcal{L}_{\text{rf}}(\theta) := \mathbb{E}_{\mathbf{x}_1 \sim p_1, \mathbf{x}_0 \sim p_0} \left[\int_0^1 \left\| \mathbf{v}_\theta(\mathbf{x}_t, t) - (\mathbf{x}_1 - \mathbf{x}_0) \right\|_2^2 dt \right], \text{ where } \mathbf{x}_t = (1-t)\mathbf{x}_0 + t\mathbf{x}_1. \quad (3)$$

140 Once trained, sample generation is achieved by solving the empirical ODE $\frac{d\mathbf{x}_t}{dt} = \mathbf{v}_\theta(\mathbf{x}_t, t)$ from
141 $t = 0$ to $t = 1$. In practical implementations, this empirical ODE is solved numerically using
142 standard ODE solvers, ranging from the simple forward Euler method to higher-order methods such
143 as RK2 and RK45.
144

146 2.2 PERCEPTION-DISTORTION TRADE-OFF
147

148 The perception-distortion (realism-fidelity) trade-off (Blau & Michaeli, 2018) is a fundamental con-
149 cept in image restoration. It describes the inherent trade-off between perceptual realism and fidelity
150 to the ground truth, and mathematically proves that it is generally not possible to achieve both good
151 perceptual realism and high fidelity simultaneously.
152

153 To address this challenge, researchers have explored various approaches to enable tunable trade-offs
154 between these two desirable qualities. One common technique involves interpolating between the
155 weights of two models with the same architecture, trained with GAN loss and mean squared error
156 loss (Wang et al., 2018). Recently, diffusion models have emerged as a promising approach for
157 this task. The iterative sampling nature of diffusion models provides a flexible means of controlling
158 the desired trade-offs. By adjusting the Number of Function Evaluations (NFEs), users can generate
159 reconstructions that better match their specific requirements (Chung et al., 2024). Specifically, lower
160 NFEs tend to result in reconstructions with reduced distortion, as the output regresses towards the
161 mean (Delbracio & Milanfar, 2023). Conversely, higher NFEs prioritize perceptual quality, even if
it comes at the expense of some distortion from the ground truth (similar to Fig. 6).
162

162 3 METHOD

163
 164 In this section, we introduce the OFTSR frame-
 165 work for one-step SR that can restore HR im-
 166 ages with either high realism or high fidelity.
 167 We achieve this goal through a two-stage pro-
 168 cess: first, we train a direct flow-based model
 169 for SR, and then we distill this model into a sim-
 170 plified one-step variant. In Sec. 3.1, we present
 171 a simple noise-augmented conditional flow that
 172 expands the support of the initial distribution,
 173 enabling diverse reconstruction. In Sec. 3.2,
 174 we propose to distill the student model by re-
 175 stricting its predictions on the same ODE using
 176 teacher model from Sec. 3.1.

177 3.1 NOISE AUGMENTED CONDITIONAL FLOW

178 Unlike diffusion models, flow-based models have the advantage that their initial distribution is not
 179 limited to Gaussian distributions. This flexibility suggests a natural approach for image restoration
 180 - directly learning a flow that maps the distribution of LR images (p_{LR}) to that of HR images (p_{HR}).
 181 However, our initial experiments (see Tab. 7) showed poor performance with this direct approach,
 182 aligning with findings from several recent works (Delbracio & Milanfar, 2023; Kim et al., 2024; Lee
 183 et al., 2024). This training procedure tends to collapse the LR→HR mapping: during inference each
 184 LR is driven toward a single HR.

185 To overcome this limitation, we propose a noise-augmented approach to process LR images. For
 186 any input image \mathbf{x}_{LR} , we construct our initial distribution $p_0(\mathbf{x}) = p_{\text{LR}}^{\sigma_p}$ by adding Gaussian noise
 187 with standard deviation σ_p . Specifically, we adopt a Variance-Preserving (VP) noising operation
 188 (Ho et al., 2020; Song et al., 2020b):

$$189 \mathbf{x}_0 = \sqrt{1 - \sigma_p^2} \mathbf{x}_{\text{LR}} + \sigma_p \epsilon, \quad (4)$$

190 where ϵ is a standard Gaussian noise. While this noise perturbation facilitates better generalization,
 191 it inevitably causes information loss in the LR image. To address this, we incorporate \mathbf{x}_{LR} as a
 192 conditional input to our model as in Fig. 1. This VP formulation, together with the condition \mathbf{x}_{LR} ,
 193 makes our method particularly versatile, encompassing previous approaches as special cases. When
 194 $\sigma_p = 0$, our method reduces to the minimal augmentation case in InDI (Delbracio & Milanfar,
 195 2023), and when $\sigma_p = 1$, it matches the training strategy of SR3 (Saharia et al., 2022).

196 Given this noise-augmented formulation, we can now define our training objective as:

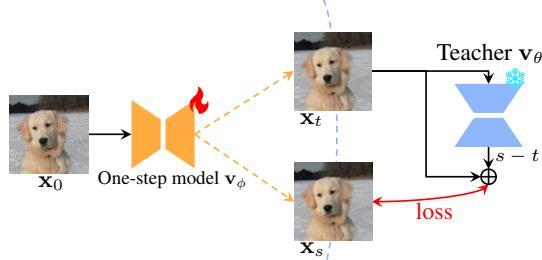
$$197 \mathcal{L}_{\text{flow}}(\theta) = \mathbb{E}_{\mathbf{x}_1 \sim p_1} \left[\int_0^1 \mathbb{D} \left(\mathbf{v}_\theta(\mathbf{x}_{t,\text{LR}}, t), (\mathbf{x}_1 - \mathbf{x}_0) \right) dt \right], \quad (5)$$

198 where \mathbb{D} is a discrepancy loss that measures the difference between two images (e.g., ℓ_2 loss or the ℓ_1
 199 loss), \mathbf{v}_θ is our velocity model, $\mathbf{x}_{t,\text{LR}} = \text{concat}(\mathbf{x}_t, \mathbf{x}_{\text{LR}})$ is the concatenation \mathbf{x}_t and \mathbf{x}_{LR} in channel
 200 dimension (see Fig. 1), The LR input of the algorithm is given by $\mathbf{x}_{\text{LR}} = \mathcal{H}^T(\mathcal{H}(\mathbf{x}_1) + \mathbf{n})$, where
 201 \mathcal{H} is the downsampling operator, \mathcal{H}^T is its transpose and \mathbf{n} is i.i.d. Gaussian noise with variance
 202 σ_n^2 . The perturbed version of \mathbf{x}_{LR} , denoted as \mathbf{x}_0 , is obtained using the noise augmentation strategy
 203 described in Eq. (4). Additionally, $\mathbf{x}_t = (1-t)\mathbf{x}_0 + t\mathbf{x}_1$ denotes the intermediate state as in rectified
 204 flow (Liu et al., 2022; Liu, 2022).

205 3.2 DISTILLATION LOSS

206 We introduce a distillation loss to train a one-step student that preserves the pre-trained SR flow’s
 207 fidelity-realism trade-off, allowing control at inference via a single hyperparameter t . As shown
 208 in Fig. 6 and observed in prior work (Delbracio & Milanfar, 2023; Liu et al., 2023a), single-step
 209 estimates of the *final state* \mathbf{x}_1^t obtained from an *intermediate state* \mathbf{x}_t lie on a fidelity-realism curve:
 210 along the ODE sampling trajectory, estimates for larger t (closer to 1) exhibit richer detail and lower
 211 LPIPS (better realism), whereas estimates for smaller t (closer to 0) are blurrier but achieve lower
 212 MMSE and higher PSNR (better fidelity).

213 To preserve the fidelity-realism trade-off, given the same input $\mathbf{x}_{0,\text{LR}}$, for two different timesteps t
 214 and s where $s > t$, we require the student model \mathbf{v}_ϕ to produce two corresponding intermediate



215 Figure 2: Illustration of the proposed distillation loss.
 216 Rather than directly distilling from the teacher, we
 217 leverage the teacher to align the **one-step intermediate**
 218 **outputs**, \mathbf{x}_t and \mathbf{x}_s , along teacher’s **PF-ODE trajectory**.
 219 For simplicity, LR conditioning is omitted in this figure.

216 states \mathbf{x}_t and \mathbf{x}_s that lie on the same ODE trajectory defined by the teacher (see Fig. 2):
 217

$$218 \quad \mathbf{x}_s = \mathbf{x}_t + (s - t)\mathbf{v}_\theta(\mathbf{x}_{t,LR}, t), \quad (6)$$

219 where $\mathbf{x}_{0,LR} = \text{concat}(\mathbf{x}_0, \mathbf{x}_{LR})$ is the concatenation of the input image \mathbf{x}_0 and the LR condition \mathbf{x}_{LR}
 220 along the channel dimension. The intermediate states \mathbf{x}_t and \mathbf{x}_s can be computed using our one-step
 221 student model \mathbf{v}_ϕ :

$$222 \quad \mathbf{x}_t = \mathbf{x}_0 + t\mathbf{v}_\phi(\mathbf{x}_{0,LR}, t). \quad (7)$$

224 Substituting the expression for the intermediate image \mathbf{x}_t and \mathbf{x}_s from Eq. (7) into Eq. (6), we have
 225 the following constraint on the student model:

$$226 \quad s(\mathbf{v}_\phi(\mathbf{x}_{0,LR}, s) - \mathbf{v}_\phi(\mathbf{x}_{0,LR}, t)) = (s - t)(\mathbf{v}_\theta(\mathbf{x}_{t,LR}, t) - \mathbf{v}_\phi(\mathbf{x}_{0,LR}, t)). \quad (8)$$

228 Similar to BOOT, we can set $dt = s - t$ and derive the final distillation loss:
 229

$$230 \quad \mathcal{L}_{\text{distill}}(\phi) = \mathbb{E}_{\mathbf{x}_1 \sim p_1, t \sim \mathcal{U}[0,1]} \left[\left\| \mathbf{v}_\phi(\mathbf{x}_{0,LR}, s) - \text{SG} \left[\mathbf{v}_\phi(\mathbf{x}_{0,LR}, t) + \frac{dt}{s} (\mathbf{v}_\theta(\mathbf{x}_{t,LR}, t) - \mathbf{v}_\phi(\mathbf{x}_{0,LR}, t)) \right] \right\|_2^2 \right], \quad (9)$$

233 where $\text{SG}[\cdot]$ is the stop-gradient operator for training stability (Gu et al., 2023; Tee et al., 2024).
 234 Since $s - t = dt$ and $t > 0$, we do not have the ‘dividing by 0’ issue in (Tee et al., 2024). Similarly
 235 to (Song et al., 2023b; Gu et al., 2023), we can use the Euler or general RK2 solver to calculate \mathbf{v}_θ in
 236 Eq. (9). In our main experiments, we employ the midpoint method, while also evaluating two other
 237 RK2 solver variants, *i.e.*, Heun’s method and Ralston’s method, for comparison in our ablations (see
 238 Tab. 8). In Sec. B.2, we show that our distillation loss is the **discrete-time counterpart** of the forward
 239 distillation loss (Boffi et al., 2025; Liu, 2025) by fixing the start timestep at 0, which is highly related
 240 to recent work MeanFlow (Geng et al., 2025) and AlignYourFlow (Sabour et al., 2025).

241 3.3 ALIGNMENT AND BOUNDARY LOSS

243 In BOOT (Gu et al., 2023), a boundary condition is applied to enforce that the one-step student
 244 model and teacher model perform the same at the boundary $t = 0$. We aim to align the teacher and
 245 student outputs in our model. The student produces $\mathbf{x}_0 + \mathbf{v}_\phi(\mathbf{x}_{0,LR}, t)$, while the teacher generates
 246 $\mathbf{x}_t + (1 - t)\mathbf{v}_\theta(\mathbf{x}_{t,LR}, t)$ based on the student’s output \mathbf{x}_t using Eq. (7). By minimizing the difference
 247 between these outputs, we get the following alignment loss to align the teacher and student:

$$248 \quad \mathcal{L}_{\text{align}}(\phi) = \mathbb{E}_{\mathbf{x}_1 \sim p_1, t \sim \mathcal{U}[0,1]} \left[\left\| (1 - t) \left(\mathbf{v}_\phi(\mathbf{x}_{0,LR}, t) - \mathbf{v}_\theta(\mathbf{x}_{t,LR}, t) \right) \right\|_2^2 \right]. \quad (10)$$

251 If we consider this alignment loss only at $t = 0$, it becomes equivalent to the boundary loss used in
 252 BOOT:

$$253 \quad \mathcal{L}_{\text{BC}}(\phi) = \mathbb{E}_{\mathbf{x}_1 \sim p_1} \left[\left\| \mathbf{v}_\phi(\mathbf{x}_{0,LR}, 0) - \mathbf{v}_\theta(\mathbf{x}_{0,LR}, 0) \right\|_2^2 \right]. \quad (11)$$

255 Since it is difficult to sample $t = 0$ for most training iterations, we add in addition the boundary loss
 256 Eq. (11) in our final training objective.

258 **The overall training objective.** The student network \mathbf{v}_ϕ is trained to minimize the combination of
 259 the aforementioned three losses terms:

$$260 \quad \mathcal{L}(\phi) = \mathcal{L}_{\text{distill}}(\phi) + \lambda_{\text{align}} \mathcal{L}_{\text{align}}(\phi) + \lambda_{\text{BC}} \mathcal{L}_{\text{BC}}(\phi), \quad (12)$$

261 where λ_{align} and λ_{BC} are the weights for alignment loss and boundary condition loss, respectively.
 262 The distillation stage of the proposed method is summarized in Algorithm 1.

264 **Inference.** After training, the one-step student \mathbf{v}_ϕ produces the final high-resolution output \mathbf{x}_1^t in
 265 a single forward pass, conditioned on the initial state \mathbf{x}_0 , the low-resolution input \mathbf{x}_{LR} , and the
 266 trade-off parameter t . Concretely,

$$267 \quad \mathbf{x}_1^t = \mathbf{x}_0 + \mathbf{v}_\phi(\mathbf{x}_0, \mathbf{x}_{LR}, t), \quad (13)$$

269 where $\mathbf{v}_\phi(\cdot)$ predicts a residual that refines \mathbf{x}_0 toward the desired point on the fidelity-realism curve
 270 specified by t .

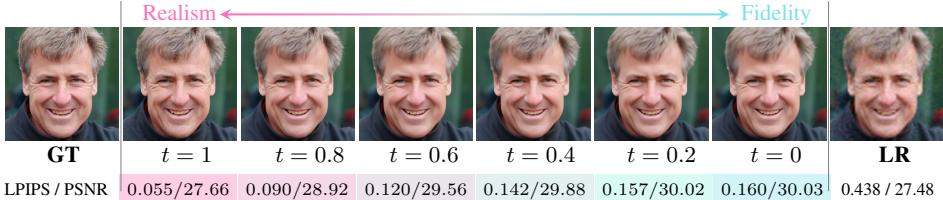
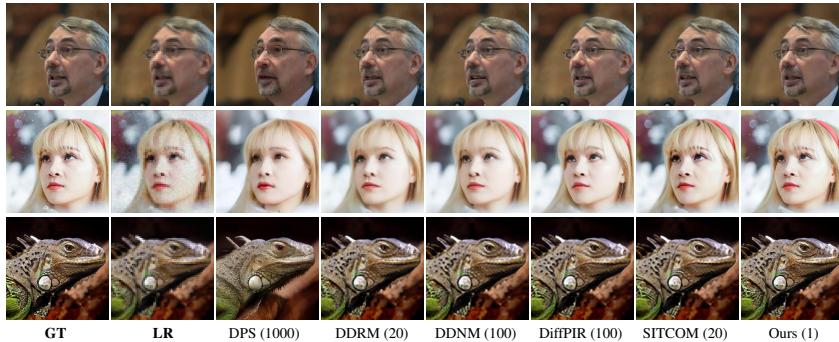


Figure 3: OFTSR is capable to generate continuous transitions between image realism and fidelity.

Figure 4: **Qualitative comparison with training-free methods.** The first row shows noiseless SR on the FFHQ dataset, the second row presents noisy SR ($\sigma_n = 0.05$) on FFHQ, and the bottom row demonstrates noiseless SR on the ImageNet dataset. Numbers next to the method names represent the required NFEs.

3.4 COMPARISON TO RELATED WORKS

In this section, we distinguish the proposed OFTSR from several closely related methods.

BOOT (Gu et al., 2023). Gu *et al.* proposed to make the prediction of the student model fulfill the Signal-ODE. In contrast, OFTSR directly constrains the student’s implicit prediction \mathbf{x}_t using the PF-ODE of the teacher model, **leading to more concise and intuitive derivation and distillation objective**. Moreover, while BOOT was originally designed for text-to-image generation using diffusion models, our method is built on rectified flow and demonstrates a smaller distillation gap compared to BOOT loss for SR task, **and empirically achieves markedly better fidelity–realism trade-offs**.

DAVI (Lee et al., 2024). Lee *et al.* introduced DAVI, which combines Variational Score Distillation (VSD) loss (Wang et al., 2024d; Luo et al., 2023a; Yin et al., 2024b) with data consistency loss to train a one-step SR model and utilizes the perturbation trick to present robust restoration ability. However, DAVI needs to train a fake score to track the denoising score of the one-step generator, resulting in reduced training efficiency.

SinSR (Wang et al., 2024c). Wang *et al.* proposed SinSR, which achieves near-teacher performance by distilling ResShift (Yue et al., 2024b) without adversarial training. However, SinSR requires simulation of the teacher model’s ODE trajectory, leading to computational overhead during training.

Our OFTSR stands out from other diffusion and flow-based SR methods due to its unique ability to restore images with either high perceptual quality or low distortion. This capability is novel among diffusion and flow-based approaches.

4 EXPERIMENTS

In this section, we provide experimental details and empirical evaluation of OFTSR and compare it with prior works.

4.1 EXPERIMENTAL SETUP

Datasets. We perform extensive super resolution experiments on the FFHQ 256×256 (Karras et al., 2019), DIV2K (Agustsson & Timofte, 2017) and ImageNet 256×256 (Russakovsky et al., 2015) datasets to assess the **bicubic SR** performance of OFTSR on faces and natural images. For each dataset, we evaluate on 100 hold-out validation images without cherry-picking. **For evaluating real SR, we use both synthetic set and real world set. Synthetic set includes 100 images from imangenet**

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 1: Noiseless quantitative results on **DIV2K**. We compute the average PSNR (dB), LPIPS and FID of different methods on $4 \times$ SR. The best and second best results are highlighted in **bold** and underline. The distilled model produces superior performance in terms of trade-off metrics through adjustment of the hyperparameter t .

DIV2K	Method	NFEs (\downarrow)	PSNR (\uparrow)	LPIPS (\downarrow)	FID (\downarrow)
Training-free	DPS (Chung et al., 2022)	1000	23.05	0.447	109.35
	DDRM (Kawar et al., 2022)	20	27.87	0.285	23.38
	DDNM (Wang et al., 2022b)	100	<u>28.09</u>	0.279	20.33
	DiffPIR (Zhu et al., 2023)	100	27.94	0.248	19.56
Training-based	IRSDE (Luo et al., 2023b)	100	26.83	0.144	14.69
	GOUB (Yue et al., 2023)	100	26.92	0.218	21.56
	ECDB (Yue et al., 2024a)	100	27.39	0.212	18.88
	InDI (Delbracio & Milanfar, 2023)	100	26.45	0.136	15.39
	Ours	31	26.76	0.128	14.10
	Ours distilled ($t = 1$)	1	26.87	0.127	14.58
	Ours distilled ($t = 0.5$)	1	28.02	0.208	16.89
	Ours distilled ($t = 0$)	1	28.99	0.271	18.07

Table 2: Noiseless (top) and noisy (bottom) quantitative results on **FFHQ 256** \times 256. We compute the average PSNR (dB), LPIPS and FID of different methods on $4 \times$ SR. The best and second best results are highlighted in **bold** and underline.

FFHQ	Method	NFEs (\downarrow)		PSNR (\uparrow)	LPIPS (\downarrow)	FID (\downarrow)
		$\sigma_n = 0$	$\sigma_n = 0.05$			
Training-free	DPS (Chung et al., 2022)	1000	24.08	0.180	79.71	
	DDRM (Kawar et al., 2022)	20	28.81	0.118	89.12	
	DDNM (Wang et al., 2022b)	100	29.45	0.091	60.99	
	DiffPIR (Zhu et al., 2023)	100	29.13	0.073	44.49	
	SITCOM (Alkhouri et al., 2024)	20	29.29	0.089	43.00	
	Ours	20	28.83	0.053	30.54	
Training-based	Ours distilled ($t = 1$)	1	28.98	0.055	36.02	
	Ours distilled ($t = 0.5$)	1	29.95	0.093	49.08	
	Ours distilled ($t = 0$)	1	31.25	0.150	66.76	
	DPS (Chung et al., 2022)	1000	23.61	0.186	81.25	
Training-free	DDRM (Kawar et al., 2022)	20	26.71	0.191	113.25	
	DDNM (Wang et al., 2022b)	100	27.66	0.174	113.26	
	DiffPIR (Zhu et al., 2023)	100	26.99	0.123	61.66	
	SITCOM (Alkhouri et al., 2024)	20	27.80	0.158	83.04	
	DAVI (Lee et al., 2024)	1	27.50	0.084	50.19	
	Ours	20	27.28	0.080	46.04	
Training-based	Ours distilled ($t = 1$)	1	27.71	0.081	49.81	
	Ours distilled ($t = 0.5$)	1	29.47	0.157	82.93	
	Ours distilled ($t = 0$)	1	29.75	0.172	85.89	

for $64 \rightarrow 256$ SR and 100 images from DIV2K for $128 \rightarrow 512$ SR, both degraded using RealESRGAN pipeline. Real world test set includes RealSR (Cai et al., 2019), RealSet80 (Yue et al., 2024b) and RealLQ250 (Ai et al., 2025). For distilling DiT4SR, we construct the training set using a combination of images from DIV2K (Agustsson & Timofte, 2017), DIV8K (Gu et al., 2019), Flickr2K (Timofte et al., 2017), LSDIR (Li et al., 2023b) and the first 10K images from FFHQ (Karras et al., 2019).

Teacher Models. We employ three types of teacher models in our experiments: (1) Self-trained teachers (*2 types of backbones*: Guided Diffusion (Dhariwal & Nichol, 2021) for bicubic SR (Tabs. 1 to 3) and ResShift (Yue et al., 2024b) for real SR (Tabs. 4 and 5)) using the noise-augmented conditional flow strategy in Sec. 3.1, which showcases the effectiveness of our training scheme; (2) An off-the-shelf DiT4SR teacher (built on Stable Diffusion (SD) 3.5). Since SD-based models possess significantly stronger generative priors and are prohibitively expensive for us to pre-train, we distill DiT4SR with our method to enable fair comparison with the latest SOTA approaches for realSR (Tab. 6); (3) An off-the-shelf ResShift teacher, allowing direct comparison with SinSR (which is distilled from ResShift) and fair computational cost comparison (Tabs. 9 and 10).

Evaluation Metrics. The metrics we use for comparison are Peak Signal-to-Noise Ratio (PSNR), Fréchet Inception Distance (FID), and Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018) distance. The FID evaluates the visual quality by calculating the feature distance between two image distributions. In our experiments, we calculate the FID using the HR images and the restored images from the 100 hold-out validation set with Clean-FID (Parmar et al., 2022). LPIPS measures the average perceptual similarity between the restored images and their corresponding HR images. PSNR measures the restoration faithfulness between two images. And LPIPS and PSNR are the two main metrics we use to measure the perceptual-fidelity trade-offs. For real SR task, we also use no-reference Image Quality Assessment (IQA) including NIQE Zhang et al. (2015), CLIPQA Wang et al. (2023b), MUSIQ Ke et al. (2021), and MANIQA Yang et al. (2022).

Compared Methods. We conduct comprehensive comparisons against state-of-the-art diffusion-based image super-resolution methods, which can be categorized into two groups: (1) Training-free methods, including DPS (Chung et al., 2022), DDRM (Kawar et al., 2022), DDDNM (Wang et al., 2022b), DiffPIR (Zhu et al., 2023), CDDB (Chung et al., 2024), and SITCOM (Alkhouri et al., 2024); (2) Training-based methods: GOUB (Yue et al., 2023), ECDB (Yue et al., 2024a), InDI (Delbracio & Milanfar, 2023), DAVI (Lee et al., 2024), I2SB (Liu et al., 2023a), DDC (Chen et al., 2024), ResShift (Yue et al., 2024b), SinSR (Wang et al., 2024c) and CTMSR (You et al., 2025). And large scale Stable Diffusion based methods such as OSEDiff (Wu et al., 2024), AddSR (Xie et al., 2024) and TSDSR (Dong et al., 2025). It is noteworthy that SITCOM requires K inner-iterations to evaluate and differentiate the score function at each sampling step. To further validate the effectiveness of our method, we conduct experiment on real-world image super-resolution. Following (Yue et al., 2024b; Wang et al., 2024c), we use Imagenet 256×256 as HR training data and synthesize LR images using degradation pipeline of RealESRGAN (Wang et al., 2021).

Training Details. We do experiments for both noisy and noiseless SR. For noiseless SR, bicubic downsampling is performed on all three datasets. For noisy SR, we conduct experiment only on FFHQ 256×256 dataset with average-pooling downsampling and Gaussian noise with a stan-

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 3: Noiseless quantitative results on ImageNet 256×256. We compute the average PSNR (dB), LPIPS and FID of different methods on 4× SR. The best and second best results are highlighted in **bold** and underline.

ImageNet	Method	NFEs (↓)	PSNR (↑)	LPIPS (↓)	FID (↓)
	DPS (Chung et al., 2022)	1000	20.36	0.438	164.99
Training-free	DDRM (Kumar et al., 2022)	20	24.55	0.292	79.99
	DDNM (Wang et al., 2022b)	100	<u>25.19</u>	0.327	84.98
	DiffPIR (Zhu et al., 2023)	100	24.88	0.306	79.42
	SITCOM (Alkhouli et al., 2024)	20	24.79	0.277	61.88
	CDDB (Chung et al., 2024)	100	23.64	0.191	58.25
	I2SB (Liu et al., 2023a)	1000	23.36	0.178	60.99
Training-based	I2SB (Wang et al., 2025)	25	23.79	0.169	59.38
	I2SB (Wang et al., 2025)	1	25.24	0.157	124.47
	DDNM (Wang et al., 2024)	5	24.47	0.265	62.06
	ResShift (Yue et al., 2024b)	4	23.68	0.207	60.75
	SinSR (Wang et al., 2024c)	1	22.25	0.207	94.90
Ours		26	<u>23.35</u>	<u>0.132</u>	46.88
Ours distilled ($t = 1$)		1	24.20	<u>0.135</u>	52.69
Ours distilled ($t = 0.5$)		1	24.85	0.176	60.69
Ours distilled ($t = 0$)		1	26.18	0.284	92.04

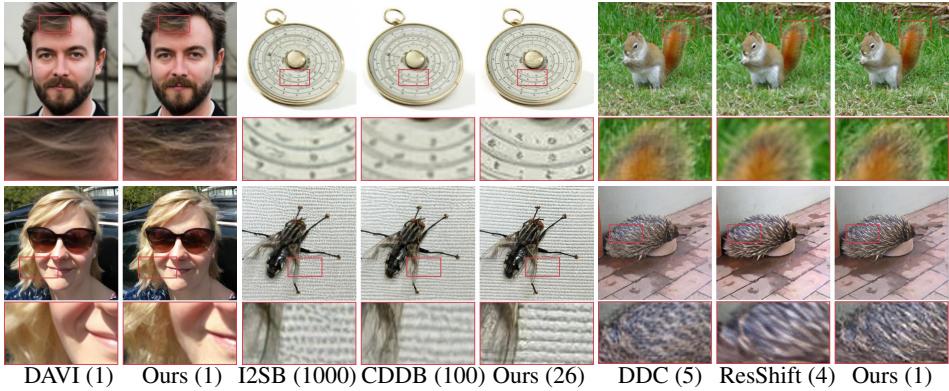


Figure 5: **Qualitative comparison with training-based methods.** The first two columns demonstrate 4× SR results on the FFHQ dataset with noise level $\sigma_n = 0.05$. The remaining columns show noiseless 4× SR results on the ImageNet dataset. Numbers next to the method names represent the required NFEs.

Table 4: Quantitative results of real-world image super-resolution on ImageNet 256×256 and RealSR (Cai et al., 2019). The best and second best results are highlighted in **bold** and underline. The number of inference steps is indicated by ‘s’, which is the same as NFE when not use CFG.

ImageNet	PSNR (↑)	LPIPS (↓)	FID (↓)	NIQE (↓)	MUSIQ (↑)	MANIQA (↑)	CLIPPIQA (↑)
SwinIR (Liang et al., 2021)	22.24	0.320	207.75	6.0084	47.46	0.5527	0.5544
NAFNet (Chen et al., 2022)	23.23	0.672	223.90	10.390	17.40	0.3025	0.3708
ResShift-15s (Yue et al., 2024b)	23.55	0.308	168.82	6.8026	49.95	<u>0.5921</u>	0.5906
SinSR-1s (Wang et al., 2024c)	23.19	<u>0.302</u>	157.10	6.1700	50.30	0.5789	0.5995
Ours-1s	22.51	0.311	154.34	6.0084	54.90	<u>0.6051</u>	0.6040
Ours distilled-1s ($t = 1$)	22.24	0.292	151.34	<u>5.4043</u>	51.16	0.5892	0.6066
Ours distilled-1s ($t = 0.5$)	22.85	0.306	201.77	8.9631	40.46	0.4905	0.4176
Ours distilled-1s ($t = 0$)	23.95	0.486	235.44	10.3695	35.04	0.3610	0.2886
RealSR	PSNR (↑)	LPIPS (↓)	FID (↓)	NIQE (↓)	MUSIQ (↑)	MANIQA (↑)	CLIPPIQA (↑)
ResShift-15s (Yue et al., 2024b)	26.26	0.347	142.57	7.1780	58.47	0.5343	0.5481
SinSR-1s (Wang et al., 2024c)	26.27	0.321	137.59	6.2773	60.84	0.5418	0.6224
Ours-1s	25.41	0.297	145.34	4.9089	65.48	0.5705	0.5826
Ours distilled-1s ($t = 1$)	25.27	0.288	142.38	4.6337	65.30	0.5604	0.5891
Ours distilled-1s ($t = 0.5$)	26.76	0.311	175.11	6.9517	57.44	0.4879	0.4251
Ours distilled-1s ($t = 0$)	27.01	0.331	190.63	8.1201	53.09	0.4205	0.3129

Table 5: **Quantitative comparison on real world sets.** The best and second best results are in **bold** and underline.

Datasets	Method	NIQE ↓	MUSIQ ↑	MANIQA ↑	CLIPPIQA ↑	LIQE ↑
RealSet80	SwinIR	4.1601	63.72	0.5444	0.5919	3.6479
	NAFNet	8.8794	35.16	0.3975	0.5289	1.0969
	ResShift-15s	6.1955	61.35	0.5318	0.6702	3.4473
	SinSR-1s	5.6182	63.96	0.5376	0.7242	3.6072
RealLQ250	Ours-1s	4.3713	<u>66.90</u>	0.5617	0.6797	<u>3.9982</u>
	Ours distilled-1s ($t = 1$)	4.1826	67.46	<u>0.5570</u>	0.6904	4.0168
	SwinIR	4.1628	60.48	0.5104	0.5352	3.0883
RealLQ250	NAFNet	9.5524	25.97	0.3360	0.4095	1.0512
	ResShift-15s	6.5731	59.98	0.5003	0.6239	2.9340
	SinSR-1s	5.8200	63.73	0.5161	0.6990	3.2578
	Ours-1s	4.2848	<u>67.15</u>	0.5481	0.6520	3.8367
	Ours distilled-1s ($t = 1$)	4.0731	67.32	<u>0.5287</u>	0.6532	<u>3.7211</u>

dard deviation $\sigma_y = 0.05$. All images are normalized to the range of $[-1, 1]$. For experiments on FFHQ 256×256 and DIV2K, we adopt the same model architecture used for FFHQ in (Chung et al., 2022); and for experiment on ImageNet 256×256, we use the same model architecture as the pre-trained unconditional model used in (Dhariwal & Nichol, 2021). We modify the input convolution layer to accept concatenated image input. The first stage models are trained from scratch and are sampled with RK45 sampler by default. The one-step model is initialized from the teacher model for distillation. We use the Adam optimizer with a linear warmup schedule over 1k training steps, followed by a learning rate of $1e - 4$ for both stages.

4.2 RESULTS

Quantitative Results. We present comprehensive quantitative evaluations on several benchmark datasets: DIV2K, FFHQ, ImageNet and real world test set and different tasks (including noiseless SR, noisy SR and real world SR) (Tabs. 1 to 6). Our analysis reveals several findings: (i) The first-stage OFTSR achieves superior performance in perceptual metrics (FID and LPIPS) while requiring fewer than 32 NFEs. (ii) Our distillation algorithm is versatile, when applied to ResShift (Yue et al., 2024b) teacher, our distilled model achieved better one-step performance than SinSR (Wang et al., 2024c) (see Tab. 9). (iii) Our distilled version of OFTSR demonstrates remarkable versatility, achieving either the highest PSNR scores or ranking among the top two methods for FID and LPIPS metrics in one step. This indicates

432 **Table 6: Quantitative comparison of state-of-the-art one-step SR methods on synthetic (DIV2K-Val)**
 433 and real-world (RealLQ250) benchmarks. Best results are in **bold**, second best are underlined. Our
 434 method is tested under $t = 1$. ResShift* means we train our noise-augmented conditional flow in
 435 Sec. 3.1 using the ResShift model architecture then distillation; and DiT4SR means we use the pre-
 436 trained DiT4SR model as the teacher model for distillation.

Dataset	Metric	SimSR-1s	CTMSR-1s	AddSR-1s	OSEDiff-1s	TSDSR-1s	Ours (ResShift*)-1s	Ours (DiT4SR)-1s
DIV2K-Val	PSNR \uparrow	24.50	24.87	22.39	23.86	22.17	23.91	22.80
	SSIM \uparrow	0.6136	0.6349	0.5652	<u>0.6233</u>	0.5680	0.6073	0.5774
	LPIPS \downarrow	0.3164	0.3011	0.3728	0.2896	0.2679	0.3226	<u>0.2716</u>
	DISTS \downarrow	0.2110	0.2102	0.2387	0.1999	0.1901	0.2081	0.1889
	FID \downarrow	131.96	126.49	133.78	100.53	<u>103.49</u>	133.30	98.27
	NIQE \downarrow	6.1721	5.3036	5.9929	4.9741	4.6621	4.9061	<u>4.8399</u>
	MUSIQ \uparrow	64.26	66.59	63.39	68.53	71.19	68.71	<u>70.25</u>
	MANIQA \uparrow	0.5442	0.5146	0.5657	<u>0.6111</u>	0.6010	0.5464	0.6145
	CLIPQA \uparrow	0.6687	0.6602	0.5734	0.6692	<u>0.7221</u>	0.6545	0.7233
RealLQ250	NIQE \downarrow	5.8200	4.5835	4.9235	3.9656	3.4868	4.0731	<u>3.7802</u>
	MUSIQ \uparrow	63.73	68.00	66.82	69.55	<u>72.09</u>	67.32	72.60
	MANIQA \uparrow	0.5161	0.5078	0.5304	0.5782	0.5829	0.5287	0.5904
	CLIPQA \uparrow	0.6990	0.6706	0.6437	0.6725	<u>0.7221</u>	0.6532	0.7252
	LIQE \uparrow	3.2578	3.3373	3.4929	3.9039	<u>4.0834</u>	3.7211	4.1122

448
 449 minimal performance degradation between the teacher and student models. (iv) Our experiments
 450 suggest that FID serves as a more reliable indicator of perceptual quality and better captures the
 451 performance gap between teacher and student models during distillation. (v) When applied to a
 452 powerful SD-based SR model (DiT4SR), our distillation algorithm produces a one-step generator
 453 whose performance is competitive with other leading SOTA distillation methods. This also validate
 454 the versatility of our distillation algorithm.

455 **Visual Results.** Our experimental results demonstrate that OFTSR achieves high-quality image
 456 reconstructions. We evaluate OFTSR against leading training-free methods for $4\times$ SR, as shown in
 457 Fig. 4. While DPS can produce sharp reconstructions, it requires 1000 NFEs and often introduces
 458 significant distortions. In contrast, OFTSR successfully preserves structural information from low-
 459 resolution inputs while reconstructing fine details. Notably, our distilled version of OFTSR requires
 460 only one NFE, as other training-free methods suffer from severe error accumulation when using less
 461 than 10 NFEs. As illustrated in Fig. 5, we also compare OFTSR against state-of-the-art SR methods
 462 that require training. The results show that our approach generates patterns with rich, natural details.
 463 Furthermore, our distilled model enables flexible control over the fidelity-realism trade-offs in the
 464 generated high-resolution images. Fig. 3 demonstrates this capability through examples of noisy $4\times$
 465 SR with varying degrees of realism and fidelity. **More qualitative comparison and visual examples**
 466 **can be found in Sec. K**

4.3 ABLATIONS

470 **Perturbation Strength σ_p .** In Tab. 7, we evaluate the design choices in the simple conditional
 471 flow training stage. All experiments in this ablation study are conducted under identical training
 472 conditions, with performance metrics measured using the RK45 solver. The most critical hyper-
 473 parameter in this ablation is the strength of the perturbation σ_p . Consistent with previous works, we
 474 confirm that perturbation is essential for generating perceptually compelling images from LR inputs.
 475 Notably, we discover that increasing perturbation strength does not necessarily improve perceptual
 476 quality but instead leads to more curved PF-ODE, requiring additional NFEs to solve (see Tab. 7).
 477 Furthermore, our experiments demonstrate that conditioning on \mathbf{x}_{LR} is crucial to compensate for
 478 information loss during perturbation. We also find that ℓ_1 loss outperforms ℓ_2 loss for our specific
 479 task. While (Kim et al., 2024) previously highlighted the significance of Gaussian perturbation,
 480 our work is the first to systematically analyze the relationship between noise perturbation and the
 481 trade-off between generation quality and efficiency in flow-based models.

482 **Distillation Design Space.** In Tab. 8, we evaluate several crucial design choices for the distillation
 483 stage, including the distillation loss type, solver type, dt value, and the weighting of alignment and
 484 boundary losses. Since learning $\mathbf{v}_\phi(\mathbf{x}_{0,LR}, 0)$ is considerably easier than learning $\mathbf{v}_\phi(\mathbf{x}_{0,LR}, 1)$, we
 485 utilize metrics from the latter to decide our distillation hyperparameters. Our analysis of the step size
 dt reveals that smaller values do not necessarily yield better results, leading us to select $dt = 0.05$

486
 487 Table 7: Ablation on noiseless FFHQ 256×256
 488 first stage. The default training setting is $bs = 32$;
 489 $lr = 0.0001$; loss type = ℓ_1 ; with condition;
 490 all experiments are trained for 100k steps. The
 491 final choice is highlighted to balance the performance and efficiency.

Strength of Perturbation σ_p	NFEs (\downarrow)	PSNR (\uparrow)	LPIPS (\downarrow)	FID (\downarrow)
0.	20	29.04	0.244	110.29
0.001	20	29.56	0.115	48.39
0.01	20	29.56	0.066	34.70
0.1	20	28.83	0.053	30.54
0.2	27	28.84	0.053	30.77
0.3	32	28.88	0.053	31.02
0.5	32	28.86	0.053	30.22
0.8	44	28.84	0.054	31.02
1.	44	28.82	0.053	30.75
0.1 (no cond)	20	28.09	0.073	42.47
0.1 (ℓ_2)	20	28.60	0.055	31.86

501
 502 Table 8: Ablation on noiseless FFHQ 256×256 distillation stage. The default training setting is $bs = 8$;
 503 $\sigma_p = 0.1$, $lr = 0.0001$; loss type = ℓ_2 ; with LR condition;
 504 all experiments are trained for 20k steps; And the one-step metrics are calculated with $t = 1$. Ablations in
 505 subgroups can be ordered as $dt \rightarrow \lambda_{BC} \rightarrow \lambda_{align} \rightarrow$

506 Solver , and $dt \rightarrow$ Distillation Loss .

Distillation Loss	Solver	dt	λ_{align}	λ_{BC}	PSNR (\uparrow)	LPIPS (\downarrow)
Ours	Euler	0.001	0	0	28.77	0.160
Ours	Euler	0.01	0	0	29.35	0.076
Ours	Euler	0.02	0	0	29.48	0.068
Ours	Euler	0.05	0	0	29.73	0.065
Ours	Euler	0.1	0	0	30.05	0.073
BOOT (Gu et al., 2023)	Euler	0.05	0	0	23.81	0.483
PINN (Tee et al., 2024)	Euler	0.05	0	0	27.92	0.250
Ours	Euler	0.05	0	0.1	29.73	0.064
Ours	Euler	0.05	0.01	0.1	29.69	0.063
Ours	Heun	0.05	0.01	0.1	29.21	0.057
Ours	Ralston	0.05	0.01	0.1	29.15	0.056
Ours	Midpoint	0.05	0.01	0.1	29.14	0.056
Ours (bs=32)	Midpoint	0.05	0.01	0.1	29.07	0.055

507 for subsequent experiments. Our proposed loss function demonstrates substantial improvement over
 508 both the original BOOT (Gu et al., 2023) loss and PINN (Tee et al., 2024) distillation loss, achieving
 509 a significant LPIPS score improvement of more than 0.1. Further experimentation shows that both
 510 the alignment loss (Eq. (10)) and boundary loss (Eq. (11)) contribute to enhanced performance. By
 511 combining these losses with a Midpoint 2-order solver, we achieve additional improvements in our
 512 one-step model’s performance at $t = 1$.
 513

514 4.4 COMPUTATIONAL OVERHEAD

515 **Training Cost Comparison.** Our distillation algorithm is highly flexible and can be easily applied
 516 to any pre-trained diffusion/flow-based conditional model. As shown in Tab. 9, we applied our
 517 distillation algorithm to the ResShift(Yue et al., 2024b) pre-trained model and achieved teacher-
 518 level performance in one step, surpassing SinSR(Wang et al., 2024c) in FID with much less training
 519 compute. Even taking the training stage into account with a larger model, our method remains more
 520 efficient than ResShift. **We use $t = 1$ for OFTSR.**

521 Table 9: Comparison of training cost on single NVIDIA A100.

Method	[NFE(\downarrow)]	# Iterations	s/Iter	Training Time	PSNR (\uparrow)	LPIPS (\downarrow)	FID (\downarrow)
DDC (Chen et al., 2024) (base model frozen) [5]		160k	0.89	~ 1.65 days	24.67	0.156	62.06
ResShift (Yue et al., 2024b) (teacher) [4]		500k	1.32	~ 7.64 days	23.68	0.207	60.75
SinSR (Wang et al., 2024c) (ResShift teacher) [1]		30k	7.41	~ 2.57 days	22.25	0.207	94.90
OFTSR (ResShift teacher) [1]		5k	6.72	~ 0.39 days	24.01	0.218	60.64
OFTSR (pre-train+distill) [1]		100k + 50k	3.9/4.4	$\sim 4.51 + 2.54$ days	24.20	0.135	52.69

522
 523 **Inference Cost Comparison.** We have included a detailed comparison of the inference cost in
 524 Tab. 10, using FLOPS and MAC to measure model complexity. **We use $t = 1$ for OFTSR.**

525 Table 10: Comparison of inference cost on single NVIDIA A100.

Method	[NFE(\downarrow)]	# Params (+VAE)	FID (\downarrow)	MACs (+VAE) (\downarrow)	FLOPs (+VAE) (\downarrow)	Runtime (\downarrow)
DDNM (Wang et al., 2022b) [100]	552.8M		84.98	1.11T	2.24T	7.00s
DDC (Chen et al., 2024) [5]	552.8+113.7M		62.06	1.11+0.24T	2.24+0.49T	0.74s
ResShift (Yue et al., 2024b) [4]	118.6+55.3M		60.75	50.1+473.5G	100.4+948.5G	0.27s
SinSR (Wang et al., 2024c) [1]	118.6+55.3M		94.90	50.1+473.5G	100.4+948.5G	0.09s
OFTSR (ResShift teacher) [1]	118.6+55.3M		60.64	50.1+473.5G	100.4+948.5G	0.09s
OFTSR (pre-train+distill) [1]	552.8M		52.69	1.11T	2.24T	0.21s

533 5 CONCLUSION

534 In this paper, we introduced OFTSR, a novel approach to developing efficient one-step image super-
 535 resolution models. Our extensive experiments on FFHQ, DIV2K, ImageNet and real world SR
 536 datasets demonstrate that our method significantly improves computational efficiency while main-
 537 taining high-quality image restoration capabilities. The proposed framework represents a promising
 538 direction in efficient image SR, effectively addressing the perception-distortion trade-off.

540 REFERENCES

541 Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge on single image super-resolution: Dataset and
 542 study. In *Proceedings of the IEEE conference on computer vision and pattern recognition workshops*, pp.
 543 126–135, 2017.

544

545 Yuang Ai, Xiaoqiang Zhou, Huaibo Huang, Xiaotian Han, Zhengyu Chen, Quanzeng You, and Hongxia Yang.
 546 Dreamclear: High-capacity real-world image restoration with privacy-safe dataset curation. In *NeurIPS*,
 547 2025.

548 Ismail Alkhouri, Shijun Liang, Cheng-Han Huang, Jimmy Dai, Qing Qu, Saiprasad Ravishankar, and Ron-
 549 grong Wang. Sitcom: Step-wise triple-consistent diffusion sampling for inverse problems. *arXiv preprint*
 550 *arXiv:2410.04479*, 2024.

551 Yochai Blau and Tomer Michaeli. The perception-distortion tradeoff. In *Proceedings of the IEEE conference*
 552 *on computer vision and pattern recognition*, pp. 6228–6237, 2018.

553 Nicholas M Boffi, Michael S Albergo, and Eric Vanden-Eijnden. How to build a consistency model: Learning
 554 flow maps via self-distillation. *arXiv preprint arXiv:2505.18825*, 2025.

555

556 Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image editing
 557 instructions. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 558 18392–18402, 2023.

559 Jianrui Cai, Hui Zeng, Hongwei Yong, Zisheng Cao, and Lei Zhang. Toward real-world single image super-
 560 resolution: A new benchmark and a new model. In *Proceedings of the IEEE/CVF international conference*
 561 *on computer vision*, pp. 3086–3095, 2019.

562 Hanyu Chen, Zhixiu Hao, and Liying Xiao. Deep data consistency: a fast and robust diffusion model-based
 563 solver for inverse problems. *arXiv preprint arXiv:2405.10748*, 2024.

564 Liangyu Chen, Xiaojie Chu, Xiangyu Zhang, and Jian Sun. Simple baselines for image restoration. In *European*
 565 *conference on computer vision*, pp. 17–33. Springer, 2022.

566

567 Zheng Chen, Yulun Zhang, Jinjin Gu, Xin Yuan, Linghe Kong, Guihai Chen, and Xiaokang Yang. Image
 568 super-resolution with text prompt diffusion. *arXiv preprint arXiv:2311.14282*, 2023.

569 Jooyoung Choi, Jungbeom Lee, Chaehun Shin, Sungwon Kim, Hyunwoo Kim, and Sungroh Yoon. Perception
 570 prioritized training of diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 571 *and Pattern Recognition*, pp. 11472–11481, 2022.

572 Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L Klasky, and Jong Chul Ye. Diffusion posterior
 573 sampling for general noisy inverse problems. *arXiv preprint arXiv:2209.14687*, 2022.

574

575 Hyungjin Chung, Jeongsol Kim, and Jong Chul Ye. Direct diffusion bridge using data consistency for inverse
 576 problems. *Advances in Neural Information Processing Systems*, 36, 2024.

577

578 Mauricio Delbracio and Peyman Milanfar. Inversion by direct iteration: An alternative to denoising diffusion
 579 for image restoration. *arXiv preprint arXiv:2303.11435*, 2023.

580

581 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
 582 image database. In *2009 IEEE conference on computer vision and pattern recognition*, pp. 248–255. Ieee,
 583 2009.

584

585 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances in Neural*
 586 *Information Processing Systems*, 34:8780–8794, 2021.

587

588 Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. *arXiv preprint*
 589 *arXiv:1605.08803*, 2016.

590

591 Linwei Dong, Qingnan Fan, Yihong Guo, Zhonghao Wang, Qi Zhang, Jinwei Chen, Yawei Luo, and Changqing
 592 Zou. Tsd-sr: One-step diffusion with target score distillation for real-world image super-resolution. In *CVPR*,
 593 2025.

594

595 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi, Do-
 596 minik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for high-resolution
 597 image synthesis. In *Forty-first International Conference on Machine Learning*, 2024.

598

599 Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows for one-step
 600 generative modeling. *arXiv preprint arXiv:2505.13447*, 2025.

594 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
 595 Courville, and Yoshua Bengio. Generative adversarial networks. *Communications of the ACM*, 63(11):
 596 139–144, 2020.

597 Hayit Greenspan. Super-resolution in medical imaging. *The computer journal*, 52(1):43–63, 2009.

598

599 Jiatao Gu, Shuangfei Zhai, Yizhe Zhang, Lingjie Liu, and Joshua M Susskind. Boot: Data-free distillation
 600 of denoising diffusion models with bootstrapping. In *ICML 2023 Workshop on Structured Probabilistic
 601 Inference {\&} Generative Modeling*, 2023.

602 Shuhang Gu, Andreas Lugmayr, Martin Danelljan, Manuel Fritzsche, Julien Lamour, and Radu Timofte. Div8k:
 603 Diverse 8k resolution image dataset. 2019.

604 Nikita Gushchin, David Li, Daniil Selikhanovych, Evgeny Burnaev, Dmitry Baranchuk, and Alexander Korotin.
 605 Inverse bridge matching distillation. *arXiv preprint arXiv:2502.01362*, 2025.

606

607 Guande He, Kaiwen Zheng, Jianfei Chen, Fan Bao, and Jun Zhu. Consistency diffusion bridge models. *Ad-
 608 vances in Neural Information Processing Systems*, 37:23516–23548, 2024.

609 Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Prompt-to-prompt
 610 image editing with cross attention control. *arXiv preprint arXiv:2208.01626*, 2022.

611 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in Neural
 612 Information Processing Systems*, 33:6840–6851, 2020.

613

614 Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score matching. *Journal
 615 of Machine Learning Research*, 6(4), 2005.

616 Dipali Joshi, Amit Jana, Harsh Lone, Vijay Taru, and Siddharth Thorat. Image and video upscaling using real-
 617 esrgan. *Journal Publication of International Research for Engineering and Management (JOIREM)*, 5(04),
 618 2025.

619 Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial
 620 networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 621 4401–4410, 2019.

622 Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration models. *arXiv
 623 preprint arXiv:2201.11793*, 2022.

624

625 Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel, Inbar Mosseri, and Michal Irani.
 626 Imagic: Text-based real image editing with diffusion models. In *Proceedings of the IEEE/CVF Conference
 627 on Computer Vision and Pattern Recognition*, pp. 6007–6017, 2023.

628 Junjie Ke, Qifei Wang, Yilin Wang, Peyman Milanfar, and Feng Yang. Musiq: Multi-scale image quality
 629 transformer. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 5148–5157,
 630 2021.

631 Beomsu Kim, Jaemin Kim, Jeongsol Kim, and Jong Chul Ye. Generalized consistency trajectory models for
 632 image manipulation. *arXiv preprint arXiv:2403.12510*, 2024.

633 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint arXiv:1312.6114*, 2013.

634

635 Sojin Lee, Dogyun Park, Inho Kong, and Hyunwoo J Kim. Diffusion prior-based amortized variational infer-
 636 ence for noisy inverse problems. *arXiv preprint arXiv:2407.16125*, 2024.

637 Jianze Li, Jiezhang Cao, Zichen Zou, Xiongfei Su, Xin Yuan, Yulun Zhang, Yong Guo, and Xiaokang Yang.
 638 Distillation-free one-step diffusion for real-world image super-resolution. *arXiv preprint arXiv:2410.04224*,
 639 2024.

640 Xin Li, Yulin Ren, Xin Jin, Cuiling Lan, Xingrui Wang, Wenjun Zeng, Xinchao Wang, and Zhibo
 641 Chen. Diffusion models for image restoration and enhancement—a comprehensive survey. *arXiv preprint
 642 arXiv:2308.09388*, 2023a.

643 Yawei Li, Kai Zhang, Jingyun Liang, Jiezhang Cao, Ce Liu, Rui Gong, Yulun Zhang, Hao Tang, Yun Liu,
 644 Denis Demanolx, et al. Lsdir: A large scale dataset for image restoration. In *Proceedings of the IEEE/CVF
 645 Conference on Computer Vision and Pattern Recognition*, pp. 1775–1787, 2023b.

646 Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. Swinir: Image
 647 restoration using swin transformer. In *Proceedings of the IEEE/CVF International Conference on Computer
 Vision*, pp. 1833–1844, 2021.

648 Xinqi Lin, Jingwen He, Ziyuan Chen, Zhaoyang Lyu, Bo Dai, Fanghua Yu, Wanli Ouyang, Yu Qiao, and
 649 Chao Dong. Diffbir: Towards blind image restoration with generative diffusion prior. *arXiv preprint*
 650 *arXiv:2308.15070*, 2023.

651 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching for genera-
 652 tive modeling. *arXiv preprint arXiv:2210.02747*, 2022.

653

654 Guan-Horng Liu, Arash Vahdat, De-An Huang, Evangelos A Theodorou, Weili Nie, and Anima Anandkumar.
 655 I 2 sb: Image-to-image schr\” odinger bridge. *arXiv preprint arXiv:2302.05872*, 2023a.

656 Jiawei Liu, Qiang Wang, Huijie Fan, Yinong Wang, Yandong Tang, and Liangqiong Qu. Residual denoising
 657 diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 658 pp. 2773–2783, 2024.

659 Qiang Liu. Rectified flow: A marginal preserving approach to optimal transport. *arXiv preprint*
 660 *arXiv:2209.14577*, 2022.

661

662 Qiang Liu. Icml tutorial on the blessing of flow. *International conference on machine learning*, 2025.

663

664 Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov, and Carl Vondrick. Zero-
 665 1-to-3: Zero-shot one image to 3d object. In *Proceedings of the IEEE/CVF International Conference on*
 666 *Computer Vision*, pp. 9298–9309, 2023b.

667 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and transfer data
 668 with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022.

669 Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for improved sampling
 670 speed. *arXiv preprint arXiv:2101.02388*, 2021.

671

672 Weijian Luo, Tianyang Hu, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and Zhihua Zhang. Diff-instruct:
 673 A universal approach for transferring knowledge from pre-trained diffusion models. *arXiv preprint*
 674 *arXiv:2305.18455*, 2023a.

675 Ziwei Luo, Fredrik K Gustafsson, Zheng Zhao, Jens Sjölund, and Thomas B Schön. Image restoration with
 676 mean-reverting stochastic differential equations. *arXiv preprint arXiv:2301.11699*, 2023b.

677 Morteza Mardani, Jiaming Song, Jan Kautz, and Arash Vahdat. A variational perspective on solving inverse
 678 problems with diffusion models. *arXiv preprint arXiv:2305.04391*, 2023.

679 Fabian Mentzer, George D Toderici, Michael Tschannen, and Eirikur Agustsson. High-fidelity generative image
 680 compression. *Advances in Neural Information Processing Systems*, 33:11913–11924, 2020.

681

682 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models. In *Inter-
 683 national Conference on Machine Learning*, pp. 8162–8171. PMLR, 2021.

684 Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu. On aliased resizing and surprising subtleties in gan eval-
 685 uation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 686 11410–11420, 2022.

687 Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d diffusion.
 688 *arXiv preprint arXiv:2209.14988*, 2022.

689

690 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-conditional
 691 image generation with clip latents. *arXiv preprint arXiv:2204.06125*, 2022.

692 Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with vq-vae-2.
 693 *Advances in neural information processing systems*, 32, 2019.

694

695 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
 696 image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer*
 697 *Vision and Pattern Recognition*, pp. 10684–10695, 2022.

698 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
 699 Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition challenge.
 700 *International journal of computer vision*, 115(3):211–252, 2015.

701 Amirmojtaba Sabour, Sanja Fidler, and Karsten Kreis. Align your flow: Scaling continuous-time flow map
 702 distillation. *arXiv preprint arXiv:2506.14603*, 2025.

702 Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad Norouzi. Image
 703 super-resolution via iterative refinement. *arXiv preprint arXiv:2104.07636*, 2021.

704 Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad Norouzi. Image
 705 super-resolution via iterative refinement. *IEEE transactions on pattern analysis and machine intelligence*,
 706 45(4):4713–4726, 2022.

707 Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. *arXiv preprint*
 708 *arXiv:2202.00512*, 2022.

710 Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion distillation. In
 711 *European Conference on Computer Vision*, pp. 87–103. Springer, 2025.

712 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning
 713 using nonequilibrium thermodynamics. In *International Conference on Machine Learning*, pp. 2256–2265.
 714 PMLR, 2015.

715 Jiaming Song, Arash Vahdat, Morteza Mardani, and Jan Kautz. Pseudoinverse-guided diffusion models for
 716 inverse problems. In *International Conference on Learning Representations*, 2023a.

718 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution. *Advances*
 719 *in Neural Information Processing Systems*, 32, 2019.

720 Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced score matching: A scalable approach to density
 721 and score estimation. In *Uncertainty in Artificial Intelligence*, pp. 574–584. PMLR, 2020a.

722 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 723 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint*
 724 *arXiv:2011.13456*, 2020b.

725 Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. *arXiv preprint*
 726 *arXiv:2303.01469*, 2023b.

728 Joshua Tian Jin Tee, Kang Zhang, Hee Suk Yoon, Dhananjaya Nagaraja Gowda, Chanwoo Kim, and Chang D
 729 Yoo. Physics informed distillation for diffusion models. *Transactions on Machine Learning Research*, 2024.

730 Radu Timofte, Eirikur Agustsson, Luc Van Gool, Ming-Hsuan Yang, and Lei Zhang. Ntire 2017 challenge on
 731 single image super-resolution: Methods and results. In *Proceedings of the IEEE conference on computer*
 732 *vision and pattern recognition workshops*, pp. 114–125, 2017.

733 Chen Wang, Jiatao Gu, Xiaoxiao Long, Yuan Liu, and Lingjie Liu. Geco: Generative image-to-3d within a
 734 second. *arXiv preprint arXiv:2405.20327*, 2024a.

736 Haochen Wang, Xiaodan Du, Jiahao Li, Raymond A Yeh, and Greg Shakhnarovich. Score jacobian chaining:
 737 Lifting pretrained 2d diffusion models for 3d generation. In *Proceedings of the IEEE/CVF Conference on*
 738 *Computer Vision and Pattern Recognition*, pp. 12619–12629, 2023a.

739 Jianyi Wang, Kelvin CK Chan, and Chen Change Loy. Exploring clip for assessing the look and feel of images.
 740 In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pp. 2555–2563, 2023b.

741 Jianyi Wang, Zongsheng Yue, Shangchen Zhou, Kelvin CK Chan, and Chen Change Loy. Exploiting diffusion
 742 prior for real-world image super-resolution. *International Journal of Computer Vision*, pp. 1–21, 2024b.

743 Peijuan Wang, Bulent Bayram, and Elif Sertel. A comprehensive review on deep learning based remote sensing
 744 image super-resolution methods. *Earth-Science Reviews*, 232:104110, 2022a.

746 Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao, and Chen Change Loy. Esrgan:
 747 Enhanced super-resolution generative adversarial networks. In *Proceedings of the European conference on*
 748 *computer vision (ECCV) workshops*, pp. 0–0, 2018.

749 Xintao Wang, Liangbin Xie, Chao Dong, and Ying Shan. Real-esrgan: Training real-world blind super-
 750 resolution with pure synthetic data. In *Proceedings of the IEEE/CVF international conference on computer*
 751 *vision*, pp. 1905–1914, 2021.

752 Yinhuai Wang, Jiwen Yu, and Jian Zhang. Zero-shot image restoration using denoising diffusion null-space
 753 model. *arXiv preprint arXiv:2212.00490*, 2022b.

754 Yuang Wang, Siyeop Yoon, Pengfei Jin, Matthew Tivnan, Sifan Song, Zhennong Chen, Rui Hu, Li Zhang,
 755 Quanzheng Li, Zhiqiang Chen, et al. Implicit image-to-image schrödinger bridge for image restoration.
Pattern Recognition, 165:111627, 2025.

756 Yufei Wang, Wenhan Yang, Xinyuan Chen, Yaohui Wang, Lanqing Guo, Lap-Pui Chau, Ziwei Liu, Yu Qiao,
 757 Alex C Kot, and Bihan Wen. Sinsr: diffusion-based image super-resolution in a single step. In *Proceedings*
 758 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 25796–25805, 2024c.

759 Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Prolificdreamer: High-
 760 fidelity and diverse text-to-3d generation with variational score distillation. *Advances in Neural Information*
 761 *Processing Systems*, 36, 2024d.

762 Lemeng Wu, Chengyue Gong, Xingchao Liu, Mao Ye, and Qiang Liu. Diffusion-based molecule generation
 763 with informative prior bridges. *Advances in Neural Information Processing Systems*, 35:36533–36545, 2022.

764 Rongyuan Wu, Lingchen Sun, Zhiyuan Ma, and Lei Zhang. One-step effective diffusion network for real-world
 765 image super-resolution. *arXiv preprint arXiv:2406.08177*, 2024.

766 Rui Xie, Ying Tai, Chen Zhao, Kai Zhang, Zhenyu Zhang, Jun Zhou, Xiaoqian Ye, Qian Wang, and Jian Yang.
 767 Addsr: Accelerating diffusion-based blind super-resolution with adversarial diffusion distillation. *arXiv*
 768 *preprint arXiv:2404.01717*, 2024.

769 Hanshu Yan, Xingchao Liu, Jiachun Pan, Jun Hao Liew, Qiang Liu, and Jiashi Feng. Perflow: Piecewise
 770 rectified flow as universal plug-and-play accelerator. *arXiv preprint arXiv:2405.07510*, 2024.

771 Sidi Yang, Tianhe Wu, Shuwei Shi, Shanshan Lao, Yuan Gong, Mingdeng Cao, Jiahao Wang, and Yujiu Yang.
 772 Maniqa: Multi-dimension attention network for no-reference image quality assessment. In *Proceedings of*
 773 *the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 1191–1200, 2022.

774 Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Fredo Durand, and William T
 775 Freeman. Improved distribution matching distillation for fast image synthesis. *arXiv preprint*
 776 *arXiv:2405.14867*, 2024a.

777 Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman, and Taesung
 778 Park. One-step diffusion with distribution matching distillation. In *Proceedings of the IEEE/CVF Conference*
 779 *on Computer Vision and Pattern Recognition*, pp. 6613–6623, 2024b.

780 Weiyi You, Mingyang Zhang, Leheng Zhang, Xingyu Zhou, Kexuan Shi, and Shuhang Gu. Consistency trajec-
 781 tory matching for one-step generative super-resolution. *arXiv preprint arXiv:2503.20349*, 2025.

782 Fanghua Yu, Jinjin Gu, Zheyuan Li, Jinfan Hu, Xiangtao Kong, Xintao Wang, Jingwen He, Yu Qiao, and Chao
 783 Dong. Scaling up to excellence: Practicing model scaling for photo-realistic image restoration in the wild. In
 784 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 25669–25680,
 785 2024.

786 Conghan Yue, Zhengwei Peng, Junlong Ma, Shiyan Du, Pengxu Wei, and Dongyu Zhang. Image restoration
 787 through generalized ornstein-uhlenbeck bridge. *arXiv preprint arXiv:2312.10299*, 2023.

788 Conghan Yue, Zhengwei Peng, Junlong Ma, and Dongyu Zhang. Enhanced control for diffusion bridge in
 789 image restoration. *arXiv preprint arXiv:2408.16303*, 2024a.

790 Zongsheng Yue, Jianyi Wang, and Chen Change Loy. Resshift: Efficient diffusion model for image super-
 791 resolution by residual shifting. *Advances in Neural Information Processing Systems*, 36, 2024b.

792 Lin Zhang, Lei Zhang, and Alan C Bovik. A feature-enriched completely blind image quality evaluator. *IEEE*
 793 *Transactions on Image Processing*, 24(8):2579–2591, 2015.

794 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness
 795 of deep features as a perceptual metric. In *Proceedings of the IEEE conference on computer vision and*
 796 *pattern recognition*, pp. 586–595, 2018.

797 Yuanzhi Zhu, Kai Zhang, Jingyun Liang, Jiezhang Cao, Bihan Wen, Radu Timofte, and Luc Van Gool. De-
 798 noising diffusion models for plug-and-play image restoration. In *Proceedings of the IEEE/CVF Conference*
 799 *on Computer Vision and Pattern Recognition*, pp. 1219–1229, 2023.

800

801

802

803

804

805

806

807

808

809

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 Appendix for OFTSR

A USE OF LARGE LANGUAGE MODELS

We used large language models solely for text polishing and grammar correction during manuscript preparation. No LLMs were involved in the conception or design of the method, experiments, or analysis. All technical content, results, and conclusions have been independently verified and validated by the authors.

B RELEVANT DERIVATIONS TO OUR DISTILLATION LOSS

B.1 CONTINUOUS VERSION OF THE FINAL LOSS

We provide detailed derivation to our distillation loss used in the paper. By substitute intermediate results \mathbf{x}_s and \mathbf{x}_t from student model Eq. (7) into the ODE induced by teacher model Eq. (8), we have:

$$\begin{aligned} \mathbf{x}_0 + s\mathbf{v}_\phi(\mathbf{x}_{0,LR}, s) &= \mathbf{x}_0 + t\mathbf{v}_\phi(\mathbf{x}_{0,LR}, t) + (s-t)\mathbf{v}_\theta(\mathbf{x}_{t,LR}, t) \\ \implies s(\mathbf{v}_\phi(\mathbf{x}_{0,LR}, s) - \mathbf{v}_\phi(\mathbf{x}_{0,LR}, t)) &= (t-s)\mathbf{v}_\phi(\mathbf{x}_{0,LR}, t) + (s-t)\mathbf{v}_\theta(\mathbf{x}_{t,LR}, t) \\ &= dt(\mathbf{v}_\theta(\mathbf{x}_{t,LR}, t) - \mathbf{v}_\phi(\mathbf{x}_{0,LR}, t)). \end{aligned} \quad (14)$$

Start from this constraint that applies to the student model, we can construct distillation loss in different forms. (i) In the same spirit as BOOT (Gu et al., 2023), we make only $\mathbf{v}_\phi(\mathbf{x}_{0,LR}, s)$ and this will lead to loss Eq. (12). (ii) If we only detach the teacher output, we will end up with loss similar to PINN based distillation PID proposed in (Tee et al., 2024):

$$\mathcal{L}_{\text{PINN}}(\phi) := \mathbb{E}_{\mathbf{x}_1 \sim p_1, t \sim \mathcal{U}[0,1]} \left[\left\| \left[\frac{s}{dt} \left(\mathbf{v}_\phi(\mathbf{x}_{0,LR}, s) - \mathbf{v}_\phi(\mathbf{x}_{0,LR}, t) \right) + \mathbf{v}_\phi(\mathbf{x}_{0,LR}, t) \right] - \text{SG}[\mathbf{v}_\theta(\mathbf{x}_{t,LR}, t)] \right\|_2^2 \right]. \quad (15)$$

Both Eqs. (12) and (15) are loss variants from Eq. (8), and we did not try other variant given the already-good performance of Eq. (12).

In addition, by considering the intermediate interpolation $\mathbf{x}_t = (1-t)\mathbf{x}_0 + t\mathbf{x}_1$ as a special case of $\mathbf{x}_t = \sigma_t \mathbf{x}_0 + \alpha_t \mathbf{x}_1$ in BOOT (Gu et al., 2023), we can derive the following distillation loss:

$$\mathcal{L}_{\text{BOOT}}(\phi) := \mathbb{E}_{\mathbf{x}_1 \sim p_1, t \sim \mathcal{U}[0,1]} \left[\frac{1}{\lambda^2} \left\| \mathbf{x}_\phi(\mathbf{x}_{0,LR}, s) - \text{SG}[\mathbf{x}_\phi(\mathbf{x}_{0,LR}, t) + \lambda(\mathbf{x}_\theta(\mathbf{x}_{t,LR}, t) - \mathbf{x}_\phi(\mathbf{x}_{0,LR}, t))] \right\|_2^2 \right], \quad (16)$$

where $\lambda = 1 - \frac{t(1-s)}{s(1-t)}$, $\mathbf{x}_\phi(\mathbf{x}_{0,LR}, t) = \mathbf{x}_0 + \mathbf{v}_\phi(\mathbf{x}_{0,LR}, t)$, $\mathbf{x}_\phi(\mathbf{x}_{0,LR}, s) = \mathbf{x}_0 + \mathbf{v}_\phi(\mathbf{x}_{0,LR}, s)$, and $\mathbf{x}_\theta(\mathbf{x}_{t,LR}, t) = \mathbf{x}_t + (1-t)\mathbf{v}_\theta(\mathbf{x}_{t,LR}, t)$ with $\mathbf{x}_t = \mathbf{x}_0 + t\mathbf{v}_\phi(\mathbf{x}_{0,LR}, t)$. We compared our proposed loss Eq. (12) with its variant Eq. (15) and Eq. (16) in Tab. 8 and our ablation shows that Eq. (12) works best for SR task.

B.2 OFTSR AS FORWARD DISTILLATION

The general form of our OFTSR loss or BOOT (Gu et al., 2023) loss can be seen as a special case of forward distillation (Boffi et al., 2025; Sabour et al., 2025; Liu, 2025). Start from general relation:

$$\mathbf{x}_t + (s-t)\mathbf{v}_\phi(\mathbf{x}_t, t, s) = \mathbf{x}_s. \quad (17)$$

where $\mathbf{v}_\phi(\mathbf{x}_t, t, s)$ is the mean velocity defined on the time interval $[t, s]$ as defined in MeanFlow (Geng et al., 2025).

The MeanFlow loss can be derived directly by taking derivative w.r.t. t of Eq. (17), which is also named as backward distillation loss. Similarly, when taking derivative w.r.t. s , the end timestep of the interval, of Eq. (17), we get the forward distillation loss.

For our OFTSR loss, if we consider mapping from arbitrary start timestep t to two close end timestep s_1 and s_2 , and connecting the corresponding two state \mathbf{x}_{s_1} and \mathbf{x}_{s_2} , we have:

$$\begin{aligned} \mathbf{x}_t + (s_2-t)\mathbf{v}_\phi(\mathbf{x}_t, t, s_2) &= \mathbf{x}_t + (s_1-t)\mathbf{v}_\phi(\mathbf{x}_t, t, s_1) + (s_2-s_1)\mathbf{v}_\theta(\mathbf{x}_{s_1}, s_1) \\ \implies (s_2-t)(\mathbf{v}_\phi(\mathbf{x}_t, t, s_2) - \mathbf{v}_\phi(\mathbf{x}_t, t, s_1)) &= (s_2-s_1)(\mathbf{v}_\theta(\mathbf{x}_{s_1}, s_1) - \mathbf{v}_\phi(\mathbf{x}_t, t, s_1)). \end{aligned} \quad (18)$$

864 **Algorithm 1** OFTSR Distillation

865 **Require:** teacher flow \mathbf{v}_θ , dataset \mathcal{D}_{HR} , σ_n , σ_p , dt , $w(t)$

866 1: Initialize the one-step student \mathbf{v}_ϕ with the weights of \mathbf{v}_θ

867 2: **repeat**

868 3: Randomly sample $\mathbf{x}_1 \sim \mathcal{D}_{\text{HR}}$; $t \sim \mathcal{U}[0, 1]$

869 4: Randomly sample $\mathbf{n} \sim \mathcal{N}(\mathbf{0}, \sigma_n \mathbf{I})$; $\mathbf{n}_p \sim \mathcal{N}(\mathbf{0}, \sigma_p \mathbf{I})$

870 5: Compute $\mathbf{x}_{\text{LR}} = \mathcal{H}^T(\mathcal{H}(\mathbf{x}_1) + \mathbf{n})$ // LR condition

871 6: Compute $\mathbf{x}_0 = \sqrt{1 - \sigma_p^2} \mathbf{x}_{\text{LR}} + \sigma_p \mathbf{n}_p$

872 7: Sample $t \in \mathcal{U}[0, 1]$ and $s = t + dt$

873 8: Generate velocities $\mathbf{v}_\phi(\mathbf{x}_{0,\text{LR}}, t)$ and $\mathbf{v}_\phi(\mathbf{x}_0, s)$

874 9: Calculate $\mathbf{x}_{t,\text{LR}} = \mathbf{x}_0 + t\mathbf{v}_\phi(\mathbf{x}_{0,\text{LR}}, t)$ and generate velocity $\mathbf{v}_\theta(\mathbf{x}_{t,\text{LR}}, t)$ by teacher model

875 10: Compute $\mathcal{L}_{\text{distill}}$ with Eq. (9) and $\mathcal{L}_{\text{align}}$ with Eq. (10)

876 11: Generate velocities $\mathbf{v}_\phi(\mathbf{x}_{0,\text{LR}}, 0)$ and $\mathbf{v}_\theta(\mathbf{x}_{0,\text{LR}}, 0)$ and compute \mathcal{L}_{BC} with Eq. (11)

877 12: Compute $\mathcal{L}(\phi) = \mathcal{L}_{\text{distill}}(\phi) + \lambda_{\text{align}} \mathcal{L}_{\text{align}}(\phi) + \lambda_{\text{BC}} \mathcal{L}_{\text{BC}}(\phi)$

878 13: Optimize ϕ with an gradient-based optimizer using $\nabla_\phi \mathcal{L}$

879 14: **until** $\mathcal{L}(\phi)$ converges

880 15: **Return** one-step flow \mathbf{v}_ϕ

881 For $s_2 - s_1 = ds$ and $\lim_{ds \rightarrow 0}$, we have $s_1 = s_2 = s$ and:

$$(s - t) \frac{d}{ds} \mathbf{v}_\phi(\mathbf{x}_t, t, s) = \mathbf{v}_\theta(\mathbf{x}_s, s) - \mathbf{v}_\phi(\mathbf{x}_t, t, s), \quad (19)$$

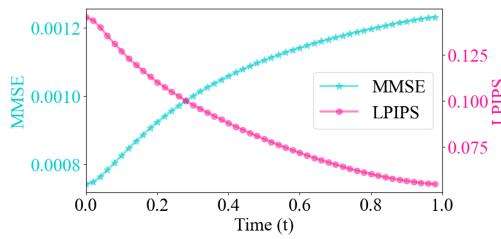
882 which recovers the forward distillation loss as the time derivative w.r.t. s of Eq. (17). Thus we can
883 view the OFTSR loss and BOOT (Gu et al., 2023) loss as a discretization of the forward distillation
884 loss.

885 C LIMITATIONS

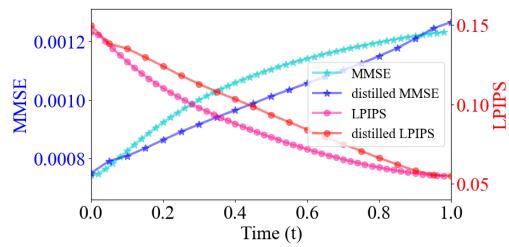
886 While our method advances one-step image super-resolution, limitations include performance con-
887 strained by teacher model capabilities. Future work will incorporate ground-truth supervision
888 through regression loss or adversarial training.

889 D DIFFUSION AND PERCEPTION-DISTORTION TRADE-OFF

890 In practice, we found that our distilled model is slightly off the perception-distortion frontier of the
891 teacher model, as displayed in Fig. 7. To be specific, the corresponding timestep t shifts a bit but
892 for the same MMSE value the first-stage model and distilled model have very close LPIPS value.
893 This might caused by the error from large step size dt used in practice and we leave this for future
894 investigation.



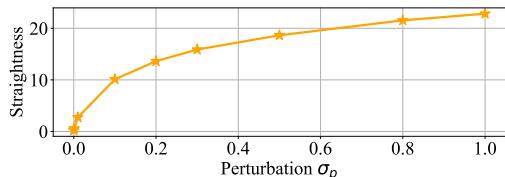
911 Figure 6: Metrics evaluation of estimated \mathbf{x}_1^t across
912 different timesteps t . During sampling, at each
913 timestep t , we estimate the final image \mathbf{x}_1^t using the
914 current model prediction $\mathbf{v}_\theta(\mathbf{x}_{t,\text{LR}}, t)$ and state \mathbf{x}_t via
915 $\mathbf{x}_1^t = \mathbf{x}_t + (1 - t)\mathbf{v}_\theta(\mathbf{x}_{t,\text{LR}}, t)$. Both MMSE and
916 LPIPS metrics are averaged over 100 sampling pro-
917 cesses. We present MMSE instead of PSNR for better
918 visual effect.



919 Figure 7: Metrics evaluation of estimated \mathbf{x}_1^t across
920 different timesteps t for both teacher model and dis-
921 tillated one-step model. The teacher model is the same
922 as the one in Fig. 6. We present MMSE instead of
923 PSNR for better visual effect.

918
919 Table 11: Ablation on FFHQ 256×256 first stage
920 with noisy SR; default: $bs = 32$; $lr = 0.0001$; ℓ_1
921 loss; with LR condition.

σ_p	NFEs (↓)	PSNR (↑)	LPIPS (↓)
0.	20	25.23	0.319
0.1	20	24.09	0.158
0.3	32	24.14	0.154
0.5	32	24.10	0.154
1.	44	24.22	0.153



922
923 Figure 8: Straightness of conditional flows with dif-
924 ferent perturbation strength σ_p .
925
926

927 E MORE EXPERIMENTAL DETAILS

928
929 The training of all networks across both stages is smoothed using Exponential Moving Average
930 (EMA) with a ratio of 0.9999. For FFHQ and ImageNet datasets, images are resized to 256 pixels
931 with center cropping, while DIV2K training employs random crops of 256×256 patches. Data
932 augmentation consists of horizontal flips with 50% probability and vertical flips with 6% probability
933 throughout all experiments. For FFHQ noiseless experiment, we use default perturbation std $\sigma_p = 0.1$;
934 for FFHQ noisy experiment, we use a higher perturbation std $\sigma_p = 0.5$ to cover the resized
935 noise from LR images, as suggested in Tab. 11; for both DIV2K and ImageNet we use $\sigma_p = 0.2$.
936 For training, we employed three widely-used datasets: the standard ImageNet training set (1.28M
937 images), the DIV2K training set (800 2K resolution images), and a subset of FFHQ consisting of
938 the first 60,000 images from the dataset. All models are trained until convergence or up to 300k
939 training iterations and we select the model based on best metrics. We train the model with uniform
940 loss weight on t . In the distillation stage, we sample the timestep t using $t \sim \mathcal{U}[t_{\min}, t_{\max}]$ with
941 $t_{\min} = 0.01$ and $t_{\max} = 0.99$ in practice.

942
943 For DIV2K evaluation, we first segment the large 2K resolution images into 256×256 patches for
944 model inference, then reconstruct the final image by combining the restored patches. To ensure fair
945 comparison, all generated SR images are stored in a dedicated separated folder with consistent file
946 names across all evaluated methods, followed by metric calculation against the HR folder using our
947 evaluation script. LPIPS scores are computed using the ‘alex’ model architecture. All experiments
948 are conducted using 4 NVIDIA H800 GPUs.

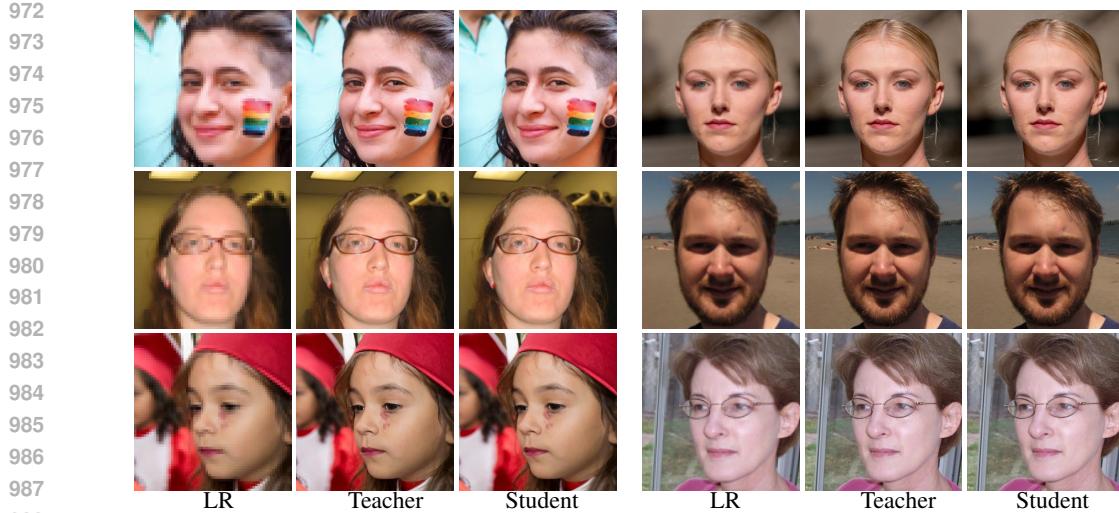
949
950 The straightness of the learned flow \mathbf{v} can be calculated with:

$$951 \quad S(\mathbf{v}) = \int_0^1 \mathbb{E} [\|\mathbf{v}(\mathbf{x}_t, t) - (\mathbf{x}_1 - \mathbf{x}_0)\|^2] dt, \quad (20)$$

952
953 We also measured the FID among 50k imangenet validation set and the result FID is 2.458 comparing
954 to 2.8 from I2SB.
955

956 F ADDITIONAL EXPERIMENTS

957
958 We evaluated our first-stage training on the FFHQ 256×256 dataset using $\sigma_p = 1$ without condition-
959 ing, effectively training an unconditional generative model for human faces. For this experiment,
960 we do not use any data augmentation. Our evaluation consists of generating 1k images from random
961 noise using the RK45 sampler (with a ODE tolerance of 1e-3) and comparing them against the full
962 training dataset of 70k images (we train our unconditional generative flow with the whole dataset).
963 Initial experiments with ℓ_1 loss yielded a FID score of 41.042 with an average of 56 NFEs, which
964 falls short of the previous state-of-the-art P2 model’s score of 28.139 (Choi et al., 2022). However,
965 switching to ℓ_2 loss for standard rectified flow training significantly improved performance, achiev-
966 ing a FID of 24.577 with only 44 NFEs on average. The model architecture used in our experiment
967 is the same as the one used in P2. We leave further investigation to this discrepancy between ℓ_1
968 and ℓ_2 for image generation and restoration as future works. To facilitate a direct comparison with
969 P2’s best reported results (FID scores of 6.92 and 6.97 with 1,000 and 500 NFEs respectively (Choi
970 et al., 2022)), we generated 50k samples using our ℓ_2 loss-trained model. Our approach achieved a
971 superior FID score of 5.871 with substantially fewer NFEs (44), demonstrating the effectiveness of
972 rectified flow. Representative non-cherry-picking samples from our model are presented in Fig. 12.

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
Figure 9: Visual results for $8\times$ (left) and $4\times$ (right) SR from resolution 64 to 512 and 128 to 512 respectively.
990
991

As our distillation technique is designed for image restoration tasks, we skip the distillation of this unconditional generation flow.

992
993

G ADDITIONAL RESULTS

994995

G.1 STRAIGHTNESS VS PERTURBATION STRENGTH

996997 In Fig. 8, we validate the observation in Sec. 4.3 by also measuring the straightness of conditional
998 flows. We observe that for SR task, the straightness is related to the noise perturbation added to the
999 initial distribution, and a straighter flow does not lead to better performance.
10001001

G.2 TRAINING DATASETS

10021003 In both stages of our approach, we utilize the same dataset. The following table shows comparable
1004 performance across different datasets for distillation with FFHQ teacher.
1005Table 12: Comparison of distilling FFHQ OFTSR teacher on FFHQ and Celeba-HQ dataset.
1006

	Distillation Dataset	Hyper-parameter t	PSNR (\uparrow)	LPIPS (\downarrow)	FID (\downarrow)
FFHQ OFTSR Teacher	FFHQ	1	28.98	0.055	36.02
	Celeba-HQ	1	29.75	0.056	41.25

1009
1010

G.3 DIFFERENT RESOLUTION AND SCALE FACTOR (SF)

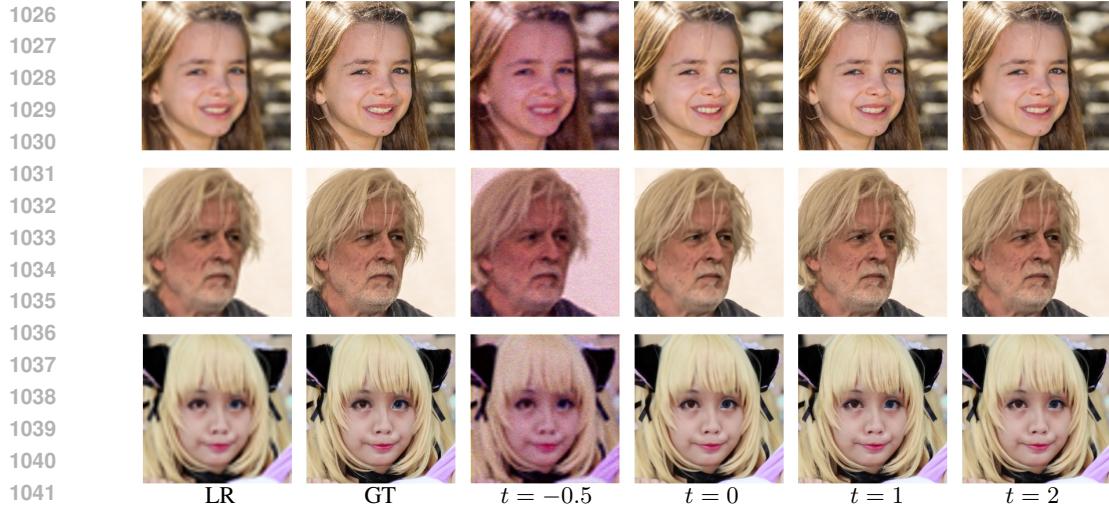
10111012 In this work, by default we follow previous works to use the setup of $4\times$ SR at 256×256 . We also
1013 test SF = 8 on 256×256 and SF = 4&8 on 512-resolution FFHQ, the results are shown in Tab. 13.
1014 All models are trained for 30k iterations (bs = 32) and distilled for 10k iterations (bs = 16). We
1015 visualize $8\times$ and $4\times$ reconstruction of teacher and student in Fig. 9.
1016Table 13: A comparison of the models trained across different resolution and scale factor.
1017

Method	Target Resolution	Scale Factor	NFE (\downarrow)	PSNR (\uparrow)	LPIPS (\downarrow)	FID (\downarrow)
DDNM (Wang et al., 2022b)	256	8	100	25.65	0.178	104.47
OFTSR (distilled)	256	8	44 (1)	25.74 (25.89)	0.121 (0.126)	72.83 (93.74)
Unofficial SR3 (Saharia et al., 2022)	512	8	2000	21.93	0.386	67.31
OFTSR (distilled)	512	8	32 (1)	27.31 (28.12)	0.151 (0.153)	42.20 (42.33)
OFTSR (distilled)	512	4	32 (1)	30.80 (31.30)	0.073 (0.072)	13.21 (13.95)

1022
1023

H FAILURE CASE

10241025 We show visualization of extreme t (boundary t and out of distribution t) in Fig. 10. Results of t
ranges from $[0,1]$ do not show failure case, while (ill-defined) OOD t , especially $t < 0$ fails.
1026

Figure 10: Visual results of boundary t (0 and 1) and out of distribution t (-0.5 and 2)

I RECONSTRUCTION DIVERSITY

The noise-augmented initialization (Sec. 3.1) introduces stochasticity that enables multiple diverse HR reconstructions for the same LR input. Both the teacher and student model can give different restorations of a LR image under different random seeds, and the visualization is shown in Fig. 11.

J THE CHOICE OF t

The parameter t controls the fidelity-realism trade-off and is inherently guided by user preference: $t \approx 0$ favors maximal fidelity, while $t \approx 1$ emphasizes realism. In our experiments, the fidelity-realism parameter t is not highly sensitive to the dataset or degradation type: its effective range stays consistent. When a target domain or evaluation metric is specified, t can also be chosen automatically by optimizing it on a small validation set to best satisfy the desired objective or target. This enables both user-driven and metric-driven control of the fidelity-realism balance.

K ADDITIONAL VISUAL SAMPLES AND COMPARISONS

In this section, we present additional visual results that demonstrate our method’s capabilities. Fig. 13 showcases multiple examples illustrating the tunable fidelity-realism trade-offs achieved on the FFHQ dataset. Figs. 14 and 15 provide comprehensive comparisons between our method and existing approaches on FFHQ and ImageNet images, respectively. In Fig. 16, we compare real-world (without synthetic degradation) SR results, under the $128 \rightarrow 512$ SR setting. In Fig. 17, we show OFTSR can perform arbitrary scale SR. Here, the model is trained solely on ImageNet for $64 \rightarrow 256$ SR, demonstrating strong resolution and scale generalization without any retraining. Additionally, in Fig. 18, we demonstrate our method’s performance on both real-world SR tasks and AI-generated content enhancement. In Figs. 19 and 20, we compare visually our OFTSR (DiT4SR) with other SOTA method for one-step large resolution SR. Results from Figs. 14, 15 and 18 are generated with our distilled one-step model unless otherwise specified.

L DISCUSSION OF ACCELERATED I2SB METHODS

We provide here a detailed discussion of recent accelerated variants of I2SB and clarify their relationship to our approach.

I3SB (Wang et al., 2025). I3SB introduces an improved sampling algorithm for pretrained I2SB models, analogous to DDIM for DDPM. While it yields faster sampling and moderately better re-

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

sults, it retains the fundamental behavior of the original I2SB: multi-step sampling is required to achieve high perceptual realism, whereas a single step primarily preserves fidelity. In contrast, our distillation framework produces a one-step model that attains *much stronger realism* while also enabling a controllable fidelity–realism trade-off.

CDBM (He et al., 2024). CDBM proposes consistency bridge training and consistency bridge distillation for diffusion bridge models, mirroring the consistency-training paradigm used in consistency models. However, its experimental scope is limited to relatively small image-to-image translation tasks (e.g., Edges → Handbags, DIODE-Outdoor) and ImageNet inpainting. Since no SR evaluation or open-source implementation is provided, direct comparison in our setting is not feasible.

IBMD (Gushchin et al., 2025). IBMD introduces a distributional matching algorithm for conditional bridge models, conceptually related to DMD (Yin et al., 2024b) for continuous diffusion models. The method requires learning an additional auxiliary network, which increases computational overhead and can introduce training instability. Moreover, reported results show that the one-step performance of IBMD is comparable to I2SB with 1000 NFEs, suggesting limited advantages for efficient one-step SR. Therefore, our distilled model remains competitive or superior in the one-step regime.

Overall, while these works explore acceleration or distillation within the I2SB family, they differ substantially in objectives, model scope, and applicability to super-resolution. Our approach provides a reproducible and effective one-step SR framework with controllable fidelity–realism behavior not addressed in prior I2SB variants.

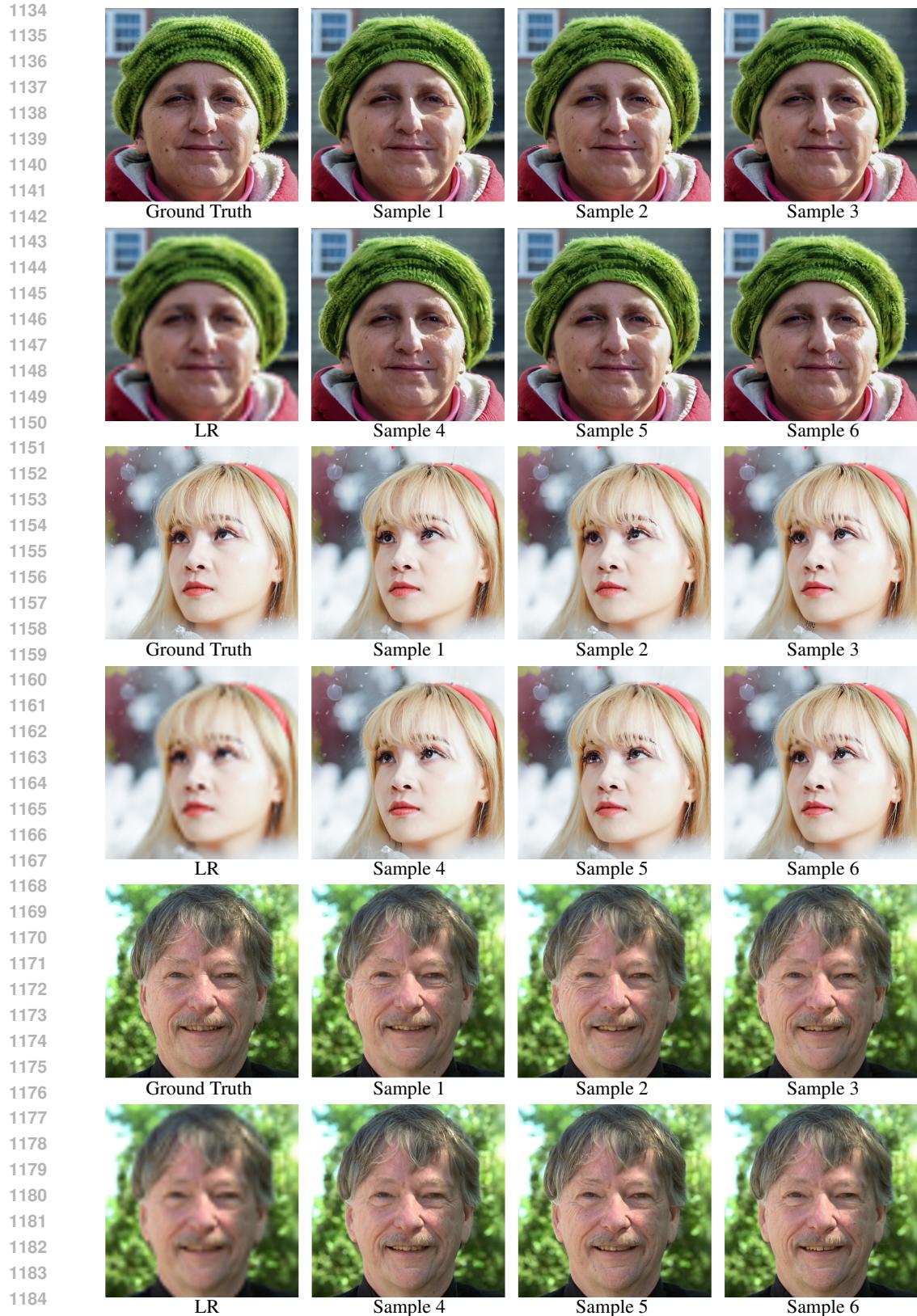


Figure 11: Our method can maintain diversity in outputs. The resolution of ground truth image is 512×512 and the LR is 64×64 . The first group is generated by the teacher model, while the remaining two groups are produced by the student model.

Figure 12: Random generated samples from unconditional model trained on FFHQ dataset.

Figure 13: Qualitative results of one-step model with different tunable t .

1296

1297

1298

1299

1300

1301

1302

1303

Figure 14: Qualitative comparisons on FFHQ dataset for $4 \times$ SR with $\sigma_n = 0$ (first four rows) and $\sigma_n = 0.05$ (last four rows).

1343

1344

1345

1346

1347

1348

1349

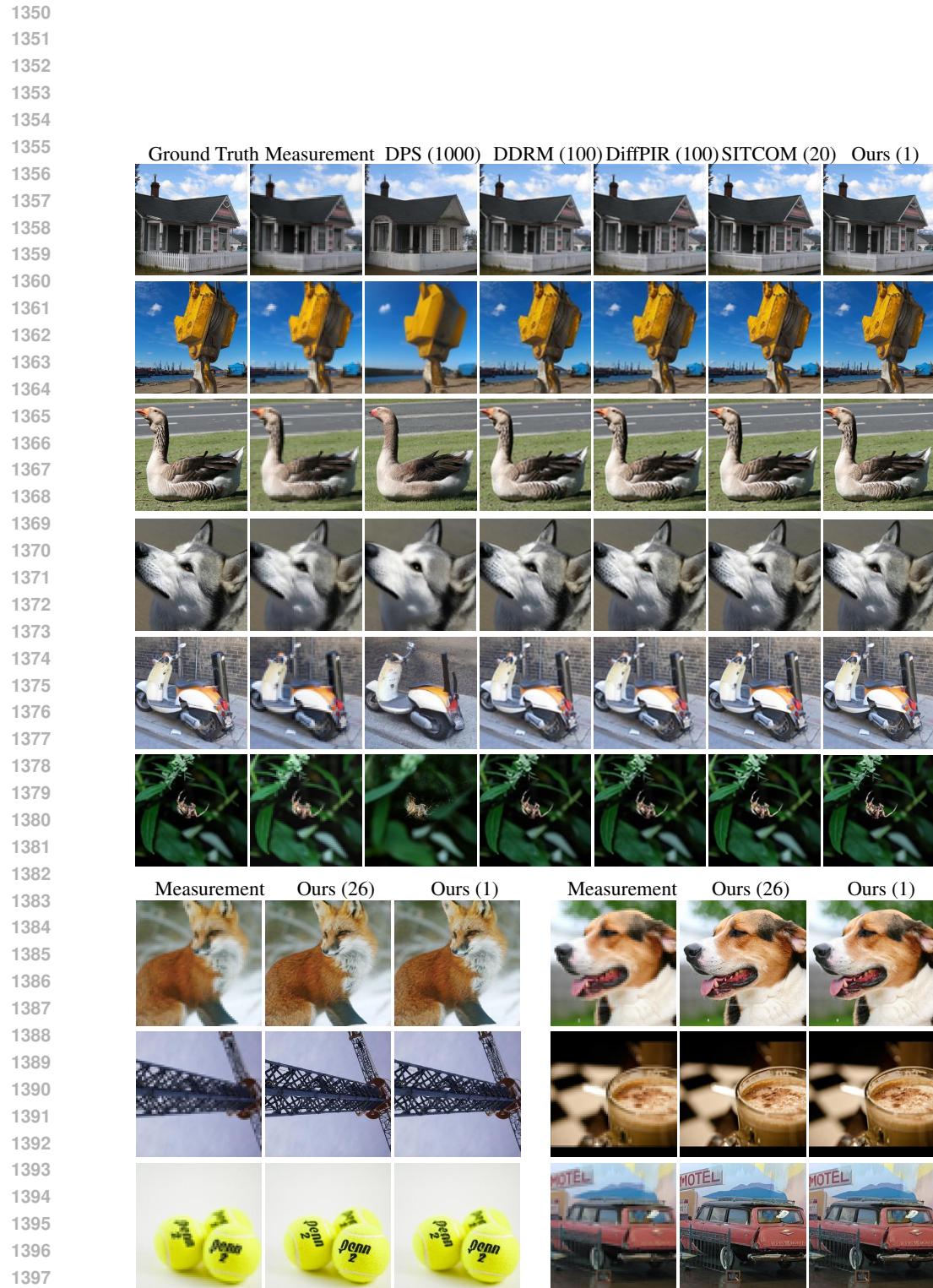


Figure 15: Qualitative comparisons on ImageNet dataset for noiseless 4× SR.

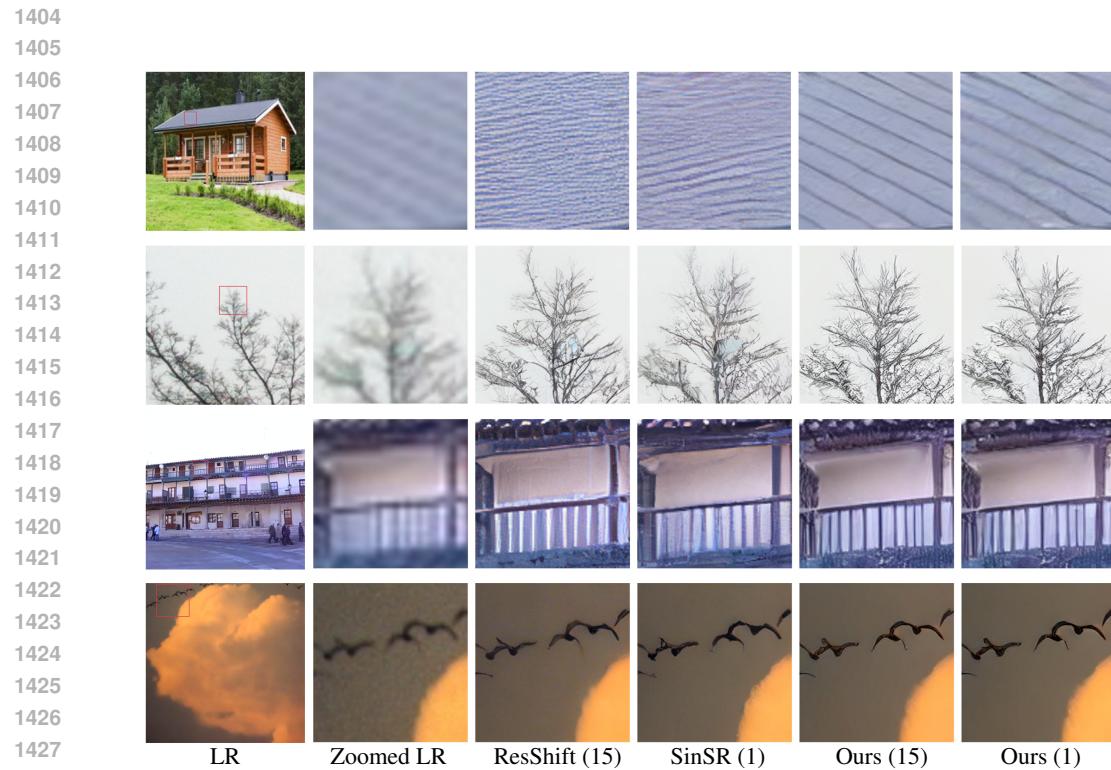
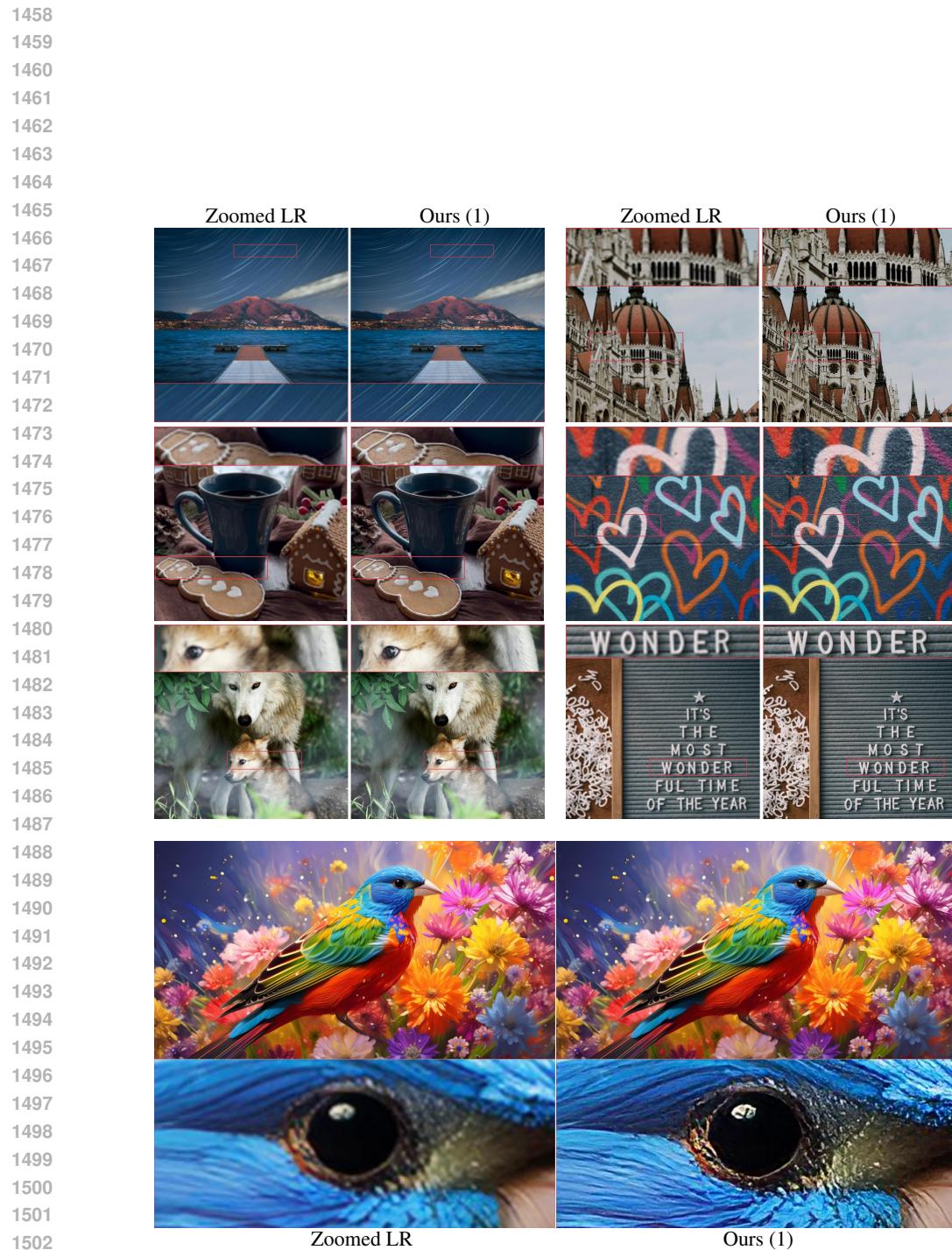


Figure 16: Qualitative comparisons for real-world 4x SR

Figure 17: Visual result of restoring arbitrary scale LR image.



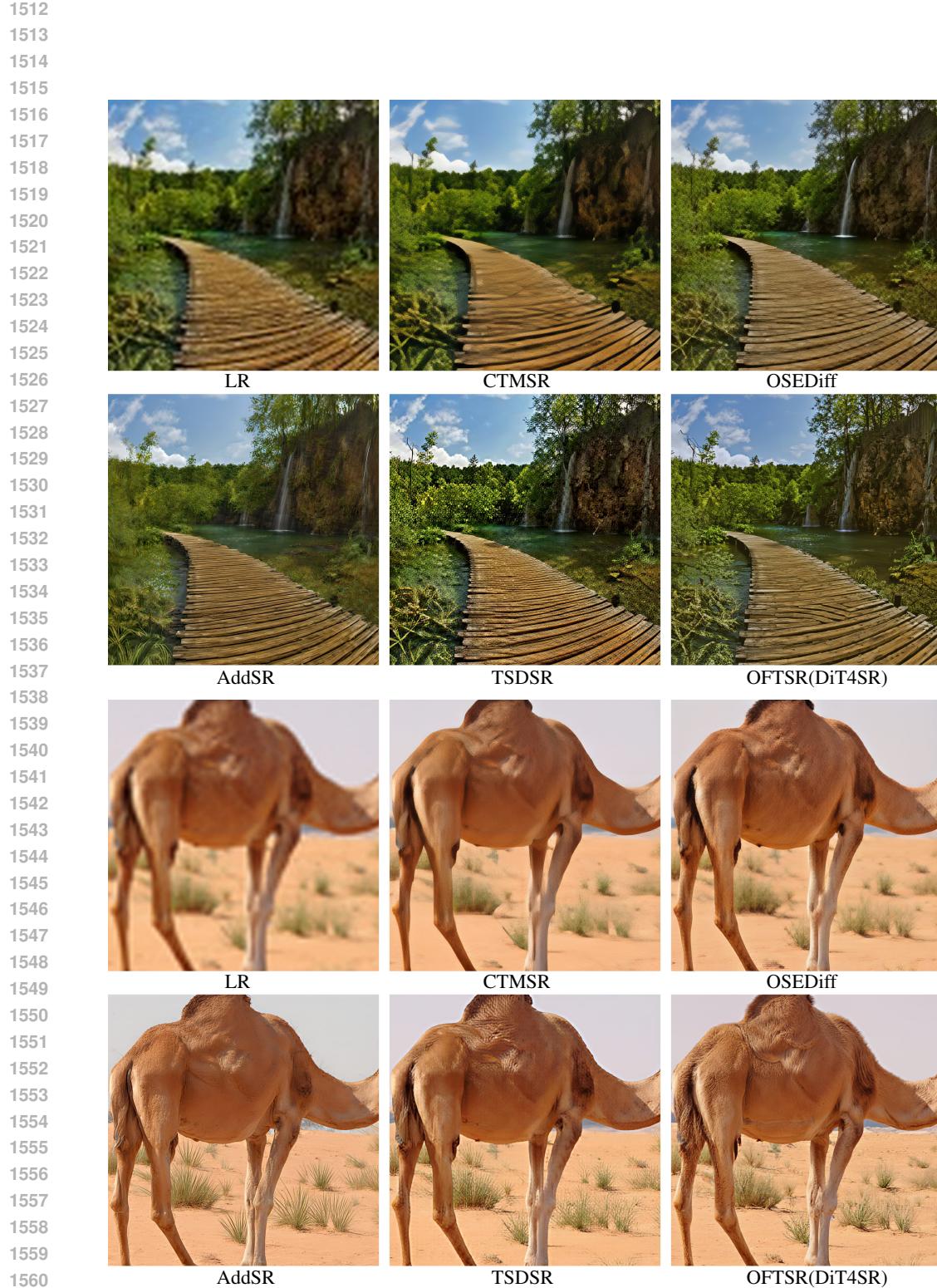


Figure 19: Qualitative comparisons for real-world 4x SR. OFTSR is distilled from DiT4SR. All methods perform 1 step inference.

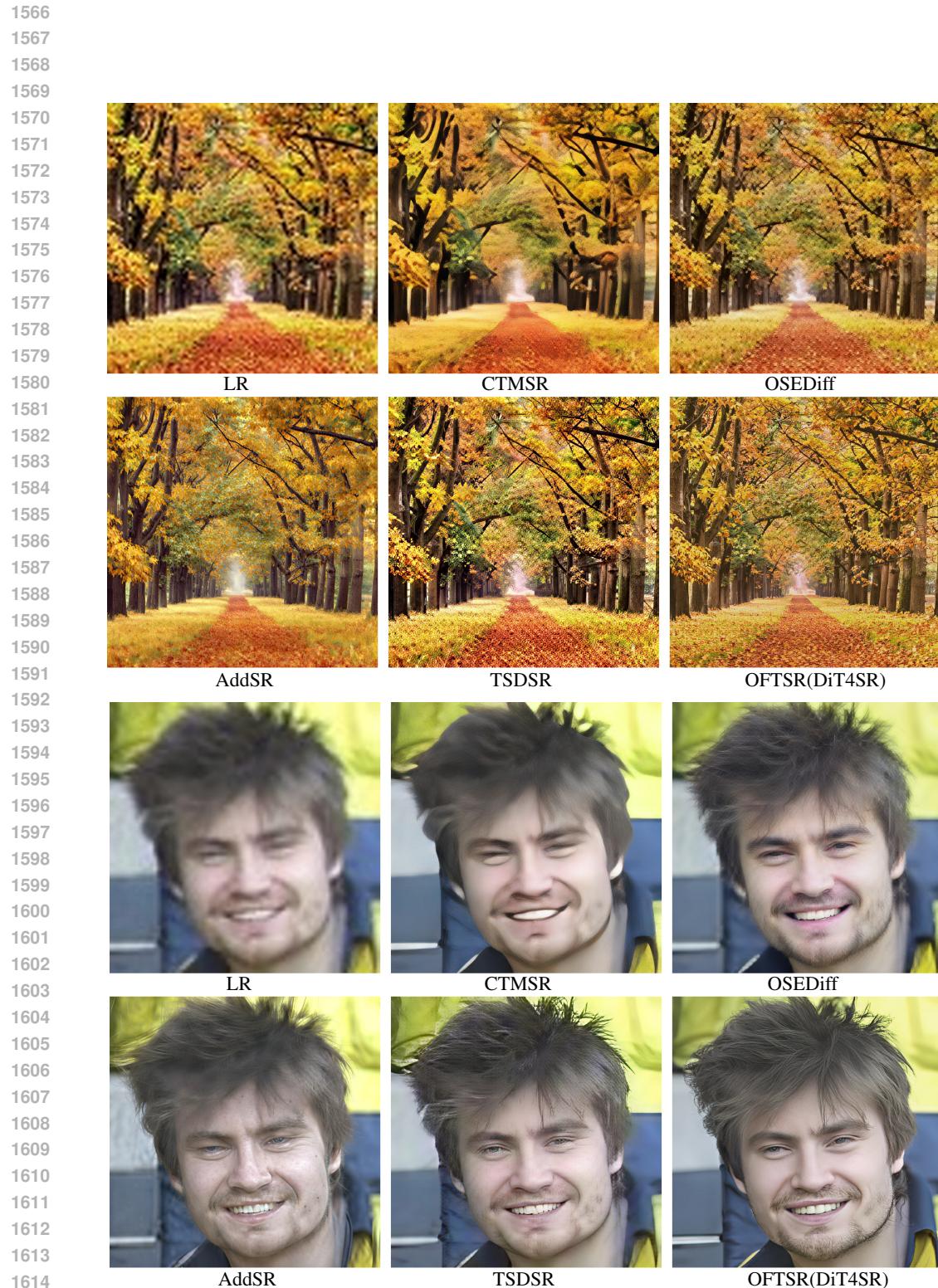


Figure 20: Qualitative comparisons for real-world 4x SR. OFTSR is distilled from DiT4SR. All methods perform 1 step inference.