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Abstract

Searching for always better-performing machine learning techniques requires continuously
comparing with well-established methods. While facing the challenges of finding the right
evaluation metric to prove the strengths of the proposed models, choosing one metric despite
another might hide the method’s weaknesses intentionally or not. Conversely, one metric
fitting all applications is probably not existing and represents a hopeless search.
In several applications, comparing rankings represents a severe challenge: various metrics
strictly correlated to the context appeared to evaluate their similarities and differences. How-
ever, most metrics spread to other areas, although a complete understanding of their internal
functioning is often missing, leading to unexpected results and misuses. Furthermore, as
distinguished metrics focus on different aspects and rankings’ characteristics, the comparisons
of the models’ results outputs given by the various metrics are often contradicting.
We propose to theorize rankings using the mathematical formality of symmetric groups to rise
above the possible contextualization of the evaluation metrics. We prove that contradictory
evaluations frequently appear among pairs of metrics, introduce the agreement ratio to
measure the frequency of such disagreement, and formally define essential mathematical
properties for ranking evaluation metrics. We finally check if any of these metrics is a
distance in the mathematical sense. In conclusion, our analysis underlines the inconsistencies’
reasons, compares the metrics purely based on mathematical concepts, and allows for a more
conscious choice based on specific exigencies.

1 Introduction

Evaluating methods is essential in any machine learning field; however, finding the right evaluation metric
assessing one method’s strengths without providing unfair comparisons to others is not always straightforward.
The evaluation of methods whose results are rankings is generally a great challenge. Among these methods,
Recommender Systems (RS) have become a prosperous research area since the mid-1990s. The recommendation
algorithms output lists of recommended items Adomavicius & Tuzhilin (2005), similar to Information
Retrieval (IR) techniques, that look for relevant information in huge search spaces given a specific information
quest Schütze et al. (2008). Other methods also provide rankings as outputs: In feature ranking and selection
approaches, features are ordered according to their usefulness in the task at hand Khaire & Dhanalakshmi
(2022); Rank and fair rank aggregation aim to obtain unique rankings given a set of (possibly biased) rankings.
The evaluation of all these methods often includes comparing rankings.

Many context-specific evaluation metrics are available, particularly for evaluating RS. The same metrics
spread in the other evaluation contexts, i.e., feature selection and rank aggregation. For IR and RS techniques,
it became evident that comparing methods is a significant challenge, and contradictory evaluations are at
the order of the day. Offline metrics for RS compare the output of the algorithms with external ground
truth rankings and are easily applicable externally to RS Cañamares et al. (2020); Beel & Langer (2015).
Together with Information Retrieval evaluation measures (e.g., DCG), offline metrics comprehend measures of
errors and relevance-based metrics. Many offline metrics spread to other machine learning areas to compare
rankings; examples are recall@k and NDCG, both used in feature selection approaches. Choosing evaluation
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metrics to compare two rankings is often non-straightforward, and the many inconsistencies among the
produced evaluations hinder their credibility. Furthermore, validating ranking metrics experimentally is
typically unfeasible and does not allow for good generalization in other experimental setups.

Our paper proposes a list of desirable theoretical properties for ranking evaluation metrics and provides the
mathematical background for each. We first transfer the problem of comparing rankings to symmetric groups.
By generalizing to symmetric groups Sn, we detach from specific machine learning contexts; our goal is
finding an answer to the question which mathematical properties are essential in the evaluations? rather than
what is the metric of success? for a specific exigence. Symmetric groups are the most general mathematical
structure on which we could represent rankings, thus explaining our choice. Our approach interprets ranking
evaluation metrics as functions defined over a mathematical group, thus allowing for a theoretical analysis of
the mathematical properties satisfied by the metrics. We provide insights and an understanding of the use
and the goals optimized by the ranking evaluation metrics. Eventually, this allows for a conscious choice of
evaluation metrics to measure the similarity among rankings in specific contexts.

Our work provides a theoretical framework and we detach from specific contexts of application. As a matter
of fact, the current literature appears to be rather limited to considering only specific applications (for an
exception, see Diaconis, 1988). In Section 4 we provide motivation examples, introducing the notion of
inconsistency among metrics and the agreement ratio; additionally, we use the theoretical definitions of the
metrics to cluster them in Section 5.1. Section 6 describes desirable well-founded mathematical properties for
ranking evaluation metrics; Table 2 summarizes which properties are satisfied by the various metrics. We
claim that, in our definitions, none of the metrics is a mathematical distance and modify the discounted
cumulative gain to obtain one. Finally, Section 7 explores the relationships among the various properties.
Although jumping in the generalization offered by symmetric groups, we aim to do not forget the contexts
in which the metrics have been developed, and highlight in which contexts the mentioned properties are
particularly desirable.

2 Related work

The literature on ranking evaluation metrics is vast and extensive for RS evaluation. Several works in-
vestigated how reliable offline and online evaluation metrics are and how they relate to each other within
RS evaluation (Valcarce et al., 2018; Liu & Yu, 2021; Gunawardana et al., 2012; Silveira et al., 2019; Li
et al., 2011). Herlocker et al. (2004) surveyed most evaluation metrics used for comparing collaborative
filtering RS and proposed a theoretical division of the metrics. Liu et al. (2009) precisely describe most
of the metrics typically used for RS and IR techniques; however, this work concentrates on metrics and
algorithms specifically built for these applications which limits the transfer to different contexts. Järvelin &
Kekäläinen (2002) presented various metrics based on cumulative gain, pointing out their main advantages
and drawbacks. The work by Hoyt et al. (2022) proposes a theoretical foundation for rank-based evaluation
metrics, particularly considering the metrics hits at k, mean rank and mean reciprocal rank MRR and they
defined some desiderata for link prediction in knowledge graphs. Amigó et al. (2018) define a set of properties
for IR metrics and show that none of the existing ones satisfy all the properties proposed. Other works focus
on metrics for RS and their intrinsic properties, e.g., Buckley & Voorhees (2004) and Valcarce et al. (2020)
performed a comparison of ranking metrics for the top-n recommendations, in particular being interested in
items and users missing at random, in the robustness to incompleteness and the discriminating power of each
of the metrics. Another question is whether ranking evaluation metrics are interval scales; Ferrante et al.
(2018) explored the scale properties of IR metrics analyzing both binary and non-binary relevance, set-based
and rank-based evaluation metrics. Furthermore, real-world applications such as the design of strategies
based on customers’ feedback, experts’ opinion analysis, and allocation of priorities in R&D extended the
interest in defining distances among rankings in Dwork et al. (2001); Sculley (2007); Kim et al. (2013); the
focus of the problem statement is rank aggregation to find representatives for communities of voters. As an
example among similarly scoped works, we find Cook et al. (1986); Fligner & Verducci (1986). Hassanzadeh &
Milenkovic (2014) insisted on defining distances for rankings based on similarity. The work by Diaconis (1988)
is worth special attention. The author focuses on six metrics on symmetric groups, among them Kendall’s τ
and Spearmann’s ρ while the other considered metrics are rather uncommon in machine learning. The author
studies them from a statistical perspective and analyzes their theoretical properties. Some properties that
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we define in our work present strong similarities to some in Diaconis (1988). Among the defined properties,
we find the interpretability or whether the metrics measure something humanly tangible; the tractability,
i.e., the so-called computational complexity in computer science; the sensitivity defined as the ability of one
metric to range among the available counter-domain; the theoretical availability that asks whether a metric is
studied and used enough in the state-of-the-art works. We add to its work considering an extensive set of
ranking evaluation metrics and defining additional theoretical mathematical properties. Furthermore, we
contextualize these metrics to the specific contexts, emphasizing in which application contexts their properties
are mostly desirable.

Choosing proper and fair evaluation metrics is a fast-growing field in computer science. Some of the cited rank-
ing evaluation metrics have been harshly criticized for their comparisons’ reliability in the evaluations (Tamm
et al., 2021). The central gap to be spotted in the literature is the complete silence concerning the use of
standard RS ranking evaluation metrics in other contexts. In other areas, works defining properties for metrics
are popping out in the state-of-the-art literature, e.g., Gösgens et al. (2021a;b). Furthermore, also older
literature offers some works focusing on analyzing the influence of the metric in determining (sub)optimal
models for supervised learning tasks, e.g., in Caruana & Niculescu-Mizil (2004), where several metrics have
been analyzed theoretically in a differential geometry perspective. We structured the paper based on a
successful strategy of defining mathematical properties for ranking evaluation metrics, each justified from a
mathematical point of view; the generalization to rankings on symmetric groups allows us to rise above the
limitations of the literature on RS metrics and achieve a context-independent analysis applicable for rankings
appearing in any machine learning method.

3 Ranking evaluation metrics

Most RS evaluation metrics can be used to compare rankings of n elements, except the ones requiring
additional context-specific information and the online evaluation metrics. Among widely spread metrics, such
as DCG, recall, or MSE, various less-known metrics are used in the literature when comparing rankings. We
report the considered evaluation metrics list in Table 1 and refer to Appendix C for the formal definitions.
We distinguish among ranking aware metrics, aware of the position in the ranking of single items, and
flat metrics not considering the position in the ranking of the items; in the second grouping, we find two
subcategories: set based metrics and the ones assigning equal importance to each position in the ranking
(see Figure 1 (b)). Furthermore, we cluster ranking evaluation metrics from a theoretical point of view into
four main groups: confusion matrix, correlation, error, and cumulative gain. The confusion matrix based
CMB metrics are based on the number of correctly retrieved elements, elements incorrectly classified, and
correctly non-retrieved items. They are essentially set-based metrics. The correlation based metrics are
statistics measuring the ordinal association between two measured quantities. NDPM is slightly differently
defined, although it satisfies the same characteristics. Often used to analyze the performance of predicting
models, error based metrics compute the difference between the true and predicted values. Their evaluation,
however, does not depend on which are the predicted and the true labels as their internal computation involve
either squared or absolute value computation. They are often used for comparing rankings or scores; we will
consider here the metrics when used to compare two rankings, independently from the presence or not of a
ground truth ranking. They can be classified as flat metrics. Finally, cumulative gain based metrics focus on
the rankings of the single elements.

Given a finite set N = {1, . . . , n}, we call symmetric group Sn the set of bijective functions from N to N ;
Sn is a group with respect to the function composition as group operation. Note that the only possible
bijective functions from a finite group to itself are the permutations over the elements in N , and the size
of Sn is n!. We indicate permutations using greek letters, i.e., σ ∈ Sn, and the identity function id is the
identity function, i.e., id : i 7→ id(i) = i for all i ∈ {1, . . . , n}. If there are no chances of confusion, we do not
indicate the length of the rankings. Given σ ∈ Sn, σ(i) indicates the position in which the ith element is
sent by σ; σ|t = (σ(1), . . . , σ(t)) indicates the ranking of the first t elements while set(σ|t) is the set of the
first t elements ranked regardless the ordering. Given σ, ν ∈ Sn, σ ◦ ν ∈ Sn is the permutation defined by
σ ◦ ν(i) = σ(ν(i)) for all i ∈ {1, . . . , n}. The composition of permutations is not commutative, i.e., generally
σ ◦ ν ̸= ν ◦ σ. The cycle decomposition theorem states that each permutation can be rewritten in a unique
way as the composition of relatively disjoint permutations (or cycles). Finally, we call a (single) swap a
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Figure 1: On the left: Heatmap of the disagreement ratios among pairs of ranking evaluation metrics. On
the right: The theoretical subdivision of the metrics.

ranking aware metrics nDCG, DCG, meanRank, GMR, MRR
equal importance SMAPE, MAPE, MAE, RMSE, MSE, R2 score, Spearmann ρ, Kendall’s τ , NDPM
set based metrics markedness, PT, recall, LR+, Jaccard index, F1 score, accuracy, FDR, precision,

TNR, fallout, FNR, LR- informedness, NPV, FOR, BA, FM, MCC

Table 1: List of metrics analyzed grouped according to their definitions and properties; bold, italic, underlined,
and plain text indicate cumulative gain, error, CMB, and correlation based metrics. MRR, GMR and
meanRank do not fall into any of the groups and are blue color-coded.

permutations σ = (j k) ∈ Sn swapping only the two elements j, k in N , i.e., σ(i) = j if i = k, σ(i) = k if
i = j and σ(i) = i if i ̸= j, k. Swaps can be easily find in the literature, also under different names; as an
example, Hassanzadeh & Milenkovic (2014) refers to them as transpositions. The set of swaps over N is not
closed with respect to the group operation, i.e., composing two swaps we possibly optain a permutation that
is not a swap..

4 Motivational example

Having a clear and sufficient understanding of the theoretical fundamentals of the metrics is essential to choose
metrics for evaluating newly proposed methods and comparing them with existing ones. An appropriately
chosen metric might improve the attractiveness of a newly proposed method, but it can also cover up the
methods’ drawbacks. A deeper understanding of the used metrics hopefully allows for fairer and more
reproducible results. Generally, a ranking evaluation metric is a function m : Sn × Sn → R+; In some cases,
we deal with metrics that take as input only one ranking and compare the ranking in question against an
underlying optimal one.
Definition 1. Two ranking evaluation metrics m1, m2 are non-consistent (or inconsistent) if ∃σ, µ, ν ∈ Sn

such that

m1(id, σ) ≤ m1(id, µ) ∧ m2(id, σ) ≤ m2(id, µ)
m1(id, σ) ≤ m1(id, ν) ∧ m2(id, σ) > m2(id, ν)

(1)

If for each choice of σ, µ, ν ∈ Sn equation 1 is not satisfied, we say that m1, m2 are consistent.

To say that two metrics are non-consistent , it is enough to find three rankings such that σ is the closest to the
trivial ranking according to m1 but not according to m2. m1 and m2 are consistent, if ∀σ, µ ∈ Sn, equation 1
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is not satisfied with respect to id. The first line of equation 1 guarantees that the m̃2 = −m2 is still non-
consistent with m1 avoiding the case of m1 and −m2 being consistent. Pairs of metrics theoretically similar
are not necessarily consistent with each other; Most ranking evaluation metrics’ pairs exhibit inconsistencies.
Method A can appear better than Method B using one metric and worse according to a different metric.
We give additional details in see Section 5.1. Furthermore, we will give a sufficient condition under which
evaluation metrics do not allow for inconsistencies.

5 Ranking measures fundamentals

Most methods returning rankings of items are evaluated by comparing the output with the ground truth
or the desired output. We can theorize the ranking evaluation metrics as functions over the symmetric
group Sn; their aim is quantifying the differences between two rankings. Each metric considers different
rankings aspects: nDCG assumes that highly relevant documents are most useful when appearing earlier in
the ranking and that highly relevant documents are more useful than marginally relevant documents, which
are, in turn, more useful than non-relevant documents; Kendall’s τ score measures the smallest number of
swaps of adjacent elements that transform one ranking into the other (see Kendall (1948)); Precision needs
an additional parameter k to compute the set of retrieved elements, and its definition relies on the confusion
matrix. Such distinctions allow clustering evaluation measures from a theoretical perspective, as seen in
Section 3. Moreover, constructing examples of inconsistencies among evaluation measures is often trivial.

In the following sections, we refer to the metrics that consider only the first k ranked elements as metrics@k;
confusion matrix based metrics are an example. Almost any metric can be reduced to a metric@k considering
only the first k elements ranked; However, throughout the paper, we will always consider metrics evaluating
the full rankings unless differently specified. Some metrics require the set of relevant elements to be contained
in the set of retrieved elements, e.g., the MRR, meanRank and GMR.

5.1 Clustering by agreement

We quantify the frequency under which inconsistencies among pairs of metrics pop up in the evaluation of
different-sized rankings introducing a coefficient of agreement among two metrics:
Definition 2. For any σ ∈ Sn fixed, the σ agreement ratio among two ranking evaluation metrics m1, m2 is

ARσ
m1,m2

= 1
|T |(|T | − 1)

∑
µ,ν∈T

fm1,m2
σ (ν, µ)

where T ⊆ Sn, fm1,m2
σ (ν, µ) = 1{µ, ν are consistent w.r.t. σ} and 1 is the indicator function, i.e., equals 1

in the case the argument is satisfied and 0 otherwise.

The agreement ratio measures how many inconsistencies exist among two evaluation metrics on a subset of
P(Sn) and equals 1 whenever m1 and m2 are consistent. Up to renaming the elements in N , we suppose
that σ = id such that the agreement ratio does not depend on σ. Valcarce et al. (2020) proposed directly
studying the correlation among the evaluation metrics evaluations for RS using Kendall’s τ score. However,
as we included Kendall’s τ score in our analysis, we preferred introducing a non-circular evaluation of the
disagreements’ frequency.

Figure 1 (left) shows that the evaluation metrics similar from a theoretical point of view have a high agreement
ratio (green color); The plot refers to T being a random subset sample of S100, containing 10000 random
pairs of rankings. For reasons of symmetry (see Section 6.2), we only considered an equal number of retrieved
and relevant elements and fixed it to 30. In the case of no agreements for most considered pairs of rankings
among m1 and m2, we considered the metric −m2, which leads to a reversed agreement ratio with m1.
The agreement ratio being symmetric, the upper triangle of the heatmap is sufficient for the analysis. The
green color represents pairs of metrics essentially agreeing, while the pink color represents high disagreement
among pairs of metrics; finally, the white color represents a partial agreement. The agreement ratio is evenly
distributed among the metrics; the number of highly agreeing pairs of metrics is not significantly different
from the number of pairs highly disagreeing. Similar results are obtained by varying the length n of the
rankings and the number of relevant elements we are interested in retrieving.
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Table 2: Summary table of the property and the metrics that satisfy them. Type I Robustness property:
average of the absolute differences from equation 5 and equation 6; in green, the ones < 0.05.

6 Ranking evaluation metrics’ properties

Intending to add clarity over the metrics used for rankings in various contexts, we define mathematical
properties, give insights on whether they are satisfied by the metrics, and prove our theoretical claims. We
summarize the findings in Table 2, the code will be on Github upon acceptance1. We define the linear
equivalence for ranking evaluation metrics as follows:
Definition 3. Two metrics m1 and m2 are linearly equivalent (m1 ∼ m2) if there exists a non-constant
linear function f such that either f(m1(σ, ν)) = m2(σ, ν) or m1(σ, ν) = f(m2(σ, ν)) for any σ, ν ∈ Sn.

A linear equivalence is an equivalence relation on the space of ranking evaluation metrics, i.e., it satisfies
(a) the reflexive property, i.e., m ∼ m where f is the identity function; (b) the symmetry property, i.e.,
m1 ∼ m2 ↔ m2 ∼ m1 (any linear function is invertible and a linear function) and (c) the transitive property,
i.e., m1 ∼ m2 and m2 ∼ m3 ↔ m1 ∼ m3 for any metrics m1, m2, m3, i.e., the composition of linear functions
is still a linear function. We define several properties, i.e., (1) identity of indiscernibles (IoI); (2) symmetry
(or independence from a ground truth); (3) robustness (Type-I and Type-II); (4) stability with respect to k;
(5) sensitivity and width-swap-dependency; (6) (induced) distance. Most ranking evaluation metrics properties
are conserved under linear equivalence (see Section 7). We underline that some of these properties have been
defined in diverse contexts, e.g., Gösgens et al. (2021b;a); Hassanzadeh & Milenkovic (2014); Cook et al.
(1986); Fligner & Verducci (1986), often under different names. Particularly, Hassanzadeh & Milenkovic
(2014) state that the only metric that can be considered a metric on rankings is Kendall’s τ . We will show

1https://anonymous.4open.science/r/rankingsmetricsproperties/README.md
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that this is non-compatible with our definition of identity of indiscernibles, thus not allowing us to consider it
a distance.

6.1 Identity of indiscernibles

Given two distinct permutations σ, τ ∈ Sn, a ranking evaluation metric m evaluates how close they are. We
can easily incur in situations where σ and τ are so close to each other to be evaluated as identical by m. In
contexts like fair ranking aggregation, it is fundamental to distinguish whether elements of specific categories
obtain privileged positions, while in huge dimensional spaces this might be not the case, e.g., feature selection
of k most important features. We analyze how effectively a metric m distinguishes two different rankings. A
metric that satisfies the injective property reflects the difference among rankings in the scores it assigns to
them. We name this property the identity of indiscernibles property.
Definition 4. A metric m satisfies the identity of indiscernible (IoI) property if, ∀σ ∈ Sn fixed, it holds

m(σ, τ) = m(σ, ν) ⇔ τ = ν, ∀τ, ν ∈ Sn. (2)

Up to renaming the elements, we can rewrite equation 2 as m(id, τ) = m(id, ν) ⇔ ν = τ where id is the usual
identity of Sn. For (almost) all ranking evaluation metrics, it is possible to find examples in Sn (even with
small n) that do not satisfy the IoI property. All set based metrics and metrics @k do not satisfy this property
as they consider only the set of retrieved (and relevant) items and not the ordering in which they appear in
the ranking. For all confusion matrix based metrics, after fixing a permutation σ = (i j) ∈ Sn with i, j < k
where k is the number of relevant elements, we easily conclude that m(id, id) = m(id, σ); All permutations
that can be written as a disjoint composition of cycles σ = ν before k ◦ ν after k are examples of permutations
where the IoI property fails. Table 3 includes examples where the IoI is not satisfied for the various metrics;
the confusion matrix based metrics are grouped in a single column as they behave equivalently. All metrics
considered but two do not satisfy the IoI property:
Proposition 6.1. DCG and nDCG are the only two ranking evaluation metrics among the ones considered
in this paper satisfying the identity of indiscernibles property.

Proof of Proposition 6.1. as DCG and nDCG differ only for a constant multiplicative factor, we prove the
claim only for DCG; For the definitions of DCG and nDCG, we refer to Appendix C.3. Given σ ∈ Sn,
DCG(σ) =

∑n
i=1

σ(i)
log2(i+1) . The goal is proving that for any σ1, σ2 ∈ Sn, DCG(σ1) = DCG(σ2) ⇔ σ1 = σ2.

Without loss of generality, we prove: DCG(id) = DCG(σ) ⇔ σ = id for any σ ∈ Sn:

n∑
i=1

i

log2(i + 1) =
n∑

i=1

σ(i)
log2(i + 1) ⇔

n∑
i=1

i − σ(i)
log2(i + 1) = 0. (3)

However, proving equation 3 is non straight forward; we prove instead the following
n∑

i=1

i − σ(i)
log2(i + 1) < 0 ⇔ σ ̸= id ∈ Sn. (4)

The equation 4 is a stronger statement than equation 3. We base our proof on induction over the N size.

Base case: The base case n = 2 is trivial as S2 = {id, σ = (1 2)}; in particular, DCG(id) = 0 while
DCG(σ) = 1−σ(1)

log2 2 + 2−σ(2)
log2 3 = − 1

log2 2 + 1
log2 3 < 0.

Inductive case: The claim holds for n − 1 and we prove it for n; consider σ ∈ Sn. We distinguish two cases.
σ fixes one element: Up to renaming the elements, we suppose that n is fixed by σ, i.e., σ(n) = n. Given
n, k ∈ N, we can construct an immersion in,k : σ ∈ Sn 7→ in,k(σ) ∈ Sn+k of Sn in Sn+k, such that in,k(σ) = σ(i)
if i ≤ n otherwise in,k(σ) = i; in,k is injective and surjective on A = {σ ∈ Sn+k | σ(i) = i, ∀i > n + k} and σ
fixes n, σ belongs to Sn−1 (as the counter-image of in,1). Therefore, the claim holds.
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10 5 id (1 2) id ◦ • • • • • • • • • • • • • •
10 5 id (1 2) (3 4) ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ • • ◦ ◦ ◦ ◦
10 5 id (1 2) (2 4) ◦ • • • ◦ ◦ • • • • • ◦ ◦ • ◦

Table 3: Examples of rankings that metrics cannot distinguish. We compare for each evaluation metric m the
values m(id, σ) and m(id, τ). If the metric fails in distinguishing the two rankings, we impute a ◦; else, a •.

σ does not fix any element: It holds σ(n) ̸= n and we can rewrite σ as the composition of two permutations,
i.e., σ = τ ◦ µ such that τ = (j n) for some fixed j and µ such that µ(s) = σ(s) if s ̸= n, k∗, µ(s) = j if s = k∗

and µ(s) = n if s = n where we named k∗ = µ−1(j) = σ−1(n). We can now rewrite σ in terms of τ ◦ µ;
n∑

i=1

i − σ(i)
log2(i + 1) =

n−1∑
i=1,i̸=k∗

i − σ(i)
log2(i + 1) + k∗ − σ(k∗)

log2(k∗ + 1) + n − σ(n)
log2(n + 1) =

n−1∑
i=1,i̸=k∗

i − µ(i)
log2(i + 1) + k∗ − τ ◦ µ(k∗)

log2(k∗ + 1) + n − σ(n)
log2(n + 1) + k∗ − µ(k∗)

log2(k∗ + 1) − k∗ − µ(k∗)
log2(k∗ + 1) =

n−1∑
i=1

i − µ(i)
log2(i + 1) + k∗ − τ(j)

log2(k∗ + 1) + n − σ(n)
log2(n + 1) − k∗ − µ(k∗)

log2(k∗ + 1) =

∑n−1
i=1

i−µ(i)
log2(i+1) is negative for the inductive hypothesis and momentarily assumes that µ ̸= id ∈ Sn−1, By

substituting σ = τ ◦ µ, we conclude the proof if we can upper bound their sum with 0.
k∗ − τ(j)

log2(k∗ + 1) + n − σ(n)
log2(n + 1) − k∗ − µ(k∗)

log2(k∗ + 1) = k∗ − n − (k∗ − µ(k∗))
log2(k∗ + 1) + n − σ(n)

log2(n + 1) =

µ(k∗) − n

log2(k∗ + 1) + n − σ(n)
log2(n + 1) <

µ(k∗) − n

log2(k∗ + 1) + n − σ(n)
log2(k∗ + 1) = µ(k∗) − n + n − σ(n)

log2(k∗ + 1) = j − j

log2(k∗ + 1) = 0

where we used log2(n + 1) > log2(k∗ + 1), σ(n) = τ ◦ µ(n) = τ(n) = j and µ(k∗) = j. Thus, the claim is
proved for µ ̸= id. In the case µ = id: Then it holds σ = τ and DCG(σ) reads

DCG(σ) =
n∑

i=1

i − σ(i)
log2(i + 1) =

n∑
i=1

i − τ(i)
log2(i + 1) =

j − τ(j)
log2(j + 1) + n − τ(n)

log2(n + 1) = j − n

log2(j + 1) + n − j

log2(n + 1) <
j − n + (n − j)

log2(j + 1) = 0

Table 3 clearly shows examples where the IoI property is not satisfied for all the other ranking evaluation
metrics; Thus, we conclude that DCG and nDCG are the only two ranking evaluation metrics satisfying the
IoI. This concludes the proof.

Axioms defining distances among partial ordering of items have been defined in Cook et al. (1986); given the
matrix representation of partial orderings defined, the authors prove the existence of a unique distance for
the specific context.

6.2 Symmetry property

In some cases, e.g., RS and IR, the aim is to obtain a ranking as close as possible to a ground truth order. In
other applications, e.g., (fair) rank aggregation, the objective is to get a score that reflects how similar the
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two rankings are; hence, it is interesting to investigate whether the scores are independent of which of the
two is the ground truth. This second case embeds the first one, although it is more generic and fits well with
the metrics definition on symmetric groups.
Definition 5. A ranking evaluation metric m : Sn × Sn → R is symmetric if m(σ, ν) = m(ν, σ), ∀σ, ν ∈ Sn.

Although symmetry looks trivial, many ranking evaluation metrics do not satisfy it. All metrics relying on a
ground truth ranking can not satisfy the symmetry property; Swapping the two rankings is meaningless in
this context as it is equivalent to changing the ground truth.

Confusion matrix based metrics: These metrics rely on ground truth labels. However, when the number
of relevant coincides with the number of retrieved items, the confusion matrix is symmetric, and the
metrics also satisfy the symmetry property.

Correlation based metrics: Directly from their definition, all the correlation measures are symmetric.

Cumulative gain based metrics: They take one ranking and return a corresponding score implicitly
comparing with an underlying ordering, which ranks first elements with higher relevance. Thus, they
are automatically excluded from being symmetric.

Error based metrics: From their definitions, it follows that it is not important which among the two is
the ground truth permutation, and the two rankings are interchangeable.

For correlation based and error based metrics, it is easy to prove that they satisfy the symmetry property
by substituting in their definition the two orderings of interest σ and ν; from their definitions, proving that
m(σ, ν) = m(ν, σ) is trivial.

In conclusion, all metrics involving a ground truth are not symmetric; Comparing with a ground truth ranking
is often essential in some applications, while when looking for a fair comparison among rankings, it is often
preferable to use symmetric evaluation metrics instead of relying on ground truths. The symmetry property is
essential and also studied in other contexts, for example in Gösgens et al. (2021a) and Gösgens et al. (2021b).

6.3 Robustness

Given two permutations τ, ν ∈ Sn, a ranking evaluation metric m reflects how similar ν and τ are. We refer
with robustness properties to a series of properties evaluating the resistance of a ranking evaluation metric to
small changes in the rankings. We expect, in principle, that if τ and σ differ only by a swap, they are not
evaluated as far from each other as in the case that they differ by an entire cycle containing several elements.
Definition 6. We say that a ranking evaluation metric is Type I Robust if a small change in one of the
rankings implies small changes in its evaluation.

Given two rankings σ, ν in Sn and i, j ≤ n, we will consider two types of small changes in rankings:
Single swaps. We evaluate how the swap of two elements i, j in the ranking is impacting the evaluation
metric, i.e., the absolute value of the difference among the two results

|m(σ, ν) − m(σ, ν ◦ (i j)|; (5)

Sliding of the ranking. We evaluate how a sliding, i.e., a cycle of the n elements FCn = (1 2 · · · n),
impacts the evaluation metric. We evaluate then the difference in absolute value

|m(σ, ν) − m(σ, ν ◦ FCn)|. (6)

In Table 2, we report the results for the Type I Robustness on 1000 different randomly drawn pair of rankings
with lengths 10, 50, and 100. We average the absolute value from equation 5 and equation 6 over the trials
and report the approximated results. When we observe only minimal differences from zero, we use > and >>
to indicate their approximated entity and round the numbers using two decimals.

9
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Definition 7. We say that a ranking evaluation metric is Type II Robust if it is an invariant concerning the
composition of permutations, i.e., it holds m(µ, σ) = m(µ ◦ ν, σ ◦ ν), ∀σ, ν ∈ Sn.

This property was mentioned in Diaconis (1988) as right-invariance and in Hassanzadeh & Milenkovic (2014)
(Axiom I.2) as resistance to item relabelings; in Hassanzadeh & Milenkovic (2014) also the left-invariance is
considered as potentially useful. Using the cycle decomposition theorem, we limit to the case ν = (j k) ∈ Sn;
Type II Robustness property investigates whether a change in the importance ordering in both rankings
eventually affects their evaluation. We expect this to be the case when the ranking position is considered a
relevance score, particularly in the case of cumulative gain metrics.
Proposition 6.2. MSE, RMSE, MAE, MAPE, R2 score, Kendall’s τ score and Spearmann’s ρ are the only
metrics considered in this paper satisfying m(σ, ν) = m(σ ◦ (j k), ν ◦ (j k)), ∀σ, ν ∈ Sn.

Proof of Proposition 6.2. MSE, RMSE, MAE, MAPE, R2 score: decomposing the sum in the definition
of MSE(σ ◦ (j k), ν ◦ (j k)) among addends involving k or j and others, it is easy to get to MSE(σ, ν).
Similarly, for the other metrics. Kendall’s τ : it is enough to note that the number of discordant and
concordant pairs does not change when applying a swap to both the rankings σ and ν. Spearmann’s
ρ: similarly to the case of the error based metric, we decompose the sum defining the Spearmann’s ρ in
elements involving j and k and others; manipulating the definition, we eventually get the thesis. Unicity:
For all the other metrics, finding pairs of rankings providing counterexamples is trivial. For cumulative gain
based metrics, the swaps change the association between the position in the ranking and the relevance score.
For confusion matrix based metrics, swaps change both the set of relevant and retrieved elements (but not
equally); Thus, the evaluation is different after applying swaps in both rankings.

6.4 Sensitivity

The sensitivity property is particularly useful in application to high dimensional spaces where rankings are
not fully explored, e.g., in RS and IR methods. RS methods suggest elements in high dimensional space to
the users in order of importance, where the first ranked elements correspond to the first suggestions. The
users often do not explore the rankings fully; Hence, the relevant information must be available among the
first-ranked elements. Many evaluation metrics measure the ability of the RS to return a partially correct
ranking of the first k items relying on the fact that the sensitivity of the metric to the permutations @k is
intuitively more meaningful than a precise comparison among the complete rankings. We briefly summarize
the behavior of the various cluster of metrics.

confusion matrix based metrics all are metrics@k and set based metrics; Thus, the ordering of elements
before and after k does not matter.

cumulative gain based metrics are explicitly based on the position in the rankings; Hence, they are
sensitive to positional changes.

correlation based and error based metrics being all classified as flat metrics, they equally evaluate the
ordering before and after an arbitrary index k.

We introduce the definition of width swap dependency, formalizing a property that prevents the metrics from
being sensitive to positions in the rankings.
Definition 8. Given a swap (i j) ∈ Sn and |i − j| its width, m is width swap dependent (WSD) if it
evaluates equally swaps with the same width; otherwise, it is called non-width swap dependent.
Lemma 6.3. The correlation based metrics are width swap dependent.

Proof of Lemma 6.3. Spearman’s rank correlation coefficient has an equivalent formulation dependent
only on the differences di = σ(i) − ν(i); The fact that the elements appearing in the ranking are all distinct
implies the WSD property directly. To prove the claim for Kendall’s τ (NDPM is similar), we an arbitrary
n and a swap (i j) ∈ Sn of width d. We proceed by induction on d and prove that Kendall’s τ is based only
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on d independently from i and j. If d = 1, then the swap is of the form (i i + 1); in this case, the number
of concordant pairs is

(
n
2
)

− 1, and the only discordant pair is given by (i i + 1). Recalling the definition
of Kendall’s τ , we want to prove that Kτ = |{concordant pairs}|−|{discordant pairs}|

(n
2);

= (n
2)−4|i−j|+2

(n
2) . This holds

for d = 1 as Kτ (id, (i j)) = (n
2)−1+((n

2)−((n
2)−1))

(n
2) = (n

2)−2
(n

2) . We now suppose that it holds for d and prove it
for d + 1; the number of discordant pairs in a swap of length d + 1 equals the number of elements that are
not anymore concordant with i, i.e., d + 1, plus the number of elements that are not anymore concordant
with j minus 1, i.e., d; summing up we get Kτ (id, (i j)) = (n

2)−(2d+1)+((n
2)−((n

2)−(2d+1)))
(n

2) = (n
2)−4(d+1)+2

(n
2) . We

conclude that Kendall’s τ is width-swap-dependent.

Definition 9. Consider i, j, k, l ∈ {1, . . . , n} such that i < j < k < l and (i j), (l k) having the same width.
A ranking evaluation metric m is sensitive if the swap (i j) has a different impact on the metric than (k l) in
the evaluation metric.

This property evaluates if a metric assigns more importance to the upper part of the ranking, hence, being
particularly useful when n is large. For each metric and each pair of disjoint swaps, we determine whether the
metrics evaluate differently swaps happening at various stages in the ranking; The results are summarized in
Table 2. The sensitivity property might be necessary for evaluating feature selection and IR/RS techniques,
while it is less critical for rank aggregation evaluation.

6.5 Stability

Evaluating rankings @k might be tricky; if there is a huge difference between the evaluation @k and @k + 1,
the rankings are not assured to be similar as k could be used as a hyperparameter. As trust and fairness
gained importance in the last years, non-stable evaluations must also be tackled. The stability property asks
whether a ranking evaluation metric is robust when including additional elements among the relevant items.
Definition 10. A ranking evaluation metric m is stable if, for any two rankings σ, ν ∈ Sn, it holds
|m@k(σ, ν) − m@k+1(σ, ν)| < ϵk with ϵk small. Moreover, the sequence {ϵk}k satisfies limk→n ϵk = 0.

For large k, the differences between the evaluations @k and @k + 1 wiggle around zero. We evaluate if it
is possible to approximate ϵk with 1

k for each n ∈ N; In Table 2, we report the results of the conducted
experiments. We randomly draw 1000 pairs of rankings in S1000; for each pair, we compute the absolute
values as stated in 10 and average the results over the number of trials; we finally count the number of times
that 10 holds with ϵk = 1

k . As a criterion for a metric to be stable, we used that it should be satisfied in
97.5% of the cases. For metrics where the number of relevant elements is not essential, including the error
based metrics, we got that 10 is satisfied in all the cases.

6.6 Distance

In mathematics, the terms metric and distance are considered synonymous. This section discusses whether
the ranking evaluation metrics define a distance notion on symmetric groups. Also Diaconis (1988) and
Hassanzadeh & Milenkovic (2014) mentioned the importance of having distances on symmetric groups. We
show that most of them are not metrics in the mathematical sense and further investigate whether they
induce distances.
Definition 11. A distance (or mathematical metric) on a set X is a function d : X × X → [0, ∞) : (x, y) 7→
d(x, y) ∈ R+ such that for all x, y, z ∈ X, (1) the identity of indiscernibles, i.e., d(x, y) = 0 ⇔ x = y, (2) the
symmetry, i.e., d(x, y) = d(y, x), and (3) the triangle inequality, i.e., d(x, y) ≤ d(x, z) + d(z, y) are satisfied.
Definition 12. A ranking evaluation metric m on Sn is linearly transformable into a distance if there exists
a linear function f such that fm(σ, ν) = f(m(σ, ν))∀σ, ν ∈ Sn and fm is a distance.

We know a priori that any evaluation metric not satisfying the identity of indiscernibles or the symmetry
properties is not a distance; furthermore, we show in Section 7 that it is not even linear equivalent to a
distance. We limit our study to ranking evaluation metrics for which the first two properties hold and check
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whether the triangle inequality is also satisfied. We distinguish two cases based on the sign of the coefficient
defining the linear transformation and, in some cases, limit to positively linear equivalent metrics where all
coefficients are positive real numbers.
Definition 13. A function fm is positive definite if it holds fm(σ, ν) ≥ 0, ∀σ, ν ∈ Sn.

Given Definition 3, to check whether fm is positive definite it is enough to check whether fm is a bounded
function; given that m satisfies the maximal agreement property, its linear equivalent m̃ defined as

m̃(σ, ν) = mmax − m(σ, ν) (7)

satisfies the positive definiteness property. A change in the ordering in which rankings are evaluated by m̃
is a consequence of the change of sign in equation 7; this implies that the number of disagreements among
metrics is reversed but still preserves the consistency definition. We refer to metrics satisfying both the
maximal and minimal agreement properties as bounded. Ideally, m satisfies m(σ, ν) = mmax if σ = ν and
m(σ, ν) = mmin if ν is the reversed order of σ (see Appendix A). We consider two dimensional functions
f : Sn × Sn → R, where f either refers to a ranking evaluation metric m : Sn × Sn → R or the induced
function fm : Sn × Sn → R in the case that m : Sn → R.
Definition 14. A function fm satisfies the triangle inequality if, ∀n ∈ N, it holds fm(σ, µ) ≤ fm(σ, ν) +
fm(ν, µ), ∀σ, ν, µ ∈ Sn.

Given m, we consider two options as potential induced distances, i.e., fm(σ, ν) = m(σ) − m(ν) or f̃m(σ, ν) =
|m(σ) − m(ν)|. DCG and nDCG are the only two metrics satisfying the IoI property essential for a metric
being a distance. Hence, we limit our study to DCG and nDCG; Moreover, they are linearly equivalent and
it is sufficient to prove the result only for one of them.
Proposition 6.4. fm is not a distance while f̃m is a distance, where m is either DCG or nDCG.

Proof of Proposition 6.4. We must prove the three properties defining a distance for m = DCG.

Identity of Indiscernibles property: Proposition 6.1 states that DCG satisfies the IoI property. It follows
that fm(σ, ν) = 0 ⇔ σ = ν; Similarly, f̃m(σ, ν) = 0 ⇔ ν = σ.

Symmetry property: It is easy to find pairs of permutations σ, ν ∈ Sn such that fDCG(ν, σ) = fDCG(σ, ν);
In particular, fDCG satisfy the anti-symmetric property, i.e., fDCG(ν, σ) = DCG(ν) − DCG(σ) =
−[DCG(σ) − DCG(ν)] = −fDCG(σ, ν). On the other hand, f̃DCG satisfies the symmetry property.

Triangle inequality: The triangle inequality property is satisfied if ∀ν, σ, µ ∈ Sn holds fDCG(σ, µ) ≤
fDCG(σ, ν) + fDCG(ν, µ). Expanding the formula of DCG we get

fDCG(µ, σ) = DCG(µ) − DCG(σ) = DCG(µ) − DCG(ν) + DCG(ν) − DCG(σ) = fDCG(µ, ν) + fDCG(ν, σ);

The equality holds ∀ν, σ, µ ∈ Sn; for f̃DCG, the property still holds with the inequality:

f̃DCG(µ, σ) = |DCG(µ) − DCG(σ)| = |DCG(µ) − DCG(ν) + DCG(ν) − DCG(σ)| ≤
≤|DCG(µ) − DCG(ν)| + |DCG(ν) − DCG(σ)| = f̃DCG(µ, ν) + f̃DCG(ν, σ).

Positive definiteness: f̃DCG is defined as an absolute value; the claim obviously holds. Instead, fDCG can
assume both positive and negative values. This concludes the proof.

7 Relation among the properties

We introduced some desirable properties for ranking evaluation metrics: each of them considering different
aspects of the metrics, we can prove that they interact at certain levels. In particular, the distance property
is a summary of three different properties: the symmetry and maximal agreement property, introduced in the
previous sections, and the triangle inequality property. Therefore, whenever one of the first two properties
is not satisfied, it is meaningless to check whether the triangle property holds. Furthermore, the maximal
agreement property (Definition 15) is equivalent to the positive definiteness, i.e., the values assigned by m are
all non-negative. Most properties are satisfied by the metrics up to linear equivalence.
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Proposition 7.1. Given m̃ and m ranking evaluation metrics, if m̃ and m are linearly equivalent then (1) if
m satisfies the maximal agreement property, also |m̃| does; if m is symmetric, m̃ is also symmetric; if m
satisfies the IoI property, also m̃ does; (2) m̃ and m are consistent.

Proof of Proposition 7.1. (1) We know that m and m̃ are linear equivalent, then it exists a function f and
a, b ∈ R such that ∀σ, ν ∈ Sn, m̃(σ, ν) = f(m(σ, ν)) = a · m(σ, ν) + b.

Maximal agreement We need to distinguish two cases: a > 0 and a < 0. The case a = 0 is trivial. If a > 0,
for any rankings σ, ν, it holds m̃(σ, σ) = a · m(σ, σ) + b ≥ a · m(σ, ν) + b = m̃(σ, ν). Thus, m̃ satisfies the
maximal agreement property. Similarly, if a < 0, m̃(σ, σ) = a · m(σ, σ) + b ≤ a · m(σ, ν) + b = m̃(σ, ν). Thus,
m̃(σ, σ) ≤ m̃(σ, ν) holds ∀σ, ν, i.e., −m̃ satisfies the maximal agreement property.

Symmetry If m is symmetric this means that ∀σ, ν orderings, m(σ, ν) = m(ν, σ). Then m̃(σ, ν) =
a · m(σ, ν) + b = a · m(ν, σ) + b = m̃(ν, σ) proving that m̃ is symmetric too.

Identity of indiscernibles If m satisfies m(σ, ν) = mmax ↔ σ = ν, substituting the condition in the linear
equivalence, we get that m̃ satisfies the IoI property too; the existence of mmax is unnecessary.

(2) it is an obvious consequence of the definition of monotone functions. For any x1, x2 in dom(f), f is a
monotone increasing function if x1 ≥ x2 implies f(x1) ≥ f(x2) in the case of positive linear equivalence. The
same holds with ≤ for decreasing monotone function. Thus this concludes the proof.

Proposition 7.2. The identity of indiscernibles implies the maximal agreement property.

Proof. To prove that the opposite is not valid, it is enough to find a ranking evaluation metric that satisfies
the maximal agreement property. Still, the IoI does not hold. The precision gives a trivial example; although
the maximal agreement property is satisfied (or equivalently, as precision@k is positive definite), we saw
various examples where the IoI is not satisfied. On the other hand, consider a ranking evaluation metric m
and and its linear equivalent metric m̃(σ, µ) = mmax − m(σ, µ) for any σ, µ ∈ Sn; m̃ satisfies the IoI property
if m̃(σ, µ) = 0 ↔ σ = µ.

8 Conclusion and discussion

We provide theoretical and experimental insights on the necessity of careful choices for ranking evaluation on
symmetric groups; We showed that non-consistent evaluations appear when using ranking evaluation metrics
and proposed theoretical properties allowing for a deeper understanding of these metrics. We illustrated how
most metrics do not distinguish small changes among rankings, how single swaps and slides of the rankings
influence their evaluation, and how robust the metrics are. We additionally gave insights on the implications
among the defined properties and tried to obtain a distance on the symmetric groups. We defined several
mathematical properties, each highly desirable in some contexts and less in others. The IoI property is
desirable when looking for metrics highly sensitive to small changes, such as fairness in rankings or top k
items in RS. Conversely, Robustness assures that small changes do not have a huge impact on the evaluations.
Combining these two properties assures contemporaneously that small changes are not overlooked but do not
significantly impact the scores. When a ground truth ranking is not available, it is important to use only
symmetric metrics deriving from ground truth the symmetry. Sensitivity is crucial for RS and IR techniques
evaluation, where changes in the top part of the rankings are more influential than in the lower part. Stability
is generally important in evaluating rankings @k; the proposed analysis gives a general idea of the ability
of metrics to generate a stable evaluation. However, we recommend considering evaluating the impact @k
and @(k + i) with i arbitrarily chosen, in particular, when k << n. Finally, the distance property is defined
to complete the proposed analysis and highlights the chance that mathematical terms are misused in many
machine learning contexts.

Despite the rough evaluation of some metrics, they are used in the literature as one of the most powerful
techniques to evaluate RS, IR, feature selection, and rank aggregation methods; examples are the confusion
matrix-based metrics that do not allow for precise comparisons among orderings. On the other hand,
metrics based on errors satisfy most of the proposed properties but are rarely used for rankings. Cumulative
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gain-based metrics offer a good compromise among correlation and confusion matrix based metrics; the
necessity of ground truth and relevance labels, however, is their biggest weakness. Having collected the
obtained theoretical and experimental results in a concise table, we allow for insights of immediate use.
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A Are the metrics interpretable?

Given the importance of trust, fairness, and explainability for machine learning methods, one could then ask
how interpretable the scores assigned by the metrics are. We first need some definitions.
Definition 15. A ranking evaluation metric m is said to satisfy the maximal agreement property if (a)
m(σ, σ) = mmax, ∀σ ∈ Sn and (b) m(σ, ν) ≤ mmax, ∀ν, σ ∈ Sn. We say that m is lower-bounded if it exists a
real number mmin such that m(σ, ν) ≥ mmin, ∀ν, σ ∈ Sn. An evaluation metric that admits a lower bound is
said to satisfy the minimal agreement property.

We define some properties for metrics to be interpretable, i.e., (1) each ranking is maximally similar to
itself and, given n ∈ N, this value is constant (we refer to it with mmax), i.e., m(σ, σ) = mmax, ∀σ ∈ Sn; (2)
m satisfies the maximal agreement property; (3) there exists a lower bound mmin for any possible pair of
rankings, i.e., m(σ, µ) ≥ mmin, ∀σ, µ ∈ Sn.

The maximal agreement property says that each ranking is maximally similar to itself, and no other ranking
can achieve a higher score than mmax. Property (1) states that mmax is independent of the length of the
rankings. Together with the maximal agreement, it implies that a ranking evaluation metric is a monotone
increasing function of the similarity of two rankings: the more similar two rankings are, the higher the score
they get when evaluated using an ’interpretable’ metric. If mmax is independent of the rankings’ length, we
can compare the similarity among rankings independently of the size of the rankings themselves. However,
this property is hardly satisfied by any metrics; each metric can be normalized such that mmax results
independent from n. The only metrics, among the ones considered in this paper, automatically satisfying
this property are Kendall’s τ score and Spearmann ρ. We underline that for some metrics, e.g., error-based
metrics, the lowest scores are assigned to maximally similar pairs of rankings; it can be tested whether linear
transformations of these metrics through equation 7 allow satisfying the aforementioned properties.

A ranking evaluation metric satisfying the maximal agreement property is also upper-bounded. For the sake
of interpretability, we could check whether a metric m satisfies m(ρ−1, ρ) = mmin where ρ−1 indicates the
inverse ranking. However, this is not true for most ranking evaluation metrics. Kendall’s τ satisfies this
property. However, it is already questionable which is the inverse of a ranking, i.e., if the furthest possible
ranking is the one ordering first the last elements and last the first elements; Using the inverse of the ranking
in the symmetric group operation ◦ also does not provide an excellent practical alternative. Assessing whether
metrics for permutations are humanly interpretable is not new and has already been discussed in Diaconis
(1988); However, then as well as now, the concept of interpretability lacks a unified definition of what
interpretability means, a common issue in most cases where interpretability found interest and application.
Thus we leave this section open and do not argue further on the interpretability of the criteria defined.

B Proofs

Extended proof of Lemma 6.3. The Spearman’s rank correlation coefficient is width swap dependent; this
is shown directly by the equivalent formulation of the metric dependent only on the differences di = σ(i)−ν(i)
additionally knowing that the elements appearing in the ranking are all distinct.

We prove the proposition for Kendall’s Tau (for NDPM it is similar); We fix the symmetric space Sn for an
arbitrary natural number n and a swap (i j) ∈ Sn of width d. We proceed by induction on the width d and
prove that Kendall’s τ is based only on d independently from i and j.

If d = 1, then the swap is of the form (i i + 1); recall the definition of Kendall’s Tau

Kτ = |{concordant pairs}| − |{discordant pairs}|(
n
2
)
;

;

hence, in this case, the number of concordant pairs is
(

n
2
)

− 1, and the only discordant pair is given by (i i + 1).
We want to prove that

Kτ =
(

n
2
)

− 4|i − j| + 2(
n
2
) .
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This holds for d = 1 as Kτ (id, (i j)) = (n
2)−1+((n

2)−((n
2)−1))

(n
2) = (n

2)−2
(n

2) . Suppose that it holds for d and we
prove it for d + 1; the number of discordant pairs in a swap of length d + 1 equals the number of elements that
are not anymore concordant with i, i.e., d + 1, plus the number of elements that are not anymore concordant
with j minus 1, i.e., d; summing up we get

Kτ (id, (i j)) =
(

n
2
)

− (2d + 1) +
((

n
2
)

−
((

n
2
)

− (2d + 1)
))(

n
2
) =(

n
2
)

− 4(d + 1) + 2(
n
2
)

Thus Kendall’s Tau is width-swap-dependent.

Extended proof of Proposition 6.4. We have to prove that DCG satisfies the three properties defining a
distance.

Identity of Indiscernibles property: In Section 6.1 we proved that DCG satisfies the Identity of Indis-
cernibles property. It follows that

fm(σ, ν) = 0 ⇔ σ = ν; (8)

Similarly, f̃m(σ, ν) = 0 if and only if ν = σ

Symmetry property: it is easy to find pairs of permutations σ, ν ∈ Sn such that fDCG(ν, σ) = fDCG(σ, ν);
In particular, we can prove that fDCG satisfy the anti-symmetric property, i.e.,

fDCG(ν, σ) = DCG(ν) − DCG(σ) =
− [DCG(σ) − DCG(ν)] = −fDCG(σ, ν).

On the other hand, f̃DCG satisfies the symmetry property.

Triangle inequality The triangle inequality property is satisfied if for any ν, σ, µ ∈ Sn holds

fDCG(σ, µ) ≤ fDCG(σ, ν) + fDCG(ν, µ). (9)

Expanding the formula of DCG we get

fDCG(µ, σ) = DCG(µ) − DCG(σ)
DCG(µ) − DCG(ν) + DCG(ν) − DCG(σ) =
fDCG(µ, ν) + fDCG(ν, σ);

The equality holds for each ν, σ, µ ∈ Sn; in the case of f̃DCG the property still holds with the
inequality:

f̃DCG(µ, σ) = |DCG(µ) − DCG(σ)|
|DCG(µ) − DCG(ν) + DCG(ν) − DCG(σ)| ≤
|DCG(µ) − DCG(ν)| + |DCG(ν) − DCG(σ)| =
f̃DCG(µ, ν) + f̃DCG(ν, σ).

Positive definiteness: f̃DCG is obviously positive definite because of the absolute value; instead, fDCG

can assume both positive and negative values.

This concludes the proof.
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Extended proof of Proposition 7.1. We prove the properties in (1) one by one. We know that m and m̃ are
linear equivalent, then it exists a function f such that

m̃(σ, ν) = f(m(σ, ν)) = a · m(σ, ν) + b

for any σ, ν and some a, b ∈ R.

Maximal agreement We need to distinguish two cases: a > 0 and a < 0. The case a = 0 is trivial. If
a > 0, for any rankings σ, ν, it holds

m̃(σ, σ) = a · m(σ, σ) + b ≥ a · m(σ, ν) + b = m̃(σ, ν).

thus m̃ satisfies the maximal agreement property. If a < 0,

m̃(σ, σ) = a · m(σ, σ) + b ≤ a · m(σ, ν) + b = m̃(σ, ν).

Thus, m̃(σ, σ) ≤ m̃(σ, ν) holds for any rankings σ, ν, i.e., −m̃ satisfies the maximal agreement
property; this concludes the proof. As already noted before, either we limit the study to positive
linear equivalences, or we need to distinguish multiple cases.

Symmetry If m is symmetric this means that for all σ, ν orderings, m(σ, ν) = m(ν, σ). Then

m̃(σ, ν) = a · m(σ, ν) + b

= a · m(ν, σ) + b = m̃(ν, σ)

proving that m̃ is symmetric too.

Identity of indiscernibles If m satisfies the identity of indiscernibles property, then

m(σ, ν) = mmax ↔ σ = ν

a · m(σ, ν) + b = a · mmax + b ↔ σ = ν

m̃(σ, ν) = m̃max ↔ σ = ν

therefore m̃ satisfies the identity of indiscernibles property. We note that assuming the existence of
mmax is unnecessary.

This complete the proof of Proposition 6.1.

To prove (2), it is enough to note that this is an obvious consequence of the definition of monotone functions.
For any x1, x2 in dom(f), f is a monotone increasing function if x1 ≥ x2 implies f(x1) ≥ f(x2) in the case of
positive linear equivalence. The same holds with ≤ for decreasing monotone function. Thus this concludes
the proof.

Proof of Proposition 7.2. To prove that the opposite is not true, it is enough to find a ranking evaluation
metric that satisfies the maximal agreement property, but the identity of indiscernibles does not hold. A trivial
example is given by the precision@k; although the maximal agreement property is satisfied (or equivalently, as
precision@k is positive definite), we saw various examples where the identity of indiscernibles is not satisfied.

On the other hand, consider a ranking evaluation metric r and its linear equivalent metric given by r̃(σ, µ) =
cmax − r(σ, µ) for any σ, µ ∈ Sn; then r̃ satisfies the identity of indiscernibles property if r̃(σ, µ) = 0 ↔ σ =
µ.

C Metrics’ definitions

We give some insights on the metrics we mentioned and analyzed throughout the paper; we also properly
define here some of the terms and metrics we used.
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C.1 Confusion matrix based metrics

Consider a set N of n elements, a subset R ⊂ N of the relevant elements and a subset S ⊂ N of the
retrieved elements; the confusion matrix, i.e., a C = N2×2, is defined such that C1,1 = |S ∩ R|, C1,2 = |S \ R|,
C2,1 = |R \ S| and C2,2 = n − |S ∪ R|. Each metric in this group is defined on the sizes of intersections,
unions or differences among the sets R, S and N . Given two rankings σ, τ ∈ Sn and two natural numbers
j, k < n, we can define the set of relevant elements R being the first jths ranked elements by σ and the set of
retrieved elements being the first kths ranked elements by τ , i.e., R = set

(
σ|j

)
and S = set

(
τ|k

)
.

General properties. Defined only on set based quantities, the ordering of the elements appearing before
and after j (or k) is irrelevant. Some of these metrics represent a powerful tool for evaluating and comparing
rankings. Their strength is well founded on the simplicity and interpretability of the definitions; however, one
should consider more sophisticated evaluation metrics when the interest is in the rankings rather than the
ability to retrieve the relevant elements.

We shortly define the used metrics and, for sake of readability, we drop the notation (σ, τ); we consider k = j
throughout the manuscript. The precision represents the fraction of the number of retrieved elements that are
relevant, i.e., precision = |R∩S|

|S| . The recall represents the fraction of relevant elements successfully retrieved,
i.e., recall = |R∩S|

|R| ; It is often referred to as sensitivity. The Fallout represents the proportion of non-relevant
elements that are retrieved, i.e., fallout = |(N\R)∩S|

|N\R| . The F-score is the harmonic mean of precision and
recall where precision and recall can also be not be evenly weighted Fβ = (1+β2)·(precision+recall)

β2precision+recall ; if β = 1
then precision and recall are evenly weighted and we refer to it as F1-score. The accuracy is defined as
ACC = |S∩R|+n−|S∪R|

n . The Jaccard index is defined as Jaccard = |S∩R|
|S∪R| . The Matthews correlation coefficient

(MCC) is defined as MCC = |R∩S|(n−|S∪R|)−|S\R||R\S|
|S||R|(n−|R|)(n−|S|) . Given the quantities TPR = |R∩S|

|R| , TNR = n−|R∪S|
n−|R| ,

FNR = 1 − TPR, FPR = 1 − TNR, FDR = |S\R|
|S| and NPV = n−|R∪S|

n−|S| , we can also define the informedness,
i.e., informedness = TPR + TNR − 1, the markedness, i.e., markedness = 1 − FDR + NPV − 1, the false
omission rate FOR, i.e., FOR = 1 − NPV, the prevalence threshold PT, i.e., PT =

√
T P R·F P R−F P R

T P R−F P R , the
Fowlkes–Mallows index FM, i.e., FM =

√
(1 − FDR)TPR, the balanced accuracy BA, i.e., BA = TPR+TNR

2 ,
and finally the Positive likelihood ratio LR+, i.e., LR+ = TPR

1−TNR the Negative likelihood ratio LR-, i.e.,
LR- = 1−T P R

T NR .

C.2 Correlation measures

They explicitly rely on the correlation among the two rankings and are often used in statistical applications.
In contrast to confusion matrix based metrics, they consider all the length of the rankings. Kendall’s τ
coefficient and Spearmann ρ consider the permutation of the elements over arrays of length n Kendall (1938).
The Kendall’s τ coefficient is based on the definition of concordant and discordant couples (two elements i, j
are concordant in σ, τ if σ(i) < σ(j) and τ(i) < τ(j) or the same holds with >). In particular,

τ = |{concordant pairs}| − |{discordant pairs}|(
n
2
)

Kendall’s τ varies in the interval [−1, +1]: τ = 1 if σ and τ agree perfectly while τ = −1 if one ordering is
the reverse of the other. Furthermore, if σ and ν are independent then τ ≈ 0.
The Spearmann score is defined as the Pearson correlation coefficient and in the case that the n ranks are
distinct integers, it can be computed using the formula

r = 1 −
6

∑n
i=1(σ(i) − τ(i))2

n(n2 − 1) .

As a drawback, correlation based metrics assign the same importance to the first part as to the last part
of the rankings; as they equally evaluate exchanges in the first-ranked items and in the ending part of the
ranking, they do not properly fit with evaluating orderings. Both Spearmann’s ρ and Kendall’s τ directly
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penalize swaps of ’further located’ elements; Considering two rankings σ, τ that differ for one single swap
(i j), if i, j are far in the rankings, then they will evaluate their difference as being bigger as if they would be
nearer.

Finally, the Normalized Distance-based Performance Measure NDPM from Yao (1995): Given σ, τ and the
following quantities

C+ =
∑
i,j

sgn(σ(i) − σ(j))sgn(τ(i) − τ(j))

C− =
∑
i,j

sgn(σ(i) − σ(j))sgn(τ(j) − τ(i))

Cu =
∑
i,j

[sgn(σ(i) − σ(j))]2

Cs =
∑
i,j

[sgn(τ(i) − τ(j))]2

Cu0 = Cu − C+ − C−

from their combination, we get NDPM(σ, τ) = C−+ 1
2 Cu0

Cu
.

C.3 Cumulative gain based metrics

Constructed with the specific aim of evaluating whether the ordering of relevant elements is respected, they use
relevance scores assigned to each element. We assume that the relevance score of an element i is represented
by all different relevant scores; in particular, we consider reli = σ(i) allowing to fairly compare with other
metrics that do not have access to relevance scores of items, but only their position. We initially considered
assigning reli = 1 to all relevant elements; however, this immediately would imply that DCG and nDCG do
not satisfy the IoI property as relevant elements are indistinguishable. The Discounted cumulative gain DCG
assumes that highly relevant items appearing lower in a search result list should be penalized as the graded
relevance value is scaled to be logarithmically proportional to the position of the item; the definition reads
DCG =

∑n
i=1

σ(i)
log2(i+1) . The Normalized discounted cumulative gain nDCG is a normalization of the DCG

through the normalization coefficient IDCG, computed by sorting all elements by their relative relevance, and
producing the maximum possible DCG. The two metrics nDCG and DCG are linearly equivalent; Thus, as
Figure 1 already empirically showed, there are no inconsistencies among them.

Strictly connected to the cumulative gain metrics is the Mean Reciprocal Rank MRR that evaluates the
position of each relevant element in the ranking and computes the average of the reciprocal positional ranking
of the results, i.e., MRR = 1

|R|
∑|R|

i=1
1

σ(i) ; thus, it is the relevance scores’ harmonic mean. The meanRank is
defined as meanRank(σ) = 1

|R|
∑|R|

i=1 σ(i) and the GMR as the geometric mean of the first k ranked elements
of the ranking σ.

C.3.1 Error based metrics

Although meant to evaluate continuous and discrete labels, error-based metrics found application in evaluating
rankings. They do not consider the ordering of items but compute the difference in each position, sum it
all together, and return an average. We will briefly provide the definitions of each metric in this section.
Among them, we find the mean squared error MSE, defined as MSE(σ, τ) =

∑n
i=1(σ(i) − τ(i))2 for

σ, τ ∈ Sn, and the mean absolute error MAE, defined as MAE(σ, τ) =
∑n

i=1 |σ(i) − τ(i)|. The rooted
mean squared error RMSE and the rooted mean absolute error RMAE are their respective rooted versions,
i.e., RMSE =

√
MSE and RMAE =

√
MAE. The symmetric mean absolute percentage error SMAPE

is defined as SMAPE(σ, τ) = 100
n

∑n
i=1 2 |σ(i)−τ(i)|

σ(i)+τ(i) for σ, τ ∈ Sn. Finally, the R2 score is defined as

R2score = 1 −
∑n

i=1
(σ(i)−τ(i))2∑n

i=1
(σ(i)− 1

n

∑n

j=1
τ(j))2 .
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