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Abstract

Federated Learning (FL) is designed to prevent
data leakage through collaborative model train-
ing without centralized data storage. However,
it is vulnerable to reconstruction attacks that re-
cover original training data from shared gradients.
To optimize the trade-off between data leakage
and utility loss, we first derive a theoretical lower
bound of reconstruction error (among all attack-
ers) for the two standard methods: adding noise,
and gradient pruning. We then customize these
two defenses to be parameter- and model-specific
and achieve the optimal trade-off between our ob-
tained reconstruction lower bound and model util-
ity. Experimental results validate that our methods
outperform Gradient Noise and Gradient Pruning
by protecting the training data better while also
achieving better utility. The code for this project
is available here.

1. Introduction

Recent advancements in machine learning have led to re-
markable achievements across multiple domains. These
successes are largely driven by the ability to gather vast,
diverse datasets to train large, powerful models. However,
this can be challenging to obtain in certain sectors such as
healthcare and finance due to concerns about privacy and
institutional restrictions.

Federated or Collaborative Learning (FL) (McMahan et al.,
2017) has emerged as a solution to these concerns. Feder-
ated learning is a machine learning approach where multiple
institutions or devices collaboratively train a model while
keeping their data localized. Instead of sharing raw data,
each participant shares model updates, aggregated centrally
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Figure 1. DP-SGD treats all parameters with the same vulnerability,
while our method distinguishes the vulnerability of each parameter
and designs a customized defense strategy.

to train a global model that benefits from all participants’ in-
sights without compromising data privacy. The assumption
is that the shared model weights or intermediate gradients
contains less information about the training data.

However, FL is not immune to privacy risks, one type of
attack that may harm privacy is the data reconstruction at-
tack via gradient information (Gradient Inversion Attack),
where adversaries attempt to reconstruct original training
data from the shared gradients. Methods such as DLG (Zhu
et al., 2019), CAFE (Jin et al., 2021), and GradInversion
(Yin et al., 2021) have shown the feasibility of these attacks.
To mitigate these risks, several defense mechanisms have
been proposed. The most common approach is perturbing
the gradients, such as DP-SGD (Abadi et al., 2016) and Gra-
dient Pruning (Zhu et al., 2019). Although these methods
offer some level of data protection, they often encounter a
trade-off between maintaining privacy and preserving model
performance (Zhang et al., 2023).

In this work, we optimize gradient noise and gradient prun-
ing to an optimal and parameter-specific defense. These
methods, serving as basic components of more advanced de-
fenses, could be applied to improve these advanced defenses.
Thus, we focus on optimizing these two defenses. A univer-
sal defense strategy provides undifferentiated protection and
is not optimal for utility-privacy trade-offs. (Shi et al., 2022)
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As illustrated in Figure 1, different parameters impact pri-
vacy and utility differently. Therefore the optimal defense
should treat different parameters differently. Our objective
is to optimize the balance between a model’s resilience to
data reconstruction attacks and its training effectiveness.
Our primary contributions are:

* We establish a theoretical lower bound for the expected
reconstruction error, which can be easily evaluated.

* We propose two defense mechanisms—Optimal Gradi-
ent Noise and Optimal Gradient Pruning—that maxi-
mize this bound for a given level of utility.

In Section 2, we provide a brief overview of federated learn-
ing and theoretical backgrounds for our method. In Section
3, we present the theoretical foundation for our lower bound
and optimal defense methods, and present the implementa-
tions of our proposed algorithms. Section 4 evaluates their
effectiveness against data reconstruction attacks in image
classification tasks.

1.1. Related Works

Federated learning (FL) was introduced by McMahan et al.
(2017) as a framework for collaborative model training
without centralized data storage. Differential privacy (DP)
(Dwork et al., 2006b;a; Dwork & Roth, 2014) has been used
to define privacy of the algorithm. Abadi et al. (2016) intro-
duced a differential private SGD algorithm to provide DP
guarantees to the trained model. Stock et al. (2022); Guo
et al. (2022) provided different types of guarantee of privacy
into the model.

However, Zhu et al. (2019) revealed a significant vulner-
ability in FLL by demonstrating how training data can be
reconstructed from shared gradients using the DLG algo-
rithm. This attack was refined through subsequent works,
such as iDLG (Zhao et al., 2020) and Inverting Gradients
(Geiping et al., 2020). More advanced techniques, including
GradlInversion (Yin et al., 2021) and CAFE (Jin et al., 2021),
further enhance reconstruction quality but often rely on ad-
ditional information or specific model architectures. More
works featuring attacks include Wang et al. (2023); Jeon
et al. (2021); Chen & Campbell (2021); Li et al. (2022).

In response to these attacks, several defense strategies have
been proposed. One line of methods perturb the gradients
shared to the server(Sun et al., 2021; Andrew et al., 2021;
Sun et al., 2021), while another line of work focus on di-
rectly preprocessing the data instead of the gradients(Huang
et al., 2020; Zhang et al., 2018; Fan, 2018; Gao et al., 2021).
More details about attacks and defenses could be found
in Zhang et al. (2022); Bouacida & Mohapatra (2021); Je-
gorova et al. (2023). To consolidate research in this area,
Liu et al. (2024) proposed a framework to systematically

analyze the effectiveness of different attacks and defenses.
Balunovic et al. (2021) proposed a framework for evaluating
defenses. Wen et al. (2022) offered an integrated implemen-
tation of attacks and defenses.

In a similar vein, Fay et al. (2023) explored hyperparameter
selection to optimize the privacy-utility trade-off in DP-
SGD, Xue et al. (2024) proposed DP-SGD with adaptive
noise. However, these approaches do not account for the
local parameter landscape, which we address in our work.

The lower bound on the reconstruction error was first intro-
duced in previous work (Liu et al., 2024) except that only a
local approximation was used.

2. Preliminaries

Notations. Let P(A) denote the family of distributions
over the set A. A\ (M), ..., \g(M) represent the eigenvalues
of a matrix M ranked large to small. If not especially men-
tioned then ||-|| represents the ls-norm for vectors and the
Frobenius norm for matrices. For a function f : R® — RO,
denote V. f(x) the Jacobian matrix in R**?.

We denote € R™ the training data generated from a
distribution D. Lg : R™ — R is the loss function param-
eterized by © € RY. The model gradient go(x) € RY is
go(x) = VoLe(x). When no ambiguity, we write g(x)
for brevity. vy is an (random) observation generated from
xz: y = S(g(x)), where S : R? — P(R?) is a random
defense mechanism such as adding noise. R : R — R? is
an algorithm attempting to reconstruct  from y.

2.1. Federated Learning and Data Reconstruction
Attacks

Different from traditional centralized optimization where
we train a model on curated datasets, federated learning
collaboratively train a model while the data remains decen-
tralized and stored locally on clients. This setup intends to
protect users’ sensitive data without directly sharing them.

In FL, each client u; € {u1,...,u,} owns a private dataset
D;, and the global dataset is D = U?:l D;. A central
server aims to train a model © by solving the optimization
problem:

m@inz Z L(x;,0).

i=1 x,€D;

During training, stochastic gradient descent (SGD) is con-
ducted, where a subset of (well-connected and active) clients
U c {1,...,n} will interact with the global server: Each
active client ¢ € U uses a subset D, C D; to create a
minibatch B = J,.; Dj. The global minibatch gradient
Ve L(B,0) is computed as a weighted average of the indi-
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vidual client gradients:
1
VoL(B,O) = > " |DjIVe L(D;, ).

i€U

Each client shares (|D}|, Vo L(D},©")) with the server,
which then updates the model parameters as:

0! « @' —nVeL(B,0).

Although these shared gradients contain less information
than the raw data, there remains a risk of data leakage, as
demonstrated by increasing attention recently (Yin et al.,
2021; Huang et al., 2020; Geiping et al., 2020). This work
focuses on defending local gradients while minimizing the
impact on training utility.

2.2. The Bayesian Cramér-Rao Lower Bound

The data reconstruction problem is essentially the problem
of estimation from random observations. Let 2z € R? repre-
sent training data drawn from a distribution D, y € RE de-
note random observations generated from «, and & (y) be an
estimator of . We will introduce the Bayesian Cramer-Rao
lower bound that relates to the lowest possible estimation
error E[||& — x||?]. First, assume the following regularity
conditions hold (Crafts et al., 2024; Van Trees, 1992):

Assumption 1 (Support). The support of D is either R?
or an open bounded subset of R? with a piecewise smooth
boundary.

Assumption 2 (Existence of Derivatives). The derivatives
[Vap(x,y)], fori =1,...,d, exist and are absolutely inte-
grable.

Assumption 3 (Finite Bias). The bias, defined as

Bla) = / (@(y) — @)p(y | ) dy.

is finite for all x.

Assumption 4 (Exchanging Derivative and Integral). The
probability function p(, y) and estimator &(y) satisfy:

Va / ple,y) [E(y) — =" dy

~ [ V2 (plaw) la(y) -~ 2I") dy
for all x.

Assumption 5 (Error Boundary Conditions). For any
point « on the boundary of supp(D), and any sequence
{x;}22, such that x; € supp(D) and x; — @, we have

These assumptions are satisfied by a wide range of setups.
For image classification, the dataset has bounded support

and the defense a differentiable density function p(x,y).
When we add a small Gaussian noise to the training data,
all Assumptions 1 to 5 hold. (Crafts et al., 2024)

Given these assumptions, the Bayesian Cramér-Rao Lower
Bound is as follows:

Eey [(2(y) — z)(2(y) — )] = Vi = J5h;
where Jp € RP*P is the Bayesian information matrix:

Jg =Egzy [Vm log p(x,y)V log p(x, y)T] .
The matrix Jp can be decomposed into two components:

Jp =Jp+ Jp;
where Jp is the prior-informed term:
Jp =Eq [Valogp(x) Vg logp(z)”] ;
and Jp is the data-informed term:
Jp =Eg [Jr(x)].

Here, J () represents the Fisher information matrix:

Jp(x) = Eyo [Valogp(y | )V logp(y | )] .

3. Methodology

To optimize the trade-off between privacy and training util-
ity, we treat each parameter separately and design defending
strategies customized to the current data batch and model
parameters, instead of a universal strategy like a constant
noise level in DP-SGD. We will first present our derivation
of the reconstruction error lower bound and our definition
of the training utility. Then, we introduce an optimization
objective to find the optimal defense parameters (such as
noise’s covariance matrix) that balance reconstruction error
and utility.

3.1. The Reconstruction Error Lower Bound

To prevent data leakage, our goal is to maximize the lower
bound of the reconstruction error among all reconstruc-
tion algorithms. For a randomized defense mechanism
S : RY — P(RY) (e.g., adding noise to the gradients),
the defended gradient is y ~ S(g(x)). For any reconstruc-
tion algorithm R : R? — R™, the expected reconstruction
error against the defense is:

2
EwwDEyNS(g(m)) ||R(y) - :12” :

Definition 3.1. For a data distribution D € P(R™), a gra-
dient function ¢ : R™ — R, and a defense mechanism
S : R4 — P(RY), the reconstruction error lower bound
Bp,g is the minimum expected reconstruction error among
all reconstruction algorithms R : R? — R™ following
Assumptions 1 to 5:

. 2
min ]EmNDEyNS'(g(m)) ||R(y) - :B” .

BD,S =
R:R4—R™
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We utilize the Bayesian C-R lower bound to lower bound
the reconstruction error lower bound:

Theorem 3.2. Let Bp s be as defined in Definition 3.1.
Under Assumptions I to 5, we lower bound Bp g by:

d2
2D [tr(JF(x))] +d- )\1(.]13) ’

where Jp(x) is given by:

Brs> = (1)

Jp(x) = Eyos(g() [Val0gPs) (¥) Ve log psi) (y) ]
and Jp by:

Jp = Eq [Valog pp () Vs log pp () '] .

Here, Jr(x) depends on the defense method S, while Jp
depends only on the distribution D. If the prior is flat,
)\1 (J p) ~ 0.

Remark 3.3. The lower bound decreases with tr(Jg(x)).
Thus, to improve our reconstruction error lower bound, we
minimize tr(Jp(z)) for our defense method.

3.2. Training Utility

To assess utility, we analyze the model loss after one step
of gradient descent update. Due to the complexity of the
loss landscape, we make an approximation by the first-order
Taylor expansion. The expected loss using the second-order
Taylor approximation may seem more accurate, but could
lead to a case where larger noise increases utility, leading
to an unrealistic result of infinitely large optimal noise. Fay
et al. (2023) analyzed the utility of DP-SGD by using the
lower bound of the expected loss, derived by assuming the
loss function M-smooth. However, this oversimplifies the
loss landscape by using the same isotropic convex function
regardless of training data or model parameters. Optimiz-
ing this bound also requires choosing the optimal learning
rate, while we aim to separate the defense method from the
learning rate to make our defense more general.

To avoid these issues, we use the expectation and variance
of the model loss after one gradient update, approximated
by the first-order Taylor expansion, as our utility measure.
These measures are both independent of the learning rate;
and also contain information about the loss function’s land-
scape. A good defense method should minimally impact
training utility, therefore we maximize the expectation of
the training loss and minimize its variance.

Definition 3.4. Given training data € R™ from distribu-
tion D, a model with d parameters ©, and a loss function
L : R™ x R? — R, the first-order utility of a defense
method .S on x is the expected decrease in the training loss
on x after one gradient update:

Ui(S,0) = ExnpEys(v,L(z,0) Vel(x,0) - y. (2)

The second-order utility is defined as the negative variance
of the training loss on « after the update:
Us(8,0) = —Eg~pVarysv,L(z,0) Vel (T, 0) -y
3

3.3. Optimal Gradient Noise

Gradient Noise. One of the simplest defense methods,
also a step in DP-SGD (Abadi et al., 2016), is to add Gaus-
sian noise to the model gradients before sharing. For a given
covariance matrix 3 € R%*9_ the gradient noise defense is
as follows:

Snoise72(w> = N($7 2) “4)
Optimal Gradient Noise. The first-order utility defined
in Eq. 2 remains constant regardless of the choice of the
covariance matrix X:
Ul(Snoise,Za @) = EmNDVmL<w7 6) : me(:B? @)T
Thus, we focus on maximizing the second-order utility.
Assuming independent noise across parameters (as in DP-
SGD), we limit our analysis to diagonal matrices. Since the

noise added to each parameter are independent, the second-
order utility equals:

U2 (Snoise,Z )

OL(x,0)
Z( o ) Siie (5

For a higher reconstruction error lower bound, we minimize
Ex~p tr(Jp(x)), where:

d 2
)= 3 [Vest@l” ©
i=1 Lt

This decomposition allows us to separate the influence the
defense of each parameter has on utility and privacy, setting
the stage for deriving the optimal noise.

Theorem 3.5 (Optimal Gradient Noise). Under assump-
tions 1 to 5, and assuming Eppg;(x)? > 0 for all i,
U the optimal noise matrix X for a given utility budget
Us(Shoise,=, ©) > —C has diagonal elements:

2
S \/EM | Vags(a)[*

Eapgi(z)?

where X is a constant, and g; is the i-th component of the
gradient g(x) = VLo (x).

'Special cases where certain entries of Eq~pg;(x)? are zero
(e.g., in models with ReL.U activation) are discussed in the ap-
pendix.



Optimal Defenses Against Data Reconstruction Attacks

In the special case where D is supported on a small neigh-
borhood of x, corresponding to the attacker having an ap-
proximation of the data, we could approximate and simplify
the locally optimal noise by using the value at « to replace
the expectations:

| Vagi(2)|

Sl @) = A )

Ax) )

3.4. Optimal Gradient Pruning

Gradient Pruning. Gradient pruning reduces the number
of parameters in the shared gradient by zeroing out less
significant gradients during training. Inspired by gradient
compression (Lin et al., 2018; Tsuzuku et al., 2018), this
approach prunes gradients with the smallest magnitude (Zhu
et al., 2019). It is also the most effective defense against
DLG (Zhu et al., 2019).

For a given set of parameters A, the gradient pruning defense
method Sprune,a : RY — P(R?) is as follows:

0, ifieA,
Sprune,A(x)i - {m if i ¢ A (8)

Optimal Gradient Pruning Under assumptions 1 to 5,
the first-order utility of gradient pruning equals the sum of
the squared unpruned gradients:

igA

U1(S,0)

Since gradient pruning introduces no randomness, an accu-
rate reconstruction is theoretically possible when the number
of unpruned parameters exceeds the input dimension. To
address this problem, we add a small noise to the unpruned
gradients and analyze the noisy version of gradient pruning:
0 ifi € A
S AD (w) — ’ ’ (10)
prune, A, 7 o
N((Ifi, Eiﬂ;), if ¢ ¢ A.
For ¥ = €X, this collapses to the original pruning method
when 3, remains constant and € — 0.

Theorem 3.6 (Optimal Gradient Pruning). Under assump-
tions 1 to 5, and assuming Eopg;(x)? > 0 for all i, the
optimal pruning distribution R for generating A, given the
utility budget

]EANRUl (Sprune,A,Zv @) 2 C7

the optimal pruning set prunes elements with the largest
value of:

o Bon [Vagi(@)
Eznpgi(z)?
where g(x) = VgLeo(x) is the model gradient, and g;
represents its i-th component.

Remark 3.77. When a deterministic set does not match the
utility budget, parameters on the borderline are pruned with
positive probability. When this happens, the optimal defense
is a mixed defense.

Similar to previous sections, we derive locally optimal gra-
dient pruning, which prunes parameters ¢ with the largest
index k:
[Vagi(z)|
lgi()]
An additional feature of the locally optimal version is that it
is also the optimal defense when using optimal noise instead
of identical noise in Theorem 3.5 in our analysis.

ki = (11

3.5. Algorithm design

Because of the high computational cost of the expectation
terms in the globally optimal defense methods (Theorems
3.5 and 3.6), our implementations are based on the locally
optimal versions (Eqs. 7 and 11).

When computing optimal defense parameters, calculating
the Jacobian matrix of model gradients on input data is es-
pecially challenging. The full Jacobian matrix for an image
with a resolution of 32 x 32 would require roughly 3000
times the memory of the model itself, which is prohibitively
large. We resolve this problem by using the forward differ-
entiation method to save computational cost and use approx-
imation to save memory cost.

The forward method (Griewank & Walther, 2008) tracks
gradients based on the input tensor size rather than the
output tensor size, and therefore more efficient since we
are dealing with low input and high output dimensions. We
approximate the l5-norm of the gradients using Lemma 3.8:

Lemma 3.8. Given a differentiable function f : R — R
and a constant € > 0. For any number of samples k € 7
and random vectors x1, . . . , @y, sampled from N'(0, I,), we
have that

k

Ve f(z Z

2
afi( w+awj) < | Vaf(@)]?

(12)
éfor any x € R4

a=0

holds with probability at least 1 —

This allows us to approximate the lo-norms without the
entire Jacobian matrix, significantly reducing computational
and memory cost. Our resulting algorithm is outlined in
Algorithm 1.

4. Experiments

We compare our proposed algorithms with existing defense
methods on the CIFAR-10 dataset (Krizhevsky & Hinton,
2009). As our algorithm employs different defenses on
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Algorithm 1 Approximate Locally Optimal Defense

1: Input: Model parameters © € RY, loss function
L(x, ©), number of samples k, prune threshold 7 (prun-
ing), noise scale A (noise), small constant c(noise)

2: Output: Defended model gradients S(g(x))

3: Step 1: Compute the model gradients g(x) =
V@L(:I:,@)

4: Step 2: Sample k£ random vectors xi,...,x; ~
N0, I,)

5: Step 3: Approgxirnate [Vagi(x)|®  with
T || |

6: Step 4a (Gradient Noise): Sample € ~ A (0, ) where

2
_y Vagi(=)|
Yii=A
max(|gi(x)|, c)
and return the defended gradients g"***(z) = g(x) + €
7. Step 4b (Gradient Pruning): Return pruned gradients
""" () with elements

prune

gi (@) = Vjveo) - 9i(®)- (13)
To: @] ="

different parameters, we use an attack that treats parameters
equally. One attack with such property is the Inverting
Gradients attack (Geiping et al., 2020), a powerful attack
that does not require extra information or specific model
architecture. We defer additional experiments on MNIST to
Appendix D.

4.1. Optimal Gradient Pruning

As shown in Figure 2, our approximately optimal strategy
for gradient pruning (optimal pruning in short) achieved
higher reconstruction error than gradient pruning for the
same level of training utility, with a pruning ratio of 70%
outperforming 90% pruning in gradient pruning. Visual

Optimal Pruning vs Gradient Pruning: CIFAR-10
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Figure 2. Comparison of optimal pruning and gradient pruning on
CIFAR-10. X-axis: average MSE. Y axis: Training loss on 8
samples.

Figure 3. Reconstruction from the CIFAR-10 dataset with batch
size 4. First row: ground truth. Second row: 90% gradient pruning.
Third row: 80% optimal pruning. 80% optimal pruning has better
training utility and better protection against reconstruction.

Optimal Noise vs DP-SGD: CIFAR-10
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Figure 4. Comparison of optimal noise and DP-SGD on CIFAR-10.
X-axis: average MSE. Y axis: Training loss on 8 samples.

comparison (Figure 3) also indicates better protection using
our method.

4.2. Optimal Gradient Noise

As shown in Figure 4, our proposed defense method for
adding noise still offers a better privacy-utility trade-off.

5. Discussion

In this work, we derived a theoretical reconstruction lower
bound and used it to formulate optimal defense methods
as improvements of gradient noise and gradient pruning.
Since our work only shows the theoretical possibility of
a higher privacy-utility tradeoff, a key limitation of our
methods is the high computational cost of our algorithm.
This could be mitigated by simplifications (e.g. layer-wise
defense) or lowering the frequency of updating defense
parameters. Additionally, the reconstruction bound used in
our analysis is not tight. The utilization of more precise
bounds or privacy measures that integrate current attack
methods remains an open challenge. Furthermore, just as
how we applied optimal noise to replace the noise in DP-
SGD, our analysis could potentially be incorporated into
other defense methods. This also remains an open challenge
for further research.
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A. MISSING PROOFS
A.1. Proof of Theorem 3.2
Proof. Recall the definition

Bps= min EuupBy s |RY) — .

R:R4—R™

By the Bayesian Cramér-Rao lower bound, for any reconstruction algorithm R we have that:
EorpBys(oie) |(RY) — @) (Ry) — @) | = 5,

where Jg = Jp + Jp and Jp = Egp [Jr(x)].

Therefore:

BarpBymsiya) |R() - 2] = tr (BanpEysioy [(RY) — @) (R(y) —2)"])
>tr (Jg').

Since both Jp and Jp are Fisher information matrices and hence symmetric, we could apply Weyl’s inequality to bound the
eigenvalues of Jp. Let A; denote sorted eigenvalues with \; being the smallest and )4 the largest. For the eigenvalues \; of
Jpg, we have:

Xi(JB) < Ai(JIp) + M (JIp).

This implies that

— )\Z(JD) + )\1(Jp)
d2
= %)+ d M(Tp)

The last equation is from Cauchy’s inequality since \;(Jp) + A1 (Jp) > 0.
Substituting tr(Jp) = E,p [tr(Jp(x))], we obtain:

» 2
ws) 2 T @) T d )

Thus, we have shown that )
d
o~ [tr( TR ()] +d - M(Jp)

Bp s > B

A.2. Proof of Theorem 3.5

To prove the theorem, we first need to calculate Jg(x):

Lemma A.1. Let Jp(x) be the Fisher information matrix defined in Theorem 3.2. Let y = S(x) be gradients defended
with gradient noise using covariance matrix 3. We have that:

Jr(x) = Vag(z)E 'VWag(x) .

Proof. Recall that g : R™ — R? is the function from input data to model gradients. The Vg(x) is a m * d matrix, the
noise matrix X is a d * d matrix.

10



Optimal Defenses Against Data Reconstruction Attacks

Given y = g(x) + € with € ~ A/(0, X), we have the log-likelihood function:
d 1 1 -
logp(yla) = —3 log(2m) — S log [T — S (y — g(x)) 7 (y — g()).
The gradient of the log-likelihood with respect to x is:
Valogp(ylze)" = (y — g(x)) "7 Vag(@) "

By definition:

Jr(x) =By [Valogp(ylz) Ve logp(ylz) ]
= Vag(@)Eyo [S7H (Y — g(2))(y — g(x) "7 Vag(z) "

Since Eyjz [(y — 9(2))(y — 9(2)) ] = %,

Ir(x) = Vag(@)5™ Vag(z)

Now we are ready to prove Theorem 3.5:

Proof. We want to minimize E.p tr (Jr(x)). By the lemma above, we have that

Jp(z) = Veg(z)X 1Va:g Z vagl

when X is diagonal.

The second-order utility for the defense equals:

OL(O, x d
Us(8,0) = —Egzp Z ( ) i = — Z]ExNDgi(w)2Zi,i7
i=1

where the second equation is from the definition of g;(x). By Cauchy’s inequality, we have that

d 2
Ep~ Vegi(x
Eewntr (Jp(z) = ) Lo Vet @]

=1
4 2
(Zi:1 \/Em~D 1V agi()|? ‘EmNDgi(m)2>

S Eonngi(®)?Si;

2
(Z \/EmNDHVmgz )” : megi(w)2> .

Y%

Ql~

The first inequality holds when and only when

Emw xYi ?
EMo(\/ o [Vasi(@)l”

Ez~pgi(z)
and the second inequality also holds when taking

C
Y VEen Va9 @) Exnnloi(@)?]
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and

E:ENDgi (w)Z

2
S \/EM [Vag:(@)I”

This yields Uz (S, 0) = —C.

Therefore E,~.p tr (Jg(x)) is minimized when any only when

o [Een [Vagi@)l?
i Ezopgi(xz)?

for some \. The reconstruction error lower bound is maximized when the above applies. O

A.3. Proof of Theorem 3.6

For mixed defense methods, we derive a bound similar to Eq. 1. Let S be defined as Q(g(x), ), where ¢ is an identifier
sampled from distribution Z. For each i, Q(-, ) represents a unique defense mechanism, satisfying Assumptions 1 to 5
independently.

Using Jensen’s inequality, we further obtain the lower bound for mixed defense:

Bp 1z =EinzBp g(.i)
d2
> 7
E;wzEsp [tl‘(JF’Q(.’Z-) (l‘))] +d- )\1(Jp)

(14)

where Jp, . ;) () represents

EyNQ(m,i) [vw 1ngS(ac) (Y)Va IngS(m)(y)T] .

For generalized gradient pruning, we need to use mixed defense. Similar as Theorem 3.5, we first calculate tr(Jr g, (., (2))
in the mixed defense version of Theorem 3.2. For the noisy gradient pruning defense, the identifier r is A, Sy (-, A) is noisy
gradient pruning that prunes parameters in the set A. R is the distribution generating the pruning set. We find the optimal
distribution R.

Lemma A.2. Let tr(JFr,s,,,. ., (7)) be the trace of the Fisher information matrix Jr(x) defined in Theorem 3.2. Let

y = S(x) be the model gradients defended by noisy gradient pruning with covariance matrix 3 = eIy and pruning set
A ~R. Then:

1
tr(JFvspmne,E,A (x)) = - ||vwgz(x)||2 *
€
igA

Proof. Denote {1 : d} the set of integers 1 to d. Denote A — B the set of elements included only in A and not in B. By the
lemma used in the proof of Theorem 3.5, the left-hand side equals

1
tr(JFySpmne,Z,A (x)) = tr(va{lzd}—p‘;g(w)v;{1:{1}_@;9(1:))
1 2
e va{l:d}%g(m‘)HF

=13 IVagia) .

igA

The last equation is true since for each 7, V3 g;(x) corresponds to a column in Vg, .., g(). O

Now we can prove Theorem 3.6:
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Proof. For the training utility, we have:

OL(O,x)\"
U1(S,0) =EarEenp Y <§)x)>
igA ¢

=Epr ¥ Eonp (gi())”
igh
d

= Z PAN'R(Z. §é A)ExND (gl(w))2 )

i=1

where Py (i ¢ A) is the probability of ¢ ¢ A when A is sampled from R (i.e. the probability of g;(x) not being pruned).
With the given utility constraint U3 (S,0) > C' we want to minimize Exr 3¢ Eonp IV2g:i(x)||> . By the previous
lemma, we have:

d
Epnr,and (54 (@) = Bang Y Bonn [Vagi(@)||* =Y Panr(i ¢ A)Boun [[Vagi(@)|*.
igA i=1

For all i, we have that 0 < Py z (i ¢ A) < 1, Epup || Vagi()]|*> > 0,and E,p (g;(x))* > 0. Therefore, for the optimal
defense minimizing E4 gz~ tr(Jpa(x)), the two restrictions apply:

* Ui(5,0) =C.
o If Py (i ¢ A) > 0, then for any j such that

E;p vagi(x)HZ Ezvp Hv:fegj(w)H2
Eunp (9i(2))? Eonp (95(2))”

)

we must have Py .z (j ¢ A) = 1.

If any of the above does not apply, we could trivially modify R to improve the lower bound while staying within the
utility budget. If U1 (.S, ©) > C and a parameter is pruned with probability smaller than 1, we could slightly increase the
probability of pruning that parameter. This slightly decreases utility but yields a better reconstruction lower bound. If the
second restriction does not apply, we could increase the probability of pruning j and decrease the probability of pruning
1 to have the same training utility and obtain a higher reconstruction error lower bound. When the restrictions apply, the
resulting defense follows our theorem. O

Furthermore, in locally optimal gradient pruning, adding our optimal noise instead of standard Gaussian noise after the
gradient pruning step yields the same optimal defense (optimal pruning set). To show the claim, notice that in this case, the
Fisher information matrix in the lower bound is:

1
tr(JF7Sprune,E,A ('/E)) ~ z Z vagl (w) H |gl (:I:) ‘ °
igA
Since the utility function remains the same, the index for optimal pruning is now

_ Vegi(@)lll9:(2)| _ [[Vagi(@)|
lgi(2)[? |9i ()]

ki

which is equivalent to the locally optimal pruning with standard noise.

A.4. Proof of Lemma 3.8

Proof. Notice that for any given y € R9,

of (x + ay)

) —Vaf(z+ay) oy,
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where o represents element-wise multiplication. Therefore

H(‘)f(ac+ay)

o = |Vaf(@) oyl

a=0

When y ~ N(0, 1), |V f(z) o y|| follows a normal distribution with mean 0 and variance ||V, f(x)]|>.

Therefore we have that
H f (x+ay)
)

a=0 ~ N
Vai@) ©.2)

furthermore,
aof (ac + ax;)
z 1

— a=0 .2
S R X (k).

Since E(A) = k and Var(A) = 2k, by Markov’s inequality we have that

2k 2
Since
1< afi( :L'Jram R
IVaf@I* -+ Z | <elVaf@)’
=1 a=0
is equivalent to |A — k| > ke, we finished the proof. O

B. OPTIMAL DEFENSE WITH ReLU ACTIVATION

In this section, we briefly discuss how we modify our optimal defenses when Eg.pg;(x)? = 0. The defenses for the entries
where the gradients are not 0 are the same, but we deal with entries with gradient O separately.

For Gradient Pruning, pruning gradients that are O do not affect the defended gradients. Therefore, we focus on analyzing
how we apply Optimal Gradient Noise. By the definition of second-order utility, the second-order utility is unaffected by the
noise scale added on parameters with gradient 0. If we follow the proof of Theorem 3.5, the reconstruction lower bound

scales negatively with
d 2
Z Eznp [[Vagi(@)||
iy '

i=1

Since E4pg; ()2 = 0, we have that g; (z) is constant on the support of D 50 Eqp || Vagi(2)||> = 0. Therefore, the noise
scale does not affect the reconstruction lower bound and any noise scale for these parameters are optimal. This typically
happens when the model has activation functions that are constant on an interval (e.g. ReLU). Nonetheless, since a larger
noise scale typically decreases training utility, the optimal method would be not to add noise to the gradients.

However, the above case does not completely cover problems in the locally optimal defenses. In the locally optimal versions,
we used the values at & as approximations of expectations. Therefore we might have ||Vzg;(z)]|”> > 0. In this case,
theoretically we should set the noise to be as large as possible, which deviates from reality. To resolve this problem, a good
solution would be to set an upper limit to the noise scale and clip the noise scales added to the gradients.

To summarize, for optimal gradient pruning, pruning gradients with a scale of 0 is trivial. For optimal gradient noise (and its
application in DP-SGD), we set an upper limit to the noise scale.

C. EXPERIMENT DETAILS

For all datasets and algorithms, we used the implementation in Algorithm 1 with k£ = 10 as the number of samples and
¢ = 1079 as the small constant. When comparing our optimal noise with DP-SGD, we applied clipping threshold 1 for
DP-SGD and included the same clipping step before adding our optimal noise.

14



Optimal Defenses Against Data Reconstruction Attacks

C.1. Experiments with MNIST

For experiments on the MNIST dataset, we used a Convolutional Neural Network with 120k parameters. To avoid the
special case where the model utilizes the ReLU activation function, we use the LeakyReLU activation function instead.
We trained the model on a subset of size 4096 from the whole dataset and used SGD algorithms with batch size 64. We
simulated 4 clients each possessing one-fourth of the dataset (1024 samples). When training, each mini-batch contains data
from all 4 clients, with each client providing 16 samples to form a 64-sample mini-batch. The gradients are computed and
defended separately and then averaged to be provided to the central server. For the training process with DP-SGD (or our
optimal noise) applied, we used the Adam optimizer with learning rate 10~3. For the training process with gradient pruning
(or our optimal pruning) applied, we used Adam with learning rate 5 x 10~%. For the reconstruction process, we used the
Inverting Gradients algorithm with a budget of 2000 updates. The experiments are conducted on a Nvidia RTX 2050.

For the scatter plot, we trained the model on 1 batch of 64 samples for 5 gradient descent updates. Each gradient used for
update is the average of 4 gradients calculated and defensed separately from 4 clients. We used the Adam optimizer with
learning rate 1073,

C.2. Experiments with CIFAR-10

For experiments on the CIFAR-10 dataset, we used a 2.9M parameter ConvNet with the LeakyReL U activation. For the
scatter plot, we measured the training utility by training on a batch of 8 samples. For comparing DP-SGD with our optimal
noise, we used the Adam optimizer for 5 steps with the learning rate being 10~%. For comparing gradient pruning with our
optimal pruning, we used Adam with the learning rate being 5 x 10~° (for slower convergence). Every update we simulated
4 clients each calculating and defending gradients separately like in MNIST. For reconstruction, we reconstructed the images
2-at-a-time from the shared model gradients using the Inverting Gradients algorithm with a budget of 1000 updates. The
experiments are conducted on a Nvidia RTX 4090D.

D. ADDITIONAL EXPERIMENTS
D.1. Experiments on MNIST

The MNIST dataset consists of 28 x 28 grayscale images of handwritten digits, serving as a simple test for our algorithm.

D.1.1. GRADIENT PRUNING

We apply different pruning thresholds to a randomly initialized Convolutional Neural Network (Fukushima, 1969), using 4
batches of 16 images to compute gradients. These gradients were defended using gradient pruning and our optimal gradient
pruning, followed by an Inverting Gradients attack. Figure 5 shows that our method consistently achieves higher Mean
Squared Error (MSE) and lower Peak Signal-to-Noise Ratio (PSNR) at commonly used high pruning ratios, indicating
stronger defenses.

To assess training utility, we trained the models under a federated learning setting. Figure 6 shows that 80% optimal pruning
outperforms 90% gradient pruning in training speed, while we showed that they have similar privacy in Figure 5. The scatter
plot in Figure 7 shows the privacy-utility trade-off for a wider range of pruning ratios, indicating the superior privacy-utility
trade-off of our method.

D.1.2. DP-SGD

We also evaluated our defense on DP-SGD. As shown in Figure 8, our optimal noise achieves comparable performance
to DP-SGD in terms of defense at the same noise scale, while our algorithm has faster learning speed (Figure 9). The
scatter plot in Figure 10 further demonstrates the improved privacy-utility trade-off of our approach. Visualization of the
reconstruction in Figure 11 shows better protection against attacks using our optimal noise for the same level of training
utility.

D.2. Comparison on Generalization Loss

Though our theoretical analysis focuses on optimizing the training loss, we also calculated the validation loss of the trained
models with the same setup as Figure 9. Training with noise scale 0.1 using our optimal noise resulted in test accuracy 0.910
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Figure 5. Average reconstruction indexes based on Gradient Inversion with batch size 16.
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Figure 6. Training curves of CNN on MNIST with 80% & 90% gradient pruning and 80% optimal pruning (smoothed with window size
8). 80% optimal pruning outperforms 90% gradient pruning in training.

16



Optimal Defenses Against Data Reconstruction Attacks

Gradient Pruning vs Optimal Pruning: MNIST

0 ®
) 2.2 % 100 ° Optimal Pruning (ours)
é 2.1x10 Gradient Pruning
0 2% 10
2 0 ®
< 1.9%10
= 0
E1.8x10 °
S 0 °

17x10" o . % °

06 0.7 08 0.9

Average Reconstruction MSE

Figure 7. Scatter plot of gradient pruning and our optimal pruning on MNIST. X-axis: average reconstruction MSE. Y axis: Training loss
on 64 samples. Size of points: Pruning ratio.

Average MSE Average PSNR
—e— Optimal Noise (ours) 14
150 —— DPSGD
= % 121 —e— Optimal Noise (ours)
= 4 —e— DP-SGD
1.0+ 10- \
0.54. , | | | 81 | | | ,
10> 10* 10° 10° 10" 10° 107 100 107 10"
Noise Scale Noise Scale

Figure 8. Average reconstruction indexes based on Gradient Inversion for DP-SGD. The noise scale equals the Frobenius norm of the
covariance matrix.

17



Optimal Defenses Against Data Reconstruction Attacks

Loss Curves for Gradient Noise
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Figure 9. Training curves of CNN on the MNIST dataset. (Smoothed with window size 8) Optimal noise with a scale of 0.1 outperforms
DP-SGD with a scale of 0.1.

Optimal Noise vs DP-SGD: MNIST
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Figure 10. Comparison of optimal noise and DP-SGD on MNIST. X-axis: average reconstruction MSE. Y axis: Training loss on 64
samples.
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Figure 11. Reconstruction from the MNIST dataset with batch size 4. First row: ground truth. Second row: DP-SGD with scale 0.05.
Third row: optimal noise with scale 0.1. Our method has better privacy when the performance in training is similar.

and using noise scale 0.1 with standard Gaussian noise resulted in test accuracy 0.886, indicating that our method performed
better.
D.3. Effect of Noise Scale on DP-SGD in CIFAR-10

Since our experiments in the previous sections only cover small noise scales, we visualize the effects of the larger noise
scales on CIFAR-10 in Figure 12 and 13. With higher noise scales, it is clearer that our optimal noise has higher training
utility and (slightly) higher reconstruction error than DP-SGD.

D.4. Average Optimal Noise Through the Training Process

We additionally show how our method differs from DP-SGD by visualizing average noise added to each layer during the
training process. The experiment utilized the MNIST dataset. As in Figure 14, some layers are given significantly higher
noise than other layers. We additionally include how many parameters each layer contains in Table 1 and a code snippet of

Training Loss vs Noise Scale for DP-SGD
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Figure 12. Effect of Noise Scale on Training Utility.
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Average MSE vs Noise Scale for DP-SGD
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Figure 13. Effect of Noise Scale on Average Reconstruction MSE.
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Figure 14. Average noise each layer smoothed by window size 10. Left: weight matrices. Right: bias matrices.
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Layer Parameters

conv_layers.0.weight 288
conv_layers.(.bias 32

conv_layers.3.weight 18,432
conv_layers.3.bias 64

fc_layers.1.weight 100,352
fc_layers.1.bias 32
fc_layers.3.weight 320
fc_layers.3.bias 10

Table 1. Number of parameters in the neural network.

the model in Pytorch for reference.

class SimpleConvNet(nn.Module):
def __init__(self, num_classes=10, num_channels=1):
super (SimpleConvNet, self). __init__ ()

# Convolutional layers
self.conv_layers = nn.Sequential(
# conv_layers.0 (Conv2d)
nn.Conv2d(num-_channels, 32, kernel_size=3, padding=1),
nn . LeakyReLU (),
nn.MaxPool2d (2),

# conv_layers.3 (Conv2d)
nn.Conv2d(32, 64, kernel_size=3, padding=1),
nn . LeakyReLU () ,
nn . MaxPool2d (2)
)

# Fully connected layers
self.fc_layers = nn.Sequential(
nn. Flatten (),
# fc_layers.l (Linear)
nn. Linear (64 = 7 % 7, 32),
nn . LeakyReLU () ,
# fc_layers.3 (Linear)
nn.Linear (32, num_classes)

)

def forward(self, x):
x = self.conv_layers(x)
x = self.fc_layers (x)
return Xx
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