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Abstract001

Retrieval-Augmented Generation (RAG) has002
proven its effectiveness in enhancing the gen-003
eration capabilities of large language models004
(LLMs) for various natural language process-005
ing tasks. However, its ability in low-resource006
machine translation drops sharply due to the007
noise interference caused by the semantic mis-008
match between retrieved content and transla-009
tion requirements. To alleviate this drawback,010
we propose a novel hierarchical dynamic re-011
trieval and matching approach for Southeast012
Asian low-resource machine translation. First,013
we construct a hierarchical index structure that014
utilizes high-frequency word statistics as key015
indices based on an existing parallel corpus,016
associating bilingual short and long sentence017
pairs. Second, we dynamically match words be-018
tween the source sentence and the hierarchical019
index structure to retrieve all associated short020
and long bilingual sentence pairs. Meanwhile,021
we rerank the candidate samples by comput-022
ing cross-lingual semantic similarity between023
the source sentence and the retrieved pairs. Fi-024
nally, the sample with the highest semantic sim-025
ilarity is integrated into the prompt to guide026
LLMs in generating more accurate translations.027
Experimental results show that our approach028
outperforms mainstream machine translation029
systems without fine-tuning LLM parameters.030
Detailed analysis indicates that our method pre-031
cisely matches fine-grained semantic informa-032
tion, thus reducing noise interference and im-033
proving low-resource translation performance.034

1 Introduction035

Retrieval-Augmented Generation (RAG) enhances036

large language models (LLMs) by dynamically037

retrieving contextually relevant information from038

external knowledge bases to refine generation fi-039

delity(Chen et al., 2024b; Asai et al., 2023). While040

conventional LLMs exhibit formidable text gener-041

ation capabilities through pretraining on massive042

Figure 1: Possible scenarios of LLMs using RAG for
contextual hinting in low-resource machine translation
tasks.

corpora with billions of parameters, their perfor- 043

mance is constrained by static knowledge bound- 044

aries and temporal data limitations, often leading 045

to factual inaccuracies or semantic inconsistencies 046

in domain-specific applications(Lewis et al., 2020; 047

Huang and Huang, 2024). The RAG framework 048

addresses these constraints through an adaptive 049

knowledge retrieval mechanism that supplements 050

real-time contextual knowledge without requiring 051

parameter updates, thereby improving both output 052

accuracy and domain adaptability. 053

Although RAG has proven effective in enhanc- 054

ing text generation through contextual learning 055

with LLMs, several critical challenges persist in 056

practical implementations. First, as demonstrated 057

by Zhu et al. (2024a) and Xu et al. (2024), exces- 058

sive contextual prompts introduce noise and mis- 059

information that significantly impair LLMs’ com- 060

prehension and generation capabilities. Second, 061

in machine translation tasks, weak semantic rele- 062

vance between retrieved content and source text 063

often leads to imprecise outputs that mismatch tar- 064
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get language contexts(Min et al., 2022). This issue065

is exacerbated in low-resource language scenarios066

where conventional retrieval methods struggle to067

identify semantically aligned sentences from sparse068

parallel corpora(Fig.1). Furthermore, the scarcity069

of training data for low-resource language pairs070

hinders multilingual models’ ability to achieve071

precise text alignment and capture cultural nu-072

ances in target languages(Hendy et al., 2023; Alam073

et al., 2024). While RAG substantially improves074

LLM performance across general tasks, optimizing075

knowledge base construction and retrieval strate-076

gies remains pivotal for advancing its effectiveness077

in low-resource machine translation.078

To address these challenges, we propose a RAG-079

enhanced translation framework with precision re-080

trieval from external parallel corpora, specifically081

targeting low-resource Chinese-to-Southeast Asian082

language pairs (Vietnamese, Burmese, Indonesian,083

Malay). Our methodology first constructs a cleaned084

bilingual corpus through word frequency analysis085

and filtering of stopwords/numerical tokens. The086

corpus is subsequently dynamically segmented into087

short and long sentence pairs based on sentence088

length, then organized hierarchically into a tripar-089

tite retrieval tree using Chinese character frequency090

statistics. To ensure semantic coherence, we em-091

ploy a cross-lingual sentence encoder for vector092

representation of sentence pairs and compute cross-093

lingual cosine similarity scores between bilingual094

embeddings. During inference, the retrieval tree095

efficiently retrieves contextually optimal prompt096

pairs (short and long) as dynamic context for large097

language models, enhancing translation accuracy098

and target-language appropriateness.099

This method effectively organizes and optimizes100

the storage and retrieval of corpora by constructing101

a tree-based retrieval structure with words as the102

root nodes. This structure ensures high relevance103

of the retrieved prompts while capturing the critical104

keywords of the sentences to be translated, signifi-105

cantly reducing the impact of irrelevant information106

on the translation process. The main contributions107

of this work are summarized as follows:108

1. Integrates RAG into low-resource LLM-based109

machine translation, significantly enhancing110

prompt relevance and domain-specific adapta-111

tion through dynamic knowledge injection.112

2. Achieves translation quality parity with main-113

stream NMT systems via retrieval-augmented114

context prompting, while preserving LLM pa- 115

rameters without model fine-tuning. 116

3. Systematically evaluates context window scal- 117

ing effects (128-640 tokens) on low-resource 118

MT performance, revealing distinct optimal 119

length ranges for different Southeast Asian 120

languages. 121

2 Related Work 122

Neural Machine Translation. Neural Ma- 123

chine Translation represents a fundamental tech- 124

nology in natural language processing, evolving 125

from rule-based systems to the current data-driven 126

paradigm(Och and Ney, 2002; Koehn et al., 2003). 127

Transformer-based architectures establish them- 128

selves as the dominant approach(Vaswani et al., 129

2017), leveraging self-attention mechanisms to 130

achieve end-to-end semantic modeling and signif- 131

icantly improving translation fluency and cross- 132

lingual consistency for high-resource language 133

pairs(Bahdanau et al., 2014; Devlin et al., 2014). 134

However, these systems face critical limitations in 135

low-resource scenarios due to their dependence on 136

large-scale parallel corpora. Data sparsity com- 137

promises the models’ ability to generalize target 138

language patterns, while the long-tail distribution 139

of linguistic representations further degrades trans- 140

lation quality(Ranathunga et al., 2023). 141

Recent advances address these challenges 142

through two primary strategies. Data augmenta- 143

tion techniques generate pseudo-parallel corpora 144

to mitigate training data scarcity(Lample et al., 145

2017; Prabhumoye et al., 2018; Imankulova et al., 146

2019; Ouyang et al., 2020). Meanwhile, large 147

multilingual language models create shared cross- 148

lingual semantic spaces, enhancing transfer learn- 149

ing capabilities(Radford et al., 2018; Touvron 150

et al., 2023). Notable implementations include 151

the NLLB model, which supports direct trans- 152

lation across 200+ languages(Costa-Jussà et al., 153

2022), and M2M-100(Fan et al., 2021), eliminating 154

English-centric pivoting for non-English language 155

pairs. Parameter-efficient fine-tuning methods like 156

LoRA(Hu et al., 2022) and Adapter(Houlsby et al., 157

2019) further reduce dependency on annotated data 158

while maintaining model performance. 159

Nevertheless, significant challenges persist for 160

Southeast Asian low-resource languages. The 161

English-dominated nature of pretraining data in- 162

troduces inherent biases, and the extreme scarcity 163

of parallel corpora compounds alignment diffi- 164
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culties(Bender et al., 2021; Winata et al., 2021).165

While current multilingual systems provide broad166

language coverage, their translation quality for167

low-resource pairs remains substantially inferior168

to high-resource scenarios, highlighting the need169

for continued methodological innovation(Le Scao170

et al., 2023).171

Retrieval-Augmented Generation. RAG pro-172

vides an innovative path to address the static knowl-173

edge limitations of traditional LLMs by dynami-174

cally integrating external knowledge retrieval and175

the reasoning capabilities of generation models.176

The Navie RAG framework follows the standard177

"retrieval-generation" unidirectional pipeline de-178

sign(Ma et al., 2023), but its performance is limited179

by the semantic misalignment between retrieval180

noise and generation targets, which easily causes181

the output to deviate from the real context. To this182

end, Advanced RAG introduces a multi-stage opti-183

mization mechanism, such as gradually refining the184

query intent through multiple rounds of iterative185

retrieval(Wang et al., 2024; Sawarkar et al., 2024),186

or re-ranking the relevance of retrieval results to187

screen high-confidence content(Feng et al., 2024;188

Yoon et al., 2024), which significantly improves189

the efficiency of knowledge fusion. Furthermore,190

Modular RAG supports flexible configuration of191

heterogeneous components by decoupling the ar-192

chitecture design of the retriever and the gener-193

ator(Gao et al., 2024; Wang et al., 2023). The194

retrieval side can integrate dense vector retrieval195

and sparse keyword matching strategies, while the196

generation side can adapt to pre-trained models of197

different sizes and achieve task customization by198

combining domain fine-tuning.199

While RAG has demonstrated considerable suc-200

cess in general text generation, its application to201

low-resource machine translation presents unique202

challenges. The scarcity of parallel corpora hinders203

cross-lingual alignment, while morphological and204

syntactic complexities in target languages exacer-205

bate semantic discrepancies. Although research in-206

dicates that language-aware contextual prompts can207

enhance translation quality(Puduppully et al., 2023;208

Zhu et al., 2024b), standard RAG frameworks face209

inherent limitations in multilingual settings. Key210

issues include inadequate coverage of low-resource211

languages in existing retrieval models and the in-212

troduction of noise when directly incorporating213

retrieved texts(Jiang et al., 2023; Shi et al., 2023),214

compounded by the absence of language-specific215

filtering mechanisms. These challenges underscore216

the need for specialized retrieval architectures tai- 217

lored to low-resource translation scenarios. 218

3 Methodology 219

This study proposes a retrieval-enhanced method 220

for low-resource machine translation using large 221

language models. The primary objective is to lever- 222

age high-quality prompt information from an ex- 223

ternal parallel corpus to improve the translation 224

model’s performance in low-resource language 225

tasks. Specifically, given a prompt retrieval dataset 226

D = {(xi, yi)}|D|i=1, where (xi, yi) represents a pair 227

of parallel sentences from the source language xi 228

to the target language yi, the dataset is stored in a 229

tree-structured database for efficient retrieval. For 230

a given sentence St to be translated, a subset of 231

relevant parallel sentence pairs D′
= {Dm}|M |

m=1 232

is retrieved from D where each Dm (1 ≤ m ≤ M) 233

serves as a translation prompt closely related to 234

St. Based on these retrieved sentence pairs and 235

the input sentence, a translation prompt template is 236

constructed as: 237

Pt = {(Dm, St) |m = 1, 2, ..., |M |} 238

these templates are then used to generate contex- 239

tually relevant prompts, effectively enhancing the 240

translation model’s performance. Figure 2 provides 241

an overview of the model framework and the trans- 242

lation process. 243

3.1 Word Statistics 244

Before building the Parallel Sentence Pair Retrieval 245

Tree(PSP-RT) structure, we need to clean and count 246

the bilingual parallel corpus in the Chinese part to 247

ensure the corpus quality and retrieval efficiency. 248

First, we collected a large-scale bilingual parallel 249

corpus from Chinese to low-resource languages 250

and preprocessed the corpus, including converting 251

traditional Chinese into simplified Chinese, remov- 252

ing redundant characters, bilingual sentence pairs 253

with abnormal lengths, and irrelevant punctuation. 254

During the word-counting process, this study 255

adopts the concept of the Inverted File Index (IVF) 256

to efficiently establish the mapping relationship 257

between words and the index set of the sentences in 258

which they appear(Babenko and Lempitsky, 2014). 259

Let Dx = {xi| (xi, yi ∈ D)} denote the set of all 260

Chinese sentences. For any word w ∈ Dx, its 261

sentence index set I(w) is defined as: 262

I (w) = {i|w ∈ xi, xi ∈ Dx} 263

3



Figure 2: Framework of our proposed approach.

where i represents the index of the i-th sentence264

containing the word w.265

To select the most representative words as root266

nodes for the PSP-RT in the subsequent construc-267

tion process, Chinese stop words are removed, and268

all remaining words are sorted in ascending order269

based on the size of their sentence index sets. The270

sorting rule is as follows:271

w1, w2, ..., wn. subject to

|I(w1)| ≤ |I(w2)| ≤ ... ≤ |I(wn)|
272

this sorting rule prioritizes low-frequency words273

as root nodes, as they typically exhibit greater dis-274

criminative power and are associated with fewer275

sentences. This approach effectively narrows276

the scope of candidate sentence pairs during re-277

trieval. In contrast, high-frequency words, which278

appear in a large number of sentences, can lead to279

an over-concentration of Chinese-to-low-resource-280

language sentence pairs if sorted by descending281

order of sentence coverage. Such concentration282

reduces the diversity of retrieval results and dimin-283

ishes the relevance of prompt information.284

3.2 Parallel Sentence Pair Insertion285

Long and Short Sentence Pairs Division. Prior286

to constructing the PSP-RT, the bilingual parallel287

corpus is divided into short sentence pairs and long288

sentence pairs with a ratio of 1:3. Short sentence 289

pairs, owing to their brevity, are more efficient for 290

rapid matching with individual words. In contrast, 291

long sentence pairs, when matched with short sen- 292

tence pairs, leverage both the distributional infor- 293

mation of words within sentences and the semantic 294

similarity at the sentence level. This division strat- 295

egy is designed to enhance both the efficiency of 296

PSP-RT construction and the quality of retrieval 297

outcomes. This dual consideration ensures higher 298

precision in retrieval results while maintaining se- 299

mantic diversity, thereby improving the robustness 300

and reliability of the retrieval process. 301

Short Sentence Pair Insertion. The insertion 302

process for short sentence pairs begins by filter- 303

ing the words in the sentence using the TF-IDF 304

algorithm, which identifies candidate words with 305

high relevance to the given sentence. Subsequently, 306

the BM25 algorithm(Robertson et al., 2009) is ap- 307

plied to compute the matching scores between the 308

candidate words and the sentence, selecting the 309

word with the highest score as the root node of the 310

PSP-RT. Based on these computations, the short 311

sentence pair is inserted into the appropriate node 312

of the PSP-RT, while simultaneously recording the 313

word indices and sentence pair information. 314

To further enhance semantic retrieval capabil- 315

ities, the LASER model(Artetxe and Schwenk, 316
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2018) is employed to generate bilingual embed-317

dings for the short sentence pairs. These semantic318

representations are stored under the corresponding319

PSP-RT nodes, providing a robust foundation for320

subsequent semantic-level matching and retrieval321

tasks.322

Long Sentence Pair Insertion. The insertion323

process for long sentence pairs builds on the seman-324

tic matching capabilities established with short sen-325

tence pairs, further enhancing the PSP-RT’s struc-326

ture. For each long sentence pair, the TF-IDF and327

BM25 algorithms are first employed to calculate its328

relevance to each word in the PSP-RT. Words with329

the highest relevance are selected as candidate root330

nodes. Based on these nodes, all short sentence331

pairs stored beneath them are retrieved as potential332

matching targets.333

Next, the LASER model is utilized to perform334

bilingual encoding of the long sentence pair, result-335

ing in semantic vectors for the source and target336

languages, denoted as xL and yL respectively. Sim-337

ilarly, the semantic vectors of the retrieved short338

sentence pairs are extracted and recorded as xS and339

yS . The semantic similarity between the long and340

short sentence pairs is then computed using cosine341

similarity, forming a 2× 2 similarity matrix S,342

S =

[
sim(xL, xS) sim(xL, yS)
sim(yL, xS) sim(yL, xL)

]
343

where sim(·, ·) denotes the cosine similarity func-344

tion. To comprehensively evaluate the semantic345

similarity across all matching paths, the Frobenius346

norm of the similarity matrix is calculated, serving347

as the basis for determining the insertion position348

of the long sentence pair. The comprehensive score349

is defined as:350

Score (S) = ||S||F =

√√√√ 2∑
i=1

2∑
j=1

S2
ij351

where ||S||F represents the Frobenius norm of ma-352

trix S. By integrating both word-level and sentence-353

level semantic information, this method mitigates354

the issue of aggregation caused by over-reliance on355

high-frequency words, enhancing the diversity and356

relevance of the bilingual sentence pair retrieval357

process.358

3.3 Post-Retrieval Processing for Translation359

This section outlines the retrieval and post-360

processing workflow for candidate sentence pairs361

related to the sentence to be translated. Initially, 362

relevant long and short sentence pairs are extracted 363

from the constructed PSP-RT through the retrieval 364

process. Subsequently, the input sentence is en- 365

coded and cosine similarity scores are computed 366

between the input and both the source and target 367

language parts of the retrieved sentences. The sen- 368

tence pairs are then preliminarily ranked based on 369

the average of these scores. Since the initial re- 370

trieval may yield a large number of candidate sen- 371

tence pairs, some of which may have low relevance 372

or contain redundant information, directly using 373

these pairs as prompts could compromise the accu- 374

racy of the translation results. To address this, we 375

utilize a fine-tuned reranker model to further refine 376

and reorder the candidate sentence pairs, ensuring 377

that only highly relevant prompts are selected. 378

The reranker model prioritizes the candidate 379

pairs based on their relevance scores, selecting the 380

most relevant bilingual sentence pairs as prompts 381

for input into the large language model. This 382

strategy ensures that the prompts are semantically 383

aligned with the sentence to be translated, improv- 384

ing translation accuracy and contextual consistency. 385

During the translation generation process, the pa- 386

rameters of the large language model remain frozen 387

and are solely used for generating translations with- 388

out involving any parameter fine-tuning. By com- 389

bining retrieval with re-ranking, this approach pro- 390

vides the large language model with high-quality 391

contextual prompts, effectively enhancing trans- 392

lation accuracy while maintaining computational 393

efficiency. 394

4 Experiments 395

4.1 Experimental Setup 396

Datasets. To construct a parallel corpus for build- 397

ing the PSP-RT from Chinese to low-resource 398

languages, we aggregate multilingual parallel 399

data from three major public sources: CCMa- 400

trix(Schwenk et al., 2019), NLLB, and the Asian 401

Language Treebank (ALT)(Thu et al., 2016). Dur- 402

ing preprocessing, we first filter out sentence pairs 403

with anomalous lengths or redundant characters, 404

while converting all traditional Chinese characters 405

to simplified form. We then employ both langde- 406

tect1 and polyglot2 for rigorous language identifica- 407

tion, eliminating any pair of sentences with incon- 408

sistent source-target language labeling to ensure 409

1https://github.com/Mimino666/langdetect
2https://github.com/aboSamoor/polyglot
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corpus quality. Table 1 shows the experimental410

usage data. For translation evaluation, we adopt411

the Flores-200 benchmark dataset, a widely recog-412

nized multilingual evaluation resource for machine413

translation systems.(Costa-Jussà et al., 2022).414

Table 1: The number of bilingual parallel corpora used
to construct the Parallel Sentence Pair Retrieval Tree.

Language Pair Raw Data Usage Data

Chinese-Vietnamese 2,701,926 959,995
Chinese-Burmese 630,000 442,622
Chinese-Indonesian 3,930,249 1,062,167
Chinese-Malaysian 2,082,910 646,646

Baselines and Evaluation Metrics. In the ex-415

perimental phase, we select Qwen 2.5-7B(Yang416

et al., 2024) and Llama 3.1-8B(Grattafiori et al.,417

2024) as baseline machine translation models, with418

NLLB-200-distilled-600M serving as a strong mul-419

tilingual baseline. We systematically evaluate the420

translation performance of these models under de-421

fault settings, along with their variants augmented422

by the Naive RAG retrieval method, and com-423

pare them against our proposed approach. For424

evaluation, we used a composite metric frame-425

work comprising spBLEU (SentencePiece-based426

BLEU)(Goyal et al., 2022) and COMET(Rei et al.,427

2022). The spBLEU metric utilizes the Sen-428

tencePiece tokenizer to enforce a unified sub-429

word segmentation scheme, thereby eliminating430

tokenization discrepancies that skew traditional431

BLEU scores in cross-lingual evaluations. The432

COMET metric employs the Unbabel/wmt22-433

comet-da model, which utilizes multilingual BERT434

to assess translation quality across three dimen-435

sions: semantic coherence, lexical appropriateness,436

and contextual consistency.437

Model fine-tuning.In order to enhance the438

reranking model’s adaptability to large language439

models and their translation tasks, we use the fine-440

tuned BGE-reranker-v2-m3 model (Li et al., 2023)441

to reorder the retrieved bilingual prompt sentence442

pairs. To facilitate effective training, we construct443

a fine-tuning dataset comprising 200K samples.444

Each sample in this dataset consists of a query,445

which is a Chinese source sentence, a positive ex-446

ample corresponding to its target language trans-447

lation, and fifteen negative examples generated by448

randomly sampling other target language sentences449

from the dataset. During training, we adopt a dy-450

namic learning rate strategy, initializing the learn-451

ing rate at 2e-5 and reducing it by a factor of 0.7 452

after each training epoch. 453

Implementation Details. To ensure the provi- 454

sion of sufficient hints during the retrieval process 455

and prevent the performance of the large language 456

model from being constrained by an insufficient 457

number of relevant sentence pairs, we design a de- 458

fault retrieval path based on the ALT corpus. In 459

practice, when the number of bilingual sentence 460

pairs retrieved is fewer than 5, we supplement the 461

results with semantically similar content from the 462

default retrieval path. This approach ensures the ad- 463

equacy of the hints and enhances the overall quality 464

of the translation task. 465

4.2 Experimental Results 466

To systematically validate the effectiveness of the 467

proposed method, we design a comparative experi- 468

mental protocol: first evaluating the baseline per- 469

formance of Qwen 2.5-7B and Llama 3.1-8B under 470

zero-shot settings; then selecting five high-quality 471

bilingual prompt texts from the ALT dataset fol- 472

lowing (Hendy et al., 2023); while adopting the 473

LASER encoder to convert bilingual parallel texts 474

into semantic vectors based on (Lewis et al., 2020), 475

thereby constructing a retrieval-augmented context 476

prompting mechanism. For experimental configu- 477

rations, the temperature parameter was set to 0.7 478

for both LLMs, with NLLB-200-distilled-600M 479

using a beam size of 10. 480

As shown in Table 2, the evaluation results on the 481

Flores-200 devtest dataset demonstrate consistent 482

improvements across multiple metrics. The pro- 483

posed method achieves substantial BLEU score in- 484

creases of 18.79 for Chinese-Vietnamese (ZH-VI) 485

and 13.55 for Chinese-Malay (ZH-MS) translations 486

compared to baseline systems. While most lan- 487

guage pairs demonstrate consistent improvements 488

in COMET scores, Chinese-Burmese (ZH-MY) 489

translations fail to surpass baseline performance, 490

revealing unique challenges in semantic alignment 491

for this particular language combination. These 492

findings validate two key advantages of our ap- 493

proach: the bilingual parallel sentence retrieval 494

mechanism effectively enhances translation qual- 495

ity through precise context matching, while the 496

dynamic retrieval path adaptation improves han- 497

dling of low-frequency linguistic patterns. The 498

combined strategies enable more accurate capture 499

of grammatical structures and expression patterns 500

in low-resource languages without compromising 501

semantic coherence. The particularly strong results 502

6



Table 2: Machine translation results of the Flores-200 devtest dataset based on LLMs with parallel sentence pair
retrieval tree (PSP-RT).

Models
ZH-VI ZH-MY ZH-ID ZH-MS

BLEU COMET BLEU COMET BLEU COMET BLEU COMET

NLLB-Distilled 28.68 78.19 22.38 71.93 16.33 77.12 13.80 74.86

Qwen 2.5 7B 41.17 75.02 8.53 44.58 17.47 79.76 16.02 70.31
+5-Shots 32.82 81.54 12.52 48.51 16.88 83.55 15.98 78.10
+Navie RAG 41.82 77.56 14.21 45.43 18.71 82.92 16.23 79.39
+Our Method 40.39 81.64 32.02 51.17 18.60 81.39 16.73 79.93

Llama 3.1 8B 41.38 70.71 18.14 45.46 10.58 79.37 26.23 73.37
+5-Shots 44.90 81.46 23.95 53.51 19.73 84.79 16.41 80.85
+Navie RAG 43.22 71.63 19.12 44.39 18.65 82.19 21.93 79.34
+Our Method 47.44 79.46 24.06 55.91 17.79 81.89 27.35 79.68

Table 3: Ablation Study of Key Pipeline Components. Reranker module removal and embedding substitution effects
on translation quality.

Models
ZH-VI ZH-MY ZH-ID ZH-MS

BLEU COMET BLEU COMET BLEU COMET BLEU COMET

Qwen 2.5 7B
+ w/o Reranker 49.32 78.96 20.14 52.62 27.84 83.73 22.46 77.10
+ w/ BGE-M3 51.02 82.23 12.39 50.95 13.16 84.62 21.17 78.81

Llama 3.1 8B
+ w/o Reranker 45.28 77.92 16.22 56.29 24.14 83.32 32.54 79.75
+ w/ BGE-M3 42.98 81.54 14.25 55.58 14.35 84.39 19.78 80.34

on Vietnamese and Malay translations, despite their503

differing language families, suggest the method’s504

generalizability across typologically distinct low-505

resource languages.506

4.3 Ablation Experiment507

To comprehensively validate the effectiveness of508

each component in our proposed method, we sys-509

tematically design ablation experiments analyzing510

three key dimensions: translation pipeline architec-511

ture, model scalability, and context configuration.512

All experiments are conducted on the development513

sets of respective language pairs from the Flores-514

200 dataset.515

Pipeline Component Analysis. We perform516

component-wise ablation studies on the transla-517

tion pipeline. The removal of our task-fine-tuned518

reranker model leads to measurable degradation in519

translation quality, demonstrating its critical role in520

filtering low-relevance candidates while preserving521

semantically optimal matches from the retrieval re-522

sults. Similarly, substituting the original LASER523

embeddings with BGE-M3(Chen et al., 2024a) re- 524

sults in performance deterioration, revealing funda- 525

mental differences in cross-lingual representation 526

efficacy. While BGE-M3 excels in general seman- 527

tic tasks, its inferior performance compared to the 528

MT-optimized LASER model underscores the im- 529

portance of task-specific embedding architectures 530

for low-resource translation scenarios. Results are 531

presented in Table 3. 532

Parameter-Scale Generalization. We evalu- 533

ate our method’s scalability using Gemma2-27B 534

and Llama3.3-70B models(Team et al., 2024; Tou- 535

vron et al., 2023). As shown in Figure 3, the 536

proposed method consistently outperforms conven- 537

tional zero-shot and five-shot baselines across both 538

model scales, demonstrating stable performance 539

improvements regardless of parameter count. This 540

stability suggests that our core architecture effec- 541

tively circumvents the diminishing returns typi- 542

cally associated with mere model scaling, instead 543

leveraging optimized context utilization to enhance 544

the models’ inherent translation capabilities.This 545
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Figure 3: Translation Performance Across Model Scales.(Gemma2-27B and Llama3.3-70B).
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architecture-agnostic effectiveness confirms the546

method’s practical utility for diverse deployment547

environments.548

Prompt Length Sensitivity. We conduct a sys-549

tematic evaluation of context length effects us-550

ing Llama3.1 models at three distinct scales (8B,551

70B, and 405B parameters), testing window sizes552

from 128 to 640 tokens with 128-token increments553

(Fig.4). Our method shows consistent improve-554

ments across all model sizes, with distinct optimiza-555

tion patterns: smaller models (8B) perform best556

with shorter contexts (128-256 tokens), medium557

models (70B) benefit from extended windows (up558

to 512 tokens), while the largest model (405B)559

maintains stable quality across all lengths. The560

consistent performance improvements across all561

model sizes further validate our method’s effective-562

ness in enhancing low-resource machine translation563

through optimized context utilization.564

5 Conclusion565

This paper presents a low-resource machine transla-566

tion framework for LLMs that leverages bilingual567

parallel sentence retrieval. By developing a dy- 568

namic semantic retrieval mechanism coupled with 569

context-aware prompt optimization, our approach 570

achieves significant performance improvements in 571

low-resource language scenarios. The framework’s 572

core innovation combines the establishment of a 573

cross-lingual semantic retrieval space enabling pre- 574

cise contextual matching of target sentences with 575

the implementation of an adaptive reranking mod- 576

ule that simultaneously enhances semantic rele- 577

vance while effectively eliminating noise. Through 578

comprehensive experiments on multiple Southeast 579

Asian low-resource language pairs, the proposed 580

method demonstrates substantial gains in transla- 581

tion quality. 582

Limitations 583

This study primarily targets specific language 584

pairs including Chinese-Vietnamese and Chinese- 585

Burmese, while its applicability to other language 586

families and high-resource scenarios requires fur- 587

ther investigation. The real-time retrieval mech- 588

anism encounters computational efficiency chal- 589

8



lenges when processing lengthy texts, particularly590

increased retrieval latency and memory consump-591

tion, which necessitates optimization for improved592

response speeds in practical applications. Fu-593

ture work will focus on optimizing retrieval ef-594

ficiency, developing lightweight deployment solu-595

tions, and exploring cross-modal knowledge trans-596

fer for low-resource translation to further enhance597

machine translation performance through multi-598

modal knowledge fusion.599

Ethics Statement600

This study utilizes publicly available datasets and601

follows standard research protocols for machine602

translation. All experiments are conducted using603

open-source models without modification to their604

original architectures. The research does not in-605

volve human subjects or sensitive data, and fo-606

cuses solely on improving translation quality for607

low-resource languages. Potential biases in the608

source datasets may propagate to translation out-609

puts, which should be considered in real-world610

applications.611
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A Translation Prompts. 874

Table 4: Translation Prompt Strategies.

Scenario Translation Prompts

Zero-shot Translate the Chinese into [target
language]. Do not output any hints
or explanations other than the re-
sults.
Translate: [input]

Five-shot Translate the final Chinese into [tar-
get language] according to the pro-
vided prompts. Do not output any
hints or explanations other than the
results.
Prompts:
[shot 1 reference]
[shot 2 reference]
...
Translate: [input]

Our Method You are a professional Chinese to
[target language] translator. Please
strictly abide by:
1. Reference Prompts for Transla-
tion.
2. Output only the translation re-
sults without any explanation.
Prompts:
[shot 1 reference]
[shot 2 reference]
...
Translate: [input]

Table 4 details the core translation prompt tem- 875

plates used in our experiments. The zero-shot base- 876

line employs straightforward translation instruc- 877

tions requiring only target language output without 878

examples. The five-shot baseline augments this 879

with five bilingual demonstration pairs to enable 880

11



Table 5: Machine translation results of the Flores-200 dev dataset based on LLMs with parallel sentence pair
retrieval tree (PSP-RT).

Models
ZH-VI ZH-MY ZH-ID ZH-MS

BLEU COMET BLEU COMET BLEU COMET BLEU COMET

NLLB-200-Distilled 43.08 79.04 14.04 73.18 21.04 77.52 37.93 75.10

Qwen 2.5 7B 45.40 78.16 17.17 44.71 10.69 80.68 17.42 70.02
+5-Shots 47.23 81.06 14.74 48.22 15.12 84.09 14.96 77.61
+Navie RAG 46.78 78.02 21.97 47.59 19.26 83.77 20.11 77.58
+Our Method 52.95 79.67 22.39 51.58 30.04 84.65 21.51 78.87

Llama 3.1 8B 42.28 71.61 9.69 45.90 16.77 78.55 19.62 72.44
+5-Shots 44.13 78.62 14.96 52.41 27.26 84.62 20.47 80.51
+Navie RAG 40.08 69.93 13.97 48.64 25.78 83.97 25.67 79.43
+Our Method 44.56 76.50 18.19 65.06 26.43 84.34 34.83 80.20

few-shot learning. Our method introduces a pro-881

fessional translator role declaration to strengthen882

behavioral constraints, while incorporating dynam-883

ically retrieved bilingual examples as contextual884

references. All templates strictly limit outputs to885

translation content without additional explanations.886

B Experimental Results On Flores-200887

dev Datasets.888

The evaluation results on the Flores-200 dev dataset889

demonstrate consistent performance improvements890

across multiple language pairs, as detailed in Ta-891

ble 5. The proposed method achieves signifi-892

cant BLEU score increases of 9.87 for Chinese-893

Vietnamese (ZH-VI) alongside a 0.63 gain in894

COMET score, indicating substantial improve-895

ments in both lexical and semantic translation qual-896

ity. Similar improvements emerge for Chinese-897

Burmese (ZH-MY) and Chinese-Indonesian (ZH-898

ID), which show BLEU gains of 8.35 and 9.00899

respectively, confirming the method’s effectiveness900

across diverse Southeast Asian languages. While901

Chinese-Malay (ZH-MS) translations show slightly902

more modest results, remaining 3.10 BLEU points903

below the baseline, the overall pattern reveals ro-904

bust performance gains that validate our approach’s905

ability to handle varying linguistic characteristics.906
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