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Abstract— In this paper, we implement the GPU-accelerated
subsystem-based Alternating Direction Method of Multipliers
(SubADMM) for interactive simulation. The challenging ob-
jective for interactive simulations is to deliver realistic results
under tight performance, even for large-scale scenarios. We
aim to achieve this by exploiting the parallelizable nature of
SubADMM to the fullest extent. We introduce a new subsystem
division strategy to make SubADMM ‘GPU friendly’ along
with custom kernel designs and optimization regarding efficient
memory access patterns. We successfully implement the GPU-
accelerated SubADMM and show the accuracy and speed of
the framework for large-scale scenarios, highlighted with an
interactive ‘Hand demo’ scenario. We also show improved
robustness and accuracy compared to other state-of-the-art
interactive simulators with several challenging scenarios that
introduce large-scale ill-conditioned dynamics problems.

I. INTRODUCTION

Interactive physics simulation has been essential for the
fields of haptics [21] and virtual reality (VR) [16], with its
importance also recognized in diverse fields such as inter-
active computer animation [7], digital twins, and mechan-
ical components design [1]. More recently, this interactive
physics simulation is considered the key enabler for the
framework of Learning from Demonstration (LfD) since it
can drastically improve sample efficiency, particularly for
contact-involving and long-horizon tasks [20], for which it
is difficult even to finish the task autonomously.

Arguably, the three most essential requirements for this
interactive physical simulation would be speed, accuracy,
and scalability. First, the simulation should deliver at least
60 frames per second (fps) speed [2] with the ratio of
simulation time step size to computation time near or larger
than one. Second, its accuracy to the ground truth (or real
physical experiment results [22]) should be small enough for
believable realism or good sim-to-real performance. Third,
it should allow for implementing a large-scale environment
with not much compromise of speed and accuracy. All
these become particularly challenging when contacts and
constraints are involved among the objects.

For this, various off-the-shelf simulators have been pro-
posed over the past decades. PhysX [6] is a state-of-the-art
simulator which is widely used as an interactive simulator
in both robotics [15] and haptics & VR [24], [8], [14],
[17], [19]. MuJoCo physics engine [23] shows the ability to
be used as an interactive simulator with a reasonable level
of accuracy for successful manipulation with a simulated
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Fig. 1: Overview of the ‘Hand demo’ scenario. The scenario
contains a 281 number of rigid bodies dynamically coupled with
an average number of 1773 contacts and 33 joint constraints.

human hand model from a simulation platform, HAPTIX
[10]. However, there are limitations to these simulators.
These simulators relax the actual dynamics problems to avoid
tackling the non-linear complementarity problem (NCP)
originating from constrained dynamics problems with contact
conditions. These simulators also have limited scalability
since the underlying solvers for these simulators are not
directly parallelizable. While XPBD can utilize parallelizable
constraint projection, Jacobi solve, this introduces a slow
convergence.

In this context, we present a novel framework that tackles
the exact NCP while still being interactive and scalable
for large-scale scenarios. This framework is based on a
GPU implementation of the recently proposed subsystem-
based Alternating Direction Method of Multipliers (Sub-
ADMM [12]) algorithm. Since SubADMM can solve the
exact dynamics problem and naturally handles operations
for each subsystem and constraint in parallel, we exploit
this parallelizable nature to the fullest extent by accelerating
the SubADMM with GPU. We explain how parallelized
computation can be equally distributed among threads with
technical details to achieve accurate and interactive behavior.
We demonstrate the ‘Hand demo’ scenario, shown in Fig. 1,
and other challenging scenarios, showing that our framework
can manage diverse large-scale scenarios accurately at inter-
active rates that are not achievable with current simulators.

II. GPU-ACCELERATED SUBADMM

A. Subsystem-Based ADMM

In this paper, we utilize the SubADMM framework for its
ability to tackle the NCP while handling operations for each
subsystem and constraint in parallel. Here, we explain the
details of the SubADMM framework.

SubADMM formulates the discrete constrained dynamics
problem as an optimization problem based on augmented
Lagrangian by introducing slack variables xk ∈ Rnc,k ,



zk ∈ Rnc,k and Lagrange multiplier uk ∈ Rnc,k for each
kth constraint. This optimization problem is solved using
the ADMM [3] by executing the following iterative steps:

Step 1 Velocity update:
The representative velocity of the ith subsystem is
updated as follows:
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where the superscript l denotes the iteration step and
βi ∈ R is the penalty weight of the ith subsystem.
Step 2 x-update:
For ith subsystem with kth constraint, xi,k represents
the constraint space velocity, which is updated as below:
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Step 3 z-update:
Suppose the kth constraint involves subsystem i and j,
that is, fk = i, sk = j. This step updates zl+1

i,k and zl+1
j,k

to satisfy the constraint condition described as:
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where λl+1
k ∈ Rnc,k can be obtained by simple scalar

operations for each of three types of constraints :
– Soft constraint :
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where ΠC denotes a strict projection on the friction
cone [11].

Step 4 u-update:
The Lagrangian multiplier for the ith subsystem with
the kth constraint, ui,k, is updated with a simple com-
putation:
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Notice that Step 1 can be done subsystem-wise in parallel
while Step2~Step4 can be done constraint-wise in parallel.

Fig. 2: GPU-accelerated SubADMM overview under a scenario
with N number of subsystems, NC number of contact constraints,
and NJ number of joint constraints. Each subsystem and contact
constraint is designated a memory region with the same layout
pattern. GPU threads are assigned to each memory region for paral-
lelized computation. This structure is the same for joint constraints,
which is not shown in the figure. Notice that the contact-wise
computation kernel is generally assigned more threads than the
subsystem-wise computation kernel in large-scale scenarios.

In this work, we utilize this parallelizable nature of Sub-
ADMM. We adopt a new subsystem division strategy and
implement GPU-accelerated SubADMM using the CUDA
Toolkit [5]. By utilizing the massive computation power of
modern GPUs, we achieve sub-linear scalability and handle
large scenarios (a few thousand bodies) at an interactive rate.

B. Subsystem Division
The overall parallelization scheme of GPU-accelerated

SubADMM is shown in Fig. 2. We set every subsystem
as an individual rigid body with its origin in the center of
mass. This lets every subsystem have an equal 6 degrees of
freedom (DoF) and makes all matrices and vectors within the
same category (e.g., contact Jacobian, slack variables, etc.)
equally sized and computed with a unified rule. Thus, we can
distribute every parallelizable computation, explained in Sec.
II-A, equally along the threads with minimized divergence
(each thread doing the same computations) between threads
and straightforwardly design a global memory layout for co-
alesced memory access patterns (consecutive threads access
consecutive memories). This enables SubADMM to handle
large-scale scenarios with sub-linear scalability with modern
GPUs. From the N number of subsystems, we introduce a
mass matrix Ai ∈ R6×6 and a dynamics vector bi ∈ R6 for
i = 1 . . . N . Notice that the mass matrix, Ai, is constant,
diagonal, and only 4 values can be stored: m, Ixx, Iyy,
and Izz . The dynamics vector bi includes the effect of
momentum, Coriolis force, and external wrench from user
input such as virtual coupling [4].

C. GPU Kernel
The detailed algorithm is shown in Fig. 3. We design

custom GPU kernels for every block labeled with a bold
alphabet appearing in Fig. 3, where the number in the



Fig. 3: Kernels and kernel scheduling for complete simulation loop
including collision detection and GPU-accelerated SubADMM.
Each block labeled with a bold alphabet letter represents a custom-
built kernel.

parenthesis is the number of GPU threads assigned for the
kernel call. When assembling the Ci matrices for each body,
as shown in the kernels labeled as E and F in Fig. 3, we
parallelize the execution at the constraint level rather than the
body level. This can further exploit the computation power
of the GPU since the number of constraints is generally
much larger than the number of bodies, and it can also
reduce thread divergences coming from different numbers of
constraints between the bodies. However, naively using the
add operation can cause race conditions (different threads
writing on the same memory simultaneously) since different
threads for different constraints may add to the same Ci

matrix for the same body. We thus use the atomicAdd
operation provided by the CUDA Toolkit [18] to avoid this
issue. This style of kernel design is also used for assembling
Ei ∈ R6 vectors for each ith subsystem as shown in the
kernels labeled as I and J and constructing the dual residual,
shown in the kernel labeled as O. Notice that some kernels
that computes bi, JC

i,k, JJ
i,k, and eJk , each labeled as A,

B, C, and D, are decoupled to each other. In this case,

Fig. 4: Experiment setup and scene captures for ‘Hand demo’
scenario.

Fig. 5: Scene capture for stress test scenarios. From left to right, top
to bottom: ‘Sliding cubes,’ ‘Vertical stacks,’ ‘Oblique stacks,’ and
‘Card houses’ after 912 seconds of simulation time. For ‘Vertical
stacks,’ contact forces for the front boxes are rendered as red arrows.

we can schedule the kernels to be called asynchronously to
keep as many threads busy as possible. This asynchronous
scheduling is also used to schedule kernels that update
the slack variables and the Lagrangian multipliers for each
contact constraint and joint constraint, labeled as N and O,
and kernels that update the state of each body and calculate
the contact forces, labeled as Q and R.

III. EXPERIMENTS

In this section, we conduct several test scenarios. Every
scenario is run with an Intel Core i9-13900K CPU and an
RTX 4080 GPU. Implementation is done with a custom-
built Unreal Engine 5.3 plugin, rendering quality set to
‘High.’ The input of the hand motion used in the ‘Hand
demo’ scenario, which will be described in Sec. III-A, is
obtained using Visual Inertial Skeletal Tracking (VIST) [13].
The overall results and settings for each scenario are shown
in Table. I. We also recommend that the readers see the
supplemental video for more details.

A. Hand demo
To highlight our simulator’s ability to handle large-scale

scenarios accurately and interactively, we implement a ‘Hand
demo’ scenario in which a user can interact with the
simulation in real-time using a virtual hand. This scenario
includes tasks such as dexterous manipulation with various
objects (apple, small cube, solderer, thin spoon, wooden
toy car, etc.), stacking objects (tricky cube), and grasping



TABLE I: Settings and performance of the solver for test scenarios described in Sec. III. Residuals and time cost (GPU-accelerated
SubADMM) are calculated as the average for the scenario’s number of frames.

Scenario DoFs Iterations δt (ms) Time Cost (ms) ∥rprimal∥∞ ∥rdual∥∞ Contact Average (Max) Joints
Hand demo (m = 20) 1686 100 4 5.00 1.48E-5 3.99E-5 1773(1901) 33

Sliding 100 cubes (m = 30) 600 120 5 3.82 2.26E-7 2.05E-7 488(456) -
Sliding 500 cubes (m = 30) 3000 120 5 4.15 3.75E-6 3.62E-6 3864(3968) -
Sliding 1000 cubes (m = 30) 6000 120 5 4.85 5.19E-6 5.10E-6 8961(9140) -
Sliding 1500 cubes (m = 30) 9000 120 5 5.26 9.37E-6 9.16E-6 14813(15972) -
Sliding 2000 cubes (m = 30) 12000 120 5 5.51 1.05E-5 1.72E-5 21156(22660) -

Vertical stacks (m = 50) 2160 200 5 5.81 1.09E-5 7.47E-05 1438(1440) -
Oblique stacks (m = 30) 840 150 5 4.52 6.97E-7 8.62E-6 1087(1088) -
Card houses (m = 100) 2376 300 1 9.12 3.06E-8 6.64E-7 2551(2680) -

Fig. 6: Time cost of GPU-accelerated SubADMM for sliding cubes
scenarios

heavy objects (golden cube, Stanford bunny). To deliver
physically realistic results, the simulator should solve the
NCP with hundreds of objects and thousands of constraints
in real-time. It also should be robust for ill-conditioned
problems arising from the interaction between odd mass
ratios, such as between the fingertip (10g) and the golden
cube (1kg) or the Stanford bunny (1.5kg). As shown in
Table. I, our simulator can achieve such tight requirements.
Our framework can provide interaction force data during the
simulation, showing potential use for a rich data collection
from expert demonstration. The detailed results are provided
in the supplemental video.

B. Stress test

1) Scalability: We test the scalability of GPU-accelerated
ADMM with a ‘Sliding cubes’ scenario. We test the scenario
with 100, 500, 1000, 1500, and 2000 cubes. As shown
in Fig. 6, GPU-accelerated SubADMM demonstrates sub-
linear scalability regarding the number of bodies and contact
constraints.

2) Robustness under odd mass ratio: As described in
Sec. III-A, the interaction between odd mass ratios should be
robustly handled for interactive simulations. We further test
the robustness under odd mass ratios with two scenarios:
‘Vertical stacks’ and ‘Oblique stacks.’ In ‘Vertical stacks,
’ a 100kg box, slightly perturbed with a pitch angle, is
dropped on top of a 1kg box sitting on a 10g box. The
scenario contains 120 number of these stacks. In ‘Oblique
stacks,’ 10kg plates are stacked upon 50g cubes. The friction
coefficient of each plate and cube is set to 3, which is
enough to prevent sliding. These scenarios are simulated
successfully, showing that our framework can handle such
large-scale and ill-conditioned problems in real-time. We
test the same scenarios using Chaos and other state-of-the-
art interactive simulators, PhysX and Mujoco, explained in
Sec. I, with an extensive number of iterations. For ‘Vertical
stacks,’ every simulator fails to stack the heavy block, as
shown in Fig. 7. For ‘Oblique stacks,’ Chaos exhibits springy

Fig. 7: Robustness test with odd mass ratios. From left to right:
PhysX, Mujoco, and Chaos.

motion but successfully maintains the stack, while PhysX
and Mujoco show sliding even if we increase the friction
coefficient to 10. To enable stacking, PhysX needs techniques
such as ‘sleeping’ (ignoring consecutive small velocities),
and Mujoco needs an additional ‘No slip iteration’ but with
a large trade-off (more than 10ms) in computation time. The
detailed settings and results are provided in the supplemental
video.

3) Stacking stability: We test the stacking stability of our
simulator with a ‘Card houses’ scenario. The challenging
aspects of this scenario are well explained in [9]. The six
card houses are initially shocked due to small gaps between
each card in the first frame, and quickly stabilize. We observe
stable behavior for more than 15 minutes of simulation time
even though no stabilization methods, such as sleeping, are
used.

IV. CONCLUSIONS
In this paper, we implement the GPU-accelerated Sub-

ADMM, which exploits the parallelizable nature of Sub-
ADMM to the fullest extent. We introduce a new subsystem
division strategy to make SubADMM ‘GPU friendly’ and
apply optimization techniques with GPU programming. With
an interactive ‘Hand demo’ scenario, we demonstrate the
ability of this new framework to handle large-scale scenarios
accurately at an interactive rate. We also show improved
scalability compared to the original SubADMM and accu-
racy and robustness compared with several state-of-the-art
simulators with challenging scenarios. This work can be
used to tackle challenging problems in robotics. Utilizing our
framework for an efficient collection of expert demonstra-
tions of hand-object manipulation, including contact force
measurements and fast roll-out of a control policy under
complicated environments, seems to be a promising and
interesting direction.
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