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ABSTRACT

Large reasoning models improve performance on complex tasks by generating
extended thought processes, but applying this approach uniformly to general user
queries is computationally wasteful. Current solutions require complex multi-
model systems or burden the user with manual controls. To address this, we in-
troduce Self-Guided Thinking (SGT), a framework that enables a single model to
learn to decide for itself when to think. SGT seamlessly integrates a lightweight
penalty for deliberation into the Direct Preference Optimization (DPO) objective
during the general alignment phase, teaching the model to balance performance
with computational cost. Our experiments show that SGT learns a sophisticated,
domain-adaptive policy. It achieves near-peak performance on general bench-
marks while significantly reducing unnecessary thinking, and generalizes effec-
tively to challenging out-of-distribution tasks by increasing its thinking where
needed. On verifiable benchmarks, we find that while SGT preserves the model’s
reasoning capabilities, the general alignment stage does not substantially improve
them over a fine-tuned baseline, suggesting the need for targeted in-domain train-
ing for further gains. Our ablations reveal that SGT teaches the model when to
deploy a pre-existing capability, not how to reason from scratch; the policy’s ef-
fectiveness is contingent on foundational knowledge from prior SFT and sufficient
response length. Together, these findings demonstrate that an autonomous reason-
ing policy can be learned efficiently during general alignment, offering a practical
path to deploy more economical and versatile models.

1 INTRODUCTION

Scaling inference-time compute has become the dominant paradigm for achieving state-of-the-art
(SOTA) performance in domains where extended deliberation (“thinking”) is critical, most notably
in STEM tasks. Large Reasoning Models (LRMs) excel by trading this additional compute for
higher accuracy, producing long “thoughts” before finalizing an answer (Xiang et al., 2025b; Co-
manici et al., 2025; OpenAI, 2025; Guo et al., 2025; Team et al., 2025). In real-world settings,
the vast majority of user requests span a diverse spectrum of general tasks, including nuanced
instruction-following, open-ended question answering, and role-playing etc, where this intensive
thinking process often introduces significant latency without meaningfully improving user prefer-
ence (Köpf et al., 2023; Zhao et al., 2024). Two primary strategies have emerged. One approach
defers the decision to the user by engineering explicit “think” modes into their models (Anthropic,
2024). Another uses an external router to direct queries to either a powerful reasoning model or
a lightweight, direct-answer model in a pool of existing LLMs (OpenAI, 2025; DeepSeek, 2025).
Both strategies, however, have drawbacks: one burdens the user with choosing the correct mode,
while the other requires training and maintaining complex systems.

Recent technical reports on SOTA open-source models provide insight into a full pipeline how a hy-
brid model can be built. The Qwen3 technical report, for instance, details a multi-stage post-training
paradigm where models are first imbued with powerful reasoning abilities through supervised fine-
tuning (SFT) and reasoning RL with verifiable rewards, followed by a “general RL” stage to align
the model with broad user preferences for subjective, open-ended downstream tasks (Yang et al.,
2025). This process, while creating a versatile model, has two notable outcomes. First, as their
analysis shows, it results in a performance trade-off, where peak reasoning capability is degraded.
Second, the final model relies on explicit user commands to switch between its “thinking” and “non-
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thinking” modes. This raises a more fundamental question: can the decision of when to think be
made autonomous rather than being offloaded to the user?

Our work investigates this possibility. We propose that the general RL stage is the ideal point to
instill this capability by introducing Self-Guided Thinking (SGT), a method designed to be seam-
lessly integrated into the general alignment phase. By adding a lightweight penalty on reasoning
tokens, our DPO-with-thinking-regularizer (DPO-tr) objective transforms the training goal: it si-
multaneously aligns the model with user preferences and teaches it to determine when to think. We
shows that this approach is highly effective on UltraFeedback, SGT maintains near–“always-think”
win rates while reducing the amount of thinking by 10–20%, and generalize to out-of-distribution
(OOD) evaluations including Arena-Hard and Arena-Creative Writing. Furthermore, we find the
model learns a domain-adaptive policy, as it apply “thinking” for complex reasoning tasks, while
intelligently conserving computational resources on subjective tasks where direct responses suffice.
Our ablations reveal that the policy’s effectiveness on verifiable reasoning domains including math
and coding is contingent on the model having both the foundational knowledge from prior SFT and
a sufficient response length to execute its thought process. This demonstrates that an autonomous
reasoning policy can be learned during the general alignment phase without additional cost, offering
a practical path to deploy powerful models more economically.

2 RELATED WORK

Efficient reasoning in large reasoning models. Efficient reasoning in LRMs has emerged as a
critical area of research, aiming to balance performance and computational overhead during infer-
ence. A common strategy is to augment reinforcement learning objectives with length penalties to
encourage concise outputs, particularly in verifiable domains. Difficulty-aware approaches dynam-
ically adjust the penalty based on estimated problem complexity, such as through adaptive length
penalties (Xiang et al., 2025a) or explicit sampling strategies (Shrivastava et al., 2025). In contrast,
difficulty-agnostic methods apply a uniform penalty to all reasoning traces (Team et al., 2025; Arora
& Zanette, 2025), use techniques like clipping to shorten them (Hou et al., 2025), or allow users to
set a maximum length (Aggarwal & Welleck, 2025). These length control methods focus on verifi-
able domains and operate on models that “think” by default. Their goal is to make this deliberation
more efficient by regularizing total response length, rather than questioning if deliberation is neces-
sary in the first place. In contrast, our SGT framework penalizes the act of thinking itself, not its
length, teaching the model the more fundamental and flexible policy of whether to think at all.

Hybrid reasoning Hybrid reasoning, which combines fast, direct responses with deliberative
thinking to optimize performance, is often implemented via router-based systems. These methods
route queries to specialized ”fast” or ”reasoning” models (OpenAI, 2025;?), a flexible approach that
requires maintaining multiple systems. The alternative is the single-model approach, where a unified
model learns to adaptively switch modes. Existing methods typically offload the decision-making
process: either to an internal learned policy that uses control tokens or difficulty predictors, often
focused on verifiable domains (Jiang et al., 2025; Fang et al., 2025), or externally to the user via
manual toggles (Yang et al., 2025; DeepSeek, 2025). Our Self-Guided Thinking (SGT) framework
presents a distinct solution. By embedding a thinking regularizer directly into the general preference
alignment phase, SGT is unique in that it learns an autonomous policy as an emergent outcome of
aligning with broad user preferences.

3 METHOD

Our method for training a self-guided reasoning model consists of two key stages. The first is
a Supervised Fine-Tuning (SFT) stage where we create a versatile base model by teaching it the
format of both direct answers and responses via thinking. The second is the Self-Guided Thinking
(SGT) stage where a selective policy is learned through online, iterative reinforcement learning from
AI feedback (RLAIF).
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3.1 SUPERVISED FINE-TUNING FOR HYBRID THINKING

The first stage of our method prepares a hybrid model (πθ) capable of generating both direct answers
and responses preceded by a reasoning trace. The goal is to instill the raw capability for hybrid
thinking without a strong preference for either mode. To achieve this, we curate a dataset containing
two distinct completion styles for each prompt: a direct response and a deliberated response where
the thought process is enclosed in <think> ... </think> tags. To avoid inducing a quality
bias, both response types are generated to be of comparable quality. The base model is then fine-
tuned on this dataset using a standard SFT objective.

3.2 SELF-GUIDED THINKING BEHAVIOR

To train the hybrid base model to learn when to think, we introduce our novel training method,
Self-Guided Thinking (SGT). Due to lack of verifiable reward in open domains, we optimize the
model’s hybrid thought and response generation through RLAIF. Our approach builds upon Direct
Preference Optimization (DPO) (Rafailov et al., 2023), modifying the standard objective to make
the model not only aware of which response is better, but also when it is worth spending the extra
compute on thinking.

3.2.1 PRELIMINARIES: DIRECT PREFERENCE OPTIMIZATION (DPO)

DPO aligns a language model with a preference dataset D = {(x, yw, yl)}i, where for each prompt
x, yw is the preferred (winning) response and yl is the dispreferred (losing) response. It directly
optimizes a policy model πθ to satisfy these preferences, using a fixed reference model πref, which
is typically a supervised fine-tuned (SFT) version of the initial model.

The standard DPO objective function is:

LDPO(θ) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

)]
Here, β is a hyperparameter that controls the deviation from the reference policy. The core of
this loss function is the term inside the sigmoid σ(·), which represents the difference in the log-
probability ratios between the winning and losing responses. Intuitively, minimizing this loss en-
courages the policy πθ to assign a significantly higher relative probability to the preferred response
yw compared to the dispreferred response yl.

3.2.2 ONLINE PREFERENCE PAIR CONSTRUCTION

We generate preference pairs through an online RLAIF process. For each prompt x from our training
distribution, we first generate a set of k candidate responses, Y = {y1, . . . , yk}, by sampling from
our current policy πθ(· | x). These candidates are then scored by a preference (reward) model
r(y, x). A winning response yw and a losing response yℓ are selected from this set based on their
scores, typically by choosing the highest- and lowest-scoring candidates:

yw = argmax
y∈Y

r(y|x) and yℓ = argmin
y∈Y

r(y|x).

Crucially, because the policy πθ was prepared in the SFT stage to be capable of both response styles,
the set of candidates Y naturally contains a mix of direct and thinking-based answers. This ensures
the resulting preference dataset D = {(x, yw, yℓ)}i is populated with the hybrid pairs required for
our DPO-tr objective.

3.2.3 DPO WITH A THINKING REGULARIZER (DPO-TR)

The standard DPO objective is agnostic to the structure or computational cost of the responses; it
only cares about which one is preferred. To encourage the model to learn an efficient reasoning
policy, we introduce an explicit regularization term directly into the DPO loss function. We define
an indicator function, 1think(y), which returns 1 if the response y contains a deliberative reasoning
trace (e.g., enclosed in <think>...</think> tags) and 0 otherwise.
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Our modified objective, which we term DPO with a thinking regularizer (DPO-tr), is defined as
follows:

LDPOtr(θ | R) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

+ α (1think(yw)− 1think(yl))

)]
(1)

The key innovation is the term +α (1think(yw)− 1think(yl)), which adds a direct penalty or bonus to
the log-odds based on the presence of thinking. The hyperparameter α controls the magnitude of the
cost of thinking. Applying a non-zero α forces the model to learn that deliberation must be justified
by a substantial quality improvement. Conversely, it provides a bonus when a direct response wins,
rewarding the model for being efficient and concise. When both responses are of the same type, the
term is zero, and the objective reverts to standard DPO.

4 EXPERIMENTAL SETUP

A central motivation for this work is to understand whether the utility of thinking is domain-
dependent. To train and evaluate a model that can learn a selective reasoning policy, we require
a data strategy that spans both complex, verifiable domains (math, coding and STEM) and broad
subjective domains where user preference is the primary metric.

Datasets The goal of our SFT stage is to create a versatile base model with priors for both di-
rect and thinking-based responses. To achieve this, we curate data from two distinct sources. For
verifiable domains, we use the original thinking traces from OpenThoughts3 (Guha et al., 2025),
filtering the dataset to 445k examples. We then generated corresponding direct answers for these
prompts using Qwen3-8B-Instruct without thinking. To obtain subjective domain prompts we
filter out math and coding prompts, which are redundant in OpenThoughts3, from the ServiceNow
dataset (Madhusudhan et al., 2025). This resulted in 714k prompts. This curated data, sourced
from ∼1.15 million unique prompts, is then compiled into two final SFT datasets. For this set,
Qwen3-8B-Instruct is used to generate both the thinking and direct responses. This data is
then compiled into two final SFT datasets: a direct dataset (Ddirect) to train our non-thinking base-
lines, and a hybrid dataset (Dhybrid) (containing both response types for each prompt) to prepare our
model for the RLAIF stage.

RLAIF Dataset. For the RLAIF alignment stage, our focus shifts from teaching the capability
of reasoning to teaching the policy of when to apply it based on broad user preferences. For this,
we use the UltraFeedback dataset, which we term DRLAIF, a large-scale collection of user-assistant
conversations across 21 diverse and primarily subjective domains. We use 59.8k prompts for training
and a held-out set of 4.2k prompts for in-domain evaluation.

Training Details. Our training begins with Qwen3-4B base and consists of two main stages. In
the Supervised Fine-Tuning (SFT) stage, we create two initial models. The Direct SFT model is
trained Ddirect. The Hybrid SFT model, trained on Dhybrid, serves as the foundation for our method.
Both models are trained for 2 epochs. In the second stage, we apply preference tuning on DRLAIF.
The Direct DPO model is created by further training the Direct SFT model with standard DPO. Our
primary SGT model is created by training the Hybrid SFT model with our DPO-tr objective. This
RLAIF training is conducted via an online DPO process for 9 steps, where for each prompt, a reward
model, Athene-RM-8B (Frick et al., 2024), scores four generated candidates to select the winning
and losing pair for the update. We chose this reward model as it was top-ranked on the Reward
Bench Leaderboard at the start of our experiments1. Compute details can be found in Section A.1.

Hyperparameters and Ablations. For our main experiments, all models were trained with a max-
imum response length of 16K. We test a range of alpha values (0, 1.2, 1.3, 2) to analyze the effect
of the thinking penalty. To test the boundary conditions of our method, we also run two ablation
studies: one with a reduced 8K response length, and another using a Hybrid SFT model trained on
an SFT dataset with no STEM data.

1https://huggingface.co/spaces/allenai/reward-bench
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Evaluation. We evaluate our models across three categories of benchmarks. For in-domain sub-
jective evaluation, we use a held-out test set of 4.2K prompts from UltraFeedback. For out-of-
distribution (OOD) subjective domains, we use Arena-Hard and Arena-Creative Writing to test for
generalization. Finally, for verifiable evaluation, we test on AIME 24-25, OlympiadBench, and
LiveCodeBench to measure objective correctness on complex reasoning tasks. The evaluation pro-
tocol differs by benchmark. For the UltraFeedback test set, we use GPT4.1-nano as an LLM judge
to determine the winning response. For Arena-Hard and Arena-Creative Writing, we follow the
official pairwise evaluation protocol from the benchmark (Li et al., 2024). On the verifiable bench-
marks, we measure Pass@1 accuracy. Our primary analysis focuses on two controlled comparisons:
Direct SFT vs. Hybrid SFT and Direct DPO vs. SGT, as these pairs share the same initial training
conditions and allow us to isolate the effects of our method.

5 RESULTS

5.1 HYBRID THINKING IN SUBJECTIVE DOMAINS

Table 1: Evaluation in subjective domains. Win is win rate (%) vs the same baseline per benchmark;
Think is think rate (%). Win rate are computed against Direct SFT for UltraFeedback, o3 for Arena-
Hard and Gemini-2.0-Flash for Arena-Creative Writing.

UltraFeedback Arena-Hard Arena-Creative Writing

Model Win Think Win Think Win Think
Direct SFT 50 0 7.7 0 7.3 0
Hybrid SFT 52.6 59.4 5.6 55 9 50
Direct DPO 53.2 0 7.4 0 9.8 0
SGT 56.3 81.4 20 75 27 74

Effective hybrid thinking emerges as a result of RLHF with thinking cost. Our results in Table
1 show that Self-Guided Thinking (SGT) learns a highly effective, selective reasoning policy that
significantly outperforms baseline models, especially on challenging domains. On the in-domain
UltraFeedback task, we observe that both the naive Hybrid SFT and the final SGT model achieve
comparable gains over their non-thinking counterparts. However, the limitations of a naive approach
by simply enabling a “think” mode yields inconsistent outcomes in OOD tasks. First, the Hybrid
SFT model underperforms the Direct SFT model on the reasoning-intensive Arena-Hard benchmark
(5.6% vs. 7.7% win rate). Further preference tuning without a thinking mechanism also fails to
improve performance on these OOD reasoning tasks. In contrast, SGT dramatically boosts perfor-
mance across the board. On Arena-Hard, which contains difficult math and coding problems, SGT
improves the win rate nearly threefold over the best baseline (from 7.7% to 20%). It achieves a
similar leap on Arena-Creative Writing (from 9.8% to 27.0%). This performance gain is directly
linked to its learned policy: SGT activates its reasoning capabilities on 74-75% of prompts in these
challenging domains. This demonstrates that by introducing a cost for deliberation during RLHF,
SGT learns to strategically apply “thinking” where it has the most impact, achieving superior gen-
eralization and performance.

The Utility of Deliberative Reasoning is Highly Domain-Dependent. As illustrated in Figure 1,
our analysis of the in-domain UltraFeedback test set shows that the model learns a nuanced, domain-
specific reasoning policy. Thinking provides a significant advantage on tasks requiring structured
planning or complex instruction-following, such as Conversational Dialogue and Reasoning and
Problem Solving. Conversely, its utility diminishes in more subjective domains like Art and Direct,
where a direct, “System-1“ style response suffices. Perhaps the clearest evidence of this selective
policy is the model’s behavior on the Math and Calculations tasks within UltraFeedback. Here, the
model correctly infers the low complexity of the problems and adaptively reduces its thinking rate,
demonstrating an ability to balance cost against expected performance. This reduction in think rate
on simple, in-domain math is thrown into sharp relief when tested on a challenging OOD bench-
mark. On Arena-Hard, a domain composed of difficult math and coding problems, SGT achieves
its most dramatic performance gain, nearly tripling the win rate over the baseline (Table 1). The
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Win Rate Thinking Rate

Figure 1: SGT Performance by Domain. Win and think rate of the SGT model against the direct
response DPO baseline after 9 steps of training α = 1.3.

stark contrast-between its low thinking rate on simple math and its high (75%) rate on complex
problems-proves that SGT learns a sophisticated policy. It assesses not just the domain, but the
inherent difficulty of a problem to strategically apply its reasoning capabilities. This principle of
superior generalization is also evident in subjective domains. For instance, while the SGT model
shows only a marginal win rate improvement in Creative Writing on the in-domain UltraFeedback
test set, the gap widens significantly on the Arena-Creative Writing benchmark (Table 1). We hy-
pothesize that this is because the standard Direct DPO model overfits to the stylistic preferences
within the UltraFeedback domain. In contrast, SGT’s thinking process enables it to learn a more ab-
stract and generalizable strategy for creative writing tasks, allowing it to maintain high performance
even when the style and nature of the prompts shift.

5.2 PERFORMANCE ON VERIFIABLE TASKS.

Table 2: Verifiable results comparing our SGT model against the Direct Baseline. For math bench-
marks, we report Pass@1 accuracy (%) estimated with 64 samples.

AIME 24 AIME 25 OlympiadBench LiveCodeBench

Model Acc Think Acc Think Acc Think Acc Think
Direct SFT 16.6 0 14.3 0 37.5 0 12.4 0
Hybrid SFT 23.8 39 21.6 37 42.6 38 19.2 42
Direct DPO 15.7 0 15.7 0 38 0 13.6 0
SGT 25.6 39 22.3 38 43.2 40 19.5 42

To understand how the RLAIF stage impacts specialized STEM/code/math reasoning, we now turn
to our suite of verifiable benchmarks. The results in Table 2 confirm that while our SGT policy pre-
serves existing capabilities, it does not significantly enhance them without targeted training. Consis-
tent with our findings in subjective domains, the Direct DPO model shows no improvement over the
Direct SFT baseline, confirming that general preference tuning does not impart the necessary skills
for these tasks. Interestingly, the naive Hybrid SFT model provides a substantial performance lift,
suggesting that for these highly complex problems, any form of step-by-step reasoning is beneficial.
However, while our SGT model maintains a slight performance edge, it does not meaningfully im-
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prove upon the Hybrid SFT baseline. We attribute this to the fact that its think rate on these problems
remains comparable to that of the Hybrid SFT model (Table 2). This suggests that the calibration
learned during the general RLHF stage does not transfer to these specialized domains; the model
doesn’t learn to increase its deliberation for these difficult problems. This highlights a key limitation:
to advance performance on complex STEM tasks, targeted in-domain training is required.

5.3 EFFECTS OF HYPERPARAMETERS AND ABLATION

Having established the effectiveness of SGT, we now investigate the necessary conditions for this
policy to emerge by directly addressing our third research question. To understand the policy’s
dependence on initial training and hyperparameters, we conduct a series of ablations. We analyze
the sensitivity to the thinking penalty, α, the effect of a constrained max response length, and the
necessity of prior STEM knowledge by training a model on an SFT dataset with no STEM problems.

Figure 2: Distribution of reward score differences between ’thinking’ and ’direct’ responses
from the initial SFT model. Responses after thinking usually score higher than direct responses
based on the reward model, while the negative tail highlights prompts where a direct response is
superior, justifying a selective policy

A balanced α is critical for an effective performance-cost trade-off. First, the choice of the
thinking penalty, α is critical. As shown in Figure 3, α directly controls the trade-off between per-
formance (Win Rate) and computational cost (Thinking Rate). An α = 0 policy learns to “always-
think” maximizing its reward by following the reward model’s general preference for responses after
thinking. Figure 2 illustrate the distribution of reward scores is positively skewed before general RL,
confirming the reward model generally assigns higher scores to the higher-quality answers produced
through thinking. However, the crucial negative tail of the distribution identifies prompts where a di-
rect response is superior, demonstrating that a fixed “always-think” policy is suboptimal and creates
a clear opportunity for a more efficient, selective policy. Conversely, setting the penalty too high
(α = 2) aggressively suppresses thinking to the model’s detriment, causing its win rate to collapse
below the non-thinking baseline. The success of SGT lies in finding a balanced α (1.2, 1.3) that that
learns to forgo thinking only when the quality drop is minimal. These models effectively learn to
identify and act on the efficiency opportunities presented by the negative tail, confirming that our
DPO-tr objective can successfully teach a model to think when it is beneficial.
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SGT 0 SGT 1.3SGT 1.2 SGT 2 DPO Direct

Figure 3: SGT Learns an Efficient Reasoning Policy. Win rate (left) and thinking rate (right)
for models trained with varying thinking penalties (α) on the UltraFeedback test set. SGT models
(α = 1.2, 1.3)) learn to reduce their thinking rate (cost) without a significant drop in performance
compared to the “always-think“ model (α = 0).

SGT 0 SGT 2SGT 1 DPO Direct

Figure 4: GT Learns an Efficient Reasoning Policy without STEM SFT data and 8K max
response length. Win rate (left) and thinking rate (right) for models trained with varying thinking
penalties (α) on the UltraFeedback test set. SGT models (α = 1)) learn to reduce their thinking rate
(cost) without a significant drop in performance compared to the “always-think“ model (α = 0).

Table 3: Verifiable results comparing our SGT model against the Direct Baseline. For AIME 24-25,
we report Pass@1 accuracy (%) estimated with 64 samples. OlympiadBench and LiveCodeBench
both used 8 samples.

Model AIME 24 AIME 25 OlympiadBench LiveCodeBench
Direct DPO (16K) 15.8 15.7 38.2 13.6
SGT-0 (16K) 35.5 30.1 48.3 19.5
SGT-1.2 (16K) 27.6 23.4 44.4 19.9
SGT-1.3 (16K) 25.6 22.3 43.2 19.5
SGT-2 (16K) 17 17 40 14.2

Direct Baseline (8K) 15.7 15.7 38 13.4
SGT-1.2 (8K) 17.6 14.8 37.7 13

Direct Baseline (8K, No STEM) 16.6 12.9 38.5 13
SGT-1.2 (8K, No STEM) 17.1 13.8 38 13.4

The effect of max response length during general RL. The extended reasoning process in “think
mode” can significantly increase response length. While a higher length cap during training allows
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the model to explore more comprehensive reasoning paths, it also increases the computational bud-
get. To understand the impact of a more constrained budget, we trained a new suite of models with
the max response length reduced from 16K to 8K. On the general-domain UltraFeedback test set, a
constrained budget primarily affects the learning dynamics rather than the final performance (Figure
4). The “always-think” model (α = 0) converges to a 100% thinking rate more slowly, taking 6
steps instead of 3. For a balanced penalty (α = 1), the model still achieves a final win rate com-
parable to the always-think model. This might suggest that a shorter response length is sufficient
for general RLHF. However, Table 3 reveals a different story for specialized domains. Constraining
the response length to 8K causes a catastrophic drop in performance on the verifiable STEM bench-
marks, with the SGT-1.2 (8K) model’s accuracy on AIME 24 collapsing from 28% to 15%. This is
because complex problems require longer reasoning traces, and a constrained budget prevents the
model to learn necessary strategies to solve them. These results indicate that while a shorter context
may suffice for general-domain alignment, a longer max response length during training is critical
for preserving high-level reasoning capabilities in STEM.

Alation of STEM SFT data. Our final and most critical ablation tests the necessity of prior do-
main knowledge by training a model exclusively on a non-STEM SFT dataset. The results from
the UltraFeedback test set (Figure 4) show that, even with this limited prior, the model still learns a
selective policy—it successfully trades win rate for a lower thinking rate as α increases. However,
this learned policy proves to be entirely superficial when applied to actual STEM problems. As
shown in Table 3, the SGT-1.2 (8K, No STEM) model performs no better than its non-thinking Di-
rect Baseline counterpart on verifiable benchmarks. For instance, both models score 17% on AIME
24, and the SGT model achieves no reliable gains on AIME 25. This is a crucial finding. It proves
that SGT is not a mechanism for creating reasoning ability from scratch; instead, it is a powerful
method for learning to selectively deploy a pre-existing capability. Foundational knowledge from
domain-specific SFT is a necessary prerequisite for the SGT policy to be effective on challenging
tasks. To test the preconditions for this policy, we conducted a critical ablation study: we trained a
model without any prior STEM SFT data and with a reduced 8K maximum response length. The
results in Figure 4 show that, with smaller response length, the model still learns a selective policy.
However, this learned policy is superficial. Instead, it is a powerful method for learning to selec-
tively deploy a pre-existing capability. Both foundational knowledge from domain-specific SFT and
sufficient context length to execute complex reasoning are necessary prerequisites for the learned
policy to be effective on challenging tasks.

6 DISCUSSION AND LIMITATIONS

In this work, we introduced Self-Guided Thinking (SGT), a method that teaches a single model to
autonomously decide when to engage in costly thinking by integrating with DPO-tr. Our findings
demonstrate that SGT learns a domain-adaptive policy; this alignment phase teaches the model when
to deploy a pre-existing thinking capability. The effectiveness of this policy is therefore contingent
on the model’s foundational SFT, and we find that while our general alignment preserves specialized
STEM skills, targeted in-domain training would be required to further enhance them. Ultimately,
SGT offers a practical path toward deploying more versatile and economical models that can effi-
ciently govern their own computational resources. Our work has several limitations. First, the SGT
policy’s effectiveness is capped by the model’s foundational reasoning ability from the SFT stage;
future work could combine our general alignment method with targeted RL to jointly enhance and
manage these skills. Second, our thinking penalty (α) is global, and a more sophisticated approach
could learn a dynamic penalty that adapts to the context, leaving space for follow-up work.
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Andreas Köpf, Yannic Kilcher, Dimitri Von Rütte, Sotiris Anagnostidis, Zhi Rui Tam, Keith
Stevens, Abdullah Barhoum, Duc Nguyen, Oliver Stanley, Richárd Nagyfi, et al. Openassistant
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A APPENDIX

A.1 ADDITIONAL EXPERIMENTAL DETAILS

Our experiments were conducted on of two individual nodes, each equipped with 8 NVIDIA H100
GPUs. For the SFT stage, models were trained for 2 epochs, with the Hybrid SFT model taking
approximately 3 days to complete. The subsequent RLAIF training was conducted for 9 steps over
the DRLAIF dataset using a batch size of 4400 and a DPO hyperparameter of β = 0.1. During
this online DPO process, we sampled 4 candidate responses per prompt at a temperature of 0.7 and
tested a range of α values (0, 1.2, 1.3, 2). A full 16K context SGT run took ∼22 hours, while the
8K context and Direct DPO models each took ∼12 hours. For all final evaluations, the maximum
response length for all models was set to 16K.

A.2 FINEGRAINED DOMAIN EVALUATION

The comparison between the domain-level performance of our main models (Figure 6) and that
of our ablation models (Figure 5) powerfully illustrates the necessary preconditions for SGT to be
effective. In our main experimental setting, the fully-resourced models show strong and consistent
win rate improvements across nearly all 21 domains as training progresses, including areas like Math
and Calculations and Programming and Coding. In stark contrast, the ablation models—trained
without STEM SFT data and with a constrained 8K response length—fail to achieve meaningful
gains in these same critical domains, even when configured to ”always-think” (α = 0). This visual
evidence demonstrates that the selective reasoning policy learned by SGT is not superficial; it is
highly effective, but its success on challenging tasks is contingent on the model having both the
pre-existing knowledge and the sufficient context length required to execute complex deliberation.

A.3 EXAMPLES OF USEFUL THINKING
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Figure 5: Domain-level win rate evolution for ablation models. Each heatmap shows the win rate on
the UltraFeedback test set across 21 domains and 9 training steps for a specific model configuration
trained without STEM SFT data and with an 8K maximum response length.

Figure 6: Domain-level win rate evolution for ablation models. Each heatmap shows the win rate on
the UltraFeedback test set across 21 domains and 9 training steps for a specific model configuration
trained with STEM and subjective domain SFT data and with an 16K maximum response length.
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Prompt Domain Helpful Thinking
Could you pretend to be my friend
for this conversation?

Conversation
Dialogue

<think> ... First, I need to establish a friendly and
approachable tone. Maybe start with a casual greet-
ing to make them feel comfortable.
I should ask how they’re doing to show genuine in-
terest. It’s important to listen and respond empatheti-
cally. Let me make sure my responses are open-ended
so they can share more. I should avoid any technical
jargon and keep the language simple and conversa-
tional. Also, I need to be mindful of their possible
needs... </think>

Write a story about a person who can
change their own weight and density.

Creative Writ-
ing

<think>...Let me start by brainstorming some
ideas. First, I need to figure out how the ability
works. Maybe the protagonist can adjust their weight
and density at will, which could have various effects.
Let me think about the implications. If someone can
change their weight, they could float, become heav-
ier to sink, or even manipulate objects. But how does
that tie into a story?
I should create a relatable protagonist. Maybe some-
one who discovers this ability accidentally. Let’s say
they’re a teenager, which makes the story more en-
gaging... </think>

Table 4: Examples of prompts with “Helpful Thinking” responses in Conversation Dialogue and
Creative Writing domains.
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