
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

Prompt Engineering at Scale: Provably Ef-
fective Multi-Agent Cascades for Attribute
Generation in E-Commerce

Anonymous authors
Paper under double-blind review

Abstract

Developing specialized Large Language Model (LLM) prompts for domain-
specific tasks at scale remains a significant hurdle, particularly for e-
commerce applications managing tens of thousands of distinct product
attributes. We introduce CascadeAgent, a novel multi-agent framework
that automates prompt adaptation and specialization through semantic
gradient-based refinement. CascadeAgent employs a hierarchical architec-
ture where a central Prompting Agent orchestrates four specialized counter-
parts—Writing, Generation, Evaluation, and Flaw Detection—that collabo-
ratively analyze domain metadata, construct attribute-specific prompts, and
enhance performance through iterative feedback. Our approach combines
Multi-pass Prompt Generation (MPG) for modularity with textual gradient
optimization that refines instructions based on detected error patterns. We
provide formal theoretical analysis demonstrating provable convergence to-
wards reduced loss under defined conditions. In a large-scale e-commerce
case study on product attribute enrichment, CascadeAgent generated and
optimized over 27,000 distinct prompts, achieving improvements of +21%
to +33% in precision and +12% to +14% in coverage across multiple LLMs.
These results highlight CascadeAgent’s capacity for robust, automated
prompt engineering at industrial scale, while making more affordable models
viable for deployment. The framework’s modular design, iterative improve-
ment mechanism, and theoretical guarantees make it a strong candidate for
applications requiring principled refinement of vast numbers of task-specific
prompts.

1 Introduction

Enhancing product listings with detailed and accurate attribute information is a critical,
yet challenging task in e-commerce. Automatically enriching product catalogs simplifies the
listing process for sellers and significantly improves the shopping experience for customers
by boosting search relevance, product discovery, and informed purchasing decisions. While
Large Language Models (LLMs) offer a promising solution for automating this process,
adapting them to domain-specific tasks remains challenging, as generic prompts often fail to
capture the nuanced requirements of specific product attributes, impacting catalog quality
and user experience.

The core complexity lies in the sheer heterogeneity of e-commerce catalogs: countless product
categories, each with a unique set of relevant attributes, demand specialized handling.
Effective attribute extraction requires instructions meticulously tailored to specific product-
attribute (PA) combinations while ensuring consistency and quality across the entire catalog.
To address this scale and specificity, we first introduce Multi-pass Prompt Generation
(MPG), a strategy that modularizes the problem by processing individual attributes with
dedicated prompts. This approach allows for precise instruction tuning without creating overly
complex prompts and provides a robust foundation for systematic, scalable optimization by
isolating the refinement of each attribute.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

While prior work has explored individual aspects of prompt engineering and multi-agent
systems Shin et al. (2020); Yang et al. (2024); Ye et al. (2023); Yuksekgonul et al. (2024);
Chang et al. (2024); Shinn et al. (2023), our key innovation lies in their principled integration
for industrial-scale attribute extraction. Unlike previous approaches that handle dozens to
hundreds of attributes Zheng et al. (2018); Yan et al. (2021c); Yang et al. (2022); Fang et al.
(2024); Zhang et al. (2024); Gong et al. (2025), CascadeAgent’s novel architecture enables
management of over 27,000 attribute-specific prompts while providing theoretical guarantees
of convergence. The significant performance improvements (+33% in precision, +14% in
coverage) and ability to make affordable models competitive with premium ones demonstrate
a fundamental rethinking of how to approach large-scale prompt engineering.

Figure 1: CascadeAgent with five special-
ized agents to optimize catalog enrichment.

Building on MPG, we propose CascadeAgent,
a novel multi-agent framework designed to au-
tomate the creation and, crucially, the iterative
refinement of these attribute-specific instruc-
tions. CascadeAgent orchestrates five special-
ized agents—Prompting, Writing, Generation,
Evaluation, and Flaw Detection—in a collabo-
rative loop. This system begins by generating
initial instructions based on catalog guidelines
and seller data. It then enters iterative re-
finement cycles where outputs are evaluated,
flaws are identified, and instructions are sys-
tematically updated using a semantic gradient-
based optimization Shin et al. (2020). This
process, which continues until desired accuracy
is achieved or iteration limits are met, ensures
that PA-specific instructions are progressively
enhanced.

A key contribution of this work is not only the empirical demonstration of CascadeAgent’s
effectiveness but also a formal theoretical analysis of its iterative refinement mechanism.
We model the system’s dynamics and prove, under reasonable assumptions, that the expected
catalog loss decreases, providing principled validation for our design.

The contributions of our work are thus multi-faceted:

1. Multi-pass Prompt Generation (MPG): A scalable framework that decomposes
complex catalog enrichment into attribute-specific sub-tasks, each managed by a
specialized prompt.

2. CascadeAgent: A novel multi-agent system that collaboratively creates, evaluates,
and refines attribute-specific instructions, incorporating domain knowledge (e.g.,
catalog guidelines, seller preferences) and optimized through an iterative, semantic
gradient-based approach.

3. Theoretical Guarantees: A formal analysis demonstrating the convergence prop-
erties of CascadeAgent’s iterative refinement process toward reduced catalog loss.

4. Industrial-Scale Empirical Validation: Demonstration of CascadeAgent’s effec-
tiveness in a real-world e-commerce setting, achieving up to +33% precision and
+14% coverage improvements on attribute value generation across multiple LLMs.

2 Method

To address the challenge of scaling attribute extraction, we propose CascadeAgent, a novel
framework featuring a multi-agent architecture that systematically generates, refines, and
optimizes attribute-specific instructions. CascadeAgent is built upon two core concepts:
MPG for modularity and an agentic workflow for initial prompt creation and iterative
refinement via textual gradients.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.1 MPG: A Scalable Framework for Attribute-Specific Processing

We decompose the complex catalog enrichment problem into a series of manageable, attribute-
specific sub-tasks. This decomposition strategy—henceforth termed Multi-pass Prompt
Generation (MPG) strategy—offers the following significant advantages:

1. Modular Decomposition: MPG decomposes the task into attribute-specific modules.
Each attribute gets its own specialized prompt, allowing for precise instruction tuning
without the complexity overhead of conditional logic.

2. Independent Optimization: By isolating each attribute’s handling, MPG enables
independent optimization of prompts. If a specific attribute’s extraction is underperforming,
its prompt can be refined without affecting the performance of others.

3. Scalable Architecture: The modular nature of MPG makes it inherently scalable. While
previous approaches were either limited to handling small set of attributes or required
a lot training data Tavanaei et al. (2024); Yan et al. (2021b), our approach successfully
manages over 27,000 distinct product-attribute combinations.

Under the MPG framework, each product attribute is processed individually using a dedicated,
specialized prompt. This process initiates with a generic base prompt that incorporates
essential product information (e.g., title, description). It is then tailored to the specific
attribute by integrating relevant attribute metadata, such as its expected data type or
permissible values. This attribute-level approach enables independent optimization through
the process described in the following section.

2.2 Collaborative Refinement: The CascadeAgent

Building upon MPG, we introduce CascadeAgent, a novel multi-agent system that auto-
mates the creation and refinement of attribute-specific prompts. CascadeAgent operates
through a synergistic, iterative refinement loop, illustrated in Figure 1. The core philosophy
is that prompts are not static artifacts but are dynamically "sculpted" by specialized agents,
each contributing its expertise, much like a collaborative human team but operating at
machine scale and speed to ensure optimal accuracy and relevance across diverse product
categories.

Unlike previous approaches that rely on single-agent architectures or static prompt engineering
techniques, the Agentic Cascade leverages a team of specialized agents working in concert
to continuously improve prompt quality and performance. The workflow orchestrates five
distinct agents in a continuous cycle, where each agent’s output informs the next:

Prompting Agent: Serves as the central orchestrator. It initiates the cycle by obtaining
relevant metadata (e.g., product category, attribute specifications) and generating an initial
base prompt. It coordinates the activities of the other agents and integrates their outputs to
drive the refinement process.

Writing Agent: Receives the current prompt and associated metadata. It synthesizes diverse
information sources—ranging from broad catalog guidelines and attribute specifications (e.g.,
data types, valid values from category definitions) to nuanced seller preferences gleaned
from historical data patterns—into coherent, context-aware instructions. This step is vital
for grounding the prompts in the specific operational realities and quality standards of the
e-commerce platform.

Generation Agent: Takes the refined instructions from the Writing Agent and executes
the attribute value generation task. It processes input data, such as product titles and
descriptions, using an underlying LLM to generate attribute values that are intended to be
accurate and aligned with catalog expectations.

Evaluation Agent: Assesses the attribute values produced by the Generation Agent. It
applies a set of pre-defined evaluation criteria, comparing generated values against ground-
truth data or using other quality heuristics, to provide detailed feedback on the performance
of the current instruction.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Flaw Agent: Performs a crucial diagnostic role. It analyzes the feedback from the Evaluation
Agent to move beyond simple error counts, identifying systematic problems, common error
patterns, or ambiguities in the generated outputs that indicate deficiencies in the current
instruction. Its summarized findings are not just logs but actionable critiques that guide
subsequent prompt rewriting.

The cycle then returns to the Prompting Agent, which, in concert with the Writing Agent,
leverages the Flaw Agent’s diagnosis to iteratively improve the instruction. This refinement
is guided by a textual gradient-based optimization strategy, detailed in the next section. The
process for each product-attribute (PA) prompt continues independently until it achieves a
desired level of accuracy or a predetermined iteration limit is reached, allowing for a varying
number of refinement cycles tailored to the complexity of each specific PA.

This multi-agent approach offers several advantages:

• Specialization: Each agent focuses on a specific aspect of the prompt engineering
process, allowing for more nuanced and effective improvements.

• Continuous Improvement: The iterative nature of the cascade enables ongoing
refinement, adapting to new patterns and edge cases over time.

• Interpretability: By breaking down the refinement process into distinct steps, the
CascadeAgent provides insights into how and why prompts are being modified.

• Scalability: The modular architecture allows for parallel processing of multiple attribute-
specific prompts, enabling efficient optimization at scale.

2.3 Principled Improvement: Optimization with Textual Gradients

Algorithm 1 Optimization with Textual Gradients
Input:

Initial LLM instruction I0, Training data with errors
D

Number of minibatches m, sample size n
Top-K selection size K, max iterations T

Output: Optimized LLM instruction
1: Initialize pool: P ← {I0}
2: Initialize top-K: best_K← {I0}
3: Initialize counter t← 1
4: repeat
5: new_instructions← ∅
6: for each instruction I in best_K do
7: for each minibatch Bi of training data do
8: Sample n errors: Si

9: flaw_summary← FlawAgent(Si)
10: new_I← RewritingAgent(I, flaw_summary)
11: Add new_I to new_instructions
12: end for
13: end for
14: Evaluate new_instructions
15: Update pool: P ← P ∪ new_instructions
16: Select top-K: best_K← Top-K from P
17: t← t+ 1
18: until convergence or t > T
19: Return: Best instruction from best_K

To fully realize the potential of
this multi-agent architecture
at scale, we need a principled
approach to systematic im-
provement across thousands of
prompts simultaneously. We
introduce an iterative refine-
ment process detailed in Al-
gorithm 1. Our approach
builds upon semantic ‘gradi-
ent’ methodology from Pro-
TeGi Pryzant et al. (2023),
but adapts it specifically for
large-scale attribute extrac-
tion. Unlike traditional op-
timization approaches that
greedily pursue a single op-
timal solution, our method
maintains a diverse pool of
candidate instructions. This
design choice provides two
key benefits: resistance to
premature convergence to lo-
cal optima, and the ability
to explore multiple promising
refinement paths simultane-
ously—essential features when
optimizing prompts across di-
verse attribute types. The process leverages rich textual feedback signals to guide refinement,
enabling CascadeAgent to achieve high performance across diverse attribute types at in-
dustrial scale. Section 3 provides a formal analysis of the convergence properties of this
optimization strategy.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3 Theoretical Analysis of CascadeAgent

We present a formal theoretical analysis of CascadeAgent’s convergence properties and
performance guarantees.

Modeling Prompt Refinement. We model the iterative refinement of a single attribute-
specific instruction (πt at iteration t) as a countable-state deterministic Markov Decision
Process (MDP).

• State st = πt ∈ Π: The current instruction.
• Action a = g(·, ε): A rewrite by the Writing Agent, guided by a summary ε from the Flaw

Agent.
• Transition st+1 = a(st): The deterministic outcome of applying the rewrite.
• Reward r(s) = −L(s) ∈ [−κmax, 0]: The negative of the catalog loss for the current

instruction π. The catalog loss L(π) is defined as the expected weighted sum of distinct
error types:

L(π) := wval Pr[Eval(π)] + womis Pr[Eomis(π)] + wcommis Pr[Ecommis(π)].

Here, Pr[Eval(π)] is the probability of an incorrect non-blank prediction (value error) when
using prompt π. Similarly, Pr[Eomis(π)] is the probability of an omission error (predicting
blank when a value is expected), and Pr[Ecommis(π)] is the probability of a commission
error (predicting a value when blank is expected). The positive weights wval, womis, wcommis
assign penalties to each error type, and are chosen to sum to 1. The maximum possible
penalty for any single error instance is κmax = max(wval, womis, wcommis), and the minimum
κmin = min(wval, womis, wcommis).

The objective is to find a policy ϖ (a sequence of rewrite choices) that maximizes the
discounted cumulative reward V ϖ(s) = Eϖ[

∑∞
t=0 γ

tr(st)]. CascadeAgent’s Algorithm 1
implements a textual-gradient greedy policy (ϖTG), which selects rewrites that minimize
empirical loss on minibatches and maintains a pool of Top-K candidate instructions.

Our analysis establishes two crucial properties of this refinement process:

(A) Reliable Candidate Selection (Top-K Safety): The Top-K selection mechanism
(Algorithm 1, line 16) is vital for exploring the instruction space effectively. Proposition B.1
shows that, with sufficient samples, this step retains the true best instruction from the
candidate pool and ensures the best true loss does not increase, with high probability.

(B) Progressive Error Reduction: If rewriting instructions is, on average, more likely to
fix errors than to introduce new ones, the catalog loss is expected to decrease. Proposition B.2
quantifies this.

Combining these insights, Theorem 1 demonstrates that CascadeAgent’s policy ϖTG indeed
drives down catalog loss and improves the value function, up to limitations imposed by
irreducible errors and estimation noise.
Theorem 1 (Loss and Value Improvement of ϖTG). Let ϑest be the failure probability of the
Top-K estimator (from Prop.B.1). Assume the marginal-churn condition pfix > pbreak ≥ 0,
where pfix, pbreak pertain to the correction/introduction of any true error type (as defined for
Prop. B.2). Define λ = 1− (pfix + pbreak), r = κmax/κmin (derived from penalties for true
errors, where κmax is the max penalty), and let ϕ = rλ. Assume ϕ ∈ [0, 1).

(i) One-step expected loss reduction: The expected loss of the prompt at the next
iteration, Lt+1, given the current prompt’s loss Lt, satisfies: E[Lt+1 | st] ≤ ϕLt +
κmax pbreak + ϑest.

(ii) Horizon-bounded loss: The expected loss at iteration T , starting from an initial loss

L0, satisfies: E[LT ] ≤ ϕTL0 +
κmax pbreak + ϑest

1− ϕ

(
1− ϕT

)
.

(iii) Value function increase: With a discount factor γ ∈ (0, 1), the policy ϖTG improves
the value function V ϖTG(st) at each step where the current loss Lt exceeds the asymptotic
floor L⋆

∞ = (κmaxpbreak + ϑest)/(1− ϕ). Specifically, E[V ϖTG(st+1)− V ϖTG(st) | st] ≥
1− ϕ

1− γϕ

[
Lt − L⋆

∞
]+

.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(Formal statement and proof are in Appendix B.3.)

The theorem shows that CascadeAgent’s loss contracts geometrically up to an irreducible
error floor dictated by pbreak (inherent task difficulty) and ϑest (evaluation error). As long as
rewrites are net beneficial and the estimator reasonably accurate the expected loss shrinks.
The better the evaluation or the more amenable the domain to correction (smaller pbreak),
the lower this achievable loss floor.

4 Experimental Design and Evaluation

4.1 Dataset and Sampling

Our evaluation assessed the effectiveness of generating product attribute values using prompts
crafted by our cascade measured against manually verified data. The process comprised two
phases:

Cascade initialization & evaluation set: We setup the cascade to create 27,000 Product-
Attribute (PA) specific LLM prompts (instructions) using catalog metadata. To evaluate
at this massive scale, we designed both aggregate catalog level and fine-grained PA level
evaluation sets. For catalog-level evaluation, we used a search weighted sample of 10,000
products with 304,847 attribute labels across 1394 product categories, reflecting real-world
product distribution. For granular evaluation at the PA-level, we created an extensive dataset
of 2,897 PA pairs based on highest customer relevance, each with at least 100 test labels
resulting in 304,000 labels in the set.

Iterative optimization: The iterative optimization of the cascade with textual gradients
required at least 150 verified human labels per PA. We selected 1,879 PAs of highest customer
relevance that met the label criteria, creating 1,879 PA high fidelity set. For each PA, the
data set was split into training (50 samples) and validation (100 samples) sets corresponding
to instruction refinement and top-K selection respectively. Additional holdout test (100+
samples) sets were used for performance evaluation.

4.2 Model Selection and Computing Infrastructure

We used two LLMs in our cascade: Claude 3.5 Sonnet for flaw detection and writing agents
due to its superior capabilities in error analysis, and Mistral NeMo for attribute generation
and evaluation due to its favorable inference cost profile. All experiments were conducted on
a network with 6 AWS EC2 P5 instances with a total of 48 NVIDIA H100 GPUs (80GB
each), achieving a throughput of 613 PTAs per hour through parallel processing.

4.3 Hyperparameter Configuration

Based on ablation studies (Appendix A.1), we optimized the system with 5 minibatches,
5 error cases per minibatch, and top K=3 selection, balancing optimal error diversity and
generalization performance while maintaining computational efficiency.

4.4 Evaluation Methodology

We evaluated the performance using three metrics:

• Precision/Recall: Comparing generated values against ground truth.
• Coverage: Percentage of samples for which the model produces any output.For certain

attributes (e.g., subject_character in t-shirts), low coverage with high precision is
expected and desired, as many products naturally do not have these attributes. This
metric helps assess whether the model appropriately identifies cases where attribute
values should or should not be generated.

Generated values were evaluated through string comparison with ground truth, with LLM-
based semantic verification for inconclusive cases. The ground truth included negative labels
(Not Applicable, Not Obtainable) to penalize incorrect generations.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5 Results

5.1 Performance of CascadeAgent

We first evaluate the performance of CascadeAgent. Table 1 compares CascadeAgent
approach with a baseline method. The baseline uses a single prompt for all attributes where
as CascadeAgent uses individual instructions for each attribute through to its Multi-pass
Prompt Generation (MPG) framework as well as catalog guidelines and seller preferences
through the multi-agent cascade. As an ablation, to understand the value add from MPG vs
multi-agent cascade with catalog guidelines and seller preferences we additionally compare
with an MPG without the agents.

Table 1: Comparison of CascadeAgent vs. Baseline vs. vanilla MPG

Base Model Prompt Type Precision (%) Coverage (%)

Mistral NeMo Baseline 57.14 42.58
Mistral NeMo MPG 76.19 58.10
Mistral NeMo CascadeAgent with MPG 90.21 56.09
Claude 3.5 Sonnet Baseline 72.73 68.47
Claude 3.5 Sonnet MPG 87.32 86.02
Claude 3.5 Sonnet CascadeAgent with MPG 93.55 86.49

To robustly access our instruction generation ability we used Mistral NeMo and Claude 3.5
Sonnet as generators and evaluated against ground truth human labels, measuring coverage
(proportion of attributes filled) and precision.

Results on the 10k Catalog evaluation set show significant improvements from CascadeAgent
with MPG for both models. Mistral NeMo’s coverage increased from 42.58% to 56.09%,
and precision from 57.14% to 90.21%. Claude 3.5 Sonnet saw coverage rise from 68.47%
to 86.49% and precision from 72.73% to 93.55%. CascadeAgent improved Mistral NeMo’s
performance more than Claude 3.5 Sonnet’s (+33.07% vs +20.82% in Precision, and +13.51%
vs +12.02% in Recall). Notably, CascadeAgent enabled the more cost-effective Mistral NeMo
to close the Precision gap with premium Claude 3.5 Sonnet to only 3%. This demonstrates
CascadeAgent’s ability to make affordable models viable for scalable deployment, while
premium models can be used to fulfill coverage gaps.

5.2 Boost in PA-level performance

Figure 2: PA specific LLM instructions – cov-
erage and precision changes with quadrants.

We analyzed precision and coverage im-
provements on the 2,897 PAs representing
high-impact attributes in our catalog. As
shown in Figure 2, 58.2% of PAs showed
consistent positive impact—improving both
metrics or enhancing one without degrad-
ing the other—while only 2.4% declined in
both. The remaining 39.4% exhibited mixed
trends, primarily (35.0%) increased cover-
age with reduced precision, and occasion-
ally (4.4%) the reverse. These trade-offs
often stemmed from hallucinations, where
the model defaulted to common values (e.g.,
plastic for a computer mouse) based on cat-
alog priors in the absence of sufficient input
context.

5.3 Optimization with Textual Gradients

We next evaluate continuous optimization of the CascadeAgent over multiple iterations using
textual gradients. For this, we used the 1,879 PA high-fidelity set, each with a minimum of

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

250 ground truth labels. The results demonstrate that 22% (409 PAs) achieved 95% accuracy
after the first cascade run. For the remaining 78% (1470 PAs), we employed Algorithm
1 with textual gradient descent and two stopping criteria: reaching 95% train/validation
accuracy or completing a maximum of five iterations. This optimization approach proved
effective, with all the 1,470 PAs demonstrating substantial performance gains - an average
+15% improvement in hold-out test accuracy, comprising +6% in precision and +8% in recall
across five iterations (Figure 3). These improvements were all statistically significant (paired
t-test, p ≤ 1× 10−10).

Figure 3: PA specific instructions - Accuracy, Precision/Recall changes over iterations,
grouped by stopping criteria.

The optimization process revealed distinct performance patterns: 27.2% of PAs reached
the stopping criteria within three iterations, while 4.8% achieved additional performance
improvements in the last two iterations. The remaining 46.0% of PAs, though unable to
reach the stopping criteria within five iterations, demonstrated substantial improvements
during the first three iterations before plateauing(see the last column in Figure 3).

Analysis of cases requiring all five iterations identified two main challenges: image-dependent
attributes (40% of remaining cases) and numeric attributes, suggesting opportunities for
multimodal models and enhanced mathematical reasoning capabilities.

6 Related Works

Artificial intelligence applications in e-commerce catalog curation have driven significant
research across academia and industry (Ghani et al., 2006; Probst et al., 2007; Carmel et al.,
2018; Rezk et al., 2019; Zhao et al., 2019; Chen et al., 2019; Cheng et al., 2024). The field
has evolved from rule-based systems (Chiticariu et al., 2010; Vandic et al., 2012) to neural
architectures, and now to LLMs and multimodal systems.

Early attribute extraction relied on sequence tagging models like OpenTag Zheng et al.
(2018) and AdaTag Yan et al. (2021b). With the rise of transformers (Vaswani et al., 2017),
question-answering frameworks like MAVE Yang et al. (2022) emerged. While these methods,
along with NER (Putthividhya & Hu, 2011; More, 2016; Yan et al., 2021a; Nadeau & Sekine,
2007) and advanced sequence taggers (Xu et al., 2019; Wang et al., 2020), showed progress,
they required explicit attribute mentions and complete retraining for new attributes. Recent
work in prompt optimization, such as ProTeGi Pryzant et al. (2023), TextGrad Yuksekgonul
et al. (2024) and Reflexion Shinn et al. (2023), has demonstrated success through iterative
refinement with feedback and self-reflection, but lacks applicability to large-scale e-commerce
systems.

Table 2 provides a comprehensive comparison of these approaches, highlighting the evolution
of the field and the positioning of our proposed CascadeAgent framework. While recent
methods have made progress in individual aspects, they typically require complete retraining
when extending to new attributes. In contrast, CascadeAgent’s novel multi-agent architecture

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Comparison of product attribute extraction approaches

Approach Re-Train. Implicit Values Multi- PT/Attr.
Required Inference modal Scale***

OpenTag (2018) Zheng et al. (2018) Yes No No Small
AdaTag (2021) Yan et al. (2021b) Yes No No Small
MAVE (2022) Yang et al. (2022) Yes No Yes Medium
SAGE (2023) Nikolakopoulos et al. (2023) Yes Yes No Large
LLM-Ensemble (2023) Fang et al. (2024) No* Yes No Medium
DALLA (2023) Zhang et al. (2024) Yes No No Medium
EIVEN (2024) Zou et al. (2024) Yes Yes Yes Medium
ViOC-AG (2024) Gong et al. (2025) No** Yes Yes Medium
MXT (2024) Khandelwal et al. (2023) Yes Yes Yes Large
CascadeAgent No Yes Yes Large
*Requires 2 examples for few-shot learning
**Uses frozen CLIP model with OCR correction
***Small = O(10); Medium = O(1, 000); Large = O(10, 000)

enables seamless extension to new attributes without retraining, while supporting multiple
languages and scaling across diverse product categories through its modular framework.

7 Conclusion

We introduced CascadeAgent, a novel multi-agent framework for automating the develop-
ment of specialized LLM prompts at scale, particularly for e-commerce attribute generation.
CascadeAgent leverages Multi-pass Prompt Generation(MPG) to modularize tasks into
attribute-specific sub-problems, each with a dedicated prompt. A team of five specialized
agents then collaboratively creates, evaluates, and refines these prompts through iterative,
semantic gradient-based optimization, incorporating domain knowledge.

Empirically, CascadeAgent successfully managed over 27,000 prompts, delivering substantial
improvements of +21% to +33% in precision and +12% to +14% in coverage, while opti-
mization via textual gradients resulted in additional gains. Optimization through textual
gradients provided additional gains of +6% precision and +8% coverage. Theoretically, we
provided a formal analysis demonstrating CascadeAgent’s provable convergence towards
reduced catalog loss, validating its principled design. This synergy between MPG and the
agentic cascade reduces manual effort, enables robust optimization, and allows cost-effective
LLMs to achieve high performance.

CascadeAgent’s demonstrated scalability and effectiveness highlight its potential for industrial
applications requiring nuanced, task-specific LLM instruction. Future work will focus on
enhancing agent capabilities and exploring advanced self-reflection mechanisms to further
improve performance and adaptability.

8 Limitations

While CascadeAgent demonstrates significant improvements in e-commerce attribute enrich-
ment, several limitations should be considered. Our framework has been validated primarily
in e-commerce, with transferability to other domains remaining untested. The system’s
computational requirements—involving multiple specialized agents—may limit accessibility
in resource-constrained environments. Additionally, our approach depends on ground truth
data availability, which may be scarce in some domains. Future work could explore reducing
computational requirements through more efficient agent orchestration Shinn et al. (2023) and
developing semi-supervised approaches Zhou et al. (2023); Chang et al. (2024), leveraging
agent-driven data synthesis and/or augmentationTan et al. (2024) to decrease reliance on
labeled data.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

9 Ethics Statement

This work focuses on e-commerce catalog enrichment using AI systems. While our system
processes product data at scale, we have taken steps to ensure ethical considerations are
addressed. Our framework does not process any personally identifiable information or
sensitive customer data. The system operates solely on product descriptions and attributes
provided by sellers. We have designed CascadeAgent to maintain data quality and accuracy,
ensuring that generated attributes fairly represent products without introducing bias or
misleading information that could impact consumer decisions. The system’s outputs are
subject to human oversight and validation to maintain high standards of accuracy and
fairness in e-commerce listings.

10 Reproducibility Statement

To ensure reproducibility of our results, we provide detailed specifications of our experimental
setup and methodology. While our implementation code and dataset cannot be released due
to company policy, we have thoroughly documented our approach to enable replication. The
CascadeAgent framework has been implemented using publicly available LLM API (Claude)
and open-source model (Mistral NeMo), with all hyperparameters and configuration settings
documented in Section 4.3. The evaluation metrics and methodology are clearly defined in
Section 4.4. The experiments can be replicated using standard computing infrastructure
as specified in our experimental setup. All results reported in Section 5 are averaged
over multiple runs to ensure statistical significance. The theoretical proofs in Section 3 are
provided with complete derivations in the appendix B. We believe these detailed specifications
allow others to implement and validate our approach, even without access to our proprietary
code and data.

References
David Carmel, Liane Lewin-Eytan, and Yoelle Maarek. Product question answering using cus-

tomer generated content - research challenges. In The 41st International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, SIGIR ’18, pp. 1349–1350,
New York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450356572.
doi: 10.1145/3209978.3210203. URL https://doi.org/10.1145/3209978.3210203.

Kaiyan Chang, Songcheng Xu, Chenglong Wang, Yingfeng Luo, Xiaoqian Liu, Tong Xiao,
and Jingbo Zhu. Efficient prompting methods for large language models: A survey, 2024.
URL https://arxiv.org/abs/2404.01077.

Ke Chen, Lei Feng, Qingkuang Chen, Gang Chen, and Lidan Shou. Exact: Attributed entity
extraction by annotating texts. In Proceedings of the 42nd International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, SIGIR’19, pp. 1349–1352,
New York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450361729.
doi: 10.1145/3331184.3331391. URL https://doi.org/10.1145/3331184.3331391.

Zhu Cheng, Wen Zhang, Chih-Chi Chou, You-Yi Jau, Archita Pathak, Peng Gao, and Umit
Batur. E-commerce product categorization with LLM-based dual-expert classification
paradigm. In Sachin Kumar, Vidhisha Balachandran, Chan Young Park, Weijia Shi,
Shirley Anugrah Hayati, Yulia Tsvetkov, Noah Smith, Hannaneh Hajishirzi, Dongyeop
Kang, and David Jurgens (eds.), Proceedings of the 1st Workshop on Customizable NLP:
Progress and Challenges in Customizing NLP for a Domain, Application, Group, or
Individual (CustomNLP4U), pp. 294–304, Miami, Florida, USA, November 2024. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2024.customnlp4u-1.22. URL
https://aclanthology.org/2024.customnlp4u-1.22/.

Laura Chiticariu, Rajasekar Krishnamurthy, Yunyao Li, Frederick Reiss, and Shivakumar
Vaithyanathan. Domain adaptation of rule-based annotators for named-entity recognition
tasks. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language
Processing, pp. 1002–1012, Cambridge, MA, October 2010. Association for Computational
Linguistics. URL https://aclanthology.org/D10-1098.

10

https://doi.org/10.1145/3209978.3210203
https://arxiv.org/abs/2404.01077
https://doi.org/10.1145/3331184.3331391
https://aclanthology.org/2024.customnlp4u-1.22/
https://aclanthology.org/D10-1098


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Chenhao Fang, Xiaohan Li, Zezhong Fan, Jianpeng Xu, Kaushiki Nag, Evren Korpeoglu,
Sushant Kumar, and Kannan Achan. Llm-ensemble: Optimal large language model
ensemble method for e-commerce product attribute value extraction. In Proceedings
of the 47th International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’24, pp. 2910–2914, New York, NY, USA, 2024. Association
for Computing Machinery. ISBN 9798400704314. doi: 10.1145/3626772.3661357. URL
https://doi.org/10.1145/3626772.3661357.

Rayid Ghani, Katharina Probst, Yan Liu, Marko Krema, and Andrew Fano. Text mining
for product attribute extraction. SIGKDD Explor. Newsl., 8(1):41–48, jun 2006. ISSN
1931-0145. doi: 10.1145/1147234.1147241. URL https://doi.org/10.1145/1147234.
1147241.

Jiaying Gong, Ming Cheng, Hongda Shen, Pierre-Yves Vandenbussche, Janet Jenq, and Hoda
Eldardiry. Visual zero-shot E-commerce product attribute value extraction. In Weizhu
Chen, Yi Yang, Mohammad Kachuee, and Xue-Yong Fu (eds.), Proceedings of the 2025
Conference of the Nations of the Americas Chapter of the Association for Computational
Linguistics: Human Language Technologies (Volume 3: Industry Track), pp. 460–469,
Albuquerque, New Mexico, April 2025. Association for Computational Linguistics. ISBN
979-8-89176-194-0. URL https://aclanthology.org/2025.naacl-industry.38/.

Anant Khandelwal, Happy Mittal, Shreyas Kulkarni, and Deepak Gupta. Large scale
generative multimodal attribute extraction for E-commerce attributes. In Sunayana
Sitaram, Beata Beigman Klebanov, and Jason D Williams (eds.), Proceedings of the 61st
Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry
Track), pp. 305–312, Toronto, Canada, July 2023. Association for Computational Lin-
guistics. doi: 10.18653/v1/2023.acl-industry.29. URL https://aclanthology.org/2023.
acl-industry.29/.

Ajinkya More. Attribute extraction from product titles in ecommerce, 2016. URL https:
//arxiv.org/abs/1608.04670.

David Nadeau and Satoshi Sekine. A survey of named entity recognition and classification.
Lingvisticae Investigationes, 30:3–26, 2007.

Athanasios N Nikolakopoulos, Swati Kaul, Siva Karthik Gade, Bella Dubrov, Umit Batur,
and Suleiman Ali Khan. Sage: Structured attribute value generation for billion-scale
product catalogs. arXiv preprint arXiv:2309.05920, 2023.

Katharina Probst, Rayid Ghani, Marko Krema, Andrew Fano, and Yan Liu. Semi-supervised
learning of attribute-value pairs from product descriptions. In Proceedings of the 20th
International Joint Conference on Artifical Intelligence, IJCAI’07, pp. 2838–2843, San
Francisco, CA, USA, 2007. Morgan Kaufmann Publishers Inc.

R. Pryzant et al. Automatic prompt optimization with gradient descent and beam search.
arXiv preprint arXiv:2023, 2023.

Duangmanee (Pew) Putthividhya and Junling Hu. Bootstrapped named entity recognition
for product attribute extraction. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing, EMNLP ’11, pp. 1557–1567, USA, 2011. Association for
Computational Linguistics. ISBN 9781937284114.

Martin Rezk, Laura Alonso Alemany, Lasguido Nio, and Ted Zhang. Accurate product
attribute extraction on the field. In 2019 IEEE 35th International Conference on Data
Engineering (ICDE), pp. 1862–1873, 2019. doi: 10.1109/ICDE.2019.00202.

Taylor Shin, Yasaman Razeghi, Robert L.̃IV Logan, Eric Wallace, and Sameer Singh.
Autoprompt: Eliciting knowledge from language models with automatically generated
prompts. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing, pp. 4222–4235, 2020.

11

https://doi.org/10.1145/3626772.3661357
https://doi.org/10.1145/1147234.1147241
https://doi.org/10.1145/1147234.1147241
https://aclanthology.org/2025.naacl-industry.38/
https://aclanthology.org/2023.acl-industry.29/
https://aclanthology.org/2023.acl-industry.29/
https://arxiv.org/abs/1608.04670
https://arxiv.org/abs/1608.04670


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Michael Shinn, Corin Cassano, Emily Berman, Ryo Gopinath, Kesav Narasimhan, and
Peter Yao. Reflexion: Language agents with verbal reinforcement learning. arXiv preprint
arXiv:2303.16119, 2023.

Zhen Tan, Dawei Li, Song Wang, Alimohammad Beigi, Bohan Jiang, Amrita Bhattacharjee,
Mansooreh Karami, Jundong Li, Lu Cheng, and Huan Liu. Large language models for data
annotation and synthesis: A survey, 2024. URL https://arxiv.org/abs/2402.13446.

Amir Tavanaei, Kee Kiat Koo, Hayreddin Ceker, Shaobai Jiang, Qi Li, Julien Han, and
Karim Bouyarmane. Structured object language modeling (SO-LM): Native structured
objects generation conforming to complex schemas with self-supervised denoising. In
Franck Dernoncourt, Daniel Preoţiuc-Pietro, and Anastasia Shimorina (eds.), Proceedings
of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry
Track, pp. 821–828, Miami, Florida, US, November 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.emnlp-industry.62. URL https://aclanthology.
org/2024.emnlp-industry.62/.

Damir Vandic, Jan-Willem van Dam, and Flavius Frasincar. Faceted product search powered
by the semantic web. Decision Support Systems, 53(3):425–437, 2012. ISSN 0167-9236.
doi: https://doi.org/10.1016/j.dss.2012.02.010. URL https://www.sciencedirect.com/
science/article/pii/S0167923612000681.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Qifan Wang, Li Yang, Bhargav Kanagal, Sumit Sanghai, D. Sivakumar, Bin Shu, Zac Yu,
and Jon Elsas. Learning to extract attribute value from product via question answering: A
multi-task approach. In Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, KDD ’20, pp. 47–55, New York, NY, USA,
2020. Association for Computing Machinery. ISBN 9781450379984. doi: 10.1145/3394486.
3403047. URL https://doi.org/10.1145/3394486.3403047.

Huimin Xu, Wenting Wang, Xin Mao, Xinyu Jiang, and Man Lan. Scaling up open tagging
from tens to thousands: Comprehension empowered attribute value extraction from product
title. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pp. 5214–5223, Florence, Italy, July 2019. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/P19-1514.

Hang Yan, Tao Gui, Junqi Dai, Qipeng Guo, Zheng Zhang, and Xipeng Qiu. A unified
generative framework for various ner subtasks, 2021a. URL https://arxiv.org/abs/
2106.01223.

Jun Yan, Nasser Zalmout, Yan Liang, Christan Grant, Xiang Ren, and Xin Luna Dong.
AdaTag: Multi-attribute value extraction from product profiles with adaptive decoding.
In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 4694–4705, Online, August 2021b. Association for Computational Linguistics. doi:
10.18653/v1/2021.acl-long.362. URL https://aclanthology.org/2021.acl-long.362/.

Jun Yan, Nasser Zalmout, Yan Liang, Christan Grant, Xiang Ren, and Xin Luna Dong.
Adatag: Multi-attribute value extraction from product profiles with adaptive decoding.
arXiv preprint arXiv:2106.02318, 2021c.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, and
Xinyun Chen. Large language models as optimizers, 2024. URL https://arxiv.org/
abs/2309.03409.

12

https://arxiv.org/abs/2402.13446
https://aclanthology.org/2024.emnlp-industry.62/
https://aclanthology.org/2024.emnlp-industry.62/
https://www.sciencedirect.com/science/article/pii/S0167923612000681
https://www.sciencedirect.com/science/article/pii/S0167923612000681
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1145/3394486.3403047
https://www.aclweb.org/anthology/P19-1514
https://arxiv.org/abs/2106.01223
https://arxiv.org/abs/2106.01223
https://aclanthology.org/2021.acl-long.362/
https://arxiv.org/abs/2309.03409
https://arxiv.org/abs/2309.03409


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Li Yang, Qifan Wang, Xiaojun Quan, Fuli Feng, Yu Chen, Madian Khabsa, Sinong Wang,
Zenglin Xu, and Dongfang Liu. Mave: A product dataset for multi-source attribute value
extraction. In Proceedings of the Fifteenth ACM International Conference on Web Search
and Data Mining, pp. 1256–1265, 2022.

Haoran Ye, Jiarui Wang, Zhiguang Cao, et al. Reevo: Large language models as hyper-
heuristics with reflective evolution. arXiv preprint arXiv:2023, 2023.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang, Carlos Guestrin,
and James Zou. Textgrad: Automatic "differentiation" via text, 2024. URL https:
//arxiv.org/abs/2406.07496.

Tao Zhang, Chenwei Zhang, Xian Li, Jingbo Shang, Hoang Nguyen, and Philip S Yu.
Stronger, lighter, better: Towards life-long attribute value extraction for e-commerce
products. In Findings of the Association for Computational Linguistics ACL 2024, pp.
8631–8643, 2024.

Jie Zhao, Ziyu Guan, and Huan Sun. Riker: Mining rich keyword representations for
interpretable product question answering. In Proceedings of the 25th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, KDD ’19, pp. 1389–1398,
New York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450362016.
doi: 10.1145/3292500.3330985. URL https://doi.org/10.1145/3292500.3330985.

Guineng Zheng, Subhabrata Mukherjee, Xin Luna Dong, and Feifei Li. Opentag: Open
attribute value extraction from product profiles. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 1049–1058, 2018.

Yuhang Zhou, Suraj Maharjan, and Beiye Liu. Scalable prompt generation for semi-supervised
learning with language models, 2023. URL https://arxiv.org/abs/2302.09236.

Henry Zou, Gavin Yu, Ziwei Fan, Dan Bu, Han Liu, Peng Dai, Dongmei Jia, and Cornelia
Caragea. EIVEN: Efficient implicit attribute value extraction using multimodal LLM. In
Yi Yang, Aida Davani, Avi Sil, and Anoop Kumar (eds.), Proceedings of the 2024 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (Volume 6: Industry Track), pp. 453–463, Mexico City, Mexico, June
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-industry.40.
URL https://aclanthology.org/2024.naacl-industry.40/.

13

https://arxiv.org/abs/2406.07496
https://arxiv.org/abs/2406.07496
https://doi.org/10.1145/3292500.3330985
https://arxiv.org/abs/2302.09236
https://aclanthology.org/2024.naacl-industry.40/


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Appendix

A Appendix

Table 3: Benchmarking Evaluation on Enriching Simulated Empty Catalog*

Coverage (%) Precision (%)

No LLM Instruction 45.02 81.09
Attribute LLM Instruction 40.92 88.56
PA Specific LLM Instruction 52.00 89.05

• For the same 10,000 catalog evaluation set, we masked all catalog attribute values and tasked the
model with enriching them using only the product title, bullet_point, and product_description
as input data.

Table 4: Benchmarking Evaluation on Enriching Catalog*

Coverage (%) Precision (%)

No LLM Instruction 65.47 84.01
Attribute LLM Instruction 65.18 86.20
PA Specific LLM Instruction 67.29 87.94

• The evaluation was performed using all attributes as input and with the existing filled catalog.

A.1 Ablation Studies

We conducted comprehensive ablation studies to analyze the impact of various hyperparame-
ters on attribute generation performance during the iterative prompt optimization. In each
study, we modified one parameter while maintaining others at their optimal values. We
investigated three key parameters: Top-K selection, number of error examples, and number
of minibatches.

A.1.1 LLM instruction optimization - Top K

Selecting the optimal Top-K instructions at each iteration is critical for maintaining an
effective balance between exploration and exploitation.

Figure 4 illustrates the impact of varying the Top-K values (K=1,2,3) across three iterations
for 10 PAs. The results show that Top-2 and Top-3 consistently yielded performance
improvements across iterations. In contrast, Top-1 showed limited improvement after the
first iteration, suggesting convergence to a local optimum.

This behavior indicates that relying solely on the single best-performing instruction (Top-1)
constrains the model’s ability to explore diverse solutions. Using Top-2 or Top-3 provide
a broader spectrum of high-performing instructions, facilitating better exploration of the
solution space while maintaining performance quality. This balance between diversity and
performance makes Top-2 and Top-3 more effective at achieving sustained improvements
and avoiding premature convergence.

A.1.2 LLM instruction optimization - Error Examples in Minibatch

Figure 5 analyzes how varying the number of error examples in the flaw summary affects the
optimization process.

We evaluated three configurations (1, 3, and 5 error examples) across three iterations.
Using a single error example per minibatch resulted in poor convergence and minimal
accuracy improvements on the hold-out test dataset. Increasing to 3 or 5 error examples
per minibatch significantly enhanced error generalization, leading to substantial accuracy

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 4: Performance comparison across different Top-K selection strategies

improvements across iterations. This suggests that a larger set of error examples provides
more comprehensive guidance for the optimization process.

Figure 5: Impact of error example count on model performance and convergence

A.1.3 LLM instruction optimization - Minibatch Size

Figure 6 examines the effect of varying the number of minibatches during each training
iteration.

Figure 6: Effect of minibatch count on convergence rate and model performance

We tested three configurations (1, 3, and 5 minibatches) across three iterations. Results show
that higher minibatch counts (3 and 5) achieve faster convergence and superior performance

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

within the first two iterations. Training with a single minibatch per iteration exhibits slower
convergence, requiring more iterations to achieve comparable performance improvements.

B Proofs

B.1 Proposition 1: Formal Statement and Proof

Proposition 1 (Empirical Top-K selection guarantees monotone improvement). Fix an
iteration t. Let Pt⊆Π be the current pool of instructions and define

π⋆
t := arg min

π∈Pt

L(π), ∆t :=min
π ̸=π⋆

t

[
L(π)− L(π⋆

t )
]
> 0.

(Loss range) Because wval + womis + wcommis = 1 we have 0 ≤ L(π) ≤ 1 for every π ∈ Pt.

(Evaluation batch) Draw a fresh i.i.d. sample Dt = {(xi, yi)}ni=1 and set the empirical loss

L̂t(π) :=
1

n

n∑
i=1

1
[
fθ(xi, π) ̸= yi

]
, π ∈ Pt.

Choose confidence level ϑ ∈ (0, 1) and any

n ≥
⌈ 2

∆2
t

log
2|Pt|
ϑ

⌉
.

Let P̂t,K be the empirical Top-K instructions computed from L̂t(π) using a deterministic
tie-break order, and set Pt+1 := Pt ∪ P̂t,K (for any K≥1).

Then, with probability at least 1− ϑ,

(i) True optimum retained: π⋆
t ∈ P̂t,K .

(ii) Monotone improvement: min
π∈Pt+1

L(π) = L(π⋆
t ) ≤ min

π∈Pt

L(π).

Proof. (Step 1). A uniform concentration event. For one fixed prompt π∈Pt the random
variable L̂t(π) is the empirical mean of n independent Bernoulli indicators 1[fθ(xi, π) ̸= yi].
Because each indicator lies in [0, 1], Hoeffding’s inequality states that for any ε > 0

Pr
[∣∣L̂t(π)− L(π)

∣∣ ≥ ε
]
≤ 2 exp

(
−2nε2

)
. (H)

We would like this deviation bound to hold simultaneously for every π ∈ Pt. Set

ε :=

√
log

(
2|Pt|/ϑ

)
2n

.

With this choice the right–hand side of (H) equals ϑ/|Pt|. A union bound over all |Pt|
prompts therefore yields the event

Et :=
{∣∣L̂t(π)− L(π)

∣∣ < ε ∀π ∈ Pt

}
,

with probability Pr[Et] ≥ 1− ϑ. This event says “all empirical losses are within ε of their
true values.”

(Step 2). Empirical ordering mirrors true ordering. Fix any competitor π ̸= π⋆
t . By definition

of the true gap ∆t = L(π)− L(π⋆
t ) we have

L(π)− L(π⋆
t ) = ∆t > 0. (1)

On the concentration event Et we add and subtract at most ε to each loss, so

L̂t(π)− L̂t(π
⋆
t ) ≥ ∆t − 2ε. (2)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

The sample size n was chosen so that 2ε = ∆t

√
2 log(2|Pt|/ϑ)

n ≤ ∆t; indeed by the proposition’s

hypothesis n ≥ 2
∆2

t
log 2|Pt|

ϑ . Therefore the right-hand side of (2) is ≥ 0, and in fact > 0

because we rounded n up. Hence on Et every competitor π has strictly larger empirical loss
than π⋆

t .

(Step 3). Inclusion of the optimal prompt in Top-K. Because of the strict inequality in
step 2 and because the tie-break rule is deterministic, the empirical ranking places π⋆

t first.
Consequently it is included in the Top-K set P̂t,K for any K ≥ 1. This establishes part (i)
of the proposition.

(Step 4). Monotone improvement of the best true loss. Define the next pool Pt+1 := Pt∪P̂t,K .
Since π⋆

t ∈ P̂t,K by part (i), it certainly belongs to Pt+1. Therefore

min
π∈Pt+1

L(π) ≤ L(π⋆
t ) = min

π∈Pt

L(π).

(The inequality could be strict if an even better prompt were added; equality holds at
minimum.) This proves part (ii).

(Step 5). Probability statement. Steps 2–4 hold on the event Et, whose probability we bounded
below by 1− ϑ in step 1. Hence parts (i)–(ii) both hold with at least that probability, and
the proof is complete.

B.2 Proposition 2: Formal Statement and Proof

Proposition 2 (Geometric loss decay under marginal churn). Let the state at iteration t be
st, leading to a prediction Ŷt for a ground-truth value Y . Define the per-example error type
indicators:

• Eval,t := 1{Ŷt ̸= Y ∧ Ŷt ̸= blank ∧ Y ̸= blank} (Incorrect Value)
• Eomis,t := 1{Ŷt = blank ∧ Y ̸= blank} (Omission Error)
• Ecommis,t := 1{Ŷt ̸= blank ∧ Y = blank} (Commission Error)

These error types are mutually exclusive for a single prediction. The overall binary error
indicator is Et := 1{Eval,t = 1 ∨ Eomis,t = 1 ∨ Ecommis,t = 1}. The per-example catalog loss
at iteration t is:

Lt := wvalEval,t + womisEomis,t + wcommisEcommis,t,

where 0 < wval, womis, wcommis < 1 such that wval + womis + wcommis = 1. Define the
constants:

κmin := min(wval, womis, wcommis), κmax := max(wval, womis, wcommis), r :=
κmax

κmin
≥ 1.

Note that if Et = 1, then κmin ≤ Lt ≤ κmax. If Et = 0, then Lt = 0. Thus, κminEt ≤ Lt ≤
κmaxEt holds for all outcomes.

Assume the following marginal-churn dynamics hold for the binary error indicator Et,
with fixed probabilities pfix, pbreak ∈ [0, 1]:

Pr[Et+1 = 0 | Et = 1] = pfix, Pr[Et+1 = 1 | Et = 0] = pbreak.

Assume a beneficial rewriting process, pfix > pbreak ≥ 0. Also assume pfix + pbreak ∈ (0, 1] to
ensure the standard contraction factor definition. Define the contraction factors:

ρ := pfix + pbreak ∈ (0, 1],

λ := 1− ρ = 1− (pfix + pbreak) ∈ [0, 1).

Set the effective contraction rate ϕ := rλ. We require ϕ ∈ [0, 1) for convergence to the stated
floor.

Then the following two bounds hold:

(i) One-step bound: E
[
Lt+1

]
≤ ϕE

[
Lt

]
+ κmax pbreak

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

(ii) Multi-step bound: For any horizon T ≥ 0,

E
[
LT

]
≤ ϕTE

[
L0

]
+ κmax pbreak

1− ϕT

1− ϕ
.

Consequently, if ϕ < 1, the expected loss converges towards an asymptotic floor:

lim
T→∞

E[LT ] ≤
κmax pbreak

1− ϕ
.

Proof. Step 1: Bounding the loss in terms of the binary error indicator Et. As established
in the proposition statement: If Et = 1, an error occurred, and the loss Lt is one of
wval, womis, wcommis. Thus, κmin ≤ Lt ≤ κmax. If Et = 0, no error occurred (the prediction
was correct, including predicting blank for blank), and Lt = 0. These two cases can be
summarized by the inequality:

κminEt ≤ Lt ≤ κmaxEt. (A)
This implies Et ≤ Lt/κmin (if κmin > 0, which it is by definition of weights) and Lt/κmax ≤ Et.
Also, E[Et] ≤ E[Lt]/κmin and E[Lt] ≤ κmaxE[Et].

Step 2: Expected value of the next error indicator Et+1. By definition of expected value and
the law of total probability, using the marginal-churn dynamics for Et:

E[Et+1] = Pr(Et+1 = 1)

= Pr(Et+1 = 1 | Et = 1)Pr(Et = 1) + Pr(Et+1 = 1 | Et = 0)Pr(Et = 0)

= (1− pfix)E[Et] + pbreak(1− E[Et])

= (1− pfix − pbreak)E[Et] + pbreak

= λE[Et] + pbreak. (B)
Here, λ = 1 − (pfix + pbreak). The assumption pfix + pbreak ∈ (0, 1] ensures that λ ∈ [0, 1).
The condition pfix > pbreak ≥ 0 ensures that λ < 1 if pfix + pbreak > 0.

Step 3: Deriving the one-step loss bound (i). Using the right-hand inequality of (A) for Lt+1

and taking expectations:
E[Lt+1] ≤ κmaxE[Et+1].

Substituting (B) into this:
E[Lt+1] ≤ κmax(λE[Et] + pbreak).

Now, using the implication from the left-hand inequality of (A), E[Et] ≤ E[Lt]/κmin:

E[Lt+1] ≤ κmax

(
λ
E[Lt]

κmin
+ pbreak

)
.

E[Lt+1] ≤ λ
κmax

κmin
E[Lt] + κmaxpbreak.

Since r = κmax/κmin and ϕ = rλ, this becomes:
E[Lt+1] ≤ ϕE[Lt] + κmaxpbreak.

This proves part (i).

Step 4: Deriving the multi-step bound (ii). Let xt = E[Lt] and c = κmaxpbreak. The recurrence
from part (i) is xt+1 ≤ ϕxt + c. We unroll this recurrence:

x1 ≤ ϕx0 + c

x2 ≤ ϕx1 + c ≤ ϕ(ϕx0 + c) + c = ϕ2x0 + ϕc+ c

x3 ≤ ϕx2 + c ≤ ϕ(ϕ2x0 + ϕc+ c) + c = ϕ3x0 + ϕ2c+ ϕc+ c

...

xT ≤ ϕTx0 + c(ϕT−1 + ϕT−2 + · · ·+ ϕ1 + ϕ0)

xT ≤ ϕTx0 + c

T−1∑
k=0

ϕk.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

The sum is a geometric series. We have required ϕ ∈ [0, 1), so ϕ ≠ 1. Thus,
∑T−1

k=0 ϕk = 1−ϕT

1−ϕ .

E[LT ] ≤ ϕTE[L0] + κmaxpbreak
1− ϕT

1− ϕ
.

This proves part (ii).

Step 5: Asymptotic behavior. As T →∞, if ϕ ∈ [0, 1), then ϕT → 0. Therefore,

lim
T→∞

E[LT ] ≤ κmaxpbreak
1

1− ϕ
=

κmaxpbreak
1− rλ

.

This completes the proof.

B.3 Theorem 1: Formal Statement and Proof

Theorem 1 (Loss and value improvement of ϖTG under corrected definitions). Fix a single
catalog attribute and let st ∈ Π be the prompt (instruction) active at iteration t ≥ 0.

Assumptions.

(a) Estimator step. At each iteration, the empirical Top-K selector
of Proposition 1 (from Appendix B.1) is run. Denote by Et :=
{true best prompt from the current pool is retained by Top-K selection} and let
ϑest := Pr[Ect ] be its failure probability.

(b) Catalog dynamics (marginal churn). Per-example binary error indicators Et (indicating
any true error: Eval,t, Eomis,t, or Ecommis,t) obey the model of Proposition 2 with fixed
parameters pfix > pbreak ≥ 0, and pfix + pbreak ∈ (0, 1]. The catalog loss L(st) is defined
as in Proposition 2, with 0 < κmin ≤ κmax. Define the contraction factors:

λ := 1− (pfix + pbreak) ∈ [0, 1),

r := κmax/κmin ≥ 1,

ϕ := rλ.

We assume the strict effective contraction condition ϕ ∈ [0, 1).

Claims. For every state st and every horizon T ≥ 0:

(i) One-step loss recursion (conditional on st): The expected loss L(st+1) of the
prompt chosen for the next step, conditional on the current prompt st (which has loss
L(st)), satisfies:

E
[
L(st+1) | st

]
≤ ϕL(st) + κmax pbreak + ϑest. (A’)

(ii) T -step horizon bound (unconditional expectation): Let L0 = L(s0) be the loss
of the initial prompt.

E
[
L(sT )

]
≤ ϕT L0 +

κmax pbreak + ϑest

1− ϕ

(
1− ϕT

)
. (B’)

(iii) Value-function improvement: Set the asymptotic loss floor

L⋆
∞ :=

κmax pbreak + ϑest

1− ϕ
.

Define the excess loss L̃(s) := L(s)− L⋆
∞ and the shifted reward r′(s) := −L̃(s). For

any discount factor γ ∈ (0, 1), the policy ϖTG satisfies:

E
[
V ϖTG(st+1)− V ϖTG(st) | st

]
≥ 1− ϕ

1− γϕ

[
L(st)− L⋆

∞
]+

, (C’)

where [x]+ = max(0, x).

Proof. Throughout this proof, Lt refers to L(st), the true loss of the prompt at state st.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Part (i): One-step loss recursion. The expectation of L(st+1) conditioned on st is expanded
by conditioning on the success or failure of the Top-K estimation step Et:

E[L(st+1) | st] = E[L(st+1) | st, Et] Pr(Et) + E[L(st+1) | st, Ect ] Pr(Ect )
= E[L(st+1) | st, Et](1− ϑest) + E[L(st+1) | st, Ect ]ϑest.

On event Et, the Top-K selection manages to retain the best prompt. The expected loss of
a prompt π′ generated from st via rewriting, before Top-K selection from the wider pool,
is bounded by Proposition 2(i): Eπ′ [L(π′)] ≤ ϕLt + κmax pbreak. Since st+1 is chosen by
Top-K, its loss will be at most this value if a new prompt is chosen, or potentially lower if
an existing better prompt is kept. Thus,

E[L(st+1) | st, Et] ≤ ϕLt + κmax pbreak.

On event Ect (Top-K estimation fails to identify the true best among candidates), we use
the general upper bound L(st+1) ≤ 1 (assuming losses are normalized or κmax ≤ 1). If not
normalized, the bound is κmax. For consistency with the ϑest term, we use 1 as a simple
upper bound representing a high-loss state.

E[L(st+1) | st] ≤ (1− ϑest)(ϕLt + κmax pbreak) + ϑest · 1.
Since ϕLt + κmax pbreak ≥ 0, the term −ϑest(ϕLt + κmax pbreak) is non-positive. Therefore,

E[L(st+1) | st] ≤ ϕLt + κmax pbreak − ϑest(ϕLt + κmax pbreak) + ϑest

≤ ϕLt + κmax pbreak + ϑest.

and (A’) is established.

Part (ii): T -step horizon bound. Let xt = E[Lt]. Taking the total expectation of (A’):

E[E[L(st+1) | st]] ≤ E[ϕLt + κmax pbreak + ϑest].

xt+1 ≤ ϕxt + (κmax pbreak + ϑest).

Let C := κmax pbreak + ϑest. Unrolling this recurrence (as in the proof of Proposition 2(ii)),
yields:

xT ≤ ϕTx0 + C

T−1∑
k=0

ϕk = ϕTx0 + C
1− ϕT

1− ϕ
.

Substituting xT = E[LT ] and x0 = L0, and C, gives:

E[LT ] ≤ ϕTL0 + (κmax pbreak + ϑest)
1− ϕT

1− ϕ
.

which proves (B’).

Part (iii): Value-function improvement. Recall L⋆
∞ = (κmaxpbreak + ϑest)/(1 − ϕ) and

L̃(s) = L(s)− L⋆
∞. From (A’), we have

E[L(st+1) | st] ≤ ϕLt + κmax pbreak + ϑest.

Subtracting L⋆
∞ from both sides:

E[L(st+1) | st]− L⋆
∞ ≤ ϕLt + κmax pbreak + ϑest − L⋆

∞

E[L̃(st+1) | st] ≤ ϕLt + L⋆
∞(1− ϕ)− L⋆

∞ (since κmaxpbreak + ϑest = L⋆
∞(1− ϕ))

= ϕLt − ϕL⋆
∞ = ϕ L̃(st). (†)

The inequality E[L̃(st+1) | st] ≤ ϕ L̃(st) shows that the expected excess loss contracts by ϕ at
each step. Let V ′(s) be the value function associated with the shifted reward r′(s) = −L̃(s).
Then

V ′(st) = EϖTG

[ ∞∑
k=0

γkr′(st+k) | st

]

= EϖTG

[ ∞∑
k=0

γk(−L̃(st+k)) | st

]
.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Using iterated expectations and the contraction (†), E[L̃(st+k) | st] ≤ ϕkL̃(st). Thus,

V ′(st) ≥ −
∞∑
k=0

γkϕkL̃(st) = −
1

1− γϕ
L̃(st).

The value function V ϖTG(st) for the original reward r(s) = −L(s) is related to V ′(st) by:

V ϖTG(st) = V ′(st)−
∞∑
k=0

γkL⋆
∞ = V ′(st)−

L⋆
∞

1− γ
.

Therefore,
E[V ϖTG(st+1) | st]− V ϖTG(st) = E[V ′(st+1) | st]− V ′(st).

From the Bellman equation for V ′(st):

V ′(st) = −L̃(st) + γE[V ′(st+1) | st].

So,

E[V ′(st+1) | st]− V ′(st) =
1− γ

γ
V ′(st) +

1

γ
L̃(st).

Substituting the bound for V ′(st):

E[V ′(st+1) | st]− V ′(st) ≥
1− γ

γ

(
− 1

1− γϕ
L̃(st)

)
+

1

γ
L̃(st)

=
L̃(st)
γ

(
1− 1− γ

1− γϕ

)
=
L̃(st)
γ

1− γϕ− (1− γ)

1− γϕ

=
L̃(st)
γ

γ − γϕ

1− γϕ
=

1− ϕ

1− γϕ
L̃(st).

Since
[
L̃(st)]+ ≤ L̃(st), replacing L̃(st) by its positive part preserves the inequality1, which

yields (C’).

1The notation [x]+ := max(0, x) is included for clarity: it forces the right-hand side of (C’) to be
non-negative. Hence the inequality states, in plain words, that whenever the current loss sits above
the asymptotic floor L⋆

∞, the expected value increases by at least a fixed fraction of that excess; if
the loss is already at or below the floor, the bound becomes 0 and the theorem makes no further
claim.

21


	Introduction
	Method
	MPG: A Scalable Framework for Attribute-Specific Processing
	Collaborative Refinement: The CascadeAgent
	Principled Improvement: Optimization with Textual Gradients

	Theoretical Analysis of CascadeAgent
	Experimental Design and Evaluation
	Dataset and Sampling
	Model Selection and Computing Infrastructure
	Hyperparameter Configuration
	Evaluation Methodology

	Results
	Performance of CascadeAgent
	Boost in PA-level performance
	Optimization with Textual Gradients

	Related Works
	Conclusion
	Limitations
	Ethics Statement
	Reproducibility Statement
	Appendix
	Ablation Studies
	LLM instruction optimization - Top K
	LLM instruction optimization - Error Examples in Minibatch
	LLM instruction optimization - Minibatch Size


	Proofs
	Proposition 1: Formal Statement and Proof
	Proposition 2: Formal Statement and Proof
	Theorem 1: Formal Statement and Proof


