
Under review as a conference paper at ICLR 2024

HIEROS: HIERARCHICAL IMAGINATION ON STRUC-
TURED STATE SPACE SEQUENCE WORLD MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

One of the biggest challenges to modern deep reinforcement learning (DRL) algo-
rithms is sample efficiency. Many approaches learn a world model in order to train
an agent entirely in imagination, eliminating the need for direct environment inter-
action during training. However, these methods often suffer from either a lack of
imagination accuracy, exploration capabilities, or runtime efficiency. We propose
HIEROS, a hierarchical policy that learns time abstracted world representations
and imagines trajectories at multiple time scales in latent space. HIEROS uses an
S5 layer-based world model, which predicts next world states in parallel during
training and iteratively during environment interaction. Due to the special prop-
erties of S5 layers, our method can train in parallel and predict next world states
iteratively during imagination. This allows for more efficient training than RNN-
based world models and more efficient imagination than Transformer-based world
models. We show that our approach outperforms the state of the art in terms of
mean and median normalized human score on the Atari 100k benchmark, and that
our proposed world model is able to predict complex dynamics very accurately.
We also show that HIEROS displays superior exploration capabilities compared to
existing approaches.

1 INTRODUCTION

Learning behavior from raw sensory input is a challenging task. Reinforcement learning (RL) is a
field of machine learning that aims to solve this problem by learning a policy that maximizes the
expected cumulative reward in an environment (Sutton & Barto, 2018). The agent interacts with
the environment by taking actions and receiving observations and rewards. The goal of the agent is
to learn a policy that maximizes the expected cumulative reward. The agent can learn this policy
by interacting with the environment and observing rewards, which is called model-free RL. Some
agents also learn a model of their environment and learn a policy based on simulated environment
states. This is called model-based RL (Moerland et al., 2023).

However, a significant hurdle encountered by RL algorithms is the lack of sample efficiency (Micheli
et al., 2023). The demand for extensive interactions with the environment to learn an effective
policy can be prohibitive in many real-world applications (Yampolskiy, 2018). In response to this
challenge, deep reinforcement learning (DRL) has emerged as a promising solution. DRL leverages
neural networks to represent and approximate complex policies and value functions, allowing it to
tackle a wide array of problems and environments effectively.

One such approach is the concept of “world models”. World models aim to create a simulated envi-
ronment within which the agent can generate an infinite amount of training data, thereby reducing
the need for extensive interactions with the real environment (Ha & Schmidhuber, 2018). However,
a key prerequisite for world models is the construction of precise models of the environment, a topic
that has garnered substantial research attention (Hafner et al., 2022b; 2020; Kaiser et al., 2019). The
idea of learning models of the agent’s environment has been around for a long time (Nguyen &
Widrow, 1990; Schmidhuber, 1990; Jordan & Rumelhart, 1992). After being popularized by Ha &
Schmidhuber (2018), world models have since evolved and diversified to address the sample effi-
ciency problem more effectively. Most prominently, the DreamerV1-3 models (Hafner et al., 2020;
2022c; 2023) have achieved state-of-the-art results in multiple benchmarks such as Atari100k (Belle-
mare et al., 2013) or Minecraft (Kanitscheider et al., 2021). These models use a recurrent state space

1

Under review as a conference paper at ICLR 2024

model (RSSM) (Hafner et al., 2022b) to learn a latent representation of the environment. The agent
then uses this latent representation to train in imagination. Recently, Transformers have gained pop-
ularity as backbones for world models, due to their ability to capture complex dependencies in data.
We will discuss some approaches using Transformer-based architectures in Appendix B. One of the
major drawbacks of those architectures is the inherent lack of runtime efficiency of the attention
mechanism used in Transformers. Recently proposed structured state space sequence (S4) models
(Gu et al., 2022) show comparable or superior performance in a wide range of tasks while being
more runtime efficient than Transformer-based models, which makes them a promising alternative
(Deng et al., 2023; Lu et al., 2023).

Another avenue for improving RL sample efficiency is hierarchical RL (HRL) (Dayan & Hinton,
1992; Parr & Russell, 1997; Sutton et al., 1999). This approach operates at different time scales,
allowing the agent to learn and make decisions across multiple levels of abstraction. The idea is that
higher level policies divide the environment task into smaller subtasks or subgoals (also commonly
called skills). The lower level policy is then rewarded for fulfilling these subgoals and is thus guided
to fulfill the overall environment task. This approach has been shown to be effective in a variety of
tasks (Hafner et al., 2022a; Nachum et al., 2018; Jiang et al., 2019; Nachum et al., 2019a). Hafner
et al. (2022a) proposes an HRL approach that builds on DreamerV2 (Hafner et al., 2022c) and
achieves superior results in the Atari100k benchmark.

Finding the right experience replay buffer sampling strategy is key for many RL algorithms, as it
has a great influence on the final performance of the agent (Fedus et al., 2020; D’Oro et al., 2022).
Li et al. (2023) introduce a time balanced replay dataset which empirically boosted the performance
of their imagination based RL agent. However, this replay procedure relies on recomputing all
probabilities in O(n) at each iteration, which reduces its applicability for other approaches.

LeCun (2022) theorizes that an HRL agent that learns a hierarchy of world models and features
intrinsic motivation to guide exploration could potentially achieve human-level performance in a
wide range of tasks. Nachum et al. (2019c) and Aubret et al. (2023) provide further reasoning that
combining HRL with other successful approaches such as world models could lead to a significant
improvement in sample efficiency. Motivated by these findings, we propose HIEROS, a multilevel
HRL agent that learns a hierarchy of world models, which use S5 layers to predict next world states.
Specifically, our contributions are as follows:

• We propose HIEROS, an HRL agent that learns a hierarchy of world models, and builds
upon the Director (Hafner et al., 2022a) and on the DreamerV3 (Hafner et al., 2023) archi-
tecture.

• Furthermore, we propose S5WM, a world model that uses S5 layers to predict next world
states, which has several beneficial properties compared to the RSSM used in DreamerV3
(Hafner et al., 2023) and several proposed Transformer-based alternatives (Micheli et al.,
2023; Robine et al., 2023; Chen et al., 2022) as well as a recently proposed S4WM (Deng
et al., 2023).

• We derive efficient time-balanced sampling (ETBS) for experience dataset sampling from
the time-balanced sampling method proposed by Robine et al. (2023) with a sampling time
complexity of O(1).

• We show that HIEROS achieves a new state-of-the-art mean and median normalized human
score in the Atari100k benchmark (Bellemare et al., 2013).

• We conduct a thorough ablation study showing the influence of the different components
of HIEROS (e.g., world model choice, hierarchy depth, sampling procedure).

We describe our method in detail in Section 2. In Section 3, we evaluate HIEROS on the Atari100k
benchmark (Bellemare et al., 2013) and analyze our results. Concluding remarks and ideas for future
work are given in the final Section 4. We provide a section explaining some background concepts of
the topic in Appendix A, an additional comparison with related work in Appendix B and a range of
ablation studies in Appendix G.

2 METHODOLOGY

In the context of RL, an agent interacts with an environment at discrete time steps, denoted as t.
For the Atari 100K benchmark, for instance, where the environment represents a game like Pong,

2

Under review as a conference paper at ICLR 2024

Figure 1: On the left: Hierarchical subactor structure of HIEROS. Each layer of the hierarchy learns
its own latent state world model and interacts with the other layers via subgoal proposal. The action
outputs of each actor/critic is the subgoal input of the next lower layer. The output of the lowest
level actor/critic is the actual action in the real environment. On the right: Training and imagination
procedure of the S5WM. HIEROS uses a stack of S5 blocks with their architecture shown above.

the agent’s interaction involves selecting an action a at time t within the game, similar to making
in-game moves or pressing buttons. Subsequently, the agent receives an observation o and a reward
r from the environment. In the case of Pong, o typically takes the form of a pixel image capturing the
game’s visual state, while r represents the points earned as a result of the agent’s actions. The agent’s
primary goal is to learn an optimal policy π, guiding its interactions with the environment, with the
overarching objective of maximizing the expected cumulative reward, expressed as E [

∑∞
t=0 γ

trt],
where γ < 1 represents the discount factor and rt stands for the reward at time step t.

In this section we introduce HIERarchical imagination On Structured state space sequence world
models (HIEROS), a hierarchical model-based RL agent, that learns on trajectories generated by
a Simplified Structured State Space Sequence (S5) model (Smith et al., 2023). We mainly base
our approach upon DreamerV3 (Hafner et al., 2023) and Director (Hafner et al., 2022a). In the
following section, we propose two major changes to the DreamerV3 architecture. First, we describe
a hierarchical policy, where each abstraction layer learns its own S5 world model and an actor-critic.
Second, we replace the world model with a world model based on S5 layers. We also introduce
efficient time-based sampling (ETBS) method for true uniform sampling over the experience dataset
with O(1) time complexity.

2.1 MULTILAYERED HIERARCHICAL IMAGINATION

HIEROS employs a goal conditioned hierarchical policy. Each abstraction layer learns its own S5
world model, an actor-critic and a subgoal autoencoder. We give some background on hierarchical
reinforcement learning in Appendix A.2. The overall design of the subgoal proposal and the intrinsic
reward computation is similar to the Director architecture (Hafner et al., 2022b), which successfully
implements a hierarchical policy on the basis of DreamerV2. In contrast to Director and many other
works, our architecture can easily be scaled to multiple hierarchy levels instead of being only two
leveled (Hafner et al., 2022a; Nachum et al., 2018; Jiang et al., 2019; Nair & Finn, 2019).

We show the hierarchic structure and the interaction between the subactors in Figure 1. Each subac-
tor i consists of three modules: the world model (wiθ), an actor-critic component (πiϕ), and a subgoal
autoencoder (giψ). The world model is used to imagine trajectories for the actor-critic to train on.
The subgoal autoencoder’s task is to compress and subsequently decompress states within the world
model. The decoder is used to decode the subgoals proposed by higher level layers and compute a

3

Under review as a conference paper at ICLR 2024

subgoal reward rg . It is also used to compute novelty rewards rnov . Only the lowest layer (subactor
0) interacts directly with the environment. The higher layers receive k consecutive world model
states from the lower level as observations, train their world model on these states and generate sub-
goals gi. Director, in contrast, provides the higher level policy only with every k-th world state. We
show the effect of this adjustment in Appendix G.5.

The subgoals represent world states that the lower layer is tasked to achieve and are kept constant
for the next k steps of the lower layer. So the higher levels can only update their proposed subgoal
every k steps of the next lower layer, so subactor 2 in Figure 1 can update its proposed subgoal
every k2 environment steps. The actor-critic component is trained on imagined rollouts of the word
model. The reward r is a mixture of extrinsic rewards rextr (i.e. observed rewards directly from the
environment), subgoal rewards rg , and novelty rewards rnov:

r = rextr + wg · rg + wnov · rnov (1)

Here,wg andwnov are hyperparameters that control the influence of the subgoal and novelty rewards
on the overall reward. The subgoal and novelty rewards rg and rnov are computed as follows:

rnov = ||ht − giψ(ht)||2 rg =
gTt · ht

max(||gt||, ||ht||)
(2)

with ht being the deterministic world model state, giψ the subgoal autoencoder of subactor i, gt the
subgoal and || · ||2 being the L2 norm. Since the subgoal autoencoder is trained to compress and
decompress the world model state, it is able to model the distribution of the observed model states.
This allows using its reconstruction error on the current world model state as a novelty reward rnov .
The subgoal reward is computed using the cosine max similarity method between the world model
state and the decompressed subgoal, which was proposed by Hafner et al. (2022a).

The actor learns the policy:

at ∼ πiϕ((ht, zt), gt, rt, ct, H(pθ(zt|mt))) (3)

with ht and zt representing the current model state, gt being the subgoal, rt being the reward,
ct being the continue signal, and H(pθ(zt|mt)) being the entropy of the latent state distribution.
The entropy term is used to encourage exploration and make the actor aware of states with high
uncertainty. These additional inputs to the actor network are motivated by findings of Robine et al.
(2023) which show, that providing the predicted reward as input improves the learned policy. The
actor is trained using the REINFORCE algorithm (Williams, 1992). In the case of a higher level
subactor, at is the subgoal gt for the next lower layer. The actor-critic trains three separate value
networks for each reward term to predict their future mean return. The subgoal autoencoder giψ is
composed of an encoder and a decoder:

giψ Encoder: gt ∼ pψ(gt|ht) giψ Decoder: ht ≈ fψ(gt) (4)

Only the deterministic part of the model state ht is used as input for the subgoal autoencoder, as the
stochastic part zt is less controllable by the lower level actor and thus would make the subgoal less
achievable. Hafner et al. (2022a) found that the full latent state space of the lower level world model
as action space would constitute a high dimensional continuous control problem for the higher level
actor, which is hard for a policy to optimize on. Instead, the giψ compresses the latent state into
a discrete subgoal space of 8 categorical vectors of size 8. This compressed action space is much
easier to navigate for the subgoal proposing policy than the continuous world state. Their worker
policy takes the decompressed goal as input, while for HIEROS we found that the subactors achieved
better subgoal completion and overall higher rewards being trained on the compressed subgoals. The
subgoal autoencoder is trained using a variational loss:

Lψ = || fψ(z)− ht ||2 + β ·KL [pψ(gt |ht) || q(gt)] (5)

z is sampled from the encoder distribution z ∼ pψ(gt|ht) and q(gt) is a uniform prior. β is a hyper-
parameter that controls the influence of the KL divergence on the overall loss. All hyperparameters
used in our experiments can be found in Appendix E.

The subgoals of all hierarchy layers can be decoded into the original image space of the game. This
allows to visualize which subgoals the agent is trying to achieve, which makes the actions taken by
HIEROS explainable. We show some examples in Appendix D.

4

Under review as a conference paper at ICLR 2024

2.2 S5-BASED WORLD MODEL (S5WM)

The world model in HIEROS is responsible for imagining a trajectory of future world states. For
this task, we use a similar architecture as DreamerV3 while swapping out the RNN-based sequence
model for an S5-based sequence model. We give some background on world models and S4/S5
layers in Appendices A.1 and A.3. Our world model consists of the networks:

Sequence model: (mt, ht) = fθ(ht−1, zt−1, at−1)

Encoder: zt ∼ qθ(zt | ot)
Dynamics predictor: ẑt ∼ pθ(ẑt |mt)

Reward predictor: r̂t ∼ pθ(r̂t |ht, zt)
Continue predictor: ĉt ∼ pθ(ĉt |ht, zt)

Decoder: ôt ∼ pθ(ôt |ht, zt)
With ot being the observation at time step t,mt the output of the sequence model, and ht the internal
state of the S5 layers in the sequence model, which we use as the deterministic part of the world state.
zt is the stochastic part of the latent world state, at the action taken, ẑt the predicted latent state,
r̂t the predicted extrinsic reward, ĉt the predicted continue signal and ôt the decoded observation.
Figure 1 shows the overall structure of the world model.

During training, the S5WM takes in a sequence of observations o0 · · · ot and actions a0 · · · at−1.
The encoder computes the posterior zt from the observations ot in parallel. The sequence model
predicts the next output mt and deterministic state ht. The dynamics predictor uses the sequence
output mt to predict the stochastic prior ẑt. The posterior zt then constitutes the stochastic state
with knowledge of the actual observation ot and the prior ẑt constitutes the stochastic state solely
predicted from the deterministic sequence model output. During imagination, the actor only has
access to the prior ẑ.

The RSSM encoder in DreamerV3 computes the posterior from both ot and the deterministic model
state ht, which makes the parallel computation of zt impossible. However, Chen et al. (2022) show,
that accurate representation can also be learned by making the posterior zt independent of ht and
only predict the distribution p(zt|ot) which is why we can safely use this for HIEROS as well.

As explained in Appendix A.3, S5 and S4 layers can be used both for sequence modelling in parallel
and iterative autoregressive next state prediction. This makes them more efficient than RNNs for
training the model and more efficient than Transformer-based models for imagination. S5 layers are
advantageous over S4 layers as they can model longer term dependencies and are more efficient in
terms of memory usage. Also, the latent state xt of S5 layers are directly accessible, which allows
HIEROS using the recurrent model state as the deterministic part of the world state ht. Other ap-
proaches use the sequence model output as deterministic world model states (Chen et al., 2022; Deng
et al., 2023; Micheli et al., 2023), but this leads to worse results in our experiments (Appendix G.2).

We use a modified version of an S5 layer for training an RL agent, which was proposed by Lu et al.
(2023). They introduce a reset mechanism, which allows setting the internal state ht to its initial
value h0 during the parallel sequence prediction by also passing the continue signal c0 · · · cn to the
sequence model. This allows the actor to train on trajectories that span multiple episodes without
leaking information from the end of one episode to the beginning of the next. We employ the same
mechanism for our S5WM, as trajectories spanning episode borders are commonly encountered
during training. It is unclear if the S4WM proposed in Deng et al. (2023) faced the same challenge
and if and how they solved it.

The sequence model of our S5WM uses a stack of multiple S5 blocks, as depicted in Figure 1.
The design of this block is inspired by the deep sequence model architecture proposed by Smith
et al. (2023) but we selected a different norm layer, dropout and activation function. The number of
blocks used is listed in Appendix E. All parts of S5WM are optimized jointly using a loss function
that follows the loss function of DreamerV3:

L(θ) = Lpred(θ) + αdyn · Ldyn(θ) + αrep · Lrep(θ) (6)
Lpred(θ) = − ln(pθ(rt |ht, zt))− ln(pθ(ct |ht, zt))− ln(pθ(ot |ht, zt)) (7)
Ldyn(θ) = max(1, KL [sg(qθ(zt | ot)) || pθ(zt |mt)]) (8)
Lrep(θ) = max(1, KL [qθ(zt | ot) || sg(pθ(zt |mt))]) (9)

5

Under review as a conference paper at ICLR 2024

For Ldyn and Lrep we use the method of free bits introduced by Kingma et al. (2016) and used in
DreamerV3 (Hafner et al., 2023) to prevent the dynamics and representations from collapsing into
easily predictable distributions. αdyn and αrep are hyperparameters that control the influence of the
dynamics and representation loss.

2.3 EFFICIENT TIME-BALANCED SAMPLING

When interacting with the environment, HIEROS collects observations, actions, and rewards in an
experience dataset. After a fixed number of interactions, trajectories are sampled from the dataset
in order to train the world model, actor, and subgoal autoencoder. DreamerV3 (Hafner et al., 2023)
uses a uniform sampling. This, however, leads to an oversampling of the older entries of the dataset,
as the iterative uniform sampling can select these entries more often than newer ones. As explained
in Section 1 Robine et al. (2023) solve this using a time-balanced replay buffer with aO(n) sampling
runtime complexity with n being the size of the replay buffer.

We propose an efficient time-balanced sampling method (ETBS), which produces similar results
with O(1) time complexity. When iteratively adding elements to the experience replay dataset and
afterward sampling uniformly, the expected number of times Nxi an element xi has been drawn
after n iterations is

E(Nxi) =
1

i
+

1

i+ 1
+ · · ·+ 1

n
= Hn −Hi (10)

with Hi being the i-th harmonic number. The probability of sampling xi, i = 1, ..., n, is

pi =
1

n
· E(Nxi

) =
Hn −Hi

n
≈ ln(n)− ln(i)

n
(11)

We use the approximation Hx ≈ ln(x) to remove the need to compute harmonic values. The idea
is, to compute the CDF of this probability distribution between 0 and n to transform samples from
the imbalanced distribution into uniform samples via probability integral transformation David &
Johnson (1948). How we derive the CDF of this distribution is shown in Appendix H. With the CDF
we compute the ETBS probabilities as follows:

petbs(x) = CDF (p(x)) · τ + p(x) · (1− τ) (12)

with p being the original sampling distribution, CDF being the CDF of the original distribution and
τ being a temperature hyperparameter that controls the influence of the original distribution on the
overall distribution. We set τ to 0.3 in our experiments. Empirically, a slight oversampling of earlier
experiences seems to have a positive influence on the actor performance. The time complexity of
this sampling method is O(1), as the CDF can be precomputed and the sampling is done in constant
time. For further details, see Appendix H.

3 EXPERIMENTS

We evaluate the performance of HIEROS on the Atari100k test suite (Bellemare et al., 2013), which
contains a wide range of games with different dynamics and objectives. In each of these environ-
ments, the agent is only allowed 100k interaction with the environment, which amounts to roughly
2 hours of total gameplay. We evaluate HIEROS on a subset of 25 of those games. We compare HI-
EROS to the following baselines: DreamerV3 (Hafner et al., 2023), IRIS (Micheli et al., 2023), TWM
(Robine et al., 2023), and SimpPLe (Kaiser et al., 2019). SimPLe trains a policy on the direct pixel
input of the environment using PPO (Schulman et al., 2017), while TWM, IRIS and DreamerV3
train a policy on imagined trajectories of a world model. TWM and IRIS use a Transformer-based
world model. IRIS, however, trains the agent not in the latent space of the world model but in the
decoded state space of the environment, which is one of the main differences to other approaches
that leverage a Transformer-based world model (e.g. TWM). Ye et al. (2021) propose EfficientZero,
which holds the current absolute state of the art in the Atari100k test suite. However, this method
relies on look-ahead search during policy inference and is thus not comparable to the other methods.

Comparing our S5WM against the S4WM proposed by Deng et al. (2023) would be interesting, as
both models are based on structured state spaces. However, Deng et al. (2023) only report results
on their proposed set of memory testing environments and their code base is not public yet. So we

6

Under review as a conference paper at ICLR 2024

Task Random Human SimPLe TWM IRIS DreamerV3 Hieros (ours)
Mean 0 100 34 96 105 112 120
Median 0 100 11 50 29 49 56
IQM 0 100 13 46 50 N/A 53
Optimality Gap 100 0 73 52 51 N/A 49

Table 1: Aggregate scores of HIEROS and baselines on the Atari100k test suite. Higher scores for
Mean, Median and IQM are better. For Optimality Gap, lower scores are better. DreamerV3 does
not report the scores for IQM or Optimality Gap. We show the best results for each row in bold font.

are not able to compare our results directly to theirs. We do however compare our S5WM to the
RSSM used in DreamerV3 in Section 3.2. The used computation resources, implementation details
and a link to the source code can be found in appendix F. We use the hyperparameters as specified
in Appendix E for all experiments.

3.1 RESULTS FOR THE ATARI100K TEST SUITE

All scores are the average of three runs with different seeds. To aggregate the results, we com-
pute the normalized human score (Bellemare et al., 2013), which is defined as (scoreagent −
scorerandom)/(scorehuman − scorerandom). We show the achieved aggregated mean and me-
dian normalized human score in Table 1. The full table with scores for all games can be found in
Appendix C.

Our model achieves a new state of the art in regard to the mean and median normalized human score.
We also achieve a new state of the art in regard to the achieved reward on 9 of the 25 games. Ad-
hering to Agarwal et al. (2021), we also report the optimality gap and the interquartile mean (IQM)
of the human normalized scores and achieve state-of-the-art results in both of those metrics. HI-
EROS outperforms the other approaches while having significant advantages with regard to runtime
efficiency during training and inference, as well as resource demand. For training on a single Atari
game for 100k steps, TWM takes roughly 0.8 days on a A100 GPU, while DreamerV3 takes 0.5
days and IRIS takes 7 days. Hieros takes roughly 14 hours ≈ 0.6 days and is thus significantly faster
than IRIS while being on par with DreamerV3 and TWM.

The most significant improvements were achieved in Frostbite, JamesBond, and PrivateEye, which
are games that feature multiple levels with changing dynamics and reward distributions. In order
for the S5WM to learn to simulate these levels, the actor needs to employ a sufficient exploration
strategy to discover these levels. This shift in the state distribution poses a challenge for many
imagination-based approaches (Micheli et al., 2023). HIEROS is able to overcome this challenge by
using the proposed subgoals on different time scales to guide the agent towards the next level. We
show in Appendix D different proposed subgoals which guide the lower level actor to finding the
way to the next level by building the igloo in the upper right part of the image.

HIEROS seems to perform significantly worse than other approaches in Breakout or Pong, which
feature no significant shift in states or dynamics. It seems as if the hierarchical structure makes it
harder to grasp the relatively simple dynamics of these games, as the dynamics remain the same
across all time abstractions. This is backed by our findings in Appendix G.3 that HIEROS with only
one subactor performs significantly better on Breakout. We also show empirically in Section 3.2 that
using the S5WM also seems to deteriorate the performance of HIEROS in those games compared to
the RSSM used for DreamerV3. Figure 5 shows some proposed subgoals for Breakout. The subgoals
seem only to propose to increase the level score, which is does not provide the lower level agent any
indication on how to do so. So the lower level actor is not able to benefit from the hierarchical
structure in these games.

Figure 2 shows the partial rewards rextr, rnov , and rsg for the lowest level subactor for Breakout
and Krull, another game featuring multiple levels similar to Frostbite. As can be seen, the extrinsic
rewards for Breakout are very sparse and do not provide any indication on how to increase the level
score. So the subactor learns to follow the subgoals from the higher levels more closely instead,
which in the case of Breakout or Pong does not lead to a better performance. In Krull however,
the extrinsic rewards are more frequent and provide a better indication on how to increase the level

7

Under review as a conference paper at ICLR 2024

Figure 2: Extrinsic, subgoal, and novelty rewards for Krull (left window) and Breakout (right win-
dow) for the lowest level subactor.

Figure 3: Trajectories for Breakout (top) and Frostbite (bottom). For each, the upper frame is the
image observed in the environment and the lower frames are the imagined trajectories of the S5WM
of the lowest level subactor.

score. So the subactor is able to learn to follow the subgoals from the higher levels more loosely,
treating them more like a hint, and is able to achieve a better performance.

3.2 IMAGINED TRAJECTORIES

In Figure 3, we show an observed trajectory for the games Frostbite and Breakout alongside the
imagined trajectories of the S5WM of the lowest level subactor. As can be seen, the world model is
not able to predict the movement of the ball in breakout. This indicates that the model is not able to
model the very small impact of the ball movement to the change in the image. We found that during
random exploration at the beginning of the training the events where the ball bounces back from the
moving plateau are very rare and most of the time the ball is lost before it can bounce back. This
makes it difficult for the world model to learn the dynamics of the ball movement and their impact
on the reward distribution. We make similar observations for the game Pong.

S4-based models are shown to perform worse than Transformer models on short term sequence
modeling tasks (Zuo et al., 2022; Mehta et al., 2022; Dao et al., 2022) while excelling on long term
modeling tasks. This might explain why our S5WM seems to perform worse on Breakout or Pong
compared to Frostbite or Krull. Freeway poses a similar challenge, with sparse rewards that are
only achieved after a complex series of environment interaction. However, unlike with Breakout
and Pong, in Freeway HIEROS is able to profit from its hierarchical structure in order to guide
exploration. An example of this can be seen in Figure 5, where the subgoals are able to guide the
agent across the road. S5WM is able to accurately capture the multiple levels of Frostbite, despite
only having access to train on these levels after discovering them, which usually happens after
roughly 50k interactions. As the reaching of the next level is directly connected to a large increase

8

Under review as a conference paper at ICLR 2024

Figure 4: World model losses for the S5WM and RSSM for Krull and Breakout. The S5WM is able
to achieve an overall lower world model loss compared to the RSSM for Krull, while those roles are
reversed for Breakout.

in rewards, the S5WM is able to correctly predict the next level after only a few interactions. This is
also reflected in the significantly higher reward achieved by HIEROS.

To directly compare the influence of our S5WM architecture to the RSSM used in DreamerV3, we
replace the S5WM with an RSSM and train HIEROS on four different games. The results are shown
in Appendix G.1. The RSSM underperforms compared to S5WM for Krull and Freeway, but can
roughly match the performance of the S5WM for Breakout and Battle Zone. In Figure 4 we show
the world model losses for S5WM and RSSM for Krull and Breakout. The S5WM is able to achieve
an overall lower loss compared to the RSSM for Krull, while those roles are reversed for Breakout.
Given that the absolute loss values for the more complex Krull are significantly higher than for
Breakout, we conclude, that the more complex and also larger S5WM excels in environments where
the dynamics are complex, and the input distribution experiences larger shifts, while the smaller
RSSM is better suited for environments with simple dynamics and a stable input distribution.

As both models are trained with the same number of gradient updates, it makes sense that the larger
model has difficulties matching the performance of the smaller model in non-shifting environments
with simple dynamics. So a smaller S5WM might achieve better results for Breakout. Lu et al.
(2023) and Deng et al. (2023) find that structured state space models generally surpass RNNs in
terms of memory recollection and resilience to distribution shifts, which we can confirm with our
results. Moreover, we perform further ablations in Appendix G.

4 CONCLUSION

In this paper, we introduce the HIEROS architecture, a multilayered goal conditioned hierarchical
reinforcement learning (HRL) algorithm with hierarchical world models, an S5 layer-based world
model (S5WM) and an efficient time-balanced sampling (ETBS) method which allows for a true
uniform sampling over the experience dataset. We evaluate HIEROS on the Atari100k test suite
(Bellemare et al., 2013) and achieve a new state of the art mean human normalized score for model-
based RL agents without look-ahead search. The option to decode proposed subgoals gives some
explainability to the actions taken by HIEROS. A deeper evaluation on which subgoals are pro-
posed and how the lower level workers are able to achieve these subgoals is left for future research.
The S5WM poses multiple improvements compared to RNN-based world models (Hafner et al.,
2023) (i.e. efficiency during training, prediction accuracy during imagination) and Transformer-
based world models (Chen et al., 2022; Robine et al., 2023; Micheli et al., 2023) (i.e. prediction
accuracy and efficiency during imagination). A thorough comparison between our S5WM and the
S4WM proposed by Deng et al. (2023) remains for future research. We delve deeper into further
directions for future research in Appendix I.

We would also like to point out that the model-free SR-SPR recently proposed by D’Oro et al.
(2022) achieves superior scores on the Atari100k benchmark by increasing the replay train ratio and
regular resets of all model parameters. They tackle the often observed inability of RL agents to learn
new behavior after having been already trained for some time in an environment. However, since
this approach is not model based and does not train in imagination, we did not include it into our
comparison. Nonetheless, scaling the train ratio and employing model resets for the actor/critic or
the S5WM of HIEROS are promising directions for future research.

With our work, we hope to provide a new perspective on the field of HRL and to inspire future
research in this field.

9

Under review as a conference paper at ICLR 2024

REPRODUCIBILITY STATEMENT

We describe all important architectural and training details in Section 2 and provide the used hy-
perparameters in Appendix E. We provide the source code in the supplementary material and under
the following link: https://github.com/Snagnar/Hieros. The material also gives an
explanation on how to install and use the Atari100k benchmark for reproducing our results. The
computational resources we used for our experiments are described in Appendix F.

ETHICS STATEMENT

Autonomous agents pose many ethical concerns, as they are able to act in the real world and can
cause harm to humans. In our work, we only use simulated environments and do not see any potential
for misuse of our work. We propose a new world model architecture which could be used to train
agents in imagination rather than in the real world. This could be used to train agents for real-world
applications, such as autonomous driving, without the need to train them in the real world. This
could reduce the risk of harm to humans and the environment.

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in Neural Informa-
tion Processing Systems, 34:29304–29320, 2021.

Arthur Aubret, Laetitia Matignon, and Salima Hassas. An information-theoretic perspective on
intrinsic motivation in reinforcement learning: A survey. Entropy, 25(2):327, 2023. ISSN 1099-
4300. doi: 10.3390/e25020327. URL https://www.mdpi.com/1099-4300/25/2/327.
Number: 2 Publisher: Multidisciplinary Digital Publishing Institute.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

C2D. S5: Simplified state space layers for sequence modeling, 2023. URL https://github.
com/i404788/s5-pytorch. original-date: 2023-03-20T23:57:07Z.

Chang Chen, Yi-Fu Wu, Jaesik Yoon, and Sungjin Ahn. TransDreamer: Reinforcement learn-
ing with transformer world models, 2022. URL http://arxiv.org/abs/2202.09481.
arXiv:2202.09481.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

Tri Dao, Daniel Y Fu, Khaled K Saab, Armin W Thomas, Atri Rudra, and Christopher Ré.
Hungry hungry hippos: Towards language modeling with state space models. arXiv preprint
arXiv:2212.14052, 2022.

FN David and NL Johnson. The probability integral transformation when parameters are estimated
from the sample. Biometrika, 35(1/2):182–190, 1948.

Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. Advances in Neural Information
Processing Systems, 5, 1992.

Fei Deng, Junyeong Park, and Sungjin Ahn. Facing off world model backbones: RNNs, transform-
ers, and S4, 2023. URL http://arxiv.org/abs/2307.02064. arXiv:2307.02064.

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G Bellemare, and
Aaron Courville. Sample-efficient reinforcement learning by breaking the replay ratio barrier.
In Deep Reinforcement Learning Workshop NeurIPS 2022, 2022.

10

https://github.com/Snagnar/Hieros
https://www.mdpi.com/1099-4300/25/2/327
https://github.com/i404788/s5-pytorch
https://github.com/i404788/s5-pytorch
http://arxiv.org/abs/2202.09481
http://arxiv.org/abs/2307.02064

Under review as a conference paper at ICLR 2024

William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo Larochelle, Mark
Rowland, and Will Dabney. Revisiting fundamentals of experience replay. In International Con-
ference on Machine Learning, pp. 3061–3071. PMLR, 2020.

Carlos Florensa, Yan Duan, and Pieter Abbeel. Stochastic neural networks for hierarchical rein-
forcement learning. arXiv preprint arXiv:1704.03012, 2017.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces, 2022. URL http://arxiv.org/abs/2111.00396. arXiv:2111.00396.

Ankit Gupta, Harsh Mehta, and Jonathan Berant. Simplifying and understanding state space models
with diagonal linear rnns. arXiv preprint arXiv:2212.00768, 2022.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learn-
ing behaviors by latent imagination, 2020. URL http://arxiv.org/abs/1912.01603.
arXiv:1912.01603.

Danijar Hafner, Kuang-Huei Lee, Ian Fischer, and Pieter Abbeel. Deep hierarchical planning from
pixels, 2022a. URL http://arxiv.org/abs/2206.04114. arXiv:2206.04114.

Danijar Hafner, Kuang-Huei Lee, Ian Fischer, and Pieter Abbeel. Learning latent dynamics for plan-
ning from pixels. 2022b. URL http://arxiv.org/abs/2206.04114. arXiv:2206.04114.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari
with discrete world models, 2022c. URL http://arxiv.org/abs/2010.02193.
arXiv:2010.02193.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse do-
mains through world models, 2023. URL http://arxiv.org/abs/2301.04104.
arXiv:2301.04104.

Matthias Hutsebaut-Buysse, Kevin Mets, and Steven Latré. Hierarchical reinforcement learning: A
survey and open research challenges. Machine Learning and Knowledge Extraction, 4(1):172–
221, 2022. ISSN 2504-4990. doi: 10.3390/make4010009. URL https://www.mdpi.com/
2504-4990/4/1/9. Number: 1 Publisher: Multidisciplinary Digital Publishing Institute.

Yiding Jiang, Shixiang Gu, Kevin Murphy, and Chelsea Finn. Language as an abstraction for hier-
archical deep reinforcement learning, 2019. URL http://arxiv.org/abs/1906.07343.
arXiv:1906.07343.

Michael I. Jordan and David E. Rumelhart. Forward models: Supervised learning with
a distal teacher. Cognitive Science, 16(3):307–354, 1992. doi: https://doi.org/10.1207/
s15516709cog1603\ 1. URL https://onlinelibrary.wiley.com/doi/abs/10.
1207/s15516709cog1603_1.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-based
reinforcement learning for atari. arXiv preprint arXiv:1903.00374, 2019.

Ingmar Kanitscheider, Joost Huizinga, David Farhi, William Hebgen Guss, Brandon Houghton,
Raul Sampedro, Peter Zhokhov, Bowen Baker, Adrien Ecoffet, Jie Tang, et al. Multi-task
curriculum learning in a complex, visual, hard-exploration domain: Minecraft. arXiv preprint
arXiv:2106.14876, 2021.

Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling. Im-
proved variational inference with inverse autoregressive flow. Advances in Neural Information
Processing Systems, 29, 2016.

Anurag Koul, Varun V Kumar, Alan Fern, and Somdeb Majumdar. Dream and search to control:
Latent space planning for continuous control. arXiv preprint arXiv:2010.09832, 2020.

11

http://arxiv.org/abs/2111.00396
http://arxiv.org/abs/1912.01603
http://arxiv.org/abs/2206.04114
http://arxiv.org/abs/2206.04114
http://arxiv.org/abs/2010.02193
http://arxiv.org/abs/2301.04104
https://www.mdpi.com/2504-4990/4/1/9
https://www.mdpi.com/2504-4990/4/1/9
http://arxiv.org/abs/1906.07343
https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1603_1
https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1603_1

Under review as a conference paper at ICLR 2024

Kalle Kujanpää, Joni Pajarinen, and Alexander Ilin. Hierarchical imitation learning with vector
quantized models, 2023. URL http://arxiv.org/abs/2301.12962. arXiv:2301.12962.

Yann LeCun. A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27. Open
Review, 62, 2022.

Jinning Li, Chen Tang, Masayoshi Tomizuka, and Wei Zhan. Hierarchical planning through goal-
conditioned offline reinforcement learning, 2022. URL http://arxiv.org/abs/2205.
11790. arXiv:2205.11790.

Yingcong Li, M. Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers as
algorithms: Generalization and stability in in-context learning, 2023. URL http://arxiv.
org/abs/2301.07067. arXiv:2301.07067.

Chris Lu, Yannick Schroecker, Albert Gu, Emilio Parisotto, Jakob Foerster, Satinder Singh, and
Feryal Behbahani. Structured state space models for in-context reinforcement learning, 2023.
URL http://arxiv.org/abs/2303.03982. arXiv:2303.03982.

Harsh Mehta, Ankit Gupta, Ashok Cutkosky, and Behnam Neyshabur. Long range language model-
ing via gated state spaces. arXiv preprint arXiv:2206.13947, 2022.

Vincent Micheli, Eloi Alonso, and François Fleuret. Transformers are sample-efficient world mod-
els, 2023. URL http://arxiv.org/abs/2209.00588. arXiv:2209.00588.

Thomas M Moerland, Joost Broekens, Aske Plaat, Catholijn M Jonker, et al. Model-based rein-
forcement learning: A survey. Foundations and Trends® in Machine Learning, 16(1):1–118,
2023.

Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical reinforce-
ment learning, 2018. URL http://arxiv.org/abs/1805.08296. arXiv:1805.08296.

Ofir Nachum, Michael Ahn, Hugo Ponte, Shixiang Gu, and Vikash Kumar. Multi-agent manipu-
lation via locomotion using hierarchical Sim2Real, 2019a. URL http://arxiv.org/abs/
1908.05224. arXiv:1908.05224.

Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. Near-optimal representation learn-
ing for hierarchical reinforcement learning, 2019b. URL http://arxiv.org/abs/1810.
01257. arXiv:1810.01257.

Ofir Nachum, Haoran Tang, Xingyu Lu, Shixiang Gu, Honglak Lee, and Sergey Levine. Why does
hierarchy (sometimes) work so well in reinforcement learning?, 2019c. URL http://arxiv.
org/abs/1909.10618. arXiv:1909.10618.

Suraj Nair and Chelsea Finn. Hierarchical foresight: Self-supervised learning of long-horizon
tasks via visual subgoal generation, 2019. URL http://arxiv.org/abs/1909.05829.
arXiv:1909.05829.

Derrick Nguyen and Bernard Widrow. The truck backer-upper: An example of self-learning in
neural networks. In Advanced neural computers, pp. 11–19. Elsevier, 1990.

NM512. dreamerv3-torch, 2023. URL https://github.com/NM512/dreamerv3-torch.
original-date: 2023-02-11T23:23:26Z.

Masashi Okada and Tadahiro Taniguchi. Dreaming: Model-based reinforcement learning by latent
imagination without reconstruction, 2021. URL http://arxiv.org/abs/2007.14535.
arXiv:2007.14535.

Ronald Parr and Stuart Russell. Reinforcement learning with hierarchies of machines. Advances in
Neural Information Processing Systems, 10, 1997.

Rudra P. K. Poudel, Harit Pandya, and Roberto Cipolla. Contrastive unsupervised learning of world
model with invariant causal features, 2022. URL http://arxiv.org/abs/2209.14932.
arXiv:2209.14932.

12

http://arxiv.org/abs/2301.12962
http://arxiv.org/abs/2205.11790
http://arxiv.org/abs/2205.11790
http://arxiv.org/abs/2301.07067
http://arxiv.org/abs/2301.07067
http://arxiv.org/abs/2303.03982
http://arxiv.org/abs/2209.00588
http://arxiv.org/abs/1805.08296
http://arxiv.org/abs/1908.05224
http://arxiv.org/abs/1908.05224
http://arxiv.org/abs/1810.01257
http://arxiv.org/abs/1810.01257
http://arxiv.org/abs/1909.10618
http://arxiv.org/abs/1909.10618
http://arxiv.org/abs/1909.05829
https://github.com/NM512/dreamerv3-torch
http://arxiv.org/abs/2007.14535
http://arxiv.org/abs/2209.14932

Under review as a conference paper at ICLR 2024

Jan Robine, Marc Höftmann, Tobias Uelwer, and Stefan Harmeling. Transformer-based world mod-
els are happy with 100k interactions, 2023. URL http://arxiv.org/abs/2303.07109.
arXiv:2303.07109.

Erick Rosete-Beas, Oier Mees, Gabriel Kalweit, Joschka Boedecker, and Wolfram Burgard. Latent
plans for task-agnostic offline reinforcement learning. In Conference on Robot Learning, pp.
1838–1849. PMLR, 2023.

Jürgen Schmidhuber. An on-line algorithm for dynamic reinforcement learning and planning in
reactive environments. In 1990 IJCNN international joint conference on neural networks, pp.
253–258. IEEE, 1990.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Charlin,
Devon Hjelm, Philip Bachman, and Aaron Courville. Pretraining representations for data-
efficient reinforcement learning, 2021. URL http://arxiv.org/abs/2106.04799.
arXiv:2106.04799.

Jimmy T. H. Smith, Andrew Warrington, and Scott W. Linderman. Simplified state space
layers for sequence modeling, 2023. URL http://arxiv.org/abs/2208.04933.
arXiv:2208.04933.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S Sutton, Doina Precup, and Satinder Singh. Between MDPs and semi-MDPs: A framework
for temporal abstraction in reinforcement learning. Artificial Intelligence, 112(1-2):181–211,
1999.

Chen Tessler, Shahar Givony, Tom Zahavy, Daniel Mankowitz, and Shie Mannor. A deep hier-
archical approach to lifelong learning in minecraft. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 31, 2017.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8:229–256, 1992.

Roman V Yampolskiy. Artificial intelligence safety and security. CRC Press, 2018.

Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari games
with limited data. Advances in Neural Information Processing Systems, 34:25476–25488, 2021.

Simiao Zuo, Xiaodong Liu, Jian Jiao, Denis Charles, Eren Manavoglu, Tuo Zhao, and Jianfeng
Gao. Efficient long sequence modeling via state space augmented transformer. arXiv preprint
arXiv:2212.08136, 2022.

13

http://arxiv.org/abs/2303.07109
http://arxiv.org/abs/2106.04799
http://arxiv.org/abs/2208.04933

Under review as a conference paper at ICLR 2024

A BACKGROUND

A.1 LEARNING A WORLD MODEL IN DREAMERV3

Our method is build on top of DreamerV3 (Hafner et al., 2023). DreamerV3 learns a world model
in a latent space in order to increase efficiency:

(ht, zt) = RSSM(ht−1, at−1, ot) (13)

with ht being the deterministic part of the latent state and zt being the stochastic part of the la-
tent state. The world model is trained to predict the next latent state (ht+1, zt+1) given the world
model state (ht, zt) and the current action at. Specifically, the world model learns a distribution
pθ(zt|ht, ot) predicting the stochastic state from the last deterministic state and an observation ot
and another distribution qθ(zt|ht) predicting the stochastic state purely from the last deterministic
state. qθ is used during imagination. It then predicts the reward r, the continue signal c and the de-
coded observation o given the current world state, which enables DreamerV3 to train an actor critic
entirely on imagined trajectories in latent space. The world model is trained with a loss function that
is a weighted sum of the loss of the dynamic, observation, continue, and reward prediction.

The RSSM dynamic prediction model uses a GRU (Cho et al., 2014) to predict the next deterministic
state ht+1 and a discrete categorical distribution to sample zt+1. There are several works that replace
the GRU with different, more complex models (Chen et al., 2022; Robine et al., 2023; Deng et al.,
2023).

For imagining the trajectories, the world model starts with an initial observation o0 and an initial
state h0. It then computes the first world state (h0, z0). The agent interacts with this model, which
simulates the original environment:

at = π(ht, zt) (14)
(ht+1, zt+1) = RSSM(ht, at, zt+1) (15)

A.2 HIERARCHICAL REINFORCEMENT LEARNING

Hierarchical models have been shown to be a powerful tool in RL (Dayan & Hinton, 1992; Parr &
Russell, 1997; Sutton et al., 1999). The idea is to break down a complex task into easily achievable
subtasks. This subtask definition can be done manually (Tessler et al., 2017) or automatically (Li
et al., 2022; Nair & Finn, 2019; Kujanpää et al., 2023). This typically involves learning a high level
actor that works at larger timescale and a low level actor that executes proposed subgoals (Hafner
et al., 2022a; Nachum et al., 2018; Jiang et al., 2019; Nachum et al., 2019a):

gt = πhigh(st) (16)
at = πlow(st, gt) (17)

with st being the current environment state, gt being the proposed subgoal and at being the action
taken by the low level actor. The low level actor is often encouraged to fulfill the subgoal by adding
a subgoal reward rg to the extrinsic reward rextr. This subgoal reward is often a function of the
distance between the current state and the proposed subgoal (Hafner et al., 2022a; Nachum et al.,
2019a).

A.3 STRUCTURED STATE SPACE SEQUENCE MODELS

Structured state space sequence models (S4) were initially introduced by Gu et al. (2022) as a se-
quence modeling method that is able to achieve superior long-term memory tasks than Transformer-
based models while having a lower runtime complexity (O(n2) for the attention mechanism of
Transformers and O(n log n) for S4, n being the sequence length). State Space models are com-
posed of four matrices: A, B, C and D. They take in a signal u(t) and output a signal y(t):

x(t+ 1) = Ax(t) +Bu(t) (18)
y(t) = Cx(t) +Du(t) (19)

with x(t) being the state of the model at time t. The matrices A, B, C, and D are learned during
training. Gu et al. (2022) propose various techniques to increase stability, performance and training

14

Under review as a conference paper at ICLR 2024

speed of these models in order to model long sequences. They utilize special HIPPO initialization
matrices for this. Another major advantage of S4 layers over Transformer models is, besides their
better runtime efficiency, that they can be used both as a recurrent model, which allows for fast
autoregressive single step prediction, and as a convolutional model, which allows for fast parallel
sequence modelling. Smith et al. (2023) propose a simplified version of S4 layers (S5) that is
able to achieve similar performance while being more stable and easier to train. Their version
utilizes parallel scans and different matrix initialization in order to further boost the parallel sequence
prediction and runtime performance. Lu et al. (2023) propose a resettable version of S5 layers, which
allow resetting the internal state x(t) during the parallel scans, in order to apply S5 layers in a RL
setting where the state input sequence might span episode borders.

B FURTHER RELATED WORK

B.1 HIERARCHICAL REINFORCEMENT LEARNING

Hierarchical reinforcement learning (HRL) is a field of RL that breaks down complex tasks in time
and state abstracted subproblems on multiple time scales (Hutsebaut-Buysse et al., 2022; Sutton
et al., 1999). This allows the agent to learn subtasks on different time scales and to reuse these sub-
tasks in different contexts. This is especially useful in sparse reward environments, where the agent
can learn subtasks that are easier to solve and then combine them to solve the overall task (Nair &
Finn, 2019). Nachum et al. (2019c) show that one of the main benefits of HRL is improved explo-
ration, more than inherent hierarchical structures of the problem task itself or larger model sizes.
LeCun (2022) argue that HRL is a promising direction for future research in RL, as complex depen-
dencies often are only discoverable by abstraction, as learned skills are often reusable in different
contexts. Also, they show that HRL has deep rooting in human cognition.

Goal-conditioned HRL (Florensa et al., 2017; Nachum et al., 2018; 2019b;a) is a subfield of HRL
that uses goal-conditioned policies to learn subtasks. The agent learns a policy that takes a goal as
input and outputs actions that lead to the goal. The agent can then learn a policy that takes a goal as
input and outputs a subgoal that leads to the goal. This allows the agent to learn subtasks on different
time scales and to reuse these subtasks in different contexts. The higher order policy proposes
subgoals in frequent intervals that the lower order policy has to fulfill, which is often incentivized by
giving an intrinsic reward to the lower level policy (Hafner et al., 2022a; Rosete-Beas et al., 2023).
Hafner et al. (2022a) combine a hierarchical policy with a world model, building on the DreamerV2
architecture (Hafner et al., 2022c). They show that the combination of a hierarchical policy and
a world model outperforms the original DreamerV2 model on several tasks. The low level policy
receives only subgoal rewards in this architecture, while the higher level policy receives the actual
task reward. This is similar to our approach, but we use a different architecture for the world model,
and we let the higher level policies learn a separate world model.

B.2 WORLD MODELS

Environment interactions are typically expensive to train an RL agent. E.g., in robotic applications
it is impossible to let the agent interact with the real environment, as this would be too expensive
and potentially dangerous. Therefore, it is desirable to train the agent in a simulated environment
(Ha & Schmidhuber, 2018; Poudel et al., 2022; Hafner et al., 2020; 2022c; 2023; 2022b). Ha &
Schmidhuber (2018) introduced learning an RNN-based model of the environment and using this
model to train the agent. This allows the agent to learn from simulated data, which is much cheaper
than learning from real environment interactions and can in principle be generated in an infinite
amount. Hafner et al. (2020) introduced Dreamer, a model-based RL agent that learns a world model
based on PlaNet (Hafner et al., 2022b) and uses this world model to train the agent. PlaNet uses an
RNN architecture which predicts the next world state from the last world state and the next action
from the learned policy. It uses an RNN-based architecture. To increase computational efficiency,
all learning is done in a compact latent state. They show that Dreamer outperforms state of the art
model-free RL agents on several tasks.

Hafner et al. (2022c) introduced DreamerV2, an improved version of Dreamer featuring a discrete
stochastic latent state. They show that DreamerV2 outperforms Dreamer on several tasks. With
DreamerV3 (Hafner et al., 2023) they propose some additional improvements with which they were

15

Under review as a conference paper at ICLR 2024

able to solve the Minecraft Diamond challenge (Kanitscheider et al., 2021) without any pretraining.
DreamerV3 still uses a PlaNet-based world model, but the model states are composites of a discrete
valued stochastic and a continuous valued deterministic part.

Several authors propose improvements to this architecture, mostly by proposing improvements to
the used world model. Chen et al. (2022) propose replacing the RNN with a Transformer model
that takes in a context (s0, a0), ..., (sn, an) of state action pairs (si, ai) in order to compute the next
world state. Robine et al. (2023) propose a similar architecture, but in contrast to the previous work,
the Transformer model is not used during inference, which makes their model more computation-
ally efficient. Deng et al. (2023) propose S4WM, utilizing S4 layers for the next state prediction.
Since S4 layers can be used both for predicting sequences in parallel and predicting only the next
value in an RNN like fashion, their model also proved to be more computationally efficient than the
Transformer-based architectures and outperforms them in memorization capabilities.

16

Under review as a conference paper at ICLR 2024

C FULL ATARI100K BENCHMARK

Task Random Human SimPLe TWM IRIS DreamerV3 Hieros (ours)
Alien 228 7 128 617 675 420 959 828
Amidar 6 1 720 74 123 143 139 127
Assault 222 742 527 683 1 524 706 1 764
Asterix 210 8 503 1 128 1 117 854 932 899
BankHeist 14 753 34 467 53 649 177
Battle Zone 2 360 37 188 4 031 5 068 13 074 12 250 15 140
Boxing 0 12 8 78 70 78 65
Breakout 2 30 16 20 84 31 10
Chop.Command 811 7 388 979 1 697 1 565 420 1 475
CrazyClimber 10 780 35 829 62 584 71 820 59 324 97 190 50 857
DemonAttack 152 1 971 208 350 2 034 303 1 480
Freeway 0 30 17 24 31 0 31
Frostbite 65 4 335 237 1 476 259 909 2 901
Gopher 258 2 412 597 1 675 2 236 3 730 1 473
Hero 1 027 30 826 2 657 7 254 7 037 11 161 7 890
JamesBond 29 303 100 362 463 445 939
Kangaroo 52 3 035 51 1 240 838 4 098 6 590
Krull 1 598 2 666 2 205 6 349 6 616 7 782 8 130
KungFuMaster 258 22 736 14 862 24 555 21 760 21 420 18 793
Ms.Packman 307 6 952 1 480 1 588 999 1 327 1 771
Pong -21 15 13 18 15 18 5
PrivateEye 25 69 571 35 86 100 882 1 507
Qbert 164 13 455 1 289 3 331 746 3 405 770
RoadRunner 12 7 845 5 641 9 109 9 615 15 565 16 950
Seaquest 68 42 055 683 774 661 618 560
Mean 0 100 34 96 105 112 120
Median 0 100 11 50 29 49 56
IQM 0 100 13 46 50 N/A 53
Optimality Gap 100 0 73 52 51 N/A 49

Table 2: Scores of HIEROS and baselines on the Atari100k test suite. Higher scores for Mean,
Median and IQM are better. For Optimality Gap, lower scores are better. DreamerV3 does not
report the scores for IQM or Optimality Gap. We show the best results for each row in bold font.

17

Under review as a conference paper at ICLR 2024

D VISUALIZATION OF PROPOSED SUBGOALS

Figure 5 shows the proposed subgoals for one observation in Frostbite and one observation in Break-
out.

Figure 5: Proposed subgoals for Breakout (top row), Frostbite (middle row), and Freeway (bottom
row). The left most frame is the original observation from the environment, and the following
frames are the proposed subgoals from the higher level actor. For Breakout, the subgoals are only
to increase the level score (marked with the red rectangles) and the ball is not simulated at all, while
for Frostbite the subgoals guide the actor towards building up the igloo in the upper right part of
the image in order to advance to the next level (red rectangles). For Freeway, which also features
a single level and sparse rewards, the subgoals are much more meaningful than for Breakout and
guide the actor to move across the road (red rectangles).

18

Under review as a conference paper at ICLR 2024

E HYPERPARAMETERS

Training parameters:
learning rate 10−4

weight decay 0
optimizer AdamW
learning rate scheduler None
warmup episodes 1000
ETBS temperature τ 0.3
batch size 16
trajectory length for training 64
imagination horizon 16

Hierarchy parameters:
hierarchy layers 3
subgoal proposal intervals k 4
extrinsic reward weight 1
subgoal reward weight 0.3
novelty reward weight 0.1
subgoal shape 8x8

World Model parameters:
S5 model dimension 256
S5 state dimension 128
Number of HIPPO-N initialization blocks J 4
Number of S5 blocks 8
dynamic loss weight adyn 0.5
representation loss weight arep 0.1
ht dimension 256
zt dimension 32x32
MLP units 256
gψ KL loss weight β 0.5

Total parameters 37.1 M

F COMPUTATIONAL RESOURCES AND IMPLEMENTATION DETAILS

In our experiments we use a machine with an NVIDIA A100 graphics card with 40 GB of VRAM,
8 CPU cores and 32 GB RAM. Training HIEROS on one Atari game for 100k steps took roughly 14
hours in our setup.

We base our implementation on the Pytorch implementation of DreamerV3 (NM512, 2023) and
on the Pytorch implementation of the S5 layer (C2D, 2023). As this version does not implement
the resettable version of S5 and Lu et al. (2023) do not provide an open source implementation
of their method, we implemented the reset mechanism ourselves in the provided source code. The
source code is publicly available under the following URL: https://github.com/Snagnar/
Hieros

G ABLATIONS

In the following, we provide additional ablation studies exploring the effect of different components
of HIEROS. We conduct all ablations on four games: (i) Krull, a game that features multiple levels,
(ii) Breakout, a game with a single level and simple dynamics, (iii) Battle Zone, a game with a single
level and complex dynamics and (iv) Freeway, a game with difficult exploration properties (Micheli
et al., 2023). We use the same hyperparameters as described in Appendix E for all ablations. We
show the collected reward of the lowest level subactor of HIEROS with S5WM and all hyperparam-
eters as specified in Appendix E in orange and the collected reward of HIEROS with the ablation in

19

https://github.com/Snagnar/Hieros
https://github.com/Snagnar/Hieros

Under review as a conference paper at ICLR 2024

black. We use the same color scheme for all ablation studies, except those where the graphs contain
more than two lines.

G.1 S5WM VS. RSSM

In Section 3.2, we compare the model losses and partial rewards of HIEROS in the game of Krull and
Breakout using either RSSMs or S5WMs as world models. In Figure 6, we compare the collected
rewards of HIEROS using either RSSMs (black) or S5WMs (orange) for Krull, Breakout, Battle
Zone, and Freeway against each other.

Figure 6: Collected rewards for Krull, Breakout, Battle Zone, and Freeway of the lowest level
subactor for HIEROS with an RSSM and HIEROS with an S5WM. The RSSM is not able to achieve
the same performance as the S5WM for Krull and Freeway, but can roughly match the performance
of the S5WM for Breakout and Battle Zone.

G.2 INTERNAL S5 LAYER STATE AS DETERMINISTIC WORLD STATE

In Section 2.2, we describe the S5WM, which uses the S5 layer to predict the next world state. In
this section, we explore the effect of using the internal state xt of the stacked S5 layers of S5WM as
the deterministic part of the latent state ht instead of the output of the S5 layers. Other comparable
approaches that swap out the GRU in the RSSM with a sequence model usually use the output of the
sequence model as ht (Chen et al., 2022; Micheli et al., 2023; Robine et al., 2023; Deng et al., 2023).
So, testing this ablation provides valuable insight into how the learned world states can be enhanced
in order to boost prediction performance. Figure 7 shows the influence of using the internal state as
ht vs. using the output of the S5 layers as ht for HIEROS.

G.3 HIERARCHY DEPTH

Here we show the effect of using different model hierarchy depths. We compare HIEROS with
S5WM using a model hierarchy depth of 1, 2, 3, and 4. Figure 8 shows the collected reward of
HIEROS with S5WM using a model hierarchy depth of 1 (light blue), 2 (black), 3 (orange), and 4
(green) for Krull, Breakout, Battle Zone, and Freeway. Most remarkably, we can see that HIEROS
with just one layer achieves significantly better results than with two or more subactors. This in-
dicates that a single layer algorithms, like DreamerV3, Iris, or TWM have a significant advantage
over multi-layer algorithms, like HIEROS in games with no distribution shifts and easy to predict
dynamics.

G.4 UNIFORM VS. TIME-BALANCED REPLAY SAMPLING

In Section 2.3, we describe the efficient time-balanced sampling method. In this section, we com-
pare the effect of using uniform sampling vs. our efficient time-balanced sampling for the experience
dataset. Figure 9 shows the collected reward of HIEROS with S5WM using uniform sampling (or-
ange) and time-balanced sampling (black) for Krull, Breakout, Battle Zone, and Freeway. As can

20

Under review as a conference paper at ICLR 2024

Figure 7: Comparison of the collected reward of HIEROS with S5WM using the internal state xt of
the stacked S5 layers as the deterministic part of the latent state ht (orange) and using the output of
the stacked S5 layers as ht (black) for Krull, Breakout, Battle Zone, and Freeway.

Figure 8: Comparison of the collected reward of HIEROS with S5WM using a model hierarchy depth
of 1 (purple), 2 (red), 3 (green), and 4 (light blue) for Krull, Breakout, Battle Zone, and Freeway.

be seen, in the case of BattleZone and Breakout, the time balanced sampling did not provide a sig-
nificant advantage, while it boosted the performance considerably for Krull and Freeway, the two
games that display hierarchical challenges. This indicates, that in cases where the model hierarchy
can contribute a lot to the overall performance, the actor is more sensitive to overfitting on older
training data, containing subgoals produced by less trained higher level subactors.

G.5 PROVIDING K WORLD STATES VS. ONLY THE K-TH WORLD STATE AS INPUT FOR THE
HIGHER LEVEL WORLD MODEL

In Section 2.1, we describe how HIEROS provides k consecutive world states of the lower level
world model as input for the higher level subactor. However, many approaches such as Director
(Hafner et al., 2022a) only provide the k-th world state as input for the higher level world model. In
this section, we explore the effect of providing only the k-th world state as input for the higher level
world model. Figure 10 shows the collected reward of HIEROS with S5WM using k consecutive
world states as input for the higher level world model (orange) and only the k-th world state as input
for the higher level world model (black) for Krull, Breakout, Battle Zone, and Freeway.

21

Under review as a conference paper at ICLR 2024

Figure 9: Comparison of the collected reward of HIEROS with S5WM using uniform sampling
(orange) and time-balanced sampling (black) for Krull, Breakout, Battle Zone, and Freeway.

Figure 10: Comparison of the collected reward of HIEROS with S5WM using k consecutive world
states as input for the higher level world model (orange) and only the k-th world state as input for
the higher level world model (black) for Krull, Breakout, Battle Zone, and Freeway.

G.6 FURTHER ABLATIONS LEFT FOR FUTURE WORK

There are multiple other interesting directions for further ablation studies: One of the main novelties
of HIEROS is its use of hierarchical world models. Architectures like Dreamer (Hafner et al., 2022a)
however train both the higher and the lower level policy on the same world model, so exploring this
might give valuable insights, how much the hierarchical world models contribute to the performance
of HIEROS. Another interesting direction is to explore the effect of using differently sized subactors,
with the lowest level subactor having the largest amount of trainable parameters and the higher levels
having less and less trainable parameters. This could potentially lead to a more efficient use of the
available parameters. The higher levels are trained fewer times and with fewer data than the lower
levels, so smaller networks might speed up training in those cases.

For HIEROS we relied on the proven world model architecture used by the DreamerV3 model, which
features a world state composed of a deterministic and a stochastic part. However, other approaches
like IRIS (Micheli et al., 2023) do not rely on this stochastic world state and achieve comparable
result. So exploring the effect of using only a deterministic world state might be interesting.

22

Under review as a conference paper at ICLR 2024

H CDF OF IMBALANCED REPLAY SAMPLING

In Section 2.3, we use the CDF of the skewed sampling distribution that arises when iteratively
adding elements to a dataset and sampling uniformly from it. The distribution is defined as follows:

p(x) =
Hn −Hx

n
≈ ln(n)− ln(x)

n
= p̃(x) (20)

with n being the size of the dataset. Since the inequality ln(x) < Hx < 1 + ln(x) holds for all
x ≥ 2 we assume without loss of generality that 2 ≤ x ≤ n. However, since p̃(x) does not sum up
to 1 over the interval [2, n], we need to divide it by its integral:

ps(x) =
p̃(x)∫ n

2
p̃(x)dx

=
ln(n)−ln(x)

n
−2 ln(n)+n+2 ln(2)−2

n

=
ln(n)− ln(x)

−2 ln (n) + n+ 2 ln (2)− 2
(21)

with ps being the approximate probability density function of the skewed sampling distribution. The
CDF of this distribution is defined as follows:

CDFs(x) =

∫ x

2

ps(x)dx = Ps(x)− Ps(2) (22)

with Ps(x) being the antiderivative of ps(x):

Ps(x) =

∫
ps(x)dx =

x · (ln (x)− ln (n)− 1)

2 ln (n)− n− 2 ln (2) + 2
(23)

With this, we can derive CDFs(x) in closed form:

CDFs(x) =
x · (ln (x)− ln (n)− 1) + 2 (ln (n)− ln (2) + 1)

2 ln (n)− n− 2 ln (2) + 2
(24)

This can be computed in O(1) time and is therefore very efficient. With the CDFs(x) we can
calculate the efficient time-balanced sampling distribution petbs(x) as described in Section 2.3. It is
also important to mention that we assume, that we only add one item to the dataset and then sample
one time after each step. However, if we add k items before sampling s times, the expected number
of draws for one element becomes E(Nxi

) = k·(Hn−Hi)
s·n . This additional factor k

s is canceled out
when computing the probabilities for one element from the expected value, which is why we can
ignore this in our computations. Figure 11 shows the sampling counts for different temperatures τ
for ETBS.

Figure 11: The number of times an entry i is sampled in a dataset of final size 4000 with iteratively
adding one element to the dataset and sampling over the dataset afterwards. Compared are the orig-
inal uniform sampling method implemented in DreamerV3 (Hafner et al., 2023) and our proposed
ETBS with different temperatures τ . For our final experiments, we use a temperature of τ = 0.3.

23

Under review as a conference paper at ICLR 2024

I FURTHER FUTURE WORK

Another possible future direction would be to use the S5-based actor network proposed by Lu et al.
(2023) for HIEROS. Right now, the imagination procedure still relies on a single step prediction
of the world model due to the single step architecture of the actor network. Using the S5-based
actor network would allow for a multistep imagination procedure, which could further improve
the performance of HIEROS. This would also open the door to more efficient look-ahead search
methods.

Since S4/S5-based models and Transformer-based models show complementary strengths in regard
to short and long-term memory recall, many hybrid models have been proposed (Dao et al., 2022;
Zuo et al., 2022; Mehta et al., 2022; Gupta et al., 2022). Exploring these more universal models
might also be a promising direction for future research.

LeCun (2022) describes a modular RL architecture, which combines HRL, world models, intrinsic
motivation, and look-ahead planning in imagination as a potential candidate architecture for a true
general intelligent agent. They propose learning a reconstruction free latent space to prevent a col-
lapse of the learned representations, which is already explored in several works for RL (Okada &
Taniguchi, 2021; Schwarzer et al., 2021). They also describe two modes of environment interaction:
reactive (Mode 1) and using look-ahead search (Mode 2). HIEROS implements several parts of this
architecture, namely the hierarchical structure, hierarchical world models and the intrinsic motiva-
tion. HIEROS, like most RL approaches, uses the reactive mode, while approaches like EfficientZero
(Ye et al., 2021) could be interpreted as Mode 2 actors. Koul et al. (2020) implement a Monte Carlo
Tree Search (MCTS) planning method in the imagination of a Dreamer world model. Implement-
ing similar methods for the hierarchical structure of HIEROS, combined with the more efficient
S5-based world model (potentially also an S5 based actor network) could yield a highly efficient
planning agent capable of learning complex behavior in very dynamic and stochastic environments.

Since Figure 8 demonstrates that for some environments a deeper hierarchy can deteriorate perfor-
mance, a possible future research could include an automatic scaling of the hierarchy depending on
the current environment. E.g. if the accumulated reward stagnates and the agent cannot find a pol-
icy that further improves performance, the agent might automatically add another hierarchy layer,
perform a model parameter reset and retrain on the collected experience dataset.

24

	Introduction
	Methodology
	Multilayered Hierarchical Imagination
	S5-based World Model (S5WM)
	Efficient Time-balanced Sampling

	Experiments
	Results for the Atari100k Test Suite
	Imagined Trajectories

	Conclusion
	Background
	Learning a World Model in DreamerV3
	Hierarchical Reinforcement Learning
	Structured State Space Sequence Models

	Further Related Work
	Hierarchical Reinforcement Learning
	World Models

	Full Atari100k Benchmark
	Visualization of Proposed Subgoals
	Hyperparameters
	Computational Resources and Implementation Details
	Ablations
	S5WM vs. RSSM
	Internal S5 Layer State as Deterministic World State
	Hierarchy Depth
	Uniform vs. Time-Balanced Replay Sampling
	Providing k World States vs. Only the k-th World State as Input for the Higher Level World Model
	Further Ablations Left for Future Work

	CDF of Imbalanced Replay Sampling
	Further Future Work

