Distributed Bilevel Optimization with Communication Compression

Yutong He ! Jie Hu"' Xinmeng Huang? Songtao Lu® Bin Wang* Kun Yuan !>

Abstract

Stochastic bilevel optimization tackles challenges
involving nested optimization structures. Its fast-
growing scale nowadays necessitates efficient dis-
tributed algorithms. In conventional distributed
bilevel methods, each worker must transmit full-
dimensional stochastic gradients to the server ev-
ery iteration, leading to significant communica-
tion overhead and thus hindering efficiency and
scalability. To resolve this issue, we introduce
the first family of distributed bilevel algorithms
with communication compression. The primary
challenge in algorithmic development is mitigat-
ing bias in hypergradient estimation caused by
the nested structure. We first propose C-SOBA,
a simple yet effective approach with unbiased
compression and provable linear speedup conver-
gence. However, it relies on strong assumptions
on bounded gradients. To address this limitation,
we explore the use of moving average, error feed-
back, and multi-step compression in bilevel opti-
mization, resulting in a series of advanced algo-
rithms with relaxed assumptions and improved
convergence properties. Numerical experiments
show that our compressed bilevel algorithms can
achieve 10x reduction in communication over-
head without severe performance degradation.

1. Introduction

Large-scale optimization and learning have emerged as in-
dispensable tools in numerous applications. Solving such
large and intricate problems poses a formidable challenge,
usually demanding hours or days to complete. Consequently,
it is imperative to expedite large-scale optimization and
learning with distributed algorithms. In distributed learn-
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ing, multiple workers collaborate to solve a global problem
through inter-worker communications. In most current im-
plementations (Smola & Narayanamurthy, 2010; Li et al.,
2014; Strom, 2015; Gibiansky, 2017), each worker transmits
full-dimensional gradients to a central server for updating
model parameters. Since the size of full-dimensional gra-
dients is massive, communicating them per iteration incurs
substantial overhead, which impedes algorithmic efficiency
and scalability (Seide et al., 2014; Chilimbi et al., 2014).

To mitigate this issue, communication compression (Alis-
tarh et al., 2017; Bernstein et al., 2018; Stich et al., 2018;
Richtarik et al., 2021; Huang et al., 2022) has been de-
veloped to reduce overhead. Instead of transmitting full
gradient/model tensors, these strategies communicate com-
pressed tensors with substantially smaller sizes per iteration.
Two prevalent approaches of compression are quantization
and sparsification. Quantization (Alistarh et al., 2017; Hor-
vath et al., 2019; Seide et al., 2014) involves mapping input
tensors from a large, potentially infinite, set to a smaller set
of discrete values, such as 1-bit quantization (Seide et al.,
2014) or natural compression (Horvath et al., 2019). In con-
trast, sparsification (Wangni et al., 2018; Stich et al., 2018;
Safaryan et al., 2021) entails dropping a certain number of
entries to obtain sparse tensors for communication, such as
rand- K or top-K compressor (Stich et al., 2018). Both ap-
proaches have demonstrated strong empirical performance
in communication savings.

Communication compression has widespread application
in single-level stochastic optimization. However, many ma-
chine learning tasks, including adversarial learning (Madry
et al., 2018), meta-learning (Bertinetto et al., 2019), hyper-
parameter optimization (Franceschi et al., 2018), reinforce-
ment learning (Hong et al., 2023), neural architecture search
(Liu et al., 2018), and imitation learning (Arora et al., 2020)
involve upper- and lower-level optimization formulations
that go beyond the conventional single-level paradigm. Ad-
dressing such nested problems has prompted substantial at-
tention towards stochastic bilevel optimization (Ghadimi &
Wang, 2018; Ji et al., 2021). While tremendous efforts have
been made (Yang et al., 2022; Chen et al., 2022; Tarzanagh
et al., 2022; Yang et al., 2023b) to solve distributed stochas-
tic bilevel optimization, no existing algorithms, to the best
of our knowledge, have been developed under communica-
tion compression. To fill this gap, this paper provides the
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first comprehensive study on distributed stochastic bilevel
optimization with communication compression.

1.1. Distributed Bilevel Optimization

We consider distributed stochastic bilevel problems with the
following nested upper- and lower-level structure:
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Here, n denotes the number of workers, with each worker
i privately owns its upper-level cost function f; : R% x
R% — R, lower-level cost function ¢; : R% x R% — R,
and local data distribution Dy,, D, such that

fi($7 y) £ E¢~Dfi [F(.T, Y; ¢>]’
gi(z,y) = E¢op,, [G(2,y;6)].

The objective for all workers is to find a global solution to
bilevel problem (1). Typical applications of problem (1) can
be found in (Yang et al., 2021; Tarzanagh et al., 2022).

1.2. Challenges in Compressed Bilevel Optimization

Conceptually, if each worker 7 could access the accurate
oracle function f#(z) £ fi(x,y*(x)) without any sampling
noise, a straightforward framework to solve (1) under com-
pressed communication (with compressors {C; }7_;) is

k4l _ kL < 4 * (o k
T =z n;(fl(Vfi (z )), )

where each worker transmits the compressed hypergradient
to the server to update model parameters. However, up-
date (2) demands an accurate estimate of the hypergradient
V f7(z), which can be written as (Ghadimi & Wang, 2018)
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It is challenging to precisely evaluate V f(z) through (3)
in distributed bilevel optimization, particularly under com-
pressed communication, for the following reasons:

* Unavailable y*(z). The solution y*(x) to problem (1b)
is not directly accessible. Existing literature (Ghadimi
& Wang, 2018; Ji et al., 2021) often introduces iterative
loops to approximately solve problem (1b), leading to ex-
pensive computation costs and biased estimates of y* ().

* Inexact Hessian inversion. Even provided with the ac-
curate y*(x), it is cumbersome to evaluate the global
Vay9(@,y*(x)) and [V, g(z, y*(x))] " through (4) as
it incurs expensive matrix communication. Recent works
(Tarzanagh et al., 2022; Xiao & Ji, 2023) propose to
communicate imprecise Hessian/Jacobian-vector prod-
ucts achieved by approximate implicit differentiation,
which inevitably introduces bias in estimating V f(z).

¢ Compression-incurred distortion. As indicated by (3)
and (4), specific Jacobean matrices shall be communi-
cated to tackle sub-problem (1b). One may consider
using the compressed proxies C;(V2, gi(z,y*(x))) and
Ci(V2, gi(z,y* (x))) to replace Jacobians matrices in (4).
However, the compression incurs information distortion,
which brings additional bias when evaluating V /7 (z).

To summarize, practical bilevel algorithms with communi-
cation compression essentially perform

Rk LN ek .
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rather than (2), where the bias originates from the nested
bilevel structure of (1), as opposed to data sampling or com-
munication compression. This bias term poses substantial
challenges in developing distributed bilevel algorithms with
communication compression. Most existing single-level
compression techniques, including error feedback (Stich
et al., 2018; Richtérik et al., 2021) and multi-step compres-
sion (Huang et al., 2022; He et al., 2023a), require unbiased
estimates of gradients' (i.e., V f7(x)) every iteration, and
are thus not directly applicable to bilevel problem (1). This
calls for the urgent need to develop new algorithms that can
effectively mitigate the bias incurred by the nested bilevel
structure, as well as new analyses to clarify how this bias
impacts the convergence of compressed bilevel algorithms.

1.3. Contributions and Main Results

Contributions. This paper develops the first set of bilevel
algorithms with communication compression.

* SOBA (Dagréou et al., 2022) is a newly introduced single-
loop bilevel algorithm with lightweight communication
and computation. While SOBA still suffers from biased
hypergradient estimates, we surprisingly find applying un-
biased compression directly to SOBA yields a simple yet
effective compressed bilevel algorithm, which is denoted
as distributed SOBA with communication Compression,
or C-SOBA for brevity. Under the strong assumption of
bounded gradients, we establish its convergence as well
as computational and communication complexities.

'While error feedback and multi-step compression accommo-
date biased compressors, they need accurate or unbiased gradients.

Throughout the paper, the computational and communication
complexities are referred to in an asymptotic sense, see Table 1.
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Table 1. Comparison between distributed bilevel algorithms with communication compression. For simplicity, we unify the compression
variance and heterogeneity bounds in both upper and lower levels. Notation 7 is the number of workers, € is the target precision such that
E [[|[V®(&) Hg] < €, w is compression-related parameter (see Assumption 2.4), o2 is the variance of stochastic oracles, b bounds the
gradient dissimilarity. We also list the best-known single-level compression algorithm in the bottom line for reference.

Algorithms #A. Comp." #A. Comm.® Single Loop Mechanism* Heter. Asp.* Implement®
C-SOBA (Alg. 1 green) W whl @D — BG + BGD
CM-SOBA (Alg. 1 pink) % z—gz + # MA BGD
+MSC (Alg. 4) 7‘:—:2 HTW X MA + MSC BGD
EF-SOBA (Alg. 2) % M EF + MA None ®
+MSC (Alg. 5) 7;‘—:2 HTW b 4 EF + MSC None ®
incle- i, 2
Falkilin et 2005 73 e EF+MA  None ®

© Asymptotic communication complexity: number of communication rounds when o — 0 (smaller is better).

T Asymptotic computational complexity: number of gradient/Jacobian evaluations per worker when e — 0 (smaller is better).
Compression mechanisms: “MA”, “EF”, and “MSC” refer to as moving average, error feedback, and multi-step compression.

* Data heterogeneity assumptions (fewer/milder is better). “BG” and “BGD” denote bounded gradients (Assumption 3.2) and bounded
gradient dissimilarity (Assumptions 3.1 and 4.1), respectively. “BG” is much more restrictive than “BGD”.

< Easy to implement or not.

” With gradient upper bound B, (Assumption 3.2), a more precise complexity is % +

While commonly adopted in literature, the bounded-
gradient assumption of C-SOBA is restrictive. To address
this limitation, we leverage Moving average to enhance
the theoretical performance of C-SOBA, proposing the
refined CM-SOBA method. CM-SOBA converges under
the more relaxed assumption of bounded heterogeneity
with improved complexities, compared to C-SOBA.

The convergence of CM-SOBA still relies on the magni-
tude of data heterogeneity. When local data distributions
Dy, and D, differ drastically across workers, the per-
formance of C-SOBA and CM-SOBA substantially de-
grade. To mitigate this issue, we further incorporate Error
Feedback into CM-SOBA, leading to the EF-SOBA al-
gorithm. EF-SOBA does not rely on any assumptions
regarding data heterogeneity, making it suitable for appli-
cations with severe data heterogeneity.

Finally, owing to the bias in (5) incurred by the nested
structure, the established communication and compu-
tation complexities of the aforementioned compressed
bilevel algorithms are less favorable compared to the best-
known single-level compressed algorithms (Huang et al.,
2022; Fatkhullin et al., 2023). Consequently, we utilize
multi-step compression to enhance the convergence of
C-SOBA and EF-SOBA, attaining the same complexities
as the best-known single-level compressed algorithms.

Results in Table 1. All established algorithms, along with
their assumptions and complexities are listed in Table 1. It
is noteworthy that the utilization of more advanced mecha-
nisms relaxes assumptions and substantially improves com-
plexities, albeit introducing increased intricacy in algorith-
mic structures and implementations. Furthermore, our algo-

indicates “easy to implement” and ® indicates “relatively harder to implement” due to the EF mechanism.
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Figure 1. Hyper-representation on MNIST under homogeneous
data distributions. NC-SOBA indicates non-compressed SOBA.

rithms can achieve the same theoretical complexities as the
best-known single-level compression algorithm (Fatkhullin
et al., 2023), demonstrating its efficacy in overcoming the
bias incurred by the nested structure in bilevel problems.

Experiments. Our numerical experiments demonstrate that
the proposed algorithms can achieve 10X reduction in com-
municated bits, compared to non-compressed distributed
bilevel algorithms, see Fig. 1 and Sec. 7.

Analysis. Our analysis also contributes new insights. They
furnish convergence guarantees even when utilizing biased
gradient estimates in compressors as shown in (5). Addition-
ally, they elucidate how upper- and lower-level compression
exerts distinct influences on convergence, enlightening the
compressor selection for upper- and lower-level problems.

1.4. Related Work

Bilevel optimization. A key challenge in bilevel optimiza-
tion lies in accurately estimating the hypergradient V& (x).
Various algorithms have emerged to tackle this challenge,
employing techniques such as approximate implicit differen-
tiation (Domke, 2012; Ghadimi & Wang, 2018; Grazzi et al.,
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2020; Ji et al., 2021), iterative differentiation (Franceschi
et al., 2018; Maclaurin et al., 2015; Domke, 2012; Grazzi
etal., 2020; Ji et al., 2021), and Neumann series (Chen et al.,
2021; Hong et al., 2023). However, these methods introduce
additional inner loops that lead to increased computational
overhead and deteriorated computation complexity. A re-
cent work (Dagréou et al., 2022) introduces SOBA, a novel
single-loop framework, to enable simultaneous updates of
the lower- and upper-level variables. Recent efforts have
been made to develop distributed bilevel algorithms within
the federated learning setup (Tarzanagh et al., 2022; Yang
et al., 2021; Huang et al., 2023a) and decentralized scenar-
ios (Yang et al., 2022; Chen et al., 2022; 2023a; Lu et al.,
2022a; Gao et al., 2023). However, bilevel optimization
with communication compression has not been studied in
existing literature to our knowledge.

Communication compression. Communication compres-
sion shows notable success in single-level distributed opti-
mization (Alistarh et al., 2017; Bernstein et al., 2018; Stich
et al., 2018). Two main approaches are quantization and
sparsification. Quantization strategies include Sign-SGD
(Seide et al., 2014; Bernstein et al., 2018), TurnGrad (Wen
et al., 2017), and natural compression (Horvath et al., 2019).
On the other hand, classical sparsification strategies involve
rand-K and top-K (Stich, 2019; Wangni et al., 2018). Com-
pression introduces information distortion, which slows
down convergence and incurs more communication rounds
to achieve desired solutions. Various advanced techniques
such as error feedback (Richtarik et al., 2021; Stich et al.,
2018), multi-step compression (Huang et al., 2022; He et al.,
2023a), and momentum (Fatkhullin et al., 2023; Huang
et al., 2023b) are developed to effectively mitigate the im-
pact of compression-incurred errors. Furthermore, the op-
timal convergence for single-level distributed optimization
with communication compression is established in (Huang
etal., 2022; He et al., 2023a). However, none of these results
have been established for bilevel stochastic optimization.

2. Preliminaries

Notations. For a second-order continuously differentiable

function f : R% x R% — R, we denote V,f(z,y)

and V, f(x,y) as the partial gradients in terms of x and

y, respectively. Correspondingly, V2, f(z,y) € R%>%

and V2, f(z,y) € R%*% represent its Jacobian matri-

ces. The full gradient of f is represented as V f(x,y) =

T

(v;rf(z7 y)T’ vyf($7 y)T)

Basic assumptions. We now introduce some basic assump-

tions needed throughout theoretical analysis.

Assumption 2.1 (CONTINUITY). Forany i (1 <i <mn),

* function f; is C'y-Lipschitz continuous with respect to y;

« functions V f;, Vg;, V2, g, V2, g; are Lipschitz continu-
ous with constants Ly, Ly, L L respectively.

Gzy> “Gyy>

Assumption 2.2 (STRONG CONVEXITY). Forany i (1 <
i < n), g; is pg-strongly convex with respect to y.

In the above assumptions, we allow data heterogeneity to ex-
ist across different workers, i.e., every ( f;, g;) differs from
each other. Furthermore, we do not assume the Lipschitz
continuity of f; with respect to =, which relaxes the as-
sumptions used in prior works (Lu et al., 2022b; Yang et al.,
2023a; Huang et al., 2023a; Chen et al., 2022; Lu et al.,
2022a; Yang et al., 2022).

Assumption 2.3 (STOCHASTIC NOISE). There exists o > 0
such that for any 7 (1 < i < n), and any x € R%, y € R,
* the gradient oracles satisfy:

Egp, [VF(z,y;0)] = Vfi(z,y),
E¢vp, [VyG(2,y;8)] = Vygi(z,y),
Eopy, [IVF(@,5:0) = Vilw,y)l3] <o

Eep,, [|V,G(@,5:€) = Vyi(w,v)| }
« the Jacobian oracles satisfy:
Ecp,, [V3,G(2,y:€)] = ygz(a%y)
Ecop,, [Vi,G(2,4:€)] = Vi, 9i(2,y),
Eevp,, [HV G(x,y;€) — z(x,y)H } <o?
E¢vp,, [Hviy 2,9;€) = Vi, 9i(z,9)| } <o’

The following notion is for compressors.

Assumption 2.4 (UNBIASED COMPRESSION). A compres-
sor C(+) : R — R is w-unbiased (w > 0), if for any
inputxz € R we have

ElC(@)] ==, and E[|C(z) - o] <wlal

Different compressors yield different values for w. Gener-
ally speaking, a large w indicates more aggressive compres-
sion and, consequently, induces more information distortion.
Below, we also assume the conditional independence among
all local compressors, i.e., the outputs of local compressors
are mutually independent, conditioned on the inputs.

3. Compressed SOBA

SOBA (Dagréou et al., 2022) is a single-loop bilevel algo-
rithm with lightweight communication and computational
costs, originally devised for single-node optimization. In
this section, we extend SOBA to address distributed bilevel
optimization (1) and then incorporate communication com-
pression, resulting in our first compressed bilevel algorithm.

Non-compressed SOBA. To address the Hessian-inversion
issue when evaluating the hypergradient V®(z) for prob-
lem (1), SOBA introduces z* £ —[V2 g(z,y*(x))] " -



Distributed Bilevel Optimization with Communication Compression

V. f(z,y*(z)), which can be viewed as the solution to the
following distributed optimization problem:

Z{nggl (@) 42TV R @)

By simultaneously solving the lower-level problem, estimat-
ing the Hessian-inverse-vector product, and minimizing the
upper-level problem, we achieve distributed recursions:

k ko - ko ky k k ok
+1 = —EZ(Viygl(l' Y )Z +vwfz(x Y ))7

i=1

v —yffzvygz AT
=1

n
7
2 Z Vi, 9i(a", g )2 + v, fi(z*, )

3 \

where a central server collects local information to update
global variables. We call this algorithm non-compressed
SOBA (NC-SOBA). NC-SOBA accommodates stochastic
variants by introducing noisy gradient/Jacobian oracles.

Compressed SOBA. When each worker compresses its
information before communicating with the central server,
we obtain Compressed SOBA, or C-SOBA for short. To
detail the algorithm, we let each worker ¢ independently
sample data ¢F ~ Dy, and £F ~ D,,, and calculate

D} £ V2 Gy 6)2" + Vo F (e, 4" 0}),  (6a)
Dl £ V,G(z", 7 €F), (6b)
DY, 2 V2 G(aF yF €6) " + VP y%; 67F). (60)

Next, worker ¢ transmits C{*(D¥ ;), C{(DF ;), and C{ (D} ;)
to the central server where C¢* and C/ are the upper-level
wy- and lower-level wy-unbiased compressors utilized by
worker 7. The implementation of C-SOBA is listed in Algo-
rithm 1 where the update of 2**! follows the green line. A
Clip operation is conducted before updating z to boost the
algorithmic performance, in which

Clip(z++1; ) £ g}

min {1, p/||Z

Intuition behind clipping operation. The variable z is
intended to estimate z* (), which, under Assumptions 2.1
and 2.2, should not exceed a magnitude of C'y /4 (refer to
Lemma B.2). However, during gradient descent steps, as
in our algorithms, the update of z may surpass this limit.
Therefore, it is natural to opt for the nearest neighbor of z
with a magnitude no greater than C /1, instead. A rough
estimation p > Cy/p, suffices as an upper bound. Alter-
natively, we can directly confine z to the domain 5(0, p),
the closed ball of dimension d,, centered at 0 with a radius
of p, using projected gradient descent. Both approaches

Algorithm 1 C-SOBA and CM-SOBA

Input: o, 3,7, p, 2°, 3%, 2°(||2°|2 < p), RS ;

fork=0,1,--- K —1do
on each worker:
Compute Dw i Dy ;» DY asin (6);

Send CZ“(D’;J) Ci(D} ) C‘Z(D’f ) to the server;
on server:
ottt = ab — (a/n) Y1, CH(DE ;) (C-SOBA)

=11
hgtt = (1= 0)h + (0/n) XL, CH(Dy ) :
xk“‘l:x’c—a-hﬁ

(CM SOBA) ;
yrt —y —(B/n) 31, CH(D; s
Z’” =zF—(y/n) >0 1Cf(Dk )

= Clip(z*; p);

Broadcast ahtl gktl o
end for

, 281 to all workers;

result in the projection operation zF+1 = = PB(0,p) (~k+1),
equivalent to the clipping operation 2+ = Clip(zF+1, p).
Here, Pq(-) denotes projection onto a closed convex set €2.

The justification for this operation in theory is straightfor-
ward; zF*1 is always closer than (or at an equal distance
with) 281 to 2% (zk+1).

In particular, assuming p > C'¢/p,, the non-expansiveness
property of projection operators allows us to deduce:

(Bl a1 [
= HPB 0,p) ( ht ) — Pg(0,p) (Z* (ka)) H2
N Can ||

Convergence. To establish the convergence for C-SOBA,
we need more assumptions beyond those discussed in Sec. 2.

Assumption 3.1 (BOUNDED HETEROGENEITY). There
exist constants by > 0, by > 0, such that for any = € R=
y € R it holds that

IV fi(x,y) — Vf(z,y)|3 < b3,
||Vygl(x y) g(x,y)” < b2 .
HViygmm (l,y)Hz <2

For conciseness, we present results with the notation b2 £
max{b?, b7} in the main text and defer the detailed counter-

parts associated with b% and b to Appendix B.

Assumption 3.2 (BOUNDED GRADIENTS) There exists
constant B, > 0, such that for any ( 7y z ) generated
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by C-SOBA(Alg. 1), we have

|V2,9(*, y*) 2" + Vo fa*,gh)|s < B2 ®)

It is noteworthy that the above assumption is milder than the
L, -Lipschitz continuity of f with respect to = (Lu et al.,
2022b; Yang et al., 2023a; Huang et al., 2023a; Chen et al.,
2022; Lu et al., 2022a; Yang et al., 2022), which implies
B, & \V3L,Cy /g + V3Ly,.

Assumption 3.3 (2ND-ORDER SMOOTHNESS). Jacobian
matrices szg, Vyyg are Ly, -and Ly -smooth, V2fis
L ¢ ¢-Lipschitz continuous.

Theorem 3.4. Under Assumptions 2.1-2.4 and 3.1-3.3, if
we set the hyperparameters as in Appendix B.1, C-SOBA
converges as

K-1

+ B[Vt

k=0

0 V(1 4+ wp 4 wy) Ao + /(we + wy)Ab
VnK

1\/14 w,/nB,

AT ((1+ w)o? + web?) T
1/4K4
(1 + wg)o? +w452) (1 + wy)o? + w,b?)
(nK)3/4
I \/(1 +(Uu)(1 +WK/H)AO' —+ \/mb
VnK
+ \/(1 + we/n)(1 + wy/n)AB,
K
N (1 +wg/n+wu/n)A> ’

+

NS
Nl

A
+

- ©)

where A £ max{®(z° 9123
Asymptotic complexities. C-SOBA achieves asymptotic
linear speedup with a rate of O(1/v/nK) as the number of
iterations K — oo. This corresponds to an asymptotic sam-
pling/computational complexity of O(1/(ne?)) as e — 0.
Furthermore, C-SOBA asymptotically requires O(w/(ne?))
communication rounds to achieve an e-accurate solution
when € — 0, see more details in Table 1.

)s 1y =y (@) 13, [12° = 2* (=

Consistency with non-compression methods. The leading
term in (9) reduces to O(v/Ac/v/nK) when wy = w, = 0,
which is consistent with non-compression algorithms.

A recommended choice of w, and w;. According to (He
et al., 2023b), an w-unbiased compressor C(x) with input
dimension d will transmit at least O(d/(1 + w)) bits per
communication round. If w,, + wy is bounded away from 0,

C-SOBA will asymptotically transmit
O( (we + wy)A(0? + b?) . ( dy N dy ))

ne2 14w, 14w

asym. comm. rounds bits per round

bits to achieve an e-accurate solution. To minimize the
communicated bits, a recommended choice for wy and w,,

satisfies
(1+wu)/(1+wz)®<\/dx/dy). (10)

When using rand- K compressors, we can set different val-
ues of K for lower- and upper-level compression to achieve
the recommended relation of w; and w,, that satisfy (10).
We refer the readers to the ablation experiments on different
choices in Appendix D.4.

4. CM-SOBA Algorithm

Although simple and effective, C-SOBA relies on strong
assumptions, particularly Assumption 3.2 on bounded gra-
dients. Moreover, the typically large upper bound B, sig-
nificantly hampers the convergence performance. These
strong assumptions and inferior convergence complexities
are attributed to the bias introduced by the nested bilevel
structure, as elucidated in (5).

CM-SOBA. To enhance the convergence properties, we

introduce a momentum procedure hE*+t = (1 — 9)hk +
(0/n) Y"1, CH(D% ;) to tweak the descent direction of z,
ie., 2"l = 28 — ahk. We refer to this new algorithm

as Compressed SOBA with Momentum, abbreviated as
CM-SOBA. The implementation is outlined in Algorithm
1, where the update of 2**1 is indicated by the pink color.
CM-SOBA is inspired by the momentum-based algorithm
(Chen et al., 2023b) which eliminates the dependence on
Assumption 3.2 in the single-node scenario.

Convergence. With an additional momentum step, CM-
SOBA converges with more relaxed assumptions. In partic-
ular, it removes the strong assumption on bounded gradients.

Assumption 4.1 (POINT-WISE BOUNDED HETEROGENE-
ITY). There exist constants by > 0, by > 0, such that for
any z € R,y = y*(x), (7) holds.

Assumption 4.1 is weaker than Assumption 3.1 since it only
assumes bounds at (z, y*(x)), as opposed to arbitrary (z,y).

By writing b® = max{b%, b2}, we have the follows.

Theorem 4.2. Under Assumptions 2.1-2.4 and 4.1, if we
set the hyperparameters as in Appendix B.2, CM-SOBA
converges as

1 K-1
= Y E[|veEh))]
k=0
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VnK

(1 +we/n+ wy/n)A
¥ K ).

—0 (\/(1 + we + wy) Ao + /(we + wy ) Ab

Y

in which A = max{®(2°), ||n} —
v (@)3, 12° — 2 (2°)II2}-

Improved complexities. CM-SOBA achieves an asymp-
totic linear speedup rate under more relaxed assumptions,
compared to C-SOBA. Furthermore, by eliminating the in-
fluence of the gradient upper bound B, on the convergence,
we observe from (11) that CM-SOBA enjoys a faster rate,
especially when B, is large.

V()3 [y -

5. EF-SOBA Algorithm

Despite the simplicity, C-SOBA and CM-SOBA rely on the
restrictive Assumptions 3.1 and 4.1 concerning bounded
data heterogeneity. When local data distributions Dy, and
D,, differ drastically across workers, the bounded-data-
heterogeneity assumption can be violated, significantly dete-
riorating the convergence performance of C-SOBA and CM-
SOBA. This section is devoted to developing compressed
bilevel algorithms that are robust to data heterogeneity.

Error feedback to upper-level compressors. When up-
dating z in the upper-level optimization, each worker ¢ in
C-SOBA or CM-SOBA transmits Cj*(D} ;) to the central
server at each iteration k. Since D’;,i does not approach
zero due to the sampling randomness and data heterogeneity,
Cy*(D% ;) does not converge to DY ; either. This reveals that
compression-incurred distortion persists even when k — oo,
explaining why C-SOBA or CM-SOBA necessitates As-
sumption 3.1 or 4.1 to bound compression distortions.

Inspired by (Fatkhullin et al., 2023), we employ error feed-
back to alleviate the impact of data heterogeneity when
solving the upper-level optimization. Consider recursions

Wit = (1—6)h, +6-Df, (12a)
mitt = mk, +6, - CHEY —mE ), (12b)
. . S —

Wt =hy+ - Zlci“(hi,tl —mf),  (120)
=gk — o bk (12d)

in which §,, is a positive scaling coefficient, m’gz is an aux-
iliary variable to track h’;ﬂ-, and h* = (1/n) S m’;,i
holds for any £ > 0. In each iteration k, it is the differ-
ence h% ; — mk ; that is compressed and transmitted in-
stead of hY ; itself. When m” ; converges to a fixed point
as k — oo, we have m’;ﬂ- — h’;Z from (12b) and hence

hk — (1/m) 321, k% .. In other words, error feedback (12)

removes the compression-incurred distortion asymptotically,
making x update along the exact momentum direction even
when data heterogeneity exists.

Error feedback to lower-level compressors. One may
naturally wonder whether the same error feedback technique
(12) can be used for the lower-level compressors, i.e.,

mi = mk 46, CH(DE, —mk ), (13a)
mitt =mk 46, - CH(DE, —mb ), (13b)
R P X
my = my 4 > ci(DE, —mb ), (13c¢)
=1
5 n
k1 _ ok L YONT ol DR ok 13d
m my + n ; 1( 2,1 mz,i)v ( )

and let y and 2z update along the direction m,, and m. The
answer, however, is negative. Since the hypergradient D, ;
used in z-update relies heavily on the accurate values of
y and z as shown in (6a), a more refined error feedback
is needed for lower-level compressors. As illustrated in
Appendix A, y and z must be updated following an unbi-
ased estimate of their gradient direction. However, m,, and
m,, provide biased estimates under the presence of §,,. To
address this issue, we propose using

. 1 &

Dy =my, + — > _Ci(Dy; = my) (14a)
i=1

. 1 &

DY =ml+—% C{DL;) —mi;).  (14b)
i=1

to update y and z for the unbiasedness (i.e., E[ﬁfj] =
E[D}] = V,G(«*,y*) and the similar applies to z). The re-
sulting algorithm, termed as compressed SOBA with Error
Feedback, or EF-SOBA for short, is listed in Algorithm 2.

Theorem 5.1. Under Assumptions 2.1-2.4, if hyperparame-
ters are set as in Appendix B.3, EF-SOBA converges as

1A 2
=Y E [veEhl] (15)
k=0

o (et w2V Be
- Vi

w}/?’(l + w ) VA58 (14 w,)A
K?2/3 K
N (14 wy)?y/we(l +we)A N (14 wy)?wiA
VnK nk

where A represents algorithmic initialization constants de-
tailed in Appendix B.3.

According to the above theorem, EF-SOBA achieves lin-
ear speedup convergence without relying on Assumption
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Algorithm 2 EF-SOBA
Input: o, 3, 7, 0, p, du, 6o, 20, ¥°, 2°(||2°]]2 < p).
{mg,i}’ {mg,i}, {m(z),i}’ {hg,i}’ hg = %Z?:l mg,i’
mg = % P mg,i, md = % P mg,i;

fork=0,1,--- K —1do
on worker:
Compute D% ;. D¥ . D% as in (6);

Update h’;f and m:’;fgl as in (12a) and (12b);
Update m’;fgl and mfjl as in (13a) and (13b);

Send Clu(h’;fil - m];z)vcf(DSz - mZ,i)’Cf(D];,i -
mk ;) to the server;

on server: )

Update D,’; and D’Zc as in (14a) and (14b);

R ARy NV S R R 512

Pt =28 — g D M= Clip(ZH1, p);
Update A5, mE™, m5™ as in (12¢), (13c¢), (13d);

k+1
)

Broadcast z*t1 y*t1 2F+1 to all workers;

end for

3.1 or 4.1. Furthermore, the convergence of EF-SOBA is
unaffected by data heterogeneity b2.

6. Convergence Acceleration

While C-SOBA, CM-SOBA, and EF-SOBA can converge,
their computational and communication complexities are
inferior to those of the best-known single-level compres-
sion algorithms, such as EF21-SGDM (Loizou & Richtarik,
2020) and NEOLITHIC (Huang et al., 2022). In Appendix
C.2, we leverage Multi-Step Compression (Huang et al.,
2022) to expedite CM-SOBA and EF-SOBA, leading to CM-
SOBA-MSC and EF-SOBA-MSC, respectively, to achieve
the same complexities as EF21-SGDM and NEOLITHIC,
see Table 1. EF-SOBA-MSC converges as follows:

Theorem 6.1. Under Assumptions 2.1-2.4, with hyperpa-
rameters in Appendix C.2, EF-SOBA-MSC converges as

VA (14 wp +w,)AO(1)
o (ﬁ + T ) ; (16)

where T denotes the total number of iterations (i.e., #outer-
loop recursion x #inner rounds in MSC) of EF-SOBA-MSC,
and © hides logarithm terms independent of T

Similarly, CM-SOBA-MSC can converge at the same rate
as given in (16). For details on algorithmic development
and convergence properties, please refer to Appendix C.

7. Experiments

In this section, we evaluate the performance of the proposed
compressed bilevel algorithms on two problems: hyper-

representation and hyperparameter optimization. To demon-
strate the impact of data heterogeneity on the compared
algorithms, we follow the approach in (Hsu et al., 2019) by
partitioning the dataset using a Dirichlet distribution with
a concentration parameter « = 0.1. We use the unbiased
compressor, scaled rand-K, to compress communication,
and K is specified differently in various experiments.

Hyper-representation. Hyper-representation can be for-
mulated as bilevel optimization in which the upper-level
problem optimizes the intermediate representation parame-
ter to obtain better feature representation on validation data,
while the lower-level optimizes the weights of the down-
stream tasks on training data. We conduct the experiments
on MNIST dataset with MLP and CIFAR-10 dataset with
CNN. The detailed problem formulation and experimental
setup can be found in Appendix D.1.

Figure 1 compares C-SOBA, CM-SOBA, and EF-SOBA
with non-compressed distributed SOBA (NC-SOBA) un-
der homogeneous data distributions. It is observed that
compressed algorithms can achieve a 10x reduction in com-
municated bits without substantial performance degradation.
Figure 2 illustrates the performance under heterogeneous
data distributions. It is observed that C-SOBA and CM-
SOBA deteriorate in this scenario. However, error feedback
significantly benefits convergence, and its convergence (in
terms of iterations) and test accuracy of EF-SOBA are close
to those of NC-SOBA. This is consistent with the theory
that EF-SOBA is more robust to data heterogeneity. To jus-
tify its efficiency on various datasets and models, additional
results of CIFAR-10 with CNN are provided in Appendix
D.3. Furthermore, for more detailed discussions regarding
the adjustment of the momentum parameter, please consult
Appendix D.3.

Hyperparameter optimization. Hyperparameter optimiza-
tion aims to enhance the performance of learning models
by optimizing hyperparameters. In our experiments on the
MNIST dataset using an MLP model, the left two figures in
Fig. 3 depict the test accuracy performance under homoge-
neous data distributions. It is observed that all compressed
bilevel algorithms perform on par with the non-compressed
algorithm but achieve a 10x reduction in communicated bits.
The right two figures illustrate the test accuracy performance
under heterogeneous data distributions, further corroborat-
ing the superiority of EF-SOBA in resisting data hetero-
geneity. The problem formulation, experimental setup, and
additional numerical results can be found in Appendix D.2.

Runtime comparison. Understanding the importance of
evaluating the practical trade-offs between computation and
communication, we performed a runtime comparison to
complement our theoretical findings with empirical evi-
dence. The results of our hyper-representation experiment
on the MNIST dataset with the MLP backbone are presented
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Figure 4. Running time comparison under homogeneous(left) and heterogeneous(right) data distributions.

in Fig. 4, conducted under both homogeneous and heteroge-
neous data distributions. It is evident that the convergence
with respect to running time closely aligns with those ob-
served for communication bits. Additionally, we observed
that the computation time across all compared algorithms
closely matches. This result highlights the computational
efficiency of our proposed compression techniques, which
introduce minimal computational overhead. Our experi-
ments unequivocally demonstrate that communication time
is the dominant factor affecting total runtime in a distributed
scenario.

8. Conclusion and Limitation

This paper introduces the first set of distributed bilevel al-
gorithms with communication compression and establishes
their convergence guarantees. In experiments, these algo-
rithms achieve a 10x reduction in communication overhead.

However, our developed algorithms are only compatible
with unbiased compressors, excluding biased but contrac-
tive compressors such as Top-K. In future work, we will

explore bilevel algorithms with contractive compressors and
investigate their convergence properties.
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This paper centers on the theoretical analysis of machine
learning algorithm convergence. We do not foresee any
significant societal consequences arising from our work,
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A. Necessity of Unbiased Lower Level Gradients

In this section, we demonstrate why the lower-level variables, y and z are supposed to be updated following an unbiased
estimate of their gradient direction.

First of all, it’s noteworthy that the lower level in a bilevel optimization problem is not equivalent to a single level one.
Recall the final goal of our bilevel algorithm is to optimize ®(z), and y, z are actually auxiliary variables to help improve
the estimate precision of the hypergradient V®(x). Consequently, by following Lemma B.4, 3/*, z* are expected to be
good estimation of y* (z*) and 2*(2*), respectively. Thus, in single-loop algorithms, where lower/upper level variables
are updated alternatively, the lower level cannot be regarded as a single-level optimization problem since z* varies in each
iteration.

Even if we assume the stability of upper-level solution z*, upper-level algorithms, e.g., EF21-SGDM which we use in
EF-SOBA, cannot work well in the strongly-convex lower-level scenario. When we modify the non-convex objectives into a
strongly-convex one, it’s natural to believe that the algorithm can guarantee at least the same convergence rate as before,
since the assumption has become stronger. However, it’s worth noting that the convergence metric also varies in different
settings. Specifically, the metric for a non-convex objective f(x) is usually ||V f(z")||3 with 2% = 15 SR, 2k, while

that for strongly-convex f(x) should be ||z — 2*||3 or f(2®) — f(z*), where z* is the minimum of f(z). In the typical
SOBA structure, ||y* — y*(2*)||3 is the actually concerned metric, which negates applying EF21-SGDM for lower-level
design.

Next, we go through some technical issues to demonstrate the role of unbiased gradient estimates in this different optimization
problem. Consider the following recursion for optimizing a strongly-convex objective f(z):

ZFH = 2k gk

where ¢* is a stochastic estimator of V f(x*). When trying to establish descent inequalities with respect to |E {ka —z* HQ} ,
we consider

E [||lo** = a*|[}] =E [||lo* - ag" —a"[}] = E[[ls* —*|}}] - 20E [(a* — 2", 6")] + ’E[|lg"[;] . (1D

If g* is an unbiased estimate of V f(z*), E [<xk — ¥, g’“>] =E [(mk — ¥, Vf(xk)ﬂ can be directly used in proving

descent inequalities, leaving o> {H gF ||ﬂ the only term including noise. Otherwise, if ¢* is a biased one, an additional term
20K [(z* — 2%, g¥ — V f(2*))] which is upper bounded by a*'E [ka - x*Hz] + o'E [Hgk - Vf(azk)H;] will either
include bigger noise (if ¢ < 2) or deteriorate contraction of E {H:ck —x* ||§} (ift > 2).

Remark. Based on the above discussions, it is possible that non-convex algorithms like EF21-SGDM without unbiasedness
can be applied to the lower level by using 3", z* for hypergradient estimation. Exploration of this type of algorithms is left
to future work.

B. Convergence Analysis

In this section, we provide proofs for the theoretical results in Sections 3, 4, 5 and 6. Throughout this section, we have the
following notations.

Notation.
syl Syt(ah), 2 & 2 (R)
 F*: the o-field of random variables already generated at the beginning of iteration k;

* Ex[] = E[ | F¥];

° F»Lk é fi(xkv
gi(z*,y¥), G

LN

y*), R 2 [k yF), FE 2 f(@P,uh), FF 2 f(ah,48), GF £ gi(aF,yF), GF 2 g(a®,yF), GE, &
k

12
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| e o R P M MR

E||=* - #[];
° Dljé%ZZL:I mz’Dk = 121 1 yz’Dk = 121 1 zz’Dk = 121 1cu( );

. ﬁ’;l and sz denote compressed local update estimations, which depend on different lower-level compression
mechanisms:

D .=
mh +CHDE, —mb,), inAlg.2and5, 7" |mk,+CH{(DF, —mk,), inAlg 2and5.

Y,

bk s {cf(D’yii), inAlg. 1and4, ., . {cf(D’;,i), in Alg. 1 and 4,

The following lemmas are frequently used in our analysis.

Lemma B.1 ((Chen et al., 2023b), Lemma B.1). Under Assumptions 2.1, 2.2, if B < the following inequality holds:

L+H

ly" = BV,GF — y¥|l2 < (1= Bug)lly* — vl

Lemma B.2 ((Chen et al., 2023b), Lemma B.2). Under Assumptions 2.1, 2.2, there exist positive constants Ly, Lyx, L«

such that VO (z), y*(x), 2*(x) are Ly®, Ly, L.«-Lipschitz continuous, respectively. Moreover, we have ||z* (x )||2 Cf
forall z € R,
Notation. For convenience, we define the following constants:
LI& L3+ L2 p° Li=L}+1L5 p2, L3& L2(1+3L%.), Li%£L3(1+3L%.)+3L2L%,
L2221 +3L§ )+3LL2., of £0°(1+p?), 6*£0%/R, 612 0]/R, wi =1+ 6w(l+uwy),
wo 2 1436wy (1+wy), @ 2w (we/(1+we)®, @y 2wy (wa/(1+wa)’.
Lemma B.3 (Variance Bounds). Under Assumption 2.3, we have the following variance bounds for Alg. 1 and 2:
Var [D;i | .Fk] <o? Var [Dlzj | fk] < o?/n;
Var [DE | F¥] <o}, Var [Di | F*] <of/n;
Var [D%, | F¥] <o, Var[DF|F*] <of/n.
Proof. Note that ||2¥|| < p, Lemma B.3 is a direct consequence of Assumption 2.3 and the definition of o . O

Lemma B.4 (Gradient Bias). Under Assumptions 2.1, 2.2, 2.3, if p > C't /g, the following inequality holds for C-SOBA,
CM-SOBA (Alg. 1) and EF-SOBA (Alg. 2):

K—-1 K
Y E [||Ek(D’;) —V@(mk)H;} gz’)L§Zy’“+3LZZZ’c (18)
k=0 k=0

Proof. By Assumption 2.3, we have Ex (D)) = V2, G*2F + V, F¥. Since V®(2*) = V2 GEzF + V, FF, we have
E[[[Ex(D) - Vo]
=E [H(Vsz — Vo FF) +(V2,GF = V2 G528 + V2, GM(8 = 20) }
<3E [[| V. F* = VL FE[] + 3B [[|(92,6" - V2,G4)2E 2] + 3E [ V2,GR (" - 20)]3]

<3L3E [|ly* — yt[3] +3L3

gry

PE [[ly* - oI5| +3L2E [||=* - 25[17] (19)

where the first inequality uses Cauchy-Schwarz inequality and the second inequality uses Assumption 2.1, Lemma B.2 and
p > C¢/pg. Summing (19) from k& = 0 to K — 1 we achieve (18). O

13
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Lemma B.5 (Local Vanilla Compression Error in Lower Level). Under Assumptions 2.1, 2.2, 2.3, 2.4, and 4.1(or 3.1), the
following inequality holds for C-SOBA and CM-SOBA (Alg. 1):

K—1 K
1 2
Z - ZIE [Hpg - Dk, 2] <2weL2 Y VF + Kweo? + 2Kuwib?, (20)
k=0
K K 2
11 2 4K weC
7Z]E U’Dk - D, ] §6weL%Zyk+6wL§ZZk+KWNf+4wa?+ ; fbﬁ. @0
n 2 I
—0 k=0 k=0 7
Proof. By definition, we have D, = C{(DF ,), thus

Nk k
E {HDW ~ Dy,

2
S| <ok [ID5lE] < w1965 ] + o
<20l [V, G I3 + 20 L2E [[[y* — o][5] +weo®, (22)

where the first inequality uses Assumption 2.4, the second inequality uses Lemma B.3, the third inequality uses VyGi-€ =
VyG’j’i + (V,GF — VyG]j’i), Cauchy-Schwarz inequality and Assumption 2.1. Averaging (22) from ¢ = 1 to n, we obtain

1 S Nk k
s 2B |25 o
=1

] <23 e [Iwut - w6t 2t I -] e

§2wgbg + 2weL2 [Hy — y*H ] +wza (23)

where the first inequality uses VyG’j = 0, and the second inequality uses Assumption 4.1 (or Assumption 3.1). Summing
(23) from k = 0 to K — 1 we obtain (20). Similarly, we have

?| )

<wiE [||V2,GE2 + V5] + weo?

k k
Dz,i - Dz,i

<6wiE ||| (V2,GE — V2,65 )] + 6wl |92, GE (% = 28)[12] + 6wk [[|V, B = v, FE 1]
+ AwE [[[(V2, G = V2,602 2] + 4wl (||, FE, = Y FE|)] + weo?
4&)ng

<6we (L3 + L2, 0 E (0" = gl ]l3] + 6w L2E ||| 2% = 243 ] + = LB [|[92,65, - v2,64[]

+ 4ol [||V,FE, - W, FE ] + weo?, (24)

where the first inequality uses Assumption 2.4 and Lemma B.3, the second inequality uses V2 Gkl 4 Vy F¥ =0 and
Cauchy-Schwarz inequality, the third inequality uses Assumption 2.1 and Lemma B.2. Averaglng 24) from 1= 1ton,
summing from k = 0 to K — 1, we achieve (21). O]

Lemma B.6 (Global Vanilla Compression Error in Lower Level). Under Assumptions 2.1, 2.2, 2.3, 2.4 and 4.1(or 3.1), the
following inequalities hold for C-SOBA and CM-SOBA (Alg. 1):

= 2] 2weL? 2 2w Kb
ZE[H%G’“—D’JM . 923”“ Qrwgke” 2 25)
k=0 2

n
2 2 7712
4ngbf 4wgC’beg .

n npz

E [\\Ek(D;f) -0t (26)

Proof. By Assumption 2.3, we have
2 2 2
k_ Ak Ak k k k Ak k k k(|2
E {HvyG - DyHQ] —E {H(Dy — Db+ (D -v,a )HZ] —E MDy - DyM +E[||Df - v,6|[3]

14
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Thus, by Assumption 2.4 and conditional independence of the compressors, we have
I ’
Ak k
E Z(Dyal - Dyﬂ)
i=1 2
1 n
7 2= o
i=1
<L Zn:E {Hi)’f . — Dk
=2 ysi
i=1

K [HvyG’f - D’;Hz] R +E[|D} - v,6" 7]

ka

Y,

|+ (1D - 9,67

2 1 9
Yyt + -0, (27)
2 n

where the inequality uses Lemma B.3. Summing (27) from k£ = 0 to K — 1 and applying (20), we obtain (25). Similarly,
we have

E [HMD’;) - Dt

2] 1
i } + —o?. (28)
2 n

2 1 ¢ Ak k

Jetallon o
i=1

Summing (28) from £ = 0 to K — 1 and applying (21), we obtain (26). O]

B.1. Proof of Theorem 3.4

Before proving Theorem 3.4, we need a few additional lemmas.

Lemma B.7 ((Dagréou et al., 2022), Lemma C.1 and C.2). Under Assumptions 2.1, 2.2, 3.3, there exists positive constants
Ly, and L, such that y*(x) and z*(x) are L, and L ,,-smooth, respectively.

Lemma B.8 (Bounded Second Moment of Vanilla Compressed Update Directions). Under Assumptions 2.1, 2.2, 2.3, 2.4
and 3.1, the following inequalities hold for C-SOBA (Alg. 1):

K-1 o o K-1 14w )Ko?2 2w,Kb%:  2p%w,Kb?
S [[4] < (14 £2) 3 B [t p] + Cremkot | 2ol 20l )
=0 L 2_ n — n n n
K 2] 2 a (1+w)Ko? 2w Kb?
e[|k <1+W>L Soyby Qe 2ol (30)
k=0 - 2] k=0 n
a2 K 6 (1 K dw K2 ACHw KD?
E||D5 | < Z S CR= LQsz +“’5) ot Lkl | A0l g
k=0 L 2 =0 n nu2

Proof. Let FF denote the o-field of {D’;l | 1 <i < n}and random variables already generated at the beginning of iteration
k. By Assumption 2.3 and Lemma B.3, we have

2
E[ID4)2] = B [[B0b)|F] +Var [P} | 7] < B [[m0b)F] + 2. @)
Similarly,

E[||D,]] <E [JEx(DE 5] +o (33)

Averaging (33) from i = 1 to 1, we obtain
*ZE[H 5] < ZE[HEk BIHERS
=E [[Ex(DH)][;] + ZE [IE(DE ) — B (DS)]2] +
<E[|[EcDY)5] + = ;E [H(Vinf - V2,GM)2H ] + %iﬂa [V FF = Vo F*|5] + of

i=1

15
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<E [[Ex(DY)]3] + 20%0 + 265 + o, (34)

where the second inequality uses Cauchy-Schwarz inequality, and the third inequality uses Assumption 3.1. For b’;, we
have

.| = [E[102e| #]

~E[|p4]2] +E {E [Hpk Dk

[l ]
—E ||D’“||2: ;ZE{ {HD’C ~ Dk, ‘ff”

<E || D5];] +7ZE D213 (35)

where the inequality uses Assumption 2.4. Applying (32)(34) to (35) and summing from £ = 0 to K — 1, we obtain (29).
By Assumption 2.1, we have

E[[EaD8)]2] = [[IVyG* - v, GE ] < 2B [[ly* - 23] -

|

Summing (36) from £ = 0 to K — 1 and applying Lemma B.6, we obtain (30). Similarly, we have

Consequently,

i) =2 [lenol] + |4 - mcop

<I2E[[ly* - o|ly] +E MD;; - vkaHj . (36)

E [[Ex(DY)[] =E [|(V3,G* - 92,G5)* + V2,GE(F — 28) + (9, F* =, P[]

<8(L3 + L2, PIE [ — o4]2] + SL2E |15 - 2]

Thus,
Ak || ky||2 Ak N
E|[D5].] =& [IIE@DI5] +E ||| 2% - En(Db)|
<3L3E [[[y* — vt (] +32E [|12* - 25115) (37)
Summing (37) from £ = 0 to K — 1 and applying Lemma B.6, we obtain (31). O
Lemma B.9 (Lower Level Convergence). Under Assumptions 2 1, 2.2, 2.3, 24, 3.1, 3.2, 3.3 and assume [ <
: 2 : 1 g
mln{#ngLg, 8(1+4Zj/n)Lg }, v < min {L—g, 712(1%;:»«/71)%} p> > , and
a< Mngz/*B

L2, (B%(l +wy/n) + (1 +wy)o?/n+ 2w,b3 /n+ 2p2wub§/n)

the following inequalities hold for C-SOBA (Alg. 1):

K
Zyk 8y 16(1 + wy) K Bo? +24L§*(1+wu)Ka202
figm tigns3
24L2,02(1 4+ wy/n)  16L2,02\ A=t )
+ v +— E[Ek Dk }
( o ) S s et

16
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(38)

8L w, K a?b} L[ B2weKB 48L2. p*w, Ka? .
,ugnﬁ npg ny’gﬁ

K 0 24,0 2 2
sz <4Z L 136L7Y n 272(1 + wy) LiK Bo

< +
prs Iy Hy pgn
408LL2. (14 wy)e®  8(1+we)y  S(L2 + Loop)(1 + wy)a? )
+ 3 + + <Ko
pgnp3 fogT gy
408L3L2. (14 wy/n)a?  2T2L3L%.0%  8(L2. 4 L..p)(1 + wyu/n)a?
13 g3 fgY

SLQ* 2 K-1 816L2L2*qu0¢2 32 K 16 LQ* Lz;p uK 2
za) ZE[HEI’C(D];)HZ}—F 1Ly L S2weKy (L2, + L.,p)w Ko b2

ui? ) — pinp Nty Ty !

5443w KB 816LILZ. p°w,Ko?  16p%we K7y 8(L2. + Loyp)pwuKa?\ ,
+ 2 + + 2. (39)
njty nu 3 Nflg Nty
Proof. We first separate Y**1 into five parts:
, 2
RARRESD [Hyk+1 —yt| } +E [Hy’“rl — HQ} yF =y oyt - yfﬂ
2
=E [Hy”“+1 — ¥ } +E [ [ !2} —yF Yt —yf)] + 26E [< oyt — yfﬂ
2 *
=E [[ly*** - ot;] +E {Hyk“ M) -2 =yl Vy (@) (@ — b))
—2E [(y* -yl gt -yl = V(@) (@ - )>] +26E [< ,yf“ v (40)
where the existence of Vy*(2*) is guaranteed by Lemma B.7.
For the first part, by Assumptions 2.3 and 2.4, ﬁ’; is an unbiased estimator of Vka, thus
2 A 2 . 2
E [Hy'“rl - nyg} =E [Hy’“ — BDy -y 2] =E [H(yk —yr = BV,G*) - B(D; — Vka)HZ]
9 . 2
—E [ls" - v¥ - BV,G*[] +E [HB(D’; - vyG’f)M
. 2
<(1- Bug)*Y" + B°E [HD5 - vyG’“HQ]
. 2
<(1 = Bug)V* + FE [HD’; vyG’“HQ], (4D
where the first inequality uses Lemma B.1. For the second part, Lemma B.2 implies
9 L2
E [t - 2] <zt = 2.om |24 @)
For the third part, we have
—2E [(y" — i, Vy (a®) (2" = 2F))] =20E [(y* — oL, Vy* (=")Ex(D]))]
202 12
<Phaye 2 12 g [|B(0b)2]. @3)
2 Biig

where the equality uses the unbiasedness of ﬁ’; and the inequality uses Young’s inequality and Lemma B.2. For the fourth
part, we have

— 2K [(y* — gl yitt — yF = Vyr (@M (@M = 2M))] < LB [ly" — yf)l]ja" ! — 2]

17
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L2
<
- 4L2

L2 o? .
<22 m ik — JFI2E HDk
Sz [Iy Y I"Ee ||| D2

E [Ex [[ly* — ¥ I?la® — 2|?]] + L2, xF

2 2
H +L2.0%E [HD’; }

‘ 2
<L§x (Bz(l +wy/n) + (1 +wy,)o?/n+ 2wub§/n + 2p2wub§/n) a? 2
- ALZ. 2]

2
} ; (44)
2

Dk

x

VF+ L2, 0’E [

g%y’“ +I2.0%E [Hi)’;

where the first inequality uses Taylor’s expansion, Cauchy’s inequality and Lemma B.7, the second inequality uses Young’s
inequality, the third inequality uses the definition of 2**1, the fourth inequality is due to
1]

o “

4] = eI + B 0% - Bub)] + a5 [0 - 0t
§32+—+—2Ek[|D ]

— x

2
<B4+ 2L+ 2 (B2 4 o7 + 2% +20%))

NgLi* B8
ng (B?r (1+wu/n)+(1+wu)df/n+2wub§/n+2p2wub§/n

and the last inequality is due to o < ) For the fifth part, by Young’s

inequality and Lemma B.2 we have

s (o5, o)) < 1] s 2

} . (45)
Summing (40)(41)(42)(43)(44)(45) from k£ = 0 to K — 1 and applying Lemma B.6 we obtain

K

2

4370 4(1 4 wy) K po? 12L2*oz2 KZl]E {
_Bﬂg npg

8wa Bzyk 45 Z {

4 0 1+ w)K 12L2* 1+ wy)Ka?0? 1212, 02(1 + wy /n 8L Lo

2 8L* —
]+ S 3 el

2] szﬂbg

Njlg

2

7ﬁ,ug Nt pgnpB Bg ﬁ2ﬂg =0
4(1 + 4wy /n)L28 E 2412, w, K a?b? 16w, KB  24L2. p2w,Ka?
e I £ (L0weRB | Py b, (46)
Hg k=0 pgn3 Nptg npg ’

where the second inequality uses Lemma B.8. Using § < W’ (46) implies (38). Similarly, we separate Z**!

into five parts:
21 <R |:H~k+1 k+1”2}
2
=E [|##+1 = 2F o] + B [ 53] - 2B [(F — 25, Vet @) (o - )]

—2E [<z A A Vz*(:ck')(mk"'l - xk)ﬂ + 29E [<l§’j, 2Rl _ zfﬂ , 47)

18
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where the inequality is due to Lemma B.2 and p > C'y /. For the first part, we have
2
|

_E [H(zk—zf) V2 GR(F — ) — (V2GR E 4 v, FF) ||ﬂ +A2E [HEk(D’;) _ Dt

E |21 - 23] =E [||2* — vEx(DE) - 25[[}] ++°E U(Ekw’;) - Dt

)

1 12
S+ i) (1= y1g)* 2" + <1 + w) 7 2L3V" + 4K {HEk(Df) - D} Q] ! (48)

g

where the inequality uses Young’s inequality, ||I — YV2, G*|l2 <1 — yp, and

vy
2
E[[[(v3,G* - V2,652t + (V, = v, FR) 5] <2 (L3 + 12, %) V"

For the second part, Lemma B.2 implies

T
E (|54 — 2|2] <1245 = 12,078 [ D J . (49)
For the third part, applying Young’s inequality along with Lemma B.2 gives
2 2
—9F [(2* — 28, Va* (aF) (2" — 2F))] g%gk + 2R {H]Ek(D’;)H;] . (50)
YHg

For the fourth part, we have

—2F [(2% — 2K 2Ft — 2k - v (2F) (2P - 2F))] <LLLE[||2F — 2F||j2* T — 2F|?] < 2L..p0°E { DF

2
2} ’
(5D

where the first inequality uses Taylor’s expansion, Cauchy-Schwarz inequality and Lemma B.7, and the second inequality
uses Lemma B.2 and p > C /4. For the fifth part, by Young’s inequality and Lemma B.2 we have

2E [(DE, 2511 = 2)| <R [HDk
Summing (47)(48)(49)(50)(51)(52) from K = 0 to K — 1 and applying Lemma B.6 we achieve
K
220 201 K~o? 412, a2 4Lm 2 4L
PP Caale ) Wl+< e pa)ZE[ } o ZE[HEkaH]
k=0 Hg 2 k=0

pgm 1yY ney ) &=
2 2 2
] L <8L% . 12ng1fy) Zyk N 12cLJng’y sz N SMZK'ybf N 8CFwe Kby

2 ~
J +L%a%E [HD’;

2
} . (52)
2

9 2
-2
Hg 2

It fign pgn = Nflg nud
220 N (4(1 + wp)Kvo? N 4(L2, + L..p)(1 +wu)Ka20%>
T g Hgnt HgTvy
4L§*a2 4 L2 + L.op)(1 +wy/n)a
(Mg’ A el enlle®) §7 g 5, ot
Hay IgY
8L  6(1 + dwe/n) L3y — 61+4wgn
4_<21+ ( 0/n) 17)Zyk+ ( / ﬂzzk
Hg Hg k=0
16wy K 8(L2, + Lypp)wy Ko 16p“we K 8(L%, + L,zp)pPw,Ka?
< oKy 8L p) >b§+<pev+(z p)p )55» (53)
Ny gy Nty gy
where the second inequality uses Lemma B.8 and p > C'y /4. Using v < m, we obtain
i _42° (8(1 +w)Kno? | (L2 + Laap) (1 + wu)Ka%%)
P Hg?Y HgTt Hgnt?y
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2 2 2 2\ =
. <8Lz*a o 82 4 Leap) (L + wu/n)a ) > E[|E(0)]3]

uivz fg?Y =

17L 32w K 16(L%. + L,,Cy WK a2
1Zyk ( we ’Y+ (z f/Ng)W a)b?

g 0 Nitg Nplg?y
32p%we K 16(L2, + L,.p)p*w,Ka?
+< pwe o (LI + Lewp)pw O‘)bj (54)
Nty Ny
Applying (38) to (54) achieves (39). L]

Now we are ready to prove 3.4. We first restate the theorem in a more detailed way.

Theorem B.10 (Convergence of C-SOBA). Under the conditions that Assumptions 2.1, 2.2, 2.3, 2.4, 3.1, 3.2, 3.3 hold and
. 2 g . 1 g

B < mln{H9+Lg, 8(1_’_4{1,2/,”)L!21 }r 7 < min {fga m}: p= Cf/:ug,

a < min ! ol Hg
- 5Lya(1+wy/n)"\| 360L2. (L3 + 17k2L3)(1 + wy/n) "\ 120L2(L2. + L..p)(1 4 wy/n)’

\/ g2 \/ 2y pgL2. B
2A0L3 (L3 + TG LYY 120L5 L5\ 12 (B2(1 4 wa /) + (1 + wi)o?/n -+ 2,53 /n + 20,03 /n)

(55)
C-SOBA (Alg. 1) converges as

KZ [[vo@*);]

<2A% n 24(L3 + 17k LAY n 12L5A7 n 4A8(L5 + 1Tk3 L3) (1 + wi) fo N <LV<1>(1 + wy ) N 24L%(1 + we)y

~ Ka KB pg Ky fgT n fgM
N T2L2. (L5 + 17k2L3) (1 + wy)a? N 24L2(L% + Lawp)(1 + wu)a®
o
11gn3 figny !

2
by

n 2Ly opw, o N 96L3w4’y N 144L@2/* (L3 + 17/{3L%)wua2 N 48L52](L§* + Lopp)wuo®
n frgn frgni3 nplgy

. <2Lv¢p2wuo¢ . 96(L3 + 1762 L3 w3 . A8L2p2wyy . 144L2, p?(L3 + 1662 L3 )w, 02

n LgT fgT pgn 3
24 L% p? (L%, 4 L.,p)w,a?
L AL p) 52 (56)
fhgTY 7

If we further choose parameters as

-1

pig+ Ly 8(1+44we/n)L2 2K ((14 we)o? + 2wb?)

p= + + 5 ;
2 Ig nAj

-1

L 120+ | 2K (5 wn)od + b+ 2CF /i)

=|L
! ! Hg nAf 7
C
P *iv
Hg
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360L5. (L3 + 1753 L3) (1 +wu/n) | \/120L§(L§* 4 Lo Cy/pig) (1 + wy/n)

a=|5L 14wy, /n)+
val /m \/ gl BgY

240L2. (L3 + 17K2L3) N 120L§L§*
p2B? p2y?
-1

12, (B3(1 +wu/n) + (1+w,)07 /n+ 20,6} /n + 2CTw b2 (12n)
+ 2 ’
N’gLy*/B

C-SOBA (Alg. 1) converges as order

VnK
As/4(mf+¢/07\f ) (VTF @u0 + /@ (bs + by) + v/ F Wu By
(nK)3/4
VI F )T+ wi/n)Ac + /e, (1 + we/n) (bs + by)
Jnk

VI +we/n)(1+w,/n)AB, (14 we/n + wy/n)A
i e VAN

1 Kzl [ Vo (2" 2] =0 <\/(1 +we +wu)Aa + /(we +wa) A(by +by)

k:O

+

where A = ®(z0), Ay 2 [[y° — 0|3, A £ |20 = 20||3, and A £ max{A}, A, A), A%},

Proof. By Ly g-smoothness of @ (Lemma B.2), we have
E I:‘I)(ij-i_l)}

<E [®(z")] + E [(V® ("), 2" — 2M)] + %Xf

=E [(a*)] — aF [Ek qu)(xk),D’;m + L%WQ]E D

. z]
=E [0(z")] - SE [[Ve@)|l;] - SE [[E«DHI[;] + SE [|VeE*) - ExDb];] + LVS’O‘QE {Hf)’;

2
} . (57)
2

Summing (57) from £ = 0 to K — 1, we obtain

K-1 0) K-1 ) K—-1 ) K-1 2
S E[[ve@h) } = S E[[EDY]5] + 3 E[IVOEt) - Bu(DH[] + Lyea Y E[ k J .
k=0 k=0 k=0 k=0

(58)

Applying Lemma B.4, B.8, B.9 to (58), we obtain

1 K-1
% 2 E[[ve@Eh];)
k=0

<2A9{> N 24(L3 + 17k2L7)AY N 12L2AY N A8(L3 + 172 L3)(1 + we)fo? N Lya(l 4 wy)o N 24L2(1 4 we)y

~ Ka peK B g Ky HgTt [igTt

N

=k [Eob)]
0

N 7202 (L3 4+ 17k2L7) (1 + wy)a? N 24L2(L2. 4 Laop)(1 + wy)a? o2 Cy
pgni3 gty 'K

>
Il
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N <2LV<I>WuOZ N 96L§w47 N 144L§* (L% + 17/{3L%)wua2 N 48L§(L§* + szp)wucﬂ) 2

n fgTt pgn B nigY
N 2L v piwao N 96(L3 + 17K L3 )wef3 N 48L2 pPwiry N 144L%. p*(L3 + 1652 LT w0
n HgTt HgTt fgn 3
24L2p% (L2, 4 L,pp)wyua?
L AL - p) ) . 59
9
where
T2L2, (L2 + 17K2LA) (1 + wy /n)a?  24L2 (L2, 4 L,up)(1 4+ wy,/n)a?
Cl é]_— LV@(].-’-UJU/TL)OZ Yy ( 2 g 1)( / ) + g( z p)( / )
Ll g™y
48L2. (L3 +17k2L7)0?  24L2L2. 07
: 2u262 = Hay? (60)
g g
Note that (55) implies C; > 0, (56) is a direct result of (60). O]

B.2. Proof of Theorem 4.2
Before proving Theorem 4.2, we need a few additional lemmas.

Lemma B.11 (Lower Level Convergence). Under Assumptions 2.1, 2.2, 2.3, 2.4, 4.1, when < min {ﬁ, 82523 }

~ < min {L%, %}, p > Cy /g, the following inequalities hold for CM-SOBA (Alg. 1):

20 4BK(1+W)02 8Bngb2 a2, '
Zyk + 22 +

< (61)
B Hg Nitg Nty Mg k=0
K 24,0 2 2
sz Sg n 50L13y n 1008K (1 —|—3w4)L10 n 6K (1 + we)yor
Hg By nug Pgn
100L2. L3 12L2 - 2006L2 + 2472 2 ) Kweb? 24K weyb?
Ly I Z 1 730 pig) Kweby N i ©2)
B2 g Vg ) e njty fhgT
Proof. By Assumptions 2.3 and 2.4, 155 is an unbiased estimator of V,G*, thus
2 A 2 . 2
B [l = ot 3] = | - 0%~ k] = | - ot - 59,64 - 505 - 9,64
9 . 2
=E [||* - ¥ - BV,G*[}] + B [Hﬁ(D’; - vka)M
. 2
<1~ o)yt + %8 | [ - 7,04 (63)
where the inequality uses Lemma B.1. Consequently, we have
2 1 2
Y <(1+ Bg)E [l — vt [] + (1 + m) [l = 23]
k 2 k k 2L
<(1 - Bug)V* + 26°E HD ~v,G H (64)

where the first inequality uses Young’s inequality, and the second inequality uses (63), B < 1/pg and Lemma B.2. Summing
(64) from k = 0 to K — 1 and applying Lemma B.6, we obtain

Yy 2 S el v+
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X0 2BK(two? | ABKwdy | 2L, KZ ok Zyk (65)
_B/‘g Nig Nty 527 e

By 8 < 822‘52 , (65) implies (61). Similarly,

E|[|5+! = 25| <E (|55 - 25[]5] = E [|2% - vEn(D}) - 2[5 ++°E U E.(D¥) — DY

)

=E [|| (% = 2£) = yV2,GH (" — =) = 4(V2,G 2k + V, ) |)2] +4°E [HEk(D’;) _ Dt

]

2
] ; (66)
2

1 r R
(L4 ypg) (L= ypg) 22" + <1 + w) v? - 2L3Y% +4°E HEk(Df) - Df
g L

where the first inequality uses p > Cy/p, and Lemma B.2, the second inequality uses Young’s inequality, || —’ny/ka Iz <
1 —~yug and

2
E [H(vjyc’f - V2,G0)Z 4 (Vy FF — vaf)Hﬂ <2 <L +L ;‘) A
9

Consequently,

2 ,
24 < (14 B || 252 + (1 + wg) E [[l5+ - 2]

L2 2 R 2 L2
< (1—%)zk+6u—ﬂyk+%E {HD’;-IE,C(D’Z“) 2] 4 3Lz 67)
g

YHg

where the first inequality uses Young’s inequality and the second inequality uses (66), v < 1/p, and Lemma B.2. Summing
(67) from K = 0to K — 1, we achieve

K K—
230 1212 3 . 2 6L2.
Sozr <22 Sy 3N o ] + z
k=0 THg 9 k=0 i 2 ta “9 k=
220  3K(1 6r2, = 1212 | 18wl K 18w 12 12K wyyb>
< i (14 we)yo? 222 XJI:Jr( = we 1’7)2 4 gVZZkJr 0
Thg HgTt THy 2o Hg = [ - fgh
2 2
N 12p* Kwvyby
Nflg
220 3K(14w)yo?  6L% = 25L 12ng7b2 1292 Kweyb?
< + ( Z)'y 1 ; f 1 Zyk sz + 97 (68)
THg Hgmt 72 Hy =0 g 0 Nptg

Nilg

where the second inequality uses Lemma B.6 and p > C/[14, the third inequality uses v < T60, L7 (68) further implies
g

b AZ° OK(L+w)yol | 1202 = Xy 2L & 24meb§c 2492 Kwiyb?
E z n + 55 12 Z n + n ’ (69)
’Yﬂg Hg TRy 5 Hg = Hg Hg
Applying (61) to (69), we achieve (62). L]

Lemma B.12 (Global Vanilla Compression Error in Upper Level). Under Assumptions 2.1, 2.2, 2.3, 2.4, 4.1, the following
inequality holds for CM-SOBA (Alg. 1):

K—1 2 K
ZE {HDI;_E’C(D@HH 1+w;: K01 6wy, ZE“V@ )| } 6wuL2§:y,~C GWULQZZ’“
k=0 k=0
6oy K b2 KD
+ = — + Ll wnKbg. (70)
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Proof. By Assumptions 2.3 and 2.4, we have

E [0 - Eu(DY)

z] = {H(DI; - Dg)+ (D3 —Ek(D’i))Hﬂ [HD’“ Dk

] +E ||| Dk~ Ex(DH)|;]

n

ez (o} 1 2 2 (19 - EuL )

o)+ %,

1 n
Y
_a N
<z 2E
where the inequality uses Assumption 2.4 and Lemma B.3. We next bound the second moment of D’;yl

E|[|Dll;] =E [II(DE,; — Bx(DE ) + Ex(DE )]

=E [[|Dk, ~ E(DE)|I}] + E [|Ex(DF);]

<o? +6E [||VO(h)[3] + 6 [|[V.FE, - VoFE 2] + 6B [[[(v2,65, - V23,6524 2]
+6E [||(V2,GE - V2,65 )2|[5] + 6B [[|V2,GH(* = 25)[17] + 6F [| V. FE - V. FL |[5]

<o? +6E [||VO(ah) ] + 6B [|[V.FE, — Vo FE|2] + 60°E [|| V2,65, — 92,G5]12] + 6130"
+6L22F, (72)

where the first inequality uses Lemma B.3 and Cauchy-Schwarz inequality, and the second inequality uses Assumption 2.1
and Lemma B.2. Combining (71) (72) and applying Assumption 4.1, we obtain

R 2 1 2 L2 6wy, L2 6w, b?  6p%wy, b2
IE[HD’;—E/C(DQ)HJ <0t o +6“’“ E [[veh)];] + 6““ Pyhy Zioghy UL B ()

n
Summing (73) from £ = 0 to K — 1 achieves (70). L]

Lemma B.13 (Momentum-Gradient Bias). Under Assumptions 2.1, 2.2, 2.3, 2.4, 4.1, assuming p > C /114, the following
inequality holds for CM-SOBA (Alg. 1):

ZE“hk Vo ||} —Vaq)(xo)||2+(1+w2)K901 6wu ZE“V@ ’”

+6L2 <1+

K —
w0 % 9 w0 & 2L2v«1> A
n)kzoy +6Lg<1+n HZ+ ZX

2
N 6qu9bf N 6p2qu9b§.

(74)
n n
Further assuming 3 < min { T 82522 } v < min{%, %} 6 < min {1, oo } and applying Lemma B.11, we
9 g
have
K-1 2 272\70 2 20
RO — V(202  13(L5 4+ 25k2L 26L2Z
= 0 Bhg Vg
26(L3 + 25K, L7) (1 4 we) K fo? (14w, 39LZ(1 + we)y 9
+ + ' KO’l
Nflg n Hgnt
2L2, 26L2.(L3 +25,<;§L§) 78L2. L2\
02 522 xf
Hy 72 ,ug =0

24



Distributed Bilevel Optimization with Communication Compression

- Kb?

. <6p2wu0 . 52(L2 + 25H§L§)w5 15612 wry)
9

n Nflg Njlg

6w, 0  156L2wy 1= 2
+< = — )-Kb§+2;01E[qu>(xk)H2}.

nplg

Proof. Note that D¥ and 2%+ are mutually independent conditioned on F*, we have
k+1 E+1y]|2
E [k = voEt )]

~E {H (1= 0)(hE — V(")) + 6(DE — Er(DE)) + 0(Ex(DE) — VO(ak)) + (VO (a*) - V‘I’(W)Hz]

:ﬂ«:{||(1—9)(h’;—vq)(xk))+9(1Ek( 5) = Voo ))+(V<I>(xk)—v<1>(mk+1)||§]+02]E{HD';—IE;€(D’;)

J

(75)
By Jensen’s inequality,
B[ (1 - 6)(b — () + B(EL(DE) — Vo(ah)) + (Ve(h) — Vot )]
<(1-O)E :Ilhiz - Va(h)3] + 08 | | ©(D8) - Vo) + g - (VR - Vo) ]
<(1-O)E [||nt - Va(ah)|;] + 2608 [|Ex(DE) - V<I>(xk)|\ﬂ + g]E [vo(*) - vaEt|]
<(1-O)E [||nk - Vo(ah)|;] + 2608 [|Ex(DE) - Vo(*)|[;] + QLW Xk, (76)

where the second inequality uses Cauchy-Schwarz inequality, and the third inequality uses Lemma B.2. Summing (75)(76)
from k = 0 to K — 1 and applying Lemma B.4 and B.12, we obtain (74). O

Now we are ready to prove Theorem 4.2. We first restate the theorem in a more detailed way.

Theorem B.14 (Convergence of CM-SOBA). Under Assumptions 2.1, 2.2, 2.3, 2.4, 4.1 and assuming [ <
min{# ot 85;’22 }, ~ < min {i, 3435723 } 6 < min{l7 ﬁ} p>Crpg o< min{ﬁ,Cg} with

_ 2I2,  26(L3+25k2L3)L2. 78L§L§*
G 2 Tz B2u2 vz )’
) )

CM-SOBA (Alg. 1) converges as

KZ [[vo@s)];]

4AY N 2A0  26(L3 +25k7LT)A)  52L7A%  52(1 4 wy)(L5 4 25K2L7)8

< + 4
Ka Ko pgK B pg Ky fgT
2 2 272 2
n 2(1 + wy, )0 N T8LI(1 + we)y 0?4 12p%w, 0 N 104(L3 + 25/19L1)w1g[3 312L2 pPwery b§
n gn n Nty Nflg
12w,0 312L%w
+< L ”) B2, (77)
n Njlg
If we further choose parameters as
B 1
_QLV(I) + 02_1 ’
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-1
5= tg + Lg n 80JgL3 n 2K ((1 +wp)o? + 2&1@[)52])
2 Hgn nAY ’

| 3Ly 3K ((1 + we)o? + dweb? + 4wg(CJ%/,u§)b3)

HgT 2nAY

12w, . K ((1 +wy )0t + 6w, b} + 6wu(CJ%/,ug)b3>

=11
T n nA9
C
p=-",
Hg

CM-SOBA (Alg. 1) converges as order

-1

VnK

k=0

where we define A} = ®(20), AY £ ||hY — VO(a2)
max{Ag,AY, AY Ao}

5 A = Iy -y

z

Proof. By Lyg-smoothness of @ (Lemma B.2), we have
E [q)(xk-‘rl)]

<E [B(a*)] + E [(V(a*), 25! — )] + ZT2R [|laht! — ¥

=E [®(z")] + E [<h2§,xk+1 - x’cﬂ +E [<V(I>(x ) — h; ak xk>] + %E

E[0() - (5 - 3% ) et + 5B [Ivawh) - 23] - SE[IvaEh:].

3 e [fween )] <220 - (L Tve) S S s [ - ve
k=

By the choice of «, we have

thus by applying Lemma B.13 to (79) we obtain (77).

B.3. Proof of Theorem 5.1

2 0 A&
3 AL =

K-1
LY E[vew)z] o (m Tty +b) (1 nfoton /nm>

20 — 2003, and A =

[l —2*12]

(78)

SIH 79

Lemma B.15 (Bounded Lower Level Updates). Under Assumptions 2.1, 2.2, the following inequalities hold for Alg. 2:

K-1 K

K-1
VE<6Y YR 43L > At
k k=0

=0

zh <6 ZF+3L2. i XF.
k=0 =

- o

k=
K—

=

k=

(=)
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Proof. By Cauchy-Schwarz inequality and L,«-Lipschitz continuity of y*(z) (Lemma B.2), we have
2
V5 =E [ =y + 05 = )+ @k = )]
BV 43R [|[y - ] + 30"
<3V 4 3YF 4+ 302 AF. (82)
Summing (82) from k£ = 0 to K — 1 obtains (80). Similary, (81) is achieved by applying Cauchy-Schwarz inequality and
L. «-Lipschitz continuity of z*(x). O

The following Lemma describes the contractive property when multiplying (1 + w)~! to an w-unbiased compressor.
Lemma B.16 ((He et al., 2023a), Lemma 1). Assume C : R% — R js an w-unbiased compressor, then for any x € R,

it holds that
2
<|{1-
]_( o ) el

Lemma B.17 (Bounded Difference of Local Update Directions in Lower Level). Under Assumptions 2.1 and 2.3, the
following inequalities hold for EF-SOBA (Alg. 2):

E|[|Dft! - Db |l;] <202%% + 2020k + 302, (83)

[||1Dk+1 ’;71,||ﬂ <GL3XY +6L2VF +6L2 2 + 302, (84)

Proof. For the first inequality, we have
B [|l0%, — DE7Z] =B 5. (105, — i3] < B [[Be(Dh,) — D] + o
<%E [|B4(D,) - Bya (D N|[5] + 2B [|IDES — Bia (DEI] + 0

22Xyt 42025 4307, (85)

which is exactly (83), where the first inequality uses Lemma B.3, the second inequality uses Cauchy-Schwarz inequality, the
third inequality uses Assumption 2.1 and Lemma B.3. Similarly, we have

E[[| D, - DX ] < 2B [|[Bw(DE,) — By (DEY)|[3] + 307, (86)
Since
Ex(DY,) = Ero1(D2;1) =V5, G (2" — 2571 + (V5,GF = V5, G 4+ (W FF = VY,
by Cauchy-Schwarz inequality and Assumption 2.1 we have
E[[Ex(DY,) — Exoa (DAY 3] < 812257 + (312, 02 +3L3) (51 + V477
which together with (86) leads to (84). O]

Lemma B.18 (Memory Bias in Lower Level). Under Assumptions 2.1, 2.2, 2.3, 2.4, and assuming §; = (1 + wy) ™!, the
following inequalities hold for EF-SOBA (Alg. 2):

n K—2 K-1
Z ZIE [Hmkﬂ 2} L2 ZHE 2’i||;+12wg(1+w4)L§ > X+ 2w (14w Y Y
= k=0 k=0
+ 18wg(1 +we) (K —1)o?, (87)
=1l k+1 2 QW 0 |2 2K72 k 2K71 k
~YE [||m + } ZHE 2 = m 2+ 36w+ w) L3 S X 4 216wp(1 +wi)LE S Y
k=0 = i=1 k=0 k=0
K-1
+ 216w (1 +we) L2 > ZF 4 18wy (1 + we) (K — 1)o7, (88)
k=0
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Proof. By the choice of §;, we have
k+1 _ pk |1?] =
e [l - 051F] -2 |,

2
)
<(1-1= Uw ~mb ]
— 1+wZ Y, Y,tl2

1
< (1—M)E[Hm,’; = DY 3] + 3w [ Dk - DEFE] (89)

where the first inequality uses Lemma B.16, and the second inequality uses Young’s inequality. Applying Lemma B.17 to
(89), we obtain

k k
1+ ( Yt myﬂ')_Dy,i

1 ) _ _
E [[mit - Dl < < (1+w)) E [k = DE[5] + 6w L2AE™ + 6w, L2VET 4+ 9o, (90)
For the initial term, we have

E b — DYl < ( 1+w) D5 =mlly] < 7B [IBDG) = mall3] + 1 LA

where the first inequality uses Lemma B.16, and the second inequality uses Lemma B.3. Averaging (90) fromi = 1ton
and summing from k£ = 1 to K — 2 and applying (91), we reach

n K-1
QCUg 2
Z ZE[ b -k lr] < ZHE 2= ml|o 4 12001+ w) L2 Y Ak
k=0 ' i=1 i=1 k=0
K—1
+ 12w (1 + we) L2 > Y+ 18wi(1 + we) Ko, (92)
k=0
Applying Lemma B.15 to (92), we reach (87). Similarly, we have
1
k+l :| E|: k_Dkl i|_|_3 E|:Dk _Dkl i| 93
m; —_— m w .
B [kt - D8] < (1 s ) B [l - DA ] + 3w ) [ ©93)
Applying Lemma B.17 to (93) leads to
1
E+1 _ k k—1 2 Zk—1 2 (pk—1 k—1 2
[Hm oDk } ( (1+w)) E [Hmz ,— D ] + 18w L2221 + 18w, L3 (X1 + Vi) + wyo?.
(94)
For the initial term, we have
1 0 2 1 0 wt’Ul
B [Imte— D3.0E) < (1- o ) B[22~ mbl] < T2k Jeot,) — m 3] + ; ©5)
where the first inequality uses Lemma B.16, and the second inequality uses Lemma B.3. Averaging from ¢ = 1 to n,
summing from k = 1 to K — 2, applying (95) and Lemma B.15, we reach (88). O

Lemma B.19 (Local EF21 Compression Error in Lower Level). Under Assumptions 2.1, 2.2, 2.3, 2.4, assuming §; =
(1 + wy) ™1, the following inequalities hold for EF-SOBA (Alg. 2):

K-1

n 9 n K—1
1 k ko we(1 + 4we) 0 k 2 k
~YE HD i Dl | < MBS ) — i+ e L3 Y Ak 24 I Zy
k=0 =1 - 1= k=0 k=0
+ 6w Ko (96)
K-—1 n r 9 n K-—1
1 Ak k|1?] o we(l + dwe) 0 k k
~3E HD -k | < Y B - m |2 + 12w 13 S XF 4 72w I3 Zy
k=0 =1 - - = k=0 k=0
K
+ 72w LY 2% + 6wpw Ko?. (97)
k=0
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Proof. By the definition of Dy ;» we have

Nk k
E MDy - Dk,

} =E [[jmh  +C(DY, —mb ) = D3] < wil [|[Dh, —mt 2]
<2wiE || mb ; — DETYI3] + 206 [|| DY, - D]

<9w,E [H | ] + dwp L2XE 4 o, L2VRL 4 Gugo?, 98)

yl

where the first inequality uses Assumption 2.4, the second inequality uses Cauchy-Schwarz inequality, the third inequality
uses Cauchy-Schwarz inequality and Lemma B.17. For the initial term, Assumption 2.3 implies

N1 0
E U’Dy - DY,

2
2} < (1+w)E [Hmiz - Dngﬂ <wp ||IE(D21) - mgluz + weo. (99)

Averaging (98) from ¢ = 1 to n, summing from k = 1 to K — 1, applying (99), Lemma B.15 and B.18, we obtain (96).
Similarly, we have

“ 2
E [HDk — D, J <2uw(E [Hm’; - DY } + 120 L3N 4 120, LIVETY + 120, L2257 4 6weo?,  (100)

and

. {Hﬁg»i - D= j < we [B(D2,) = m?||, +wiat. (101)

Averaging (100) from ¢ = 1 to n, summing from k£ = 1 to K — 1, applying (101), Lemma B.15 and B.18, we obtain
97). O

Lemma B.20 (Global EF21 Compression Error in Lower Level). Under Assumptions 2.1, 2.2, 2.3, 2.4, assuming §; =
(1 + wy) ™1, the following inequalities hold for EF-SOBA (Alg. 2):

K 1 n 9 9 K—1
& (1 + 4wy) 0 (14 6wewy)Ko dweun L &
> e[t - pyl[] < Y0 i (T RS 2
i k=0
24w w L
Gt Z (102)
K-1 ) 9 9 K—1
& Ak we(1 + dwy) & 0 o n2 . (14 6wwi)Ko; = 12wpun L] &
E |:H]Ek(Dz) - Dz 2:| < n2 Z HE(DZ,Z) - z,iHQ + n + n Z X+
k=0 = k=0
K
72&)@&)1[/% by 72wgw1Lg i
zk 103
+ ;Oy Z (103)

Proof. By Assumption 2.3, we have

E [Hvyek - D’;Hj —E M(ng — D¥)+ (D - vka)Hj —E {HD’; _ D’;Hj +E [HD’; - VkaHﬂ

1

] + =02, (104)
n

Summing (104) from k = 0 to K — 1 and applying Lemma B.19, we obtain (102). Similarly, we have

[HEk (D) — DkH } < —ZE [HDk — Dk,

Summing (105) from k = 0 to K — 1 and applying Lemma B.19, we obtain (103). O

1
} + =02, (105)
n
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Lemma B.21 (Lower Level Convergence). Under Assumptions 2.1, 2.2, 2.3, 2.4, assuming 5 < min { s %UZ%},
~ < min {Ll , m} p>Cr/ug 60 = (1+we)™!, the following inequalities hold for EF-SOBA (Alg. 2):

K

2)° 4Bwe(1 + dwy) 0 2 (16weL§w1ﬂ 4L, 2 ) A
V< S T EUNT R ,) - ml ||+ Xk
Sy <2 ) 5 ) | (1B D) 5
48K (1
L AP+ Buewr ) o , (106)
HgT
420 L2)° (1+4 100L (1+4
>t <12 WA Sl o) 58 e ) -, S S o) -
Vhg By HgTt ’ pan ’
n 100K (1 + 6wpw ) L2 o> n 6K(1 + 6wpwy )yo?
pin Lgn
400wy L3L3B  100LILZ. 72w L3y 1212,
+ wew?)l 1 3/8 214 y WeWi 47 Z Xk (107)
fign P ug fign g ) =
Proof. By Assumptions 2.3 and 2.4, b’; is an unbiased estimator of Vka, thus we have
2 A 2 . 2
B [l =t 2] =2 o - 50f ot]}] == [ - ot - 59,60 - 500 - w6
9 . 2
=E [||y* - gt - BV, G ;] + E [HB(D’; - vyG’f)M
. 2
<(1 - Bug)*V* + F°E [HD’; —vyG’“HQ], (108)
where the inequality uses Lemma B.1. Consequently,
2 1 2
YL <(14 Buy)E [Hyk—H _ ny + (1 + 5#) [Hykﬂ _ nyz}
k 2 k k 2L ko
<(1 - Bug)V* + 26°E HD - v,G H X (109)

where the first inequality uses Young’s inequality, the second inequality uses (109), Lemma B.2 and 8 < 1/p,. Summing
(109) from k = 0 to K — 1 and applying Lemma B.20, we obtain

K
S22y wu] T

0

<
~ Brig

250.)( 1 + 4wz Z HE

28K (1 + 6wewy o> Suwpwi L2 2L2 iy
,£+ﬁ< ), (Beenldp 2 ) 5
Njig Nflg b’ %

Zyk (110)

By 8 < 52—, (110) implies (106). Similarly, by p > C/u, and Lemma B.2, we have
)

— 96wpwi L2’
—E [[|(z* - 25) = /W2, GH(* - 2F) = 1(V3,GEek + W, FR) 2] +4°E [HEk D7) - D

k=0
48wgw1L I}

E[[}5 = 2] <B[1244 — 2] = B [||* —vEu(DY) - ’“MMQE[HMD’“ - D;

)

1 .
<(1+7g) (1= yp1g)*2" + <1 + w) 7 2L3V* +7°E U’Ek(D’J) - Dt 2] , (111)
g
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where the last inequality uses Young’s inequality, || —yV?2, G*||2 < 1 — yu, and

vy

Gyy /~L

CQ
E {H(vgya’f = V2G04 (V,FF — vaf)Hz] <2 <L + L2 f) N%S

Consequently,

2 2 2

24 < (14 L) B || - 242 + (1 T ) E [[l5+ - 2]
2 THg

6L32 37?2 - 2 3L2.

<(1-22) 2o By, 3a |5t g o] + 22

2 Hg 2 2 Vg

Xk

where the first inequality uses Young’s inequality, the second inequality uses (111), Lemma B.2 and
(112) from K = 0 to K — 1 and applying Lemma B.20 we achieve

K
2.2

(112)

v < 1/pg. Summing

L22° 1218 12, &
12LE 5 ey [Hm E,(DF) H |+ z
fYILLg .ug k=0 :ug k=0 g k=
<2Z° 3ywe(1 4 dwy) Z IE(D2,) —m?, |2 + K(1 + 6w )y07 (36wew1L37 6L, )K 1)(
T Yhyg o pgn? fhgmt fhgTt Vg ) =
N (12L2 N 216wew1L17) Zyk 216wew; L2y sz
“9 Tty k=0 g k=0
<220 4 oyweld + Awe) 3ywe(1 + dwy) Z IE(D H 3K (1 + 6wpws )yo? N (36wgw1L27 6L2. ) = 1)(
_"/,U*g g n2 z,z 2 fgn fgn ’Y Ng Pt
25L
13y ZZ’% (113)
Mo k=0 2=
where the last inequality uses v < m This further implies
K -1
420 6ywe(1 +4 6K(1+6 2 72 L2y 12L2
St <12 O ) § ) | SOk (Pl BN S
— fign Hgmt [ign Vg ) =
25L
1 Z PE. (114)
Mo k=0
Applying (106) to (114), we achieve (107). O]

Lemma B.22 (Momentum-Gradient Bias). Under Assumptions 2.1, 2.2, 2.3, assuming p > C§ /14, the following inequality

holds for EF-SOBA (Alg. 2):

Z]E“hk Vo(z H} ||h2«*V9‘I>($O)||2 K9‘71 6L2Zyk GLZZZ’“ 2Lv

k=0 k=0 k=0
Proof. Note that %1 is conditionally independent of D¥ given filtration F*, we have
k+1 k4142
E[[[pk = vo@t ]
=E [[|(1 - 0)n% + 0Dk — Vo (=[]
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=E [Ex [(1 — 0)(hE — V®(2*)) + 0(Dk — Ex(DY)) + 0(E (DY) — V@ (2¥)) + (VO (") — VO (zFT1))]]

=E [[|(1 - 0)(hk — VO(a*)) + 6(E (D) - Vo(ah)) + (VO(*) - Voh )|} + 6°E [ DE — Bx(DE)I;]
2
6%0?

n

+

<(1-0E Mh’; - V@(x"‘)uﬂ +0E H(Ek(Dﬁ) ~ V(b)) + %(V@(mk) —Vo(zh )

2

212 6%0?
<(1- O [k — Va(a)|[}] + 268 [||[Bx(D) - V(|| + Z¥tak+ =1, (116)
n
where the first inequality uses Jensen’s inequality and Lemma B.3, the second inequality uses Cauchy-Schwarz inequality

and Lemma B.2. Summing (116) from £ = 0 to K — 1 and applying Lemma B.4, we achieve (115). O

Lemma B.23 (Local Momentum Bias). Under Assumptions 2.1, 2.2, 2.3, the following inequality holds for EF-SOBA
(Alg. 2):

Kz_:libzn:E[Hhﬁ,i—Ek || } ZHh ( H2+ 5Kz:1xi+36L2 Zyk 36L?;§:2k
o + 21K10% (117)
Proof. By the update rule of hz ;» we have
E (||t — Ex(D);]
=E [H(l —0)(hh " = Ep_1 (DESY) + 0(D5 7 — Eema(DETY) + (Beoa(DETY) — Ex(DE )| ]
E [[rE5 — B(DE]] +290%+%E [I[E4(DE,) = Ein(DE)| } (118)

where the inequality uses Jensen’s inequality, Cauchy-Schwarz inequality and Lemma B.3. For the last term, we have
E[H]Ek( ) — B (DE]] }
= [||(V2,GF - V2,GF )2k 4 V2,GE 2k - ) 4 (VFF - R[]
< (312,07 +3L3) (X} + W51 4 30225, (119)

where the inequality uses Cauchy-Schwarz inequality and Assumption 2.1. Averaging (118) from ¢ = 1 to n, summing from
k =1to K — 1 and applying (119), we obtain

K-1 1 n 9 1 n o K— 6L2 K—-1
> S E [k, B0k )] S%Znhﬁz,i— 0P+ 2Kt + 52 Z 5 2k
k=0 = i=1 i k=0 k=0
6L 2 K—1
+ 5 >zt (120
k=0
By applying Lemma B.15 to (120), we obtain (117). L]
y applying

Lemma B.24 (Global EF21 Compression Error in Upper Level). Under Assumptions 2.1, 2.2, 2.3, 2.4, assuming §,, =
(1+wy,)™ Y, and mg’i = hgﬂ-fori =1,---,n, the following inequality holds for EF-SOBA (Alg. 2):

iE Bk — k|| <winh0 E(D2 )1 + 36wy (1 + w,) L2 KZIX + 216w, (1 + wy) L2 f:y’f
x x 5| — n . T, u u u u
k=0 i=1 k=0 k=0
K
+ 216wy (1 + wu) L] > 2% + 18wy (1 + wu) K677, (121)

k=0

where we define ht £ L5  pk .
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Proof. By Lemma B.16, we have

2

E [[mbs — hi 2] Hmm+w_h§y IE (1_ leu) (st —mh 2] 22y
ForE [[[155" — mk i[15]. we have
E|[[pk —m H 2]
=R [|| (1, —mk ) +0(DE, —B(DE ) + 0(B(DE ) — 1 )]
< (1+M>E[Hm’;i Bl } (14201 +w,))0%0? + (1 +2(1 +wy))0’E [||h§,i—1E(D§,Z-)||ﬂ» (123)

where the inequality uses Young’s inequality and Assumption 2.3. Combining (122)(123) achieves

1
E [[mbs - n 7] < ( (H))E[Hm;i_h;iuﬂ+3wue2a§+3wua2m[||h§,i_1E(D';7i)||§]. (124)

Averaging (124) from ¢ = 1 to n and summing from £ = 0 to K — 1 gives

n

K n
1 k ik 2} 2(1 + wy) 0 ;0 |2 2 2
kZ:O n ;E [Hmml h:m’”g < n ; ”mmz hmz” + 6wy (1 + wy ) K070

K—-1 1 n ,
6w, (l+w,)f? Y =3 E [thi —IE(D’;i)Hﬂ. (125)
k=0 i=1

Applying Lemma B.23 to (125) and noting that mJ ; = hj ;, we obtain

K

1 « 2
kZ:o n ;E [Hm];z - hlacc,iHQ}

6w (1 4wy, )l & =
<18uwy (14 wy) K007 + —2——2 N " ||h) , = (DY ,)||” + 36w, (1 +w, ) L2 Y~ AF
n i=1 , 7 k=0
K K
+ 216wy (1 + wu)L3 > V¥ + 216w, (1 +w,) L] Y 2. (126)
k=0 k=0

By the update rules we have 7% = L " | mk ;. thus (121) is a direct result of (126) by applying the following inequality:

us Sk k|| 1 k ko2
3e] | EEUTNEDIFS DLl [N}
k=0 =1

k=0

O

Lemma B.25 (Update Direction Bias in Upper Level). Under Assumptions 2.1, 2.2, 2.3, 2.4, assuming p > Cj /g,
6w = (1 +wy)" Y and m%i = hg’ifori =1,---,n, the following inequality holds for EF-SOBA (Alg. 2):

K n
- _2]n§ — ( O | 12wy (1 + w)f
>k it - voh;] < g Beallzwnism 0 o)
k=0 i=1
- ( oo 12wl +wy L5> Z Xf+ 12w2L2Zyk
k=0 k=0
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us 2K0
+12w, L2 24+ (n + 360w, (1 + wu)KQQ) of. (127)
k=0
Further assume 3 < min { T 96(:;9# }, v < min {%v 43255’%} and applying Lemma B.21, we have

K N
];E U Rk Vfl)(xk)Hz]

2 12w, (1 = 24wy (L3 + 25K2 L3 48wy L2
<2 — V(a4 2§y o ey 2B BRI g Bty o
0 n i—1 ' ' gl KgY
48wo (1 + 6wpwq ) (L2 + 25K2 L3 K 26 T2wo (1 + 6wpw; ) L2
" 2 ( 0 1)( 2 g 1) 3_02+ —+36wu(1+wu)92+ 2 ( 0 1) a7 K-a%
fgn n fgn
480./2(%(1 + dwy) (L3 + 25H2L2 n 0 o 12 T2wawe(1 + 4dwe) L 97 0 12
[1gm? ;HE(D?J%) _myyin f1gn? ZHE _mz,iHQ
ALY g 2 2 272 4L12;* 16wew: L3 8
+ 02 + 72w, (1 + wy) Ly + 12wa (L3 + 25k, L7) B2 + n
19w, 12 (12L§* N 72wgw1Lify>} KZ—1 o 1s)
2 . .
I\ 2l fign *
Proof. By Cauchy-Schwarz inequality, we have
2
E [ - Vo(x H ] <2E [ — hf J +2E [Hh’; - vq>(x’“)Hﬂ : (129)
Summing (129) from k£ = 0 to K and applying Lemma B.22 and B.24, we obtain (127). O

Now we are ready to prove Theorem 5.1. We first restate the theorem in a more detailed way.

Theorem B.26 (Convergence of EF-SOBA). Under Assumptions 2.1, 2.2, 2.3, 2.4, assuming £ < min { P %Zﬁ },

v < min{ia%}, p > Cflug 60 = (1+w)™ 0 = (1 +wy) ™, md; =hY, fori=1,---,n, a<
min{ﬁ, Cs3} with

4L2 4L2* 16(4@(411[/2,8
C;2 4 VE 4 72w, (1 + wy)LE 4 12wy (L3 + 25K2L3) LA 3
’ 62 ? 9T B2l pigm
1202, 72 L3
+ 12w2L§< e 47)],
V22 [ign
EF-SOBA (Alg. 2) converges as
1= MW | ] g 200 120, (1+ w,)0A] | 2wn(L3 + 2565 1)A]
K & " Ko K 11gK B
48w2L§A2 N 48w (1 4 6wew: ) (L3 + 25K L7) e
prg Ky Hgm
20 72w (1 + bwewy ) L2
+ < + 36wy (1 + w,, )0 + 2( ) 97) o2
n Lgn
48w2w[(1 + dwe) (L3 + 25K2L3) B & 0 12
11 K n? Z [E(Dy) = miyll;

34



Distributed Bilevel Optimization with Communication Compression

72&)2&)@ 1 +4CLJ5 "}/ 9
g K2 ’ ZHE —m2il- (130)

If we further choose parameters as

1 1 1

= ) = C ) 6 = b) 6'[14 = b
2Lve+Cy 10 A W 1+ w,
—1
g [Hat Ly , 96wewi L2 N 2we(1 + dwe)AY, 2K (1 bww)
2 Hgn nAf nAd ’

-1

- 432&)@&)1[/!27 L 3we(l + 4WZ)A21Z n Kof(l + 6&)@&)1)
R HgT 2n A9 nA9 ’

—1

0:<1+\/6wu(1+wu \/Ka1 \/18wu1+qu01> |

EF-SOBA (Alg. 2) converges as order

K-1 1/3 1/3A2/3+2/3
1 1—|—wu21—|—w 3/2\/A0 wo' (1 + wy, /A/O/ 1+ wy)A

K & 2 NEY K2/3 K
N (1 + wy )%y /we( 1—|—ng (14 wy)?wiA
VnK nk ’

where we define A% 2 o) a2 - uho - v<1>< N AL £ AXIL A%, - BDS)IE A9 & | -
B3 AL L0 — O3 A% A LS |R(DY,) — 5 A% & LY [BDL,) —m, |l and A

max{A%, A%, AY AD A0 AY AQ%}

(1>

Proof. By Lyg-smoothness of @ (Lemma B.2), we have
E [(I)(,Tk+1)]

<E[0(:)] + E[(Va(ah), 25! - ah)] + LT2E [kt - o]

oo ( ) e ffrn o) Bl

= [®(z*)] — (1 - LW) X+ SE [HV@(Ik) — ik z] - SE[[[Ve@h)f;] - (131)

Summing (131) from k = 0 to K — 1, we have

Kzl E (Vo) } ) <1LV<1>> Kﬁlx’wiE U Pk — x’f)m (132)
k=0 o? @ k=0 ! k=0 : 2}
By the choice of «, we have
2z 2
thus by applying Lemma B.25 to (132) we obtain (130). O

C. Convergence Acceleration

In this section, we present the algorithmic design as well as convergence results of the two variants mentioned in Sec. 6,
namely CM-SOBA-MSC and EF-SOBA-MSC.
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C.1. Algorithm Design

In this subsection, we propose two variants of the proposed algorithms to help further improve the convergence rate. These
variants are both based on the multi-step compression (MSC) technique (He et al., 2023a) as shown in Alg. 3.

Algorithm 3 MSC Module
Input: vector z, w-unbiased compressor C, communication rounds R;
Initialize v° = 0;
forr=1,--- ,Rdo
Send compressed vector C(z — v"~!) to the receiver;
Update v" = v" ! + (1 + w)~!1C(z — v" 1),
end for
Output: MSC (z;C, R) £ v®/ (1 — (w/(1 + w))®).

Note that MSC contains a loop of length R, we may also introduce an R-time sampling step to balance the computation and
communication complexities. Specifically, we use the following steps instead of (6):

R
1 ) ) L
éﬁzvin(l‘kvyk;gﬁ )Zk-i-VmF(xk,yk;(bf’ )’
r=1
R
Dk Al Zv G( k k. ¢k 3
Yyt _E yG Ty ’gi ), ( )
r=1
2 1ym g k gk ghory k koo ok
:Ezvny(‘r Y ;gi )Z +va($ Y ,¢7 )
=1

Intuitively, by replacing C(-), C*(-) with MSC (+; Cf, R), MSC (+; C*, R), (6) with (133), the outer loop of the double-loop
variants are equivalent to the original algorithm except for reducing the gradient/Jacobian sampling variance o2 by R times,
as well as reducing the compression variance wy,, wy t0 wy, (wy /(1 4 wy))™ and wy (we/(1 + we))", see Lemma C.2. For
convenience, we name the so-generated variants of CM-SOBA and EF-SOBA as CM-SOBA-MSC and EF-SOBA-MSC,
respectively.

A detailed description of CM-SOBA-MSC and EF-SOBA-MSC is in Algorithms 4 and 5, respectively.

Algorithm 4 CM-SOBA-MSC Algorithm

Input: o, 3,7, 0, p, R, 2°, 40, 2°(||2°||2 < p), h%;
fork=0,1,--- K —1do

on worker:
Compute D¥ | D’; " Dk as in (133);
Send MSC (D’;l,C“ ) MSC (DSZ,Cf, R), and MSC (DfZ,C»Z,R) to server;
onserver
= 5 L MSC(D WCZ‘, R).
- 1Z?1MSC( yﬂ 17 )
D];—%Z ( zz? 2’ )
I R hk
g+l = kiﬂ Dk’
2k+1 — - Dk,

Chp( B+ p);
h’i“ (1-6)hk +6- DE;
Broadcast zF+1, y#+1 2F+1 to all workers;
end for
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Algorithm 5 EF-SOBA-MSC Algorithm
toput . 5.7, 0, B o 20 1l < ) Gk G (2. 02, B = Ly m ml =
%Z?ﬂmg,w 2— : Zz 1m

fork=0,1,--- | K —ldo
on worker:
Compute D¥ i D’; " D’;)i as in (133);
WAt = (1—0)hk , + 0 DF;
mhtt =mk 46, - MSC (hEH' —mk ;C R),
Ztlfm .+ 00 - MSC (DE, —mk :C, R),

mk-i—l m +5£ MSC (Dk —mzz,cf, );
Send MSC (hffl —mk ;;C, R) ,MSC (D} ; —mk ;:C{, R) ,MSC (D¥ ; —mk ;;Cf, R) to server;
on server:

D= m + £ 32, MSC (DF b L),

DY — mk+ L3, MSC (DE, - mb il R):

xk+1 :{L’k —a'h];,

Ykt = yk — g. Dk;

k1l _ Lk - Dk

= Clip(2 ’“*Hp);
hiﬂ =hb 4% >0 MSC (hitl my i3 Ci R);
5 ;
mlqu:m’;'FfZi:lMSC (D y”cz R):
mhtt = mk 4 %é > i1 MSC (Dlzcz —mZiCl R )

z 2,0
k1 g kt1 2k+1 1o all workers;

Broadcast x
end for

C.2. Convergence of CM-SOBA-MSC and EF-SOBA-MSC

Similar to Lemma B.3, we have the following lemma for the gradient accumulation mechanism.

Lemma C.1 (Reduced Variance). Under Assumption 2.3, we have the following variance bounds for CM-SOBA-MSC
(Alg. 4) and EF-SOBA-MSC (Alg. 5):

Var Dy, | F¥] <%, Var [DF | F*] <% /n;
Var [Df ;| F*¥] <67, Var [Df | F*] <67 /n;
Var [Df, | F¥] < &7, Var [DF| F*] <67 /n.

The following lemma describes the property of the MSC module (Alg. 3).

Lemma C.2 ((He et al., 2023a), Lemma 2). Assume C is an w-unbiased compressor, and R is any positive integer.
MSC (+; C, R) is then an &-unbiased compressor with

R
. w
O=w .
<1+w)

Consequently, MSC (+;C¥, R) is equivalent to an &w,,-unbiased compressor. Similarly, MSC (-; ct, R) is equivalent to an
w¢-unbiased compressor. The following is a technical lemma.

Lemma C.3 (He et al., 2023a), Lemma 11). For R > 4(1 + w) In (4(1 + w)), it holds that

w R w R/2
R < | — .
<1+w) _(1+w>

We have the following convergence result for CM-SOBA-MSC (Alg. 4).
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Theorem C.4 (Convergence of CM-SOBA-MSC). Under Assumptions 2.1, 2.2, 2.3, 2.4, 4.1 and assuming 3 <
min{# o 85(22} v < min{Ll , 36WL2} 0 < mm{l, ﬁ} p>Cplpg o< min{ﬁ,C’g} with

g z*
62 B2y Y ug

O 26(L3 + 25k2L3) L2,  T8L2L2
oy = + ,

CM-SOBA-MSC (Alg. 4) converges as

1K—1
= Y E[[[veEh);]
k=0

4AY  2A0  26(L3 4 25k2LT)AY  52L2AY N 52(1 + @e) (L3 + 25K2L3) 3

<"+ + L+ &*

Ka Ko pg KB g Ky g

201+ @,)0 T8LE(1+ 12p%0,0  104(L3 + 25K213)& 312L2p%%
+<<+w>+ i e)7>.6%+<pw J IR+ B IAG8 | B0

n ,LLng n nug nug

120,60 312120

+< Pl T ”>-b§. (134)
n Nflg

If we further choose parameters as

14 wy + we)? (b5 + b2)?
R={4(1+wu+w5)ln(4(1+wu+wz)+( Wa + we) (f g) >w7

0.4
-
2Lye +Cy Y
-1
g (Htatle 8Ly 2K ((1 + @¢)52 + 20eb2)
N 2 AO ’
HgT nAy
—1
- soanl |3 (U4 @003 + 402 + 400(C3/12)82)
T I HgT 2nAY ’
1
0|1 2% K ((1 + @y)57 + 60,07 + 603“(0]%/#3)133)
B n ’I’LAg )
C
p=-1,
Hg

CM-SOBA-MSC (Alg. 4) converges as order

1’ VA (14w, +w)AB(1)
o 3 E[Ivot ] - o (Va2 4 Lbeetnad),

where T 2 KR is the total number of iterations of CM-SOBA-MSC (Alg. 4), O hides logarithmic terms independent of T,
and A is as defined in Theorem B.14.

Proof. By Lemma C.1 and C.2, the outer loop of CM-SOBA-MSC (Alg. 4) is equivalent to CM-SOBA (Alg. 1), except for
using gradient/Jacobian oracles and unbiased compressors with variance reduced by a factor of R. Thus, (134) is a direct
corollary of Theorem B.14. By applying Lemma C.3, the choice of R implies

o? o2

ng S b2 —|—1)2
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Consequently, by the choice of a, 3, 7, 8, p and R, CM-SOBA-MSC (Alg. 4) converges as

K-1 - - ) )
%ZE“V‘I’ )| } <\/1+wu+w)Ao—+\/R(wu+wz)A(bf+bg)+(1+wu/n+w/n)AR>

k=0 VnT T
A [(VAr (1 +w, +w)AB(1)
o4 o)

For EF-SOBA-MSC (Alg. 5), we have the following notations for convenience:

01 214+ 60,(1+Qp), @221+ 360, (1+ D).

Now we are ready to prove Theorem 6.1. The detailed result is as follows.
Theorem C.5 (Convergence of EF-SOBA-MSC). Under assumptions 2.1, 2.2, 2.3, 2.4 and assuming p > C’f/ug,
6 < min{ 2, o r2h y < min{ b gt L e = (L @)L 0w = (14 @) md, = Y, for

t=1,---,n, a <min

92

o (1202 T2 I3
+12w2L§( e ”)]7
Vi g

4I% 412, 1600 L2
Cr? =2 [ +72wu(1+wu)L5+12w2(L2+25/£2L2)( y wilon Lz

B2u2 [gn

EF-SOBA-MSC (Alg. 5) converges as

K- - N -
1 Zl]E { V(| } g 200 120, (1 + @, )0AY  24@9(L3 + 25K2L3)AY
K prs K& K g KB

48&)2L3A2 N 48G9 (1 + 6@pn ) (L3 + 25&3L%)ﬁ 5
ey
prg Ky HgT
20 7209 (1 + 6@e01) L2
n < + 360, (1 + @4)02 + 2( ) 97) 52
n gT
485)2(11@(1 + 4@@)([;% + 25/%52][/%)6 n 0 0 112
+ [1g K n? Z HE(DW) - my,i”z
200w (1 + 40e) L 97
+ o ZHIE —m, |15 - (135)
If we further choose parameters as
1+ wy)?An3
R= {4(1 + Wy +wy) In (4(1 + Wy + wp) + (“‘;Q)”ﬂ )
1 1 1
=, = C 5 5 = T = 5’[1, - ~
2qu>+0471 P f/ug ¢ 14 @y 1+ @,
-1
5= tg + Ly N 96wew1 Ly n 20 (1 + 40;£)Amy n 2K62(1 +06wgw1) ’
2 HgT nAj nAj

-1
(A Dy | [sa(1 460N, | [KEH1+ 6on)
R g 2nAY nAY ’
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-1

9:<1+\/6wu(1+wu \/KU1 \/l&uul—l—wUKUl) ,

EF-SOBA-MSC (Alg. 5) converges as order

1= 21 (VA (14w, +w)AB(1)
i 3 B[Iveen] =o (ViF (e patetd)

where T : KR is the total number of iterations of EF-SOBA-MSC (Alg. 5), © hides logarithmic terms independent of T,
and A is as defined in Theorem B.26.

Proof. By Lemma C.1 and C.2, the outer loop of EF-SOBA-MSC (Alg. 5) is equivalent to EF-SOBA (Alg. 2), except for
using gradient/Jacobian oracles and unbiased compressors with variance reduced by a factor of R. Thus, (135) is a direct
corollary of Theorem B.26. By applying Lemma C.3, the choice of R implies

R, < —2
YT V/An3/2’
Consequently, by the choice of 4, &, a, 3, v, 0, p and R, EF-SOBA-MSC (Alg. 5) converges as

@uSL UD@SL

1 Kfu@ [ V(| } (1+ @u)2(1 + @)%/ Ao N (Riy)Y/3(1 + @, ) /3A2/352/3 L (L+@)AR
K ~ VnT T2/3 T
(1 + @)%\ /@e(1 + @) AR (14 @y)°03AR
v/nT nT '
0 VAo n (1 + wy +we)AB(1)
vnT T '

D. Experimental Specifications
D.1. Hyper-Representation

Problem formulation. Following (Franceschi et al., 2018), the hyper-representation problem can be formulated as:

m)%n L(N\) \D | Z ;&)
EG'D
st.w*(N\) = argmm D Z (w, A;m)
D-| 5

where L stands for the cross entropy loss here, D,, and D, denote the validation set and training set, respectively. Hyper-
representation consists of two nested problems, where the upper-level optimizes the intermediate representation parameter A
to obtain better feature representation on validation data, and the lower-level optimizes the weights w of the downstream
tasks on training data.

Datasets and model architecture. For MNIST, we use a 2-layer multilayer perceptron (MLP) with 200 hidden units.
Therefore, the upper problem optimizes the hidden layer with 157,000 parameters, and the lower problem optimizes the
output layer with 2,010 parameters. For CIFAR-10, we train the 7-layer LeNet (Lecun et al., 1998), where we treat the last
fully connected layer’s parameters as lower-level variables and the rest layers’ parameters as upper-level variables.

Hyperparameter settings. According to the optimal relation shown in (10), we set the compression parameter X = 200
for lower-level and K = 2000 for upper-level. The dataset is partitioned to 10 workers both under homogeneous and
heterogeneous distributions. The batch size of workers’ stochastic oracle is 512 for MNIST and 1000 for CIFAR-10. The
moving average parameter § of CM-SOBA and EF-SOBA is 0.1. We optimize the stepsizes for all compared algorithms via
grid search, each ranging from [0.001, 0.05, . .., 0.5], which is summarized in Table 2.
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Table 2. Stepsize selection for experiments of hyper-representation

Algorithm Dataset Stepsize [, B3, 7]

NC-SOBA MNIST [0.5,0.1, 0.01]

C-SOBA MNIST [0.1, 0.1, 0.01]
CM-SOBA MNIST [0.1,0.1, 0.01]
EF-SOBA MNIST [0.5,0.1,0.01]

NC-SOBA  CIFAR-10  [0.1, 0.001, 0.001]
C-SOBA CIFAR-10  [0.05, 0.001, 0.001]

D.2. Hyperparameter Optimization

Problem formulation. Hyperparameter optimization can be formulated as:

m)in L(A U| Z L(w
EED
st.w*(N\) = argmin |D ‘ Z (wsn) + R(w, N))

neD,

where L is the loss function, R(w, \) is a regularizer, D,, and D, denote the validation set and training set. To perform
logistic regression with regularization following (Pedregosa, 2016; Grazzi et al., 2020; Chen et al., 2022), we define

= log(1 + eiWT“’) and R = 3 Z _, e*w? on synthetic dataset. For MNIST, we have the model parameter w € Rp xe
w1th p = 784 and ¢ = 10. Following (Grazzi et al., 2020), we set L as the cross entropy loss and R = pp 1 Z -1 et %u .

Datasets. We construct synthetic heterogeneous data by a linear model 3y = sign(z”w + € - 2), where € = 0.1 is the noise
rate and z € R is the noise vector sampled from standard normal distribution. The distribution of € R on worker i is
N(0,i?) if i%2 = 0 otherwise x?(4). Additionally, we assume there are 5 workers with 500 training data and 500 validation
data respectively. For MNIST, We partition it to 10 workers under both homogeneous and heterogeneous data distributions.

Hyperparameter settings. For the experiments in this study, where the upper and lower levels share the same compressed
dimension, we use a uniform compression parameter for both levels: K = 10 for the MNIST dataset and K = 20 for the
synthetic dataset. The batch size for the synthetic dataset is 50 and for MNIST is 512. We optimize the stepsizes for all
compared algorithms via grid search, each ranging from [0.001,0.05, ..., 0.5], which is summarized in Table 3.

Table 3. Stepsize selection for experiments of hyperparameter optimization

Algorithm  Dataset Stepsize [«, 5, 7]

NC-SOBA  Synthetic  [0.1, 0.01, 0.001]
C-SOBA Synthetic  [0.05, 0.01, 0.001]
CM-SOBA  Synthetic  [0.05, 0.01, 0.001]
EF-SOBA  Synthetic  [0.1, 0.01, 0.001]
NC-SOBA  MNIST [0.1,0.1, 0.1]
C-SOBA MNIST [0.1,0.1, 0.1]
CM-SOBA  MNIST [0.1,0.1, 0.1]
EF-SOBA MNIST [0.1,0.1, 0.1]

Additional results on synthetic data. It can be seen from Figure 5 that under the heterogeneous data distribution, our
proposed EF-SOBA outperforms with a similar convergence rate and much fewer communication bits. These results are
also consistent with those on MNIST in Figure 3, which implies the broad application of our algorithms on various datasets
and problem setups.

D.3. Additional Results

Results on CIFAR-10. Under the experimental setup in Appendix D.1, we evaluate the performance of compressed
algorithms on CIFAR-10 under homogeneous data distributions. We only draw the result of C-SOBA here to compare
with NC-SOBA because from results on MNIST we can see other algorithms perform worse than C-SOBA under the
homogeneous data distributions. From Figure 6, it can be seen that with nearly 10x communication bits savings, our
compressed algorithm converges to the same test accuracy as non-compressed algorithm. It validates the effectiveness of our
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Figure 5. Hyperparameter optimization on synthetic heterogeneous data.
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Figure 6. Hyper-representation on CIFAR-10 under homogeneous data distributions.

proposed algorithms even under complicated model architecture and large dataset. Notice that the backbone test accuracy is
not satisfactory here, we suspect that it’s because the bilevel structure of the hyper-representation problem brings challenges
to the training.

More comparison baselines. In our study, we evaluate our compression algorithms for distributed stochastic bilevel
optimization against the SOBA algorithm, which serves as our non-compression baseline (referred to as NC-SOBA).
Furthermore, we include FedNest(Tarzanagh et al., 2022) as another non-compression baseline for comparison with
SOBA. We conduct hyper-representation experiments on the MNIST dataset, employing an MLP backbone and utilizing
homogeneous data distributions. We implement FedNest based on its publicly available source code. As illustrated in Fig. 7,
it is evident that NC-SOBA achieves faster convergence in terms of communication bits compared to FedNest.
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Figure 7. Hyper-representation on MNIST under homogeneous data distributions.
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Tuning the momentum parameter in CM-SOBA. In Fig. 2, CM-SOBA performs inferiorly to C-SOBA due to the
momentum parameter 6 being set to a fixed value of 0.1, without further optimization, which may lead to sub-optimal results.
To mitigate this limitation, we conducted additional experiments employing a refined approach for selecting the momentum
parameter. The results are depicted in Fig. 8, illustrating that with an appropriately tuned momentum parameter, CM-SOBA
indeed outperforms C-SOBA. This underscores the significance of momentum parameter optimization for the effective
implementation of CM-SOBA.
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Figure 8. Hyper-representation on MNIST under heterogeneous data distributions.

D.4. Ablation Studies

Ablation on MSC rounds. We propose algorithm variants in Sec. 6 to enhance theoretical convergence rate, by utilizing the
multi-step compression and gradient accumulation mechanism. It’s worth noting that when CM-SOBA (Alg. 1) is a special
case of CM-SOBA-MSC (Alg. 4) with R = 1. Same thing happens to EF-SOBA (Alg. 2) and EF-SOBA-MSC (Alg. 5).
Thus a natural question is, how should we select R in practice, and whether R > 1 can be more effective than R = 1?
To address this issue, we conduct ablation experiments on the hyperparameter optimization task on MNIST dataset. The
problem formulation, data and stepsizes are set consistent with Appendix D.2.

Figure 9 displays the loss curve of CM-SOBA-MSC (left) and EF-SOBA-MSC (right) with different R’s in the hyperpa-
rameter optimization task on MNIST under heterogeneous data distributions. With R = 2, both algorithms perform better
than those with R = 1,4, 5. We demonstrate that when R is too small, the gradient bias induced by compression error and
sampling randomness slows down the convergence, while a much larger R trades communication/computation savings to
update directions with little improvement, making it less effective. Generally speaking, there is a trade-off in the selection of
R, and we recommend choosing suitable R’s by cross validation.

One can also observe from Figure 9 that EF-SOBA-MSC with R = 1 (which is exactly EF-SOBA) has a worse performance
than CM-SOBA-MSC with R = 1 (which is exactly CM-SOBA), even if the data is constructed heterogeneously. This
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Figure 9. Ablation on MSC rounds R for CM-SOBA-MSC (left) and EF-SOBA-MSC (right), conducted on hyperparameter optimization
task on MNIST heterogeneous data.

43



Distributed Bilevel Optimization with Communication Compression

phenomenon is consistent with our convergence results, that EF-SOBA is more susceptible to large w’s than CM-SOBA.
Consequently, we recommend using EF-SOBA-MSC with R > 1 when severely aggressive compressors are applied.

Table 4. Compressor choices under different strategies.
Strategy K for lower-level rand-K K for upper-level rand-K  Communicated entries per iter
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Figure 10. Ablation on compressor choices conducted on hyper-presentation optimization task on MNIST heterogeneous data.

Ablation on compressor choices. We evaluate various compressor choices while maintaining consistent per-round
communication cost constraints. In Fig. 10, we present the performance comparison of C-SOBA on the hyper-presentation
problem using the MNIST dataset, where d,, = 157000 and d,, = 2010. All experiments employ identical learning rates:
a = 2e-2, f = 8e-3, and v = 8e-4. The Rand-K compressors, outlined in Table 4, are selected based on two strategies:
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It is evident that Strategy 1 (as recommended in (10)) outperforms Strategy 2.
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