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Abstract
Large language models (LLMs) possess the ca-001
pability to retain a wide range of knowledge,002
albeit they also show tendencies for factual in-003
accuracies. To rectify such inaccuracies with-004
out the necessity for costly model retraining,005
a variety of model editing approaches have006
been proposed, aiming to correct these inaccu-007
racies in a more cost-efficient way. To eval-008
uate these model editing methods, previous009
work had introduced a series of datasets. How-010
ever, most of these datasets use fabricated data,011
rendering them incapable of evaluating or im-012
proving the capabilities of models. Addition-013
ally, they only include a single task, prevent-014
ing them from comprehensively simulating the015
real world. To resolve these challenges and016
effectively enhance the capabilities of LLMs,017
we present FAME (FActual Multi-task model018
Editing), an authentic, comprehensive, and019
multi-task dataset, which is designed to amplify020
the practicality of model editing. We then pro-021
pose SKEME (Structured Knowledge retrieved022
by Exact Matching and reranking Editing), a023
model editing technique predicated on struc-024
tured knowledge retrieval. The experiments025
demonstrate that our method performs excel-026
lently across various tasks and scenarios, con-027
firming its practicality.1028

1 Introduction029

Large language models (LLMs) have achieved re-030

markable capabilities across various domains and031

are extensively utilized in practical applications032

(Touvron et al., 2023a,b; Openai, 2023; Geva et al.,033

2020, 2022). The extensive utilization of LLMs034

necessitates the provision of precise information035

by LLMs. However, LLMs may still provide erro-036

neous information due to incorrect, outdated knowl-037

edge stored within the model (De Cao et al., 2021;038

Agarwal and Nenkova, 2022). To avoid costly re-039

training and to efficiently correct the outputs of040

1Dataset and codes are publicly available at https://
AnonymousLink

Figure 1: An example of FAME. LLMs may develop
factual inaccuracies over time, which can be corrected
through model editing. While previous datasets em-
ployed fabricated data, FAME utilizes real-world data
to improve the performance of LLMs in practical usage.

LLMs, model editing has been proposed (Mitchell 041

et al., 2022; Sinitsin et al., 2020; De Cao et al., 042

2021). 043

To evaluate model editing methods, previous 044

works have introduced a series of datasets (De Cao 045

et al., 2021; Meng et al., 2022a; Zhong et al., 2023). 046

Almost all of these datasets modify a portion of 047

the original real facts to obtain the newly con- 048

structed facts, which affects the model’s practical 049

performance and contradicts the original purpose 050

of model editing. As shown in Figure 1, when user 051

asks "Who is the President of America?", LLMs 052

produce incorrect output due to outdated knowl- 053

edge. Previous datasets modified them into incor- 054

rect targets (for example, Tom Cruise), while our 055

dataset focuses on real-world facts (Joe Biden). 056

Moreover, these datasets are all composed of data 057

in a single format with a single task like QA (Levy 058
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et al., 2017) and sentence completion (Meng et al.,059

2022a), making them unable to achieve a thorough060

evaluation of the effectiveness of model editing061

methods.062

In the real world, LLMs are expected to possess063

knowledge about the real world and handle diverse064

forms of input. Therefore, possessing real facts and065

data in various tasks is crucial for model editing066

datasets. However, to the best of our knowledge,067

previous work falls short in achieving these two068

aspects.069

To address counterfactual data and single ob-070

jective, we introduce FAME, a factual, exten-071

sive model editing benchmark with practicality.072

FAME comprises 128k real data items, including073

various tasks with single-hop and multi-hop ques-074

tions. In response to the drawback of the previ-075

ous datasets being fabricated, we extract factual076

data items from Wikidata(Vrandečić and Krötzsch,077

2014) and DBpedia (Auer et al., 2007) and em-078

ployed multiple rounds of manual verification to en-079

sure the accuracy of our benchmark. To overcome080

the limitation that the previous datasets only com-081

prise data in a single format, we incorporate tasks082

from existing datasets like QA (Levy et al., 2017),083

fact-check (Schuster et al., 2021), multi-hop QA084

(Zhong et al., 2023), and additionally introduced085

new tasks such as cloze and dialogue, making our086

evaluation more comprehensive. Our benchmark087

enhances the model’s practical capabilities and en-088

ables a complete evaluation of the effectiveness of089

model editing.090

To address the aforementioned challenges and091

enhance the practicality of LLMs, we propose092

a new method, SKEME. SKEME achieves pre-093

cise matching and efficient knowledge application094

through a structured database, tackling the chal-095

lenges posed by large-scale data and diverse tasks.096

Experimental results demonstrate that our method097

performs well in a range of simulated real-world098

scenarios, indicating its heightened practicality.099

The main contributions of this paper are as fol-100

lows:101

• To mitigate challenges posed by counterfac-102

tual data and single-task limitations, and to103

support the needs of model editing in the real104

world, we create FAME, a benchmark that in-105

corporates real-world data and covers various106

tasks.107

• To meet the requirements of model editing108

in the real world, we propose a practical109

model editing method called SKEME, which 110

involves the use of a caching mechanism to 111

reflect real-world updates. 112

• We introduce new metrics and simulate real- 113

world scenarios to evaluate existing model 114

editing methods. Results indicate that pre- 115

vious methods lack practicality and can not 116

handle the diverse scenarios in the real world. 117

Our approach addresses this issue. 118

2 Related work 119

2.1 Model Editing Datasets 120

Model editing datasets serve the purpose of verify- 121

ing the effectiveness of methods and enhancing the 122

capability of LLMs. Nevertheless, current datasets 123

fall short of directly enhancing the capability of 124

LLMs. The majority of datasets comprised con- 125

structed fakedata (Levy et al., 2017; Meng et al., 126

2022a; Zhong et al., 2023; Gupta et al., 2023), pri- 127

marily serving to validate effectiveness rather than 128

directly contribute to the enhancement of LLMs’ 129

capabilities. MQuAKE-T (Zhong et al., 2023) uti- 130

lizes modifications in Wikidata, which has the po- 131

tential to directly enhance LLMs’ practical perfor- 132

mance. However, due to the limited amount (see 133

Figure 2 for statistics), its direct utility in improv- 134

ing the performance of LLMs is limited, thereby 135

primarily serving to validate effectiveness. In con- 136

trast to prior works, our benchmark sets itself apart 137

by featuring a substantial repository of authentic 138

data and integrating multiple diverse tasks. As a 139

result, it holds the potential for direct implemen- 140

tation, exhibiting a heightened level of practical 141

applicability. 142

2.2 Model Editing Methods 143

Previous works have introduced various model- 144

editing methods, including methods that modify 145

models’ parameters and methods that preserve 146

models’ parameters(Yao et al., 2023). The former 147

category includes the locate-then-method (Meng 148

et al., 2022a,b) and meta-learning-based methods 149

(De Cao et al., 2021; Mitchell et al., 2021). The lat- 150

ter category involves adding additional parameters 151

to the model (Dai et al., 2022; Huang et al., 2023) 152

and employing vector databases for knowledge 153

storage (Mitchell et al., 2022; Zhong et al., 2023; 154

Zheng et al., 2023; Cheng et al., 2023; Madaan 155

et al., 2022). Diverging from the previously dis- 156

cussed methods, our approach involves a structured 157
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knowledge base and implements precise matching158

during the search process.159

3 Problems Definition160

The objective of model editing is to modify the161

knowledge contained in a model, allowing the162

model to engage in reasoning processes based on163

the edited knowledge, while not affecting the out-164

put related to the unedited knowledge. Based on165

previous work (Wang et al., 2023b; Yao et al.,166

2023), we define model editing to express the goal167

as follows.168

An input-output pair is defined as (x, y), and a169

model is represented by a function f : X → Y ,170

where X represents the input set and Y represents171

the output set. Let I(x, y) denotes the set of de-172

scriptions semantically equivalent to (x, y), and173

EX(x, y) be the set of input-output pairs that the174

model can possess with I(x, y) as prior knowl-175

edge. Then, let O(x, y) represent the portion out-176

side I(x, y) and EX(x, y).177

The present definition of model editing can be178

summarized as follows: (x, y) denotes the fact that179

is being edited, while (xe, ye) represents the input180

and output.181

f ′(xe) =


ye (xe, ye) ∈ I(x, y)
f(xe) | (x, y) (xe, ye) ∈ EX(x, y)
f(xe) (xe, ye) ∈ O(x, y)

(1)182

For detailed formal definitions and examples,183

please see Appendix B.184

4 FAME: Our Benchmark185

In this section, we introduce how we constructed186

our benchmark, FAME. FAME is a benchmark187

comprising 128k factual data items. We utilized188

this data to construct both single-hop and multi-189

hop questions. For single-hop questions, we in-190

clude five forms: QA, sentence completion, cloze191

test, multiple-choice questions, and fact check. For192

multi-hop questions, we include general multi-hop193

questions and dialogues. The previous work intro-194

duced QA, sentence completion, fact check, and195

multi-hop questions (Wang et al., 2023b), while the196

remaining tasks were proposed by us. We believe197

that combining these tasks contributes to a compre-198

hensive assessment of the effectiveness of model199

editing methods.200

To ensure the data quality of FAME and its re-201

flection of the real world, we conducted multiple202

rounds of manual verification and correction in var- 203

ious aspects. 204

4.1 Choose Fact Triples 205

Our dataset is based on Wikidata(Vrandečić and 206

Krötzsch, 2014) and DBpedia (Auer et al., 2007), 207

both of which are knowledge bases comprised of 208

knowledge triplets. We aim to enhance the diversity 209

of our data by collecting knowledge from a variety 210

of knowledge bases. 211

Specifically, we initially identified equivalent 212

relations in Wikidata and DBpedia, followed by 213

rule-based filtering to eliminate code, numbers, and 214

other irrelevant content. All remaining relations 215

were selected to be included in our dataset. 216

Then, we collected triplets associated with these 217

relations from Wikidata and DBpedia. After obtain- 218

ing the triplets, we further filtered them to avoid 219

potential ambiguity issues, see Appendix A.1 for 220

details. 221

Finally, to ensure the quality of the triplets we 222

obtained, we randomly selected 100 triplets and 223

manually examined their correctness. The results 224

indicate that 96% of the triplets are correct, which 225

shows that our process for obtaining and filtering 226

triplets is acceptable. 227

4.2 Generate Data Based on Templates 228

We employ ChatGPT in the generation process to 229

mitigate expensive labor costs following Petroni 230

et al. (2019). After generating the results, we con- 231

duct manual checks to ensure the accuracy and 232

alignment with our intentions. 233

For single-hop questions, following previous 234

works Yin et al. (2023); Elazar et al. (2021), we 235

prompt ChatGPT to generate question templates 236

based on the relationship and its description, incor- 237

porating placeholders. Subsequently, we replace 238

these placeholders with subjects to generate ques- 239

tions from the templates. 240

For multi-hop questions, following MQuAKE 241

(Zhong et al., 2023), we employed ChatGPT to 242

concatenate multiple consecutive triplets into a sin- 243

gle question. Moreover, prior work (Petroni et al., 244

2019; Zhong et al., 2021) suggests that prompting 245

the model to decompose the multi-hop questions 246

into multiple simple subquestions is beneficial. To 247

distinguish between the differences in model de- 248

composition ability and knowledge it knows, we 249

decompose queries to the model for the subques- 250

tions in multi-turn dialogues. 251
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Name isC. Tasks Total Re. Source HopCho. FC. Clo. Dia. Com. QA
ZSRE % % % % % % " 270K 120 WD. Si.

COUNTERFACT % % % % % " % 2.2K 24 WD. Si.
MQUAKE-CF % % % % % % " 9K 37 WD. Mu.
MQUAKE-T " % % % % % " 1.8K 6 WD. Mu.

FAME " " " " " " " 128K 87 WD. & DB. Si. & Mu.

Table 1: Comparison between our dataset to other model edit datasets, incorrect means if the edit target is the real
fact. We believe fabricated facts will decrease the model’s performance. Cho stands for choose. FC stands for
fact-checking. Clo stands for cloze. Dia. stand for dialogue. Com. stands for completion. isC stands for isCorrect,
which means if the edit target is the real fact. Re stands for count of relations included. WD, stands for Wikidata,
DB stands for DBpedia. Si. stands for single, Mu. stands for multi. They are used to distinguish whether the data in
the dataset involves single-hop or multi-hop scenarios.

When templates were constructed, we incorpo-252

rated manual verification focusing on ensuring that253

the templates align with the meaning of the rela-254

tionships. We found that 97.4% of templates were255

accurate, we then manually performed multiple256

rounds of checking, correction, and rechecking, en-257

suring that we consistently agreed the correctness258

rate of the templates reached 100%.259

Finally, following previous work(Yin et al.,260

2023), we employed manual sampling and verifica-261

tion techniques to ensure the accuracy of our data.262

We combine the templates and relation triplets and263

manually checke the credibility of the generated264

sentences. The results show that 97.5% of the sen-265

tences were credible, demonstrating the reliability266

of the entire process.267

5 Benchmark Analysis268

5.1 Comparisons269

See Table 1 for a comparison between our bench-270

mark and previous benchmarks. Our benchmark in-271

cludes all categories seen in previous benchmarks,272

and we have proposed additional data categories.273

Moreover, the number of entries far exceeds those274

in previous benchmarks. Finally, our data orig-275

inates from two distinct knowledge bases, mak-276

ing it more comprehensive compared to previous277

datasets.278

Similar to MQuAKE-T (Zhong et al., 2023), our279

data consists of genuine knowledge rather than con-280

structed false information. However, MQuAKE-T281

is designed for multi-hop questions and both the282

number of relations and the size are limited, mak-283

ing it challenging to use it to enhance model ca-284

pabilities. Therefore, we are currently the only285

benchmark available that can augment these capa-286

bilities. 287

Figure 2: Comparison between multi-hop data in our
dataset and MQuAKE. The vertical axis of the graph
represents the number of relation combinations. Our
dataset encompasses a greater number of combinations,
including 5-hop questions, which effectively demon-
strates the enhanced diversity of our dataset.

5.2 Analysis 288

Our data consists of two parts: single-hop data and 289

multi-hop data, both sourced from Wikidata and 290

DBpedia. 291

For the single-hop data, FAME include 87 re- 292

lations. We selecte 20,000 data items, each con- 293

taining 6 questions, resulting in a total of 120,000 294

distinct data items. 295

The multi-hop question data includes multi-hop 296

QA and dialogue. Refer to Figure 2 for a com- 297

parison between our data and MQuAKE (Zhong 298

et al., 2023). It can be observed that our multi-hop 299

questions cover a higher number of relationships, 300

indicating that our data is more complex. 301
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Figure 3: An overview of our method SKEME. SKEME initially extracts key entities from the question. Subse-
quently, it searches the local knowledge base and ranks applicable knowledge items. Ultimately, it utilizes in-context
learning to modify the model’s output. Additionally, we update knowledge from external databases and the real
world to ensure that the local knowledge base reflects real-world changes.

6 SKEME: Our Model Edit Method302

6.1 Overview303

The overview of SKEME is shown in Figure 3.304

SKEME consists of three main components: En-305

tity Extraction is used to discern key entities from306

the input. This is followed by Knowledge Base307

Retrieval, which is implemented for the precise308

retrieval of relevant facts and updating the local309

database. Lastly, Knowledge Rank and Utilization310

are applied to employ knowledge, thereby enhanc-311

ing the outputs of extensive models.312

For implementation details, please refer to Ap-313

pendix A.2.314

6.2 Entity Extraction315

Due to the vast volume and frequent updates of316

real-world knowledge, we contend that structured317

database outperforms vector database. Entity ex-318

traction, which aims to extract important entities319

from the provided input, is employed as the initial320

stage for the effective utilization of structured data.321

6.3 Knowledge Base Retrieval322

Handling a large number of rapidly updating facts323

in the real world poses a challenge for model edit-324

ing. Structured databases are crucial in tackling325

these challenges (Zhang et al., 2023). For the first 326

challenge, structured databases facilitate precise 327

searches over a wide range. For the latter, struc- 328

tured databases make it possible to modify knowl- 329

edge, which is challenging for previous methods. 330

To follow the swift adapt of real-world changes, 331

inspired by the caching mechanism in operating 332

systems, we propose a method for dynamically con- 333

structing a local database. During the process of 334

querying, the local knowledge base is responsible 335

for updating outdated knowledge or incorporating 336

new knowledge from the external database. Al- 337

though external databases like Wikidata are contin- 338

uously updated, there might be delays in reflecting 339

real-world changes. Therefore, we also provide 340

manual updates to ensure our knowledge base can 341

better reflect real-world developments. 342

6.4 Knowledge Rank and Utilization 343

To achieve a more efficient and precise utilization 344

of facts acquired in the preceding stage, these facts 345

were subsequently ranked based on their relevance 346

to the input sentence. 347

To address two additional challenges in practical 348

scenarios: how to handle diverse forms of input and 349

how to ensure efficacy across models of varying 350

sizes. Inspired by Zheng et al. (2023), we insert the 351

5



facts into the model’s input to facilitate in-context352

learning by the model.353

7 Experiments354

7.1 Metrics355

We use the following metrics to evaluate whether356

editing has achieved our goal in Section 3.357

Accuracy To calculate accuracy, We instruct the358

model to generate responses for tasks and evaluate359

whether they match the gold answers exactly. The360

resulting average accuracy is then recorded as exact361

match (EM).362

Locality Locality measures whether an editing363

method will influence irrelevant knowledge. We364

utilize drawdown (DD) (Mitchell et al., 2021,365

2022) to compute performance degradation and366

employ Neighborhood KL divergence (NKL)367

(Hoelscher-Obermaier et al., 2023) to measure368

whether the model is significantly affected.369

SURE To comprehensively evaluate and com-370

pare the practical effectiveness of methods, we inte-371

grate both Accuracy and Locality, and then propose372

the metric SURE (Statistical and Unbiased Real-373

world Evaluation) to estimate the performance of374

edited models in real-world scenarios. We define375

SURE as follows:376

SURE = axα − byβ (2)377

The x and y represent EM and DD. The param-378

eters a and b denote the ratio of the data used to379

evaluate the two metrics. The weights α and β380

are used to characterize the importance of EM and381

DD, which represent Accuracy and Locality. In382

our evaluation, we considered an equal amount of383

data for Accuracy and Locality and treated them384

as equally important. Therefore, we set the param-385

eters as: a = b = 1, α = β = 1. The task of386

determining parameters with greater precision is387

deferred to future research.388

Efficiency We aim to find an editing method that389

is fast and has low memory consumption. Follow-390

ing (Yao et al., 2023), we measure efficiency in391

both time consumption (Ti) and memory require-392

ments (Me).393

7.2 Baselines394

We compare our method with FT, MEMIT (Meng395

et al., 2022b), MeLLo (Zhong et al., 2023), and396

IKE (Zheng et al., 2023). FT is the most classic and397

straightforward model-editing method. MEMIT 398

is currently considered a state-of-the-art method 399

among parameter modification methods. IKE and 400

MeLLo, much like our approach, leverage a knowl- 401

edge base and in-context learning. Implementation 402

details can be found in appendix A.3. 403

7.3 Main Results 404

Table 2 shows results on FAME. We experiment 405

with all methods on GPT2-XL (Solaiman et al., 406

2019), GPT-J(6B) (Wang and Komatsuzaki, 2021), 407

Llama2 (Touvron et al., 2023b), and utilized in- 408

context learning based methods on GPT-3.5-turbo 409

(Ouyang et al., 2022). 410

As articulated in Section 7.1, SURE evaluate the 411

practical effectiveness of different methods com- 412

prehensively, thereby emulating the performance 413

of edited model in an actual environment. Firstly, 414

we scrutinize the results on Llama2, which is the 415

largest model achievable and on which all model 416

editing techniques can be employed. FT demon- 417

strates a somewhat insignificant enhancement in 418

model performance. MEMIT, did not perform as 419

expected in our experiments. We hypothesize that 420

this may be due to the editing process not specif- 421

ically targeting the model’s generative capability. 422

MeLLo has a higher EM score, but its DD is also 423

the highest, which indicates pronounced side ef- 424

fects, which leads to a low SURE. Both IKE and 425

SKEME obtained an EM above 0.9. However, IKE 426

also has presented adverse effects that consequently 427

decreased its SURE. SKEME uniquely maintains 428

a high EM and simultaneously ensures a low DD, 429

thus demonstrating superior practicality compared 430

to other methods. 431

To test the impact of model size, we experi- 432

mented with models of various sizes. The results 433

indicate that our method exhibits advantages across 434

all models, whereas some methods fail to work on 435

extremely small models, such as MeLLo on GPT2- 436

XL. These model editing methods also require di- 437

verse amounts of time and GPU space. MeLLo, 438

due to its long in-context learning process, con- 439

sumes the most time. On the other hand, MEMIT 440

had a shorter time consumption but might still be 441

challenging to accept for large-scale data. On the 442

contrary, SKEME proves effective across model 443

sizes while consuming less additional time and 444

GPU space. 445

It appears that all methods performed poorly 446

on certain tasks. This further validates the mean- 447

ingfulness of constructing data in various forms. 448
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Model Method SURE↑ Accuracy Locality Efficiency
EM.↑ QA.↑ Com.↑ Clo.↑ Cho.↑ FC.↑ DD. ↓ NKL. ↓ Ti. ↓ Me. ↓

GPT2-XL

Base - 19.83 8.00 7.11 3.63 34.25 46.16 - - 0.18 9.12
FT 12.75 22.72 11.82 10.26 9.96 33.58 47.96 9.97 1.33 2.12 12.43

MEMIT 20.87 20.87 7.31 7.14 6.67 34.22 49.04 0.00 1.29 13.6 11.85
MeLLo −53.67 30.90 71.42 0.24 0.09 33.72 49.01 84.57 1.32 1.43 17.43

IKE 37.32 50.51 62.05 54.82 48.96 36.09 50.64 13.19 1.25 0.75 14.26
SKEME 65.80 65.80 85.12 70.60 78.45 38.33 56.51 0.00 1.09 0.23 11.52

GPT-J

Base - 23.36 11.86 12.02 11.52 35.34 46.08 - - 0.35 26.57
FT 25.21 26.59 13.69 13.38 13.39 40.74 51.72 1.38 1.76 3.27 34.81

MEMIT 45.85 45.85 49.51 41.14 43.51 46.62 48.49 0.00 1.86 13.8 29.84
MeLLo 28.42 55.74 72.20 48.35 72.95 21.81 63.41 27.33 1.54 2.42 33.38

IKE 58.62 70.04 87.00 82.35 82.27 46.32 52.26 11.42 1.28 0.97 31.53
SKEME 73.93 73.93 97.03 79.63 87.02 46.01 59.97 0.00 1.39 0.49 28.17

Llama2

Base - 32.20 15.82 15.78 16.02 48.91 64.45 - - 0.33 30.04
FT 34.31 41.80 30.05 29.08 29.22 60.57 60.07 7.49 2.55 5.18 38.92

MEMIT 48.03 48.39 41.16 40.26 41.47 61.00 58.08 0.36 2.83 13.2 33.52
MeLLo 36.38 66.26 68.56 36.95 69.26 78.17 78.35 29.88 2.72 2.45 38.66

IKE 71.38 91.42 97.72 90.11 95.76 95.10 78.42 20.04 2.48 1.08 35.17
SKEME 90.54 90.54 98.61 83.04 90.27 93.73 87.07 0.00 2.12 0.45 31.83

GPT-
3.5-turbo

Base - 40.11 18.76 19.65 17.17 73.73 71.22 - ∗ 0.81 ∗
MeLLo 56.58 73.75 70.51 57.16 76.37 82.78 81.92 17.16 ∗ 2.92 ∗

IKE 76.45 89.53 92.81 89.72 90.88 90.41 83.85 13.08 ∗ 1.47 ∗
SKEME 91.76 91.76 98.07 84.78 89.45 99.04 87.40 0.00 ∗ 1.03 ∗

Table 2: Main result on our dataset. Com. stands for completion. Clo stands for cloze. Cho stands for choose.
FC stands for fact-checking. TI(s) includes both editing and generating time in Wall clock time and Me(GB) is
calculated by measuring the maximum required GPU VRAM. To maintain brevity, the multiplier of ×10−4 has
been excluded for the NKL metric. Since DD and NKL are calculated relative to the unedited model, the unedited
model does not have these metrics. ∗: The computation of NKL and ME metrics for GPT-3.5-turbo is impractical
due to its utilization via API calls.

On the completion task, although the base model449

performed similarly to QA and Cloze, the edited450

model’s accuracy was significantly lower than QA451

and Cloze. We believe that it indicates that the452

method’s generalization performance still needs to453

improve.454

8 Analysis455

As we mentioned above, we found that certain456

methods have already reached a commendable457

level. However, we cannot ensure how these meth-458

ods perform in the real world. To simulate the459

performance of edited models in the real world, we460

proposed a series of research questions (RQs) as461

follows.462

8.1 RQ1: Whether the Method Can Handle463

Iterative Editing?464

One possible situation is the iterative editing of a465

particular fact (Xu et al., 2023). For example, if466

we want LLMs to tell us today’s date, it would 467

require the model to change its output every day, 468

making it necessary to edit the model continuously. 469

The results show that even if a fact is edited only

1 2 5 10
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A
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ac

y

FT MEMIT MeLLo IKE Ours

Figure 4: Result of RQ1. We select a varying of answers
for each question and edited them into the model in turn.
The graph shows the trend of accuracy for methods as
the number of edits increases.
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twice, the accuracy of other methods has declined470

significantly. For retrieval-based models, previous471

methods could not update knowledge, highlighting472

the necessity of using structured knowledge.473

8.2 RQ2: How Many Facts Can We Edit474

Simultaneously?475

To simulate a large number of facts in the real476

world, we used more triples to test the capabili-477

ties of methods.478

100 101 102 103 104 105
0

0.2

0.4
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0.8

1

Number of facts

A
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ur
ac

y

FT MEMIT MeLLo IKE Ours

Figure 5: Result of RQ2. We edit diverse quantities of
facts at once, the graph shows the trend of accuracy as
the number of facts edited changes.

The results indicate that the performance of FT479

and MEMIT decreases quickly. IKE, MeLLo, and480

our method all perform well in scenarios with a481

larger number of facts to be edited.482

8.3 RQ3: Whether Methods are Effective in483

Other Benchmarks?484

To comprehensively evaluate model editing meth-485

ods, we assess these methods on a range of general486

datasets. See Appendix A.4 for dataset details.

Method TQA NQ FEVER Vi
Base 0.698 0.191 0.792 0.397
FT 0.362 0.274 0.646 0.228

MEMIT 0.449 0.632 0.724 0.461
MeLLo 0.811 0.633 0.872 0.720

IKE 0.962 0.980 0.954 0.964
SKEME 0.984 0.964 0.987 0.956

Table 3: Result of RQ3. TQA stands for triviaQA, NQ
stands for Natural Questions, Vi stands for VitaminC.
All accuracies are calculate based on exact match rates.

487
It can be observed that our method consistently488

improves the model’s performance irrespective of489

the benchmarks, demonstrating the robust versatil-490

ity and scalability of our approach. Other methods491

show less stable improvements in model perfor- 492

mance. 493

8.4 RQ4: Can Model Make Further Inference 494

Based on Edited Facts? 495

When discussing model editing, beyond modifying 496

the model’s responses to specific questions, we 497

also aim at modifying the model to make further 498

reasoning based on the edited facts. 499

Method MultihupQA
k=2 k=3 k=4 k=5

Base 0.145 0.135 0.112 0.079
FT 0.223 0.362 0.231 0.128

MEMIT 0.176 0.247 0.136 0.060
MeLLo 0.270 0.227 0.167 0.073

IKE 0.332 0.237 0.220 0.159
SKEME 0.960 0.786 0.427 0.167

Method Dialogue
k=2 k=3 k=4 k=5

Base 0.119 0.118 0.116 0.082
FT 0.190 0.216 0.152 0.133

MEMIT 0.238 0.220 0.148 0.126
MeLLo 0.353 0.295 0.193 0.111

IKE 0.229 0.235 0.207 0.188
SKEME 0.946 0.757 0.390 0.181

Table 4: Result of RQ4. SKEME manifests significant
improvements compared to previous approaches, how-
ever, it still fails to address the issue when k ≥ 4. A
conceivable explanation could be the limited inferential
capabilities of the model.

Table 4 presents the results for this task. We 500

can observe that all methods, except for SKEME, 501

performed poorly. Traditional retrieval-based mod- 502

els struggle to find answers to multi-hop questions, 503

and other methods do not enable the model to infer 504

based on edited facts. 505

9 Conclusion 506

We introduce the practicality requirement for 507

model editing and created a dataset FAME, which 508

embodies practicality with factual data and di- 509

verse tasks. We propose a model editing method, 510

SKEME, that proves effective across various mod- 511

els and tasks. The experiments demonstrate that 512

previous model editing methods have difficulties 513

dealing with real-world complexities, while our 514

approach successfully addresses these challenges. 515

We hope that our work will advance the field of 516

model editing and inspire further research in this 517

area. 518
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Limitations519

The data in FAME is limited to a monolingual520

scope, and we did not multilingual data. We posit521

that the inclusion of multilingual data can further522

align with the real world, and we leave this as a523

potential area for future work.524

Ethics Statement525

We ensure that the collection of FAME is done in a526

manner consistent with the terms of use stipulated527

by its sources and the intellectual property rights528

of the original authors. We make sure that individ-529

uals involved in the collection process are treated530

fairly, including ensuring their voluntary participa-531

tion and informed consent. Due to the dynamic532

nature of the real world, certain knowledge con-533

tained in FAME may become outdated, rendering534

it no longer reflective of the latest world conditions.535
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For the former scenario, one example is: Hope728

Springs could refer to a movie from 2012 (Q327214729

in Wikidata)2, but can be a movie from 2003 as well730

(Q596646 in Wikidata)3. So when asking Who is731

the director of Hope Springs?, there are multiple732

correct options.733

An example of the latter scenario is: a person734

may have multiple children, so there are multiple735

correct answers when asking for their children’s736

names.737

We believe that the above two scenarios are sim-738

pler compared to questions with only one answer.739

Therefore, for easier implementation and to focus740

on more fundamental phenomena, we excluded741

data in the dataset containing instances of the above742

situations.743

A.2 SKEME Details744

A.2.1 Entity extraction745

Entity Extraction aims to extract important entities746

from the provided input, aligning with the subject747

of the sentence. Previous research has extensively748

explored methods such as NER or entity linking749

(Wu et al., 2019). Results indicate that this specific750

subtask can easily attain an accuracy rate exceeding751

97% on our dataset. The accuracy statistics of752

entity extraction on our dataset are depicted in the753

table 5.

Method accuracy
GPT-3.5-turbo 98.1

Llama2 97.3
T5 99.8

Table 5: Accuracy for entity extraction, when using
GPT-3.5-turbo and Llama2, we employed few-shot.
When using T5, we finetune on FAME items for 5
epochs.

754

A.2.2 Knowledge Base Retrieval755

The local knowledge base is stored in the form of a756

knowledge graph. When updating the local knowl-757

edge base, it can be automatically updated from the758

external database or manually injected with certain759

facts to reflect real-world changes. Such updates760

may require a considerable amount of time, but761

they can be done in parallel in arbitrary quantities762

and during idle times. Consequently, we did not763

explicitly evaluate the duration dedicated to this764

aspect.765

2https://www.Wikidata.org/wiki/Q327214
3https://www.Wikidata.org/wiki/Q596646

A.2.3 Knowledge Rank and Utilization 766

Following previous works (Zhong et al., 2023; 767

Zheng et al., 2023), we ranked the retrieved knowl- 768

edge based on similarity to the input and selected 769

the top-k knowledge. In our experiments, we set 770

k = 1. We prompt the model to use the retrieved 771

knowledge for updating its output. 772

We utilized an off-the-shelf retrieval model (Izac- 773

ard et al., 2021) to identify and rank the fact triplets, 774

which allows us to avoid the training process. 775

A.3 Implementation Details for Baselines 776

For FT, MEMIT, and IKE, we use the framework 777

provided by Wang et al. (2023a).4. 778

FT Following previous works (Meng et al., 779

2022b), We applied Fine-Tuning (FT) to the given 780

layer of the model. For GPT2-XL, we select layer 781

0, and for GPT-J and Llama2, we choose layer 21. 782

MEMIT For GPT2-XL and GPT-J, we employed 783

default hyperparameters. For Llama2, we updated 784

the parameters of layers {4, 5, 6, 7, 8}. Across all 785

models, we calculated covariance statistics using 786

50,000 instances from Wikitext. 787

MeLLo The original method was designed for 788

multi-hop questions. We redesigned the prompt for 789

each task while keeping the knowledge retrieval 790

part unchanged. 791

IKE In the original paper, relevant facts were di- 792

rectly added to the prompt. To make a fair compari- 793

son, we removed this part and ensured that all facts 794

were retrieved5. Our retrieval settings remained 795

consistent with the original paper. 796

A.4 Other Benchmarks 797

To comprehensively evaluate model editing meth- 798

ods, we tested these methods on triviaQA (Joshi 799

et al., 2017), Natural Questions (Kwiatkowski et al., 800

2019), FEVER (Thorne et al., 2018) and VitaminC 801

(Schuster et al., 2021). TriviaQA and Natural Ques- 802

tions are commonly employed to assess the capa- 803

bilities of LLMs (Touvron et al., 2023a). FEVER 804

serves as a classic dataset for fact-checking, and 805

VitaminC has been utilized in prior works to eval- 806

uate the effectiveness of model editing (Mitchell 807

et al., 2022). 808

4https://github.com/zjunlp/EasyEdit
5The author’s response to the issue: https://github.

com/Zce1112zslx/IKE/issues/3
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B Problems Definition Details809

B.1 Precise Definition810

Let (subject, relation, object) be a factual triple, de-811

noted as (s, r, o). Consider an input-output pair812

as (x, y), where x is effectively a combination of813

s and r. A model is represented by a function814

f : X → Y , where X represents the input set and815

Y represents the output set.816

For any t in the set {s, r, o, x, y}, we use the817

notation T ′ to represent all description that is se-818

mantically equivalent to t, and t′ represents any819

element within the set T ′. Notice that t ∈ T ′ .820

Then, we can define I(x, y) as821

I(x, y) = {(x′, y′)|x′ ∈ X ′ and y′ ∈ Y ′}. (3)822

To define EX(x, y), let’s define a fact triple as823

tr(s, r, o), and S is the set of all fact triples. Also,824

define the multiplication operation ∗ for two sets825

of fact triples A and B as the join operation:826

A ∗B = A 1
o=s

B (4)827

Then, define828

N0(tr) = {(s′, r′, o′) | s′ ∈ S′, r′ ∈ R′, o′ ∈ O′}
(5)829

and830

Ni(tr) = Ni−1(tr) ∗ S (i ≥ 1) (6)831

.832

Ultimately, we define EX(tr) as833

EX(tr) =

∞⋃
i=0

Ni (7)834

.835

By incorporating s and r into the x, we derive836

the expression EX(x, y).837

After defining I(x, y) and EX(x, y), we can838

define O(x, y) as839

∁S(I
⋃

EX) (8)840

.841

B.2 Example of Definition842

Symbol Example

(x, y)
(Who is the current head of government

for America?, Joe Biden)

I(x, y)
(The head of government

for America is __, Joe Biden)

EX(x, y)
(Who is the spouse of the President

of the United States?, Jill Biden)
O(x, y) (What color is the Sky?, Blue)
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