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Abstract

Large language models (LLMs) possess the ca-
pability to retain a wide range of knowledge,
albeit they also show tendencies for factual in-
accuracies. To rectify such inaccuracies with-
out the necessity for costly model retraining,
a variety of model editing approaches have
been proposed, aiming to correct these inaccu-
racies in a more cost-efficient way. To eval-
uate these model editing methods, previous
work had introduced a series of datasets. How-
ever, most of these datasets use fabricated data,
rendering them incapable of evaluating or im-
proving the capabilities of models. Addition-
ally, they only include a single task, prevent-
ing them from comprehensively simulating the
real world. To resolve these challenges and
effectively enhance the capabilities of LLMs,
we present FAME (FActual Multi-task model
Editing), an authentic, comprehensive, and
multi-task dataset, which is designed to amplify
the practicality of model editing. We then pro-
pose SKEME (Structured Knowledge retrieved
by Exact Matching and reranking Editing), a
model editing technique predicated on struc-
tured knowledge retrieval. The experiments
demonstrate that our method performs excel-
lently across various tasks and scenarios, con-
firming its practicality.!

1 Introduction

Large language models (LLMs) have achieved re-
markable capabilities across various domains and
are extensively utilized in practical applications
(Touvron et al., 2023a,b; Openai, 2023; Geva et al.,
2020, 2022). The extensive utilization of LLMs
necessitates the provision of precise information
by LLMs. However, LLLMs may still provide erro-
neous information due to incorrect, outdated knowl-
edge stored within the model (De Cao et al., 2021;
Agarwal and Nenkova, 2022). To avoid costly re-
training and to efficiently correct the outputs of
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Figure 1: An example of FAME. LLMs may develop
factual inaccuracies over time, which can be corrected
through model editing. While previous datasets em-
ployed fabricated data, FAME utilizes real-world data
to improve the performance of LLMs in practical usage.

LLMs, model editing has been proposed (Mitchell
et al., 2022; Sinitsin et al., 2020; De Cao et al.,
2021).

To evaluate model editing methods, previous
works have introduced a series of datasets (De Cao
et al., 2021; Meng et al., 2022a; Zhong et al., 2023).
Almost all of these datasets modify a portion of
the original real facts to obtain the newly con-
structed facts, which affects the model’s practical
performance and contradicts the original purpose
of model editing. As shown in Figure 1, when user
asks "Who is the President of America?", LLMs
produce incorrect output due to outdated knowl-
edge. Previous datasets modified them into incor-
rect targets (for example, Tom Cruise), while our
dataset focuses on real-world facts (Joe Biden).
Moreover, these datasets are all composed of data
in a single format with a single task like QA (Levy
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et al., 2017) and sentence completion (Meng et al.,
2022a), making them unable to achieve a thorough
evaluation of the effectiveness of model editing
methods.

In the real world, LLMs are expected to possess
knowledge about the real world and handle diverse
forms of input. Therefore, possessing real facts and
data in various tasks is crucial for model editing
datasets. However, to the best of our knowledge,
previous work falls short in achieving these two
aspects.

To address counterfactual data and single ob-
jective, we introduce FAME, a factual, exten-
sive model editing benchmark with practicality.
FAME comprises 128k real data items, including
various tasks with single-hop and multi-hop ques-
tions. In response to the drawback of the previ-
ous datasets being fabricated, we extract factual
data items from Wikidata(Vrandeci¢ and Krotzsch,
2014) and DBpedia (Auer et al., 2007) and em-
ployed multiple rounds of manual verification to en-
sure the accuracy of our benchmark. To overcome
the limitation that the previous datasets only com-
prise data in a single format, we incorporate tasks
from existing datasets like QA (Levy et al., 2017),
fact-check (Schuster et al., 2021), multi-hop QA
(Zhong et al., 2023), and additionally introduced
new tasks such as cloze and dialogue, making our
evaluation more comprehensive. Our benchmark
enhances the model’s practical capabilities and en-
ables a complete evaluation of the effectiveness of
model editing.

To address the aforementioned challenges and
enhance the practicality of LLMs, we propose
a new method, SKEME. SKEME achieves pre-
cise matching and efficient knowledge application
through a structured database, tackling the chal-
lenges posed by large-scale data and diverse tasks.
Experimental results demonstrate that our method
performs well in a range of simulated real-world
scenarios, indicating its heightened practicality.

The main contributions of this paper are as fol-
lows:

* To mitigate challenges posed by counterfac-
tual data and single-task limitations, and to
support the needs of model editing in the real
world, we create FAME, a benchmark that in-
corporates real-world data and covers various
tasks.

* To meet the requirements of model editing
in the real world, we propose a practical

model editing method called SKEME, which
involves the use of a caching mechanism to
reflect real-world updates.

* We introduce new metrics and simulate real-
world scenarios to evaluate existing model
editing methods. Results indicate that pre-
vious methods lack practicality and can not
handle the diverse scenarios in the real world.
Our approach addresses this issue.

2 Related work

2.1 Model Editing Datasets

Model editing datasets serve the purpose of verify-
ing the effectiveness of methods and enhancing the
capability of LLMs. Nevertheless, current datasets
fall short of directly enhancing the capability of
LLMs. The majority of datasets comprised con-
structed fakedata (Levy et al., 2017; Meng et al.,
2022a; Zhong et al., 2023; Gupta et al., 2023), pri-
marily serving to validate effectiveness rather than
directly contribute to the enhancement of LLMs’
capabilities. MQuUAKE-T (Zhong et al., 2023) uti-
lizes modifications in Wikidata, which has the po-
tential to directly enhance LLMs’ practical perfor-
mance. However, due to the limited amount (see
Figure 2 for statistics), its direct utility in improv-
ing the performance of LLMs is limited, thereby
primarily serving to validate effectiveness. In con-
trast to prior works, our benchmark sets itself apart
by featuring a substantial repository of authentic
data and integrating multiple diverse tasks. As a
result, it holds the potential for direct implemen-
tation, exhibiting a heightened level of practical
applicability.

2.2 Model Editing Methods

Previous works have introduced various model-
editing methods, including methods that modify
models’ parameters and methods that preserve
models’ parameters(Yao et al., 2023). The former
category includes the locate-then-method (Meng
et al., 2022a,b) and meta-learning-based methods
(De Cao et al., 2021; Mitchell et al., 2021). The lat-
ter category involves adding additional parameters
to the model (Dai et al., 2022; Huang et al., 2023)
and employing vector databases for knowledge
storage (Mitchell et al., 2022; Zhong et al., 2023;
Zheng et al., 2023; Cheng et al., 2023; Madaan
et al., 2022). Diverging from the previously dis-
cussed methods, our approach involves a structured



knowledge base and implements precise matching
during the search process.

3 Problems Definition

The objective of model editing is to modify the
knowledge contained in a model, allowing the
model to engage in reasoning processes based on
the edited knowledge, while not affecting the out-
put related to the unedited knowledge. Based on
previous work (Wang et al., 2023b; Yao et al.,
2023), we define model editing to express the goal
as follows.

An input-output pair is defined as (x,y), and a
model is represented by a function f : X — Y,
where X represents the input set and Y represents
the output set. Let I(z,y) denotes the set of de-
scriptions semantically equivalent to (x,y), and
EX (z,y) be the set of input-output pairs that the
model can possess with I(x,y) as prior knowl-
edge. Then, let O(z,y) represent the portion out-
side I(x,y) and EX (z,v).

The present definition of model editing can be
summarized as follows: (z,y) denotes the fact that
is being edited, while (., y.) represents the input
and output.
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For detailed formal definitions and examples,
please see Appendix B.

4 FAME: Our Benchmark

In this section, we introduce how we constructed
our benchmark, FAME. FAME is a benchmark
comprising 128k factual data items. We utilized
this data to construct both single-hop and multi-
hop questions. For single-hop questions, we in-
clude five forms: QA, sentence completion, cloze
test, multiple-choice questions, and fact check. For
multi-hop questions, we include general multi-hop
questions and dialogues. The previous work intro-
duced QA, sentence completion, fact check, and
multi-hop questions (Wang et al., 2023b), while the
remaining tasks were proposed by us. We believe
that combining these tasks contributes to a compre-
hensive assessment of the effectiveness of model
editing methods.

To ensure the data quality of FAME and its re-
flection of the real world, we conducted multiple

rounds of manual verification and correction in var-
ious aspects.

4.1 Choose Fact Triples

Our dataset is based on Wikidata(Vrandeci¢ and
Krotzsch, 2014) and DBpedia (Auer et al., 2007),
both of which are knowledge bases comprised of
knowledge triplets. We aim to enhance the diversity
of our data by collecting knowledge from a variety
of knowledge bases.

Specifically, we initially identified equivalent
relations in Wikidata and DBpedia, followed by
rule-based filtering to eliminate code, numbers, and
other irrelevant content. All remaining relations
were selected to be included in our dataset.

Then, we collected triplets associated with these
relations from Wikidata and DBpedia. After obtain-
ing the triplets, we further filtered them to avoid
potential ambiguity issues, see Appendix A.1 for
details.

Finally, to ensure the quality of the triplets we
obtained, we randomly selected 100 triplets and
manually examined their correctness. The results
indicate that 96% of the triplets are correct, which
shows that our process for obtaining and filtering
triplets is acceptable.

4.2 Generate Data Based on Templates

We employ ChatGPT in the generation process to
mitigate expensive labor costs following Petroni
et al. (2019). After generating the results, we con-
duct manual checks to ensure the accuracy and
alignment with our intentions.

For single-hop questions, following previous
works Yin et al. (2023); Elazar et al. (2021), we
prompt ChatGPT to generate question templates
based on the relationship and its description, incor-
porating placeholders. Subsequently, we replace
these placeholders with subjects to generate ques-
tions from the templates.

For multi-hop questions, following MQuAKE
(Zhong et al., 2023), we employed ChatGPT to
concatenate multiple consecutive triplets into a sin-
gle question. Moreover, prior work (Petroni et al.,
2019; Zhong et al., 2021) suggests that prompting
the model to decompose the multi-hop questions
into multiple simple subquestions is beneficial. To
distinguish between the differences in model de-
composition ability and knowledge it knows, we
decompose queries to the model for the subques-
tions in multi-turn dialogues.



Name isC. Cho. FC. Clo. Dia. Com. QA Total Re. Source Hop

ZSRE X X X X X X vV 210K 120 WD. Si.
COUNTERFAcT X X X X X v X 22K 24 WD. Si.
MQUAKE-c¢ X X X X X X ¥V ok 37 WD. Mu.
MQUAKE-r ¢/ X X X X X vV 18 6 WD. Mu.

FAME v Vv v v vV vV vV 128K 8 WD.&DB. Si. & Mu.

Table 1: Comparison between our dataset to other model edit datasets, incorrect means if the edit target is the real
fact. We believe fabricated facts will decrease the model’s performance. Cho stands for choose. FC stands for
fact-checking. Clo stands for cloze. Dia. stand for dialogue. Com. stands for completion. isC stands for isCorrect,
which means if the edit target is the real fact. Re stands for count of relations included. WD, stands for Wikidata,
DB stands for DBpedia. Si. stands for single, Mu. stands for multi. They are used to distinguish whether the data in

the dataset involves single-hop or multi-hop scenarios.

When templates were constructed, we incorpo-
rated manual verification focusing on ensuring that
the templates align with the meaning of the rela-
tionships. We found that 97.4% of templates were
accurate, we then manually performed multiple
rounds of checking, correction, and rechecking, en-
suring that we consistently agreed the correctness
rate of the templates reached 100%.

Finally, following previous work(Yin et al.,
2023), we employed manual sampling and verifica-
tion techniques to ensure the accuracy of our data.
We combine the templates and relation triplets and
manually checke the credibility of the generated
sentences. The results show that 97.5% of the sen-
tences were credible, demonstrating the reliability
of the entire process.

5 Benchmark Analysis

5.1 Comparisons

See Table 1 for a comparison between our bench-
mark and previous benchmarks. Our benchmark in-
cludes all categories seen in previous benchmarks,
and we have proposed additional data categories.
Moreover, the number of entries far exceeds those
in previous benchmarks. Finally, our data orig-
inates from two distinct knowledge bases, mak-
ing it more comprehensive compared to previous
datasets.

Similar to MQuAKE-T (Zhong et al., 2023), our
data consists of genuine knowledge rather than con-
structed false information. However, MQuAKE-T
is designed for multi-hop questions and both the
number of relations and the size are limited, mak-
ing it challenging to use it to enhance model ca-
pabilities. Therefore, we are currently the only
benchmark available that can augment these capa-
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Figure 2: Comparison between multi-hop data in our
dataset and MQuAKE. The vertical axis of the graph
represents the number of relation combinations. Our
dataset encompasses a greater number of combinations,
including 5-hop questions, which effectively demon-
strates the enhanced diversity of our dataset.

5.2 Analysis

Our data consists of two parts: single-hop data and
multi-hop data, both sourced from Wikidata and
DBpedia.

For the single-hop data, FAME include 87 re-
lations. We selecte 20,000 data items, each con-
taining 6 questions, resulting in a total of 120,000
distinct data items.

The multi-hop question data includes multi-hop
QA and dialogue. Refer to Figure 2 for a com-
parison between our data and MQuAKE (Zhong
et al., 2023). It can be observed that our multi-hop
questions cover a higher number of relationships,
indicating that our data is more complex.



[Q: Who is the president of America? ] _—

—>[ Output: Donald Trume]

Edited ’ Stepl: Entity Extraction

Q: Who is the
president of
America?

Extractor Entity: America

Step3: Knowledge
Rank _and Utilization

—>[ Output: Joe Biden ]

America
president

America
art of

America

America

Joe Biden

North America

Bald_Eagle

( ) official < >
symbol .—I
( ) currency ( )

Rank data
e — |

dollar

America

dollar

( ) currency ( )

America

Bald Eagle

official
symbol

America

North America

art of

America

Joe Biden

resident

Step2: Knowledge
Base Retrieval

Retrieved Memory O O

X ~Q Retrieval
Entity: America

© Main Entity
O Related Entity

> Missed Entity
> Outdated Entity

America Joe Biden 1)
=) resident
e} 0]
...... O
O

Real World

External Database

=t

Sl AN synchronize
-—_—

O Unrelated Entity

Manual Update

Figure 3: An overview of our method SKEME. SKEME initially extracts key entities from the question. Subse-
quently, it searches the local knowledge base and ranks applicable knowledge items. Ultimately, it utilizes in-context
learning to modify the model’s output. Additionally, we update knowledge from external databases and the real
world to ensure that the local knowledge base reflects real-world changes.

6 SKEME: Our Model Edit Method

6.1 Overview

The overview of SKEME is shown in Figure 3.
SKEME consists of three main components: En-
tity Extraction is used to discern key entities from
the input. This is followed by Knowledge Base
Retrieval, which is implemented for the precise
retrieval of relevant facts and updating the local
database. Lastly, Knowledge Rank and Utilization
are applied to employ knowledge, thereby enhanc-
ing the outputs of extensive models.

For implementation details, please refer to Ap-
pendix A.2.

6.2 Entity Extraction

Due to the vast volume and frequent updates of
real-world knowledge, we contend that structured
database outperforms vector database. Entity ex-
traction, which aims to extract important entities
from the provided input, is employed as the initial
stage for the effective utilization of structured data.

6.3 Knowledge Base Retrieval

Handling a large number of rapidly updating facts
in the real world poses a challenge for model edit-
ing. Structured databases are crucial in tackling

these challenges (Zhang et al., 2023). For the first
challenge, structured databases facilitate precise
searches over a wide range. For the latter, struc-
tured databases make it possible to modify knowl-
edge, which is challenging for previous methods.

To follow the swift adapt of real-world changes,
inspired by the caching mechanism in operating
systems, we propose a method for dynamically con-
structing a local database. During the process of
querying, the local knowledge base is responsible
for updating outdated knowledge or incorporating
new knowledge from the external database. Al-
though external databases like Wikidata are contin-
uously updated, there might be delays in reflecting
real-world changes. Therefore, we also provide
manual updates to ensure our knowledge base can
better reflect real-world developments.

6.4 Knowledge Rank and Utilization

To achieve a more efficient and precise utilization
of facts acquired in the preceding stage, these facts
were subsequently ranked based on their relevance
to the input sentence.

To address two additional challenges in practical
scenarios: how to handle diverse forms of input and
how to ensure efficacy across models of varying
sizes. Inspired by Zheng et al. (2023), we insert the



facts into the model’s input to facilitate in-context
learning by the model.

7 Experiments

7.1 Metrics

We use the following metrics to evaluate whether
editing has achieved our goal in Section 3.

Accuracy To calculate accuracy, We instruct the
model to generate responses for tasks and evaluate
whether they match the gold answers exactly. The
resulting average accuracy is then recorded as exact
match (EM).

Locality Locality measures whether an editing
method will influence irrelevant knowledge. We
utilize drawdown (DD) (Mitchell et al., 2021,
2022) to compute performance degradation and
employ Neighborhood KL divergence (NKL)
(Hoelscher-Obermaier et al., 2023) to measure
whether the model is significantly affected.

SURE To comprehensively evaluate and com-
pare the practical effectiveness of methods, we inte-
grate both Accuracy and Locality, and then propose
the metric SURE (Statistical and Unbiased Real-
world Evaluation) to estimate the performance of
edited models in real-world scenarios. We define
SURE as follows:

SURE = az® — by® ()

The x and y represent EM and DD. The param-
eters a and b denote the ratio of the data used to
evaluate the two metrics. The weights « and 3
are used to characterize the importance of EM and
DD, which represent Accuracy and Locality. In
our evaluation, we considered an equal amount of
data for Accuracy and Locality and treated them
as equally important. Therefore, we set the param-
etersas: a = b = 1, « = f = 1. The task of
determining parameters with greater precision is
deferred to future research.

Efficiency We aim to find an editing method that
is fast and has low memory consumption. Follow-
ing (Yao et al., 2023), we measure efficiency in
both time consumption (Ti) and memory require-
ments (Me).

7.2 Baselines

We compare our method with FT, MEMIT (Meng
et al., 2022b), MeLLo (Zhong et al., 2023), and
IKE (Zheng et al., 2023). FT is the most classic and

straightforward model-editing method. MEMIT
is currently considered a state-of-the-art method
among parameter modification methods. IKE and
MeLLo, much like our approach, leverage a knowl-
edge base and in-context learning. Implementation
details can be found in appendix A.3.

7.3 Main Results

Table 2 shows results on FAME. We experiment
with all methods on GPT2-XL (Solaiman et al.,
2019), GPT-J(6B) (Wang and Komatsuzaki, 2021),
Llama2 (Touvron et al., 2023b), and utilized in-
context learning based methods on GPT-3.5-turbo
(Ouyang et al., 2022).

As articulated in Section 7.1, SURE evaluate the
practical effectiveness of different methods com-
prehensively, thereby emulating the performance
of edited model in an actual environment. Firstly,
we scrutinize the results on Llama2, which is the
largest model achievable and on which all model
editing techniques can be employed. FT demon-
strates a somewhat insignificant enhancement in
model performance. MEMIT, did not perform as
expected in our experiments. We hypothesize that
this may be due to the editing process not specif-
ically targeting the model’s generative capability.
MeLLo has a higher EM score, but its DD is also
the highest, which indicates pronounced side ef-
fects, which leads to a low SURE. Both IKE and
SKEME obtained an EM above 0.9. However, IKE
also has presented adverse effects that consequently
decreased its SURE. SKEME uniquely maintains
a high EM and simultaneously ensures a low DD,
thus demonstrating superior practicality compared
to other methods.

To test the impact of model size, we experi-
mented with models of various sizes. The results
indicate that our method exhibits advantages across
all models, whereas some methods fail to work on
extremely small models, such as MeLLo on GPT2-
XL. These model editing methods also require di-
verse amounts of time and GPU space. MeLLo,
due to its long in-context learning process, con-
sumes the most time. On the other hand, MEMIT
had a shorter time consumption but might still be
challenging to accept for large-scale data. On the
contrary, SKEME proves effective across model
sizes while consuming less additional time and
GPU space.

It appears that all methods performed poorly
on certain tasks. This further validates the mean-
ingfulness of constructing data in various forms.



Accuracy Locality Efficiency
Model - Method SURET gai=—n 3 =0T Clo Cho FC.7 DD.] NKL.] Ti. ] Me. |
Base ~ 19.83 8.00 7.11 3.63 34.25 46.16 - ~ 018 9.12
FT 1275 22.72 11.82 10.26 9.96 33.58 47.96 9.97 133 2.12 12.43
GpTo.xp MEMIT 2087 20.87 731 714 667 3422 49.04 0.00 129 136 1185
MeLLo —53.67 30.90 71.42 0.24 0.09 33.72 49.01 84.57 1.32 1.43 17.43
IKE 37.32 50.51 62.05 54.82 48.96 36.09 50.64 13.19 125 0.75 14.26
SKEME 65.80 65.80 85.12 70.60 78.45 38.33 56.51 0.00 1.09 0.23 11.52
Base © 23.36 11.86 12.02 11.52 35.34 46.08 - ~ 035 2657
FT 2521 26.59 13.69 13.38 13.30 40.74 51.72 1.38 1.76 3.27 34.81
cpry MEMIT 4585 4585 40.51 4114 43.51 46.62 4849 0.00 186 13.8 20.84
MeLLo 28.42 55.74 72.20 48.35 72.95 21.81 63.41 27.33 154 242 33.38
IKE 5862 70.04 87.00 82.35 82.27 46.32 52.26 11.42 1.28 0.97 31.53
SKEME 73.93 73.93 97.03 79.63 87.02 46.01 59.97 0.00 139 049 28.17
Base ~ 3220 15.82 15.78 16.02 48.91 64.45 - ~ 033 30.04
FT  34.31 41.80 30.05 29.08 29.22 60.57 60.07 7.49 2.55 5.18 38.92
Llamay MEMIT 48.03 48.30 41.16 40.26 4147 61.00 58.08 0.36 2.83 13.2 33.52
MeLLo 36.38 66.26 68.56 36.95 69.26 78.17 78.35 20.88 2.72 2.45 38.66
IKE 71.38 91.42 97.72 90.11 95.76 95.10 78.42 20.04 2.48 1.08 35.17
SKEME 90.54 90.54 98.61 83.04 90.27 93.73 87.07 0.00 212 045 31.83
Base ~ 40.11 18.76 19.65 17.17 73.73 71.22 - 081 x
GPT- MeLLo 56.58 73.75 70.51 57.16 76.37 82.78 81.92 17.16  x  2.92
35turbo  IKE  76.45 89.53 92.81 89.72 90.88 90.41 83.85 13.08  * 147  «
SKEME 91.76 91.76 98.07 84.78 89.45 99.04 87.40 0.00  +  1.03

Table 2: Main result on our dataset. Com. stands for completion. Clo stands for cloze. Cho stands for choose.
FC stands for fact-checking. TI(s) includes both editing and generating time in Wall clock time and Me(GB) is
calculated by measuring the maximum required GPU VRAM. To maintain brevity, the multiplier of x10~% has
been excluded for the NKL metric. Since DD and NKL are calculated relative to the unedited model, the unedited
model does not have these metrics. *: The computation of NKL and ME metrics for GPT-3.5-turbo is impractical

due to its utilization via API calls.

On the completion task, although the base model
performed similarly to QA and Cloze, the edited
model’s accuracy was significantly lower than QA
and Cloze. We believe that it indicates that the
method’s generalization performance still needs to
improve.

8 Analysis

As we mentioned above, we found that certain
methods have already reached a commendable
level. However, we cannot ensure how these meth-
ods perform in the real world. To simulate the
performance of edited models in the real world, we
proposed a series of research questions (RQs) as
follows.

8.1 RQ1: Whether the Method Can Handle
Iterative Editing?

One possible situation is the iterative editing of a
particular fact (Xu et al., 2023). For example, if

we want LLMs to tell us today’s date, it would
require the model to change its output every day,
making it necessary to edit the model continuously.
The results show that even if a fact is edited only
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Figure 4: Result of RQ1. We select a varying of answers
for each question and edited them into the model in turn.
The graph shows the trend of accuracy for methods as
the number of edits increases.



twice, the accuracy of other methods has declined
significantly. For retrieval-based models, previous
methods could not update knowledge, highlighting
the necessity of using structured knowledge.

8.2 RQ2: How Many Facts Can We Edit
Simultaneously?

To simulate a large number of facts in the real
world, we used more triples to test the capabili-
ties of methods.
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Figure 5: Result of RQ2. We edit diverse quantities of
facts at once, the graph shows the trend of accuracy as
the number of facts edited changes.

The results indicate that the performance of FT
and MEMIT decreases quickly. IKE, MeL.Lo, and
our method all perform well in scenarios with a
larger number of facts to be edited.

8.3 RQ3: Whether Methods are Effective in
Other Benchmarks?

To comprehensively evaluate model editing meth-
ods, we assess these methods on a range of general
datasets. See Appendix A.4 for dataset details.

Method TQA NQ FEVER Vi
Base  0.698 0.191 0.792 0.397
FT  0.362 0.274 0.646  0.228
MEMIT 0.449 0.632 0.724  0.461
MeLLo 0.811 0.633 0.872  0.720
IKE  0.962 0980 0.954 0.964
SKEME 0984 0.964 0987  0.956

Table 3: Result of RQ3. TQA stands for triviaQA, NQ
stands for Natural Questions, Vi stands for VitaminC.
All accuracies are calculate based on exact match rates.

It can be observed that our method consistently
improves the model’s performance irrespective of
the benchmarks, demonstrating the robust versatil-
ity and scalability of our approach. Other methods

show less stable improvements in model perfor-
mance.

8.4 RQ4: Can Model Make Further Inference
Based on Edited Facts?

When discussing model editing, beyond modifying
the model’s responses to specific questions, we
also aim at modifying the model to make further
reasoning based on the edited facts.

MultihupQA
Method ——— T &=
Base  0.145 0.135 0.112 0.079
FT 0223 0362 0231 0.128
MEMIT 0.176 0247 0.136 0.060
MeLLo 0270 0227 0.167 0.073
IKE 0332 0237 0220 0.159
SKEME 0.960 0.786 0.427 0.167

Dialogue
Method ———— 1 T =
Base  0.119 0.118 0.116 0.082
FT 0190 0216 0.152 0.133
MEMIT 0238 0220 0.148 0.126
MeLLo 0353 0295 0.193 0.111
IKE 0229 0235 0207 0.188
SKEME 0.946 0.757 0390 0.181

Table 4: Result of RQ4. SKEME manifests significant
improvements compared to previous approaches, how-
ever, it still fails to address the issue when & > 4. A
conceivable explanation could be the limited inferential
capabilities of the model.

Table 4 presents the results for this task. We
can observe that all methods, except for SKEME,
performed poorly. Traditional retrieval-based mod-
els struggle to find answers to multi-hop questions,
and other methods do not enable the model to infer
based on edited facts.

9 Conclusion

We introduce the practicality requirement for
model editing and created a dataset FAME, which
embodies practicality with factual data and di-
verse tasks. We propose a model editing method,
SKEME, that proves effective across various mod-
els and tasks. The experiments demonstrate that
previous model editing methods have difficulties
dealing with real-world complexities, while our
approach successfully addresses these challenges.
We hope that our work will advance the field of
model editing and inspire further research in this
area.



Limitations

The data in FAME is limited to a monolingual
scope, and we did not multilingual data. We posit
that the inclusion of multilingual data can further
align with the real world, and we leave this as a
potential area for future work.

Ethics Statement

We ensure that the collection of FAME is done in a
manner consistent with the terms of use stipulated
by its sources and the intellectual property rights
of the original authors. We make sure that individ-
uals involved in the collection process are treated
fairly, including ensuring their voluntary participa-
tion and informed consent. Due to the dynamic
nature of the real world, certain knowledge con-
tained in FAME may become outdated, rendering
it no longer reflective of the latest world conditions.
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A Implementation Details

A.1 Data Filter

Ambiguity issues involve two aspects: different en-
tities sharing the same name and a specific entity’s
relation corresponding to multiple objects.
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For the former scenario, one example is: Hope
Springs could refer to a movie from 2012 (Q327214
in Wikidata)?, but can be a movie from 2003 as well
(Q596646 in Wikidata)®. So when asking Who is
the director of Hope Springs?, there are multiple
correct options.

An example of the latter scenario is: a person
may have multiple children, so there are multiple
correct answers when asking for their children’s
names.

We believe that the above two scenarios are sim-
pler compared to questions with only one answer.
Therefore, for easier implementation and to focus
on more fundamental phenomena, we excluded
data in the dataset containing instances of the above
situations.

A.2 SKEME Details

A.2.1 Entity extraction

Entity Extraction aims to extract important entities
from the provided input, aligning with the subject
of the sentence. Previous research has extensively
explored methods such as NER or entity linking
(Wu et al., 2019). Results indicate that this specific
subtask can easily attain an accuracy rate exceeding
97% on our dataset. The accuracy statistics of
entity extraction on our dataset are depicted in the
table 5.

Method accuracy
GPT-3.5-turbo 98.1
Llama2 97.3
TS 99.8

Table 5: Accuracy for entity extraction, when using
GPT-3.5-turbo and Llama2, we employed few-shot.
When using TS5, we finetune on FAME items for 5
epochs.

A.2.2 Knowledge Base Retrieval

The local knowledge base is stored in the form of a
knowledge graph. When updating the local knowl-
edge base, it can be automatically updated from the
external database or manually injected with certain
facts to reflect real-world changes. Such updates
may require a considerable amount of time, but
they can be done in parallel in arbitrary quantities
and during idle times. Consequently, we did not
explicitly evaluate the duration dedicated to this
aspect.

Zhttps://www.Wikidata.org/wiki/Q327214
Shttps://www.Wikidata.org/wiki/Q596646
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A.2.3 Knowledge Rank and Utilization

Following previous works (Zhong et al., 2023;
Zheng et al., 2023), we ranked the retrieved knowl-
edge based on similarity to the input and selected
the top-k knowledge. In our experiments, we set
k = 1. We prompt the model to use the retrieved
knowledge for updating its output.

We utilized an off-the-shelf retrieval model (Izac-
ard et al., 2021) to identify and rank the fact triplets,
which allows us to avoid the training process.

A.3 Implementation Details for Baselines

For FT, MEMIT, and IKE, we use the framework
provided by Wang et al. (2023a).%.

FT Following previous works (Meng et al.,
2022b), We applied Fine-Tuning (FT) to the given
layer of the model. For GPT2-XL, we select layer
0, and for GPT-J and Llama?2, we choose layer 21.

MEMIT For GPT2-XL and GPT-J, we employed
default hyperparameters. For Llama2, we updated
the parameters of layers {4, 5,6, 7,8}. Across all
models, we calculated covariance statistics using
50,000 instances from Wikitext.

MeLLo The original method was designed for
multi-hop questions. We redesigned the prompt for
each task while keeping the knowledge retrieval
part unchanged.

IKE In the original paper, relevant facts were di-
rectly added to the prompt. To make a fair compari-
son, we removed this part and ensured that all facts
were retrieved. Our retrieval settings remained
consistent with the original paper.

A.4 Other Benchmarks

To comprehensively evaluate model editing meth-
ods, we tested these methods on triviaQA (Joshi
et al., 2017), Natural Questions (Kwiatkowski et al.,
2019), FEVER (Thorne et al., 2018) and VitaminC
(Schuster et al., 2021). TriviaQA and Natural Ques-
tions are commonly employed to assess the capa-
bilities of LLMs (Touvron et al., 2023a). FEVER
serves as a classic dataset for fact-checking, and
VitaminC has been utilized in prior works to eval-
uate the effectiveness of model editing (Mitchell
et al., 2022).

*https://github.com/zjunlp/EasyEdit
>The author’s response to the issue: https://github.
com/Zce1112zs1x/IKE/issues/3


https://www.Wikidata.org/wiki/Q327214
https://www.Wikidata.org/wiki/Q596646
https://github.com/zjunlp/EasyEdit
https://github.com/Zce1112zslx/IKE/issues/3
https://github.com/Zce1112zslx/IKE/issues/3

B Problems Definition Details

B.1 Precise Definition

Let (subject, relation, object) be a factual triple, de-
noted as (s,7,0). Consider an input-output pair
as (z,y), where x is effectively a combination of
s and r. A model is represented by a function
f X — Y, where X represents the input set and
Y represents the output set.

For any ¢ in the set {s,r,0,x,y}, we use the
notation 7" to represent all description that is se-
mantically equivalent to ¢, and ' represents any
element within the set 7’. Notice that t € T" .
Then, we can define I(x,y) as

I(w,y) ={(2',y)]2" € X"andy/ €Y'} (3)

To define EX (x,y), let’s define a fact triple as
tr(s,r,0), and S is the set of all fact triples. Also,
define the multiplication operation * for two sets
of fact triples A and B as the join operation:

AxB=ANX

0=s8

“4)

Then, define

No(tr) ={(s',7",d) | s € ;" e R, € O'}

&)
and
Ni(tr) = Ni_1(tr) xS (i>1)  (6)
Ultimately, we define EX (tr) as
EX(tr)=J N (7)
i=0

By incorporating s and r into the x, we derive
the expression EX (z,v).

After defining I(x,y) and EX (z,y), we can
define O(x, y) as

Cs(1|J EX) ®)

B.2 Example of Definition
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Symbol Example
(2,9) (Who is the current head of government

’ for America?, Joe Biden)

(2, ) (The head of government
’ for America is __, Joe Biden)

(Who is the spouse of the President
EX(x,y) of the United States?, Jill Biden)
O(z,y) (What color is the Sky?, Blue)
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