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ABSTRACT

Fairness and privacy risks are important concerns of machine learning (ML) when
deploying ML to the real world. Recent studies have focused on group fairness
and privacy protection, but no study focuses on individual fairness (IF) and pri-
vacy protection. In this paper, we propose a new definition of IF from the per-
spective of privacy protection and experimentally evaluate privacy-preserving ML
based on the proposed IF. For the proposed definition, we assume that users pro-
vide their data to an ML service and consider the principle that all users should
obtain gains corresponding to their privacy risks. As a user’s gain, we calculate
the accuracy improvement on the user’s data when providing the data to the ML
service. We conducted experiments on the image and tabular datasets using three
neural networks (NNs) and two tree-based algorithms with differential privacy
guarantee. The experimental results of NNs show that we cannot stably improve
the proposed IF by changing the strength of privacy protection and applying de-
fenses against membership inference attacks. The results of tree-based algorithms
show that privacy risks were extremely small without depending on the strength
of privacy protection but raise a new question about the motivation of users for
providing their data.

1 INTRODUCTION

As machine learning (ML) services trained with users’ data become increasingly popular, privacy
risks of memorizing training data have been gaining attention (Shokri et al., 2017; Jagielski et al.,
2020; Nasr et al., 2021; Malek Esmaeili et al., 2021). To prevent privacy leakage through trained
models, privacy-preserving ML based on differential privacy (DP) (Dwork et al., 2006) is a de facto
standard. For example, DP-SGD (Song et al., 2013; Abadi et al., 2016) is used for training neural
networks (NNs) based on stochastic gradient descend (SGD) with DP guarantee, and DPBoost (Li
et al., 2020) and DPXGBoost (Grislain & Gonzalvez, 2021) are used for training tree-based models
with DP guarantee.

When applying ML to the real world, fairness is another important concern about ML. Recent studies
have begun to focus on both privacy protection and fairness: the difference in the effect of DP on
majority and minority groups (Bagdasaryan et al., 2019; Pujol et al., 2020; Farrand et al., 2020;
Tran et al., 2021), the difference in vulnerabilities against membership inference attacks (MIAs)
between majority and minority groups (Zhang et al., 2020; Zhong et al., 2022), and methods for
guaranteeing both group fairness and DP (Xu et al., 2019; 2020). All of these studies have focused
on group fairness, i.e., fairness between majority and minority groups. Assuming situations where
users decide whether to provide their data to ML services, individual fairness (IF), i.e., fairness
between individual users, is also important for the decision. However, no study has focused on IF
and privacy protection.

In this paper, we investigate privacy-preserving ML from the perspective of both IF and privacy
protection. To this end, we propose a new definition of IF from the perspective of privacy protection
and experimentally evaluate privacy-preserving ML based on the proposed IF. Assuming that users
provide their data to an ML service, we define the proposed IF based on the principle that all users
should obtain gains corresponding to their privacy risks. Furthermore, we discuss the relationship
between the proposed IF and prior IF for classification and validate the proposed IF using synthetic
data.

1



Under review as a conference paper at ICLR 2023

We extensively evaluate privacy-preserving ML in terms of the proposed IF. Using two image
datasets, we evaluate a six-layer convolutional NN (CNN) and ResNet18 (He et al., 2016) trained
with DP-SGD (Song et al., 2013; Abadi et al., 2016). Using two tabular datasets, we evaluate a five-
layer fully connected NN trained with DP-SGD, DPBoost (Li et al., 2020), and DPXGBoost (Gris-
lain & Gonzalvez, 2021). In the evaluation, as a user’s privacy risk, we calculate a lower bound of a
DP parameter ϵ (Jagielski et al., 2020; Malek Esmaeili et al., 2021). As a user’s gain, we calculate
the accuracy improvement on the user’s data when providing the data to the ML service. Since the
accuracy improvement means that the utility of the ML service increases for the user, we can regard
the accuracy improvement, i.e., the utility increase, as the user’s gain.

The results were different for NNs and tree-based algorithms. The main findings are as follows.

• The results of NNs show that unfairness in terms of the proposed IF was large without de-
pending on the strength of privacy protection because some users’ gains were small com-
pared with their privacy risks. These results show that we cannot improve the proposed IF
by adjusting the strength of privacy protection.

• We further evaluated the proposed IF when applying defenses against MIA to NNs. No de-
fense improved fairness without depending on the settings (i.e., datasets, NNs, and strength
of privacy protection), and fairness was degraded by the defenses in some settings. These
results show the need for a method that stably improves the proposed IF of NNs without
depending on the settings.

• The results of tree-based algorithms show that privacy risks and gains were extremely small
without depending on the strength of privacy protection. For tree-based algorithms, the
proposed IF does not seem to be important, but these results raise a new question about
the motivation of users for providing their data. For example, some users are unwilling to
provide their data if their data do not improve the ML service.

2 PRELIMINARIES

Individual fairness. IF is a main concept of algorithmic fairness along with group fairness. IF
is proposed for the classification task based on the principle “similar data should be classified
similarly” (Dwork et al., 2012). Let input space be V , a set of output classes be A, probabil-
ity distributions over output classes be ∆(A), a mapping from an input to an output, i.e., an ML
model, be M : V → ∆(A), and distance in input and output space be d : V × V → R and
D : ∆(A)×∆(A) → R. If an model is a Lipschitz mapping, the model satisfies the principle of IF.
Definition 1 (Lipschitz mapping). A mapping M : V → ∆(A) satisfies the (D, d)-Lipschitz prop-
erty if for any x, y ∈ V , the following holds:

D(M(x),M(y)) ≤ d(x, y).

d and D need to be designed for each task. An example of d is a Mahalanobis distance without using
features correlated with sensitive attributes such as races and genders.

Another definition based on the same principle is proposed by relaxing the Lipschitz property.
Definition 2 (ϵ-δ-IF (John et al., 2020)). A mapping M is ϵ-δ-individually fair if for all x, y such
that d(x, y) ≤ ϵ, the following holds:

|M(x)−M(y)| ≤ δ.

Note that in practice, a task-specific loss needs to be considered in addition to these definitions of IF
for building a fair and accurate model.

Differential privacy. DP (Dwork et al., 2006) is a standard definition of privacy protection for
statistical data analysis. In DP, we consider neighboring datasets D0 and D1 differing by only one
sample. An example is adding one sample (x′, y′) to D0 to make D1, i.e., D1 = D0 ∪ {(x′, y′)}.
Definition 3 (Differential Privacy). A randomized mechanism M : D → R is (ϵ, δ)-differentially
private if for any neighboring datasets D0, D1 and for any output range S ⊂ R, the following holds:

Pr[M(D0) ∈ S] ≤ eϵPr[M(D1) ∈ S] + δ.
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A small constant, e.g., 10−5, is typically used for δ, and ϵ represents the privacy risk of the mecha-
nism. Privacy-preserving ML guarantees an upper bound of ϵ with theoretical analysis.

Figure 1: Game for calculating a lower bound of ϵ

Lower bound of DP parameter ϵ. From the
practical perspective, the lower bound of the
DP parameter ϵ is empirically studied by in-
stantiating attackers against privacy-preserving
ML (Jagielski et al., 2020; Nasr et al., 2021;
Malek Esmaeili et al., 2021). We explain the
basic idea of these methods following the prior
work (Jagielski et al., 2020). This method is
based on a game of an attacker and trainer
shown in Fig. 1. First, the attacker prepares two
neighboring datasets D0 and D1. Here we con-
sider D1 is prepared by adding a target sample
(x′, y′) to D0. Second, the trainer randomly se-
lects one of the neighboring datasets Db, where
b is the index of the selected dataset. The trainer builds the model f using Db with a privacy-
preserving ML algorithm M and returns the loss l = ℓ(f(x′), y′) to the attacker. Third, the attacker
predicts which dataset is used in training with an algorithm A(D0, D1, l) and sends the prediction
b′ to the trainer. Since a small loss indicates that the sample (x′, y′) is used in training, a commonly
used algorithm predicts that the dataset is D1 if the loss is less than the threshold. Finally, the trainer
checks if the prediction is correct.

To calculate the lower bound, this game is repeated many times, e.g., 1,000 times. If M is (ϵ, δ)-
differentially private, the false positive rate (FPR) and false negative rate (FNR) of the games are
bounded (Kairouz et al., 2015) by FPR+ eϵFNR ≤ 1− δ and FNR+ eϵFPR ≤ 1− δ.

Given δ, the maximum ϵ satisfying the above inequalities is the empirical ϵ. Its lower bound ϵLB is
defined using the upper bounds of FPR and FNR calculated with the Clopper-Pearson method (Clop-
per & Pearson, 1934):

ϵLB = max

(
log

1− δ − FPRUB

FNRUB
, log

1− δ − FNRUB

FPRUB

)
. (1)

Assuming that the target sample (x′, y′) is data provided by a user, we can estimate the user’s privacy
risk by ϵLB .

3 INDIVIDUAL FAIRNESS FOR PRIVACY PROTECTION

We propose a new definition of IF from the perspective of privacy protection assuming that users
provide their data to an ML service. Additionally, we discuss the relation between the proposed IF
and the prior IF for the classification task and validate the proposed definition using synthetic data.

3.1 PROBLEM SETTING

Before describing the proposed IF, we explain the ML service and user that we assume in this paper.

Machine learning service. We assume a service using an ML model trained with users’ data. The
service accepts inputs from users and returns the predictions made by the model. In parallel with
running the service, the service provider continues to collect users’ data and add them to the training
dataset. If different users have different traits of data, data needs to be collected for accurately
predicting new users’ data. Regarding data collection, we assume that users can select whether to
provide their data to the service or not. For example, when they start to use the service, they are
asked whether they consent to share their data. If they consent, their data will be shared with the
service and added to the training dataset. Examples of the services are facial expression recognition,
handwritten text recognition, product recommendation, and medical diagnosis.

User. We assume that users of the above ML service expect that their data are accurately classified
by the service. The users decide whether to provide their data depending on the expected privacy
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risks. If the users consider that the risks are high, they decide not to provide their data. If the users
consider that the risks are low, they decide to provide their data.

The typical privacy risk is caused by the memorization of the ML model. The memorization leaks
information on the training dataset from the outputs of the model. Such privacy risk is empirically
measurable by calculating the lower bound of DP parameter ϵ as described in Section 2. In this
paper, we define IF regarding privacy protection when users provide their data.

3.2 PROPOSED DEFINITION OF INDIVIDUAL FAIRNESS

We define IF between users who provide their data to the ML service from the perspective of privacy
protection. Since a privacy risk, i.e., the lower bound of ϵ, can be calculated with the method
described in Section 2, IF regarding the privacy risks could be defined by referring to IF for the
classification task. Two naive definitions are as follows.

• A training algorithm is individually fair if users having similar data face similar privacy
risks. This definition is inadequate because a difference in privacy risks can be large if
users’ data are dissimilar. For example, users having outlier data may have to tolerate high
risks despite the fact that users having ordinary data face low risks.

• A training algorithm is individually fair if the difference in privacy risks between any
pair of users is small. This definition can be satisfied by reducing privacy risks with
privacy-preserving ML because the differences are small if all users’ privacy risks are
small. However, strong privacy protection with DP is known to degrade classification per-
formance (Abadi et al., 2016). For this reason, this definition seems to be impractical.

As described above, IF for privacy protection cannot be adequately defined in naive ways. To solve
this problem, we admit that there are differences in privacy risks between users and define IF by
additionally considering gains that users obtain in response to providing their data. We consider that
a training algorithm is individually fair if all users obtain gains corresponding to their privacy risks.
In other words, an algorithm is fair if users facing high privacy risks obtain large gains and if users
facing low privacy risks obtain small gains. In contrast, an algorithm is unfair if users obtain much
larger or smaller gains than expected from their privacy risks.

In this paper, we calculate a user’s gain by the accuracy improvement on the user’s data. Since the
user expects that their data is accurately classified by the ML service, the accuracy on the user’s
data corresponds to the utility of the ML service. If the accuracy is improved by providing the data,
we can regard the accuracy improvement, i.e., the utility increase, as the user’s gain. Note that we
discuss other types of gains in Section 5. We estimate the accuracy improvement using shadow
models. We use a dataset D0 already collected by the service and a user’s sample (xi, yi). We
train ns shadow models {fout}ns

i=1 using D0, i.e., without the user’s sample, and n shadow models
{fin}ns

i=1 using D0 ∪ {(xi, yi)}, i.e., with the user’s sample. Then we count cout and cin: the
number of shadow models accurately predicting the user’s sample (xi, yi) among {fout}ns

i=1 and
{fin}ns

i=1, respectively. The accuracies on the sample (xi, yi) when models are trained without and
with (xi, yi) are estimated by cout

ns
and cin

ns
. The accuracy improvement, i.e., the gain, is calculated

by gi =
cin
ns

− cout

ns
. Note that we use the accuracy improvement instead of the loss decrease because

the utility of the ML service does not increase even if the loss decreases unless the falsely predicted
user’s sample becomes accurately predicted. As the user’s privacy risk ri, we calculate the lower
bound of ϵ using (xi, yi) as the target sample.

Using the above users’ privacy risks and gains, we define IF for privacy protection. Since we admit
the difference in privacy risks between users, we focus on the difference in the tradeoff of privacy
risks and gains. Specifically, we consider that a training algorithm is individually fair if all users’
tradeoffs are similar. We denote privacy risks and gains of users U = {ui}ni=1 as R = {ri}ni=1
and G = {gi}ni=1, respectively. To evaluate the tradeoff, we normalize R and G so that their means
and variances are 0 and 1, respectively. The normalized risk and gain of the user ui are denoted as
r′i =

ri−µr

σr
and g′i =

gi−µg

σg
, where µr and µg are means of R and G, and σ2

r and σ2
g are variances

of R and G. In an ideally fair situation, gains are completely correlated with risks and all users’
tradeoffs are the same. In this case, we have g′i = r′i for all users. Based on this insight, we define
IF by focusing on the difference between an ideal gain (i.e., r′i) and actual gain (i.e., g′i).
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Figure 2: Unfairness and distribution of di. (a) and (c) show the mean and standard deviation
of unfairness calculated 100 times. (b) and (d) show the distribution of di calculated using 100
generated samples.

Definition 4 (δ-IF regarding privacy risks and gains). Let R′ = {r′i}ni=0 and G′ = {g′i}ni=0 be
the normalized privacy risks and gains so that their means are 0 and variances are 1. A training
algorithm is δ-individually fair if for all users ui ∈ U , the following holds:

|g′i − r′i| ≤ δ.

When G′ is completely correlated with R′, we have δ = 0. δ is expected to increase as the correlation
becomes weaker. When G′ is inversely correlated with R′, we have a large δ. Note that even if most
users have gains corresponding to their risks, if only one user has a small or large gain compared
with the risk, we have a large δ. This is because our definition is based on the worst-case user in the
same way as Definition 1 and Definition 2 of IF for the classification task.

Based on this definition, we can evaluate the unfairness δ̂ of a training algorithm by using empirically
calculated R′ and G′:

δ̂ = max
ui∈U

|g′i − r′i|. (2)

Additionally, we can investigate a training algorithm in detail in terms of the proposed IF using each
user’s difference between the gain and risk: di = g′i − r′i.

3.3 RELATION TO ϵ-δ-IF

Here, we discuss the relation between the proposed δ-IF and ϵ-δ-IF in Definition 2. ϵ-δ-IF guarantees
that outputs of an ML model are similar if input data are similar. In the setting of this paper, we can
consider ϵ-δ-IF guaranteeing that users’ gains are similar if their privacy risks are similar. Specifi-
cally, we modify ϵ-δ-IF by replacing x, y with ri, rj and M(x),M(y) with gi, gj . For the distance
of privacy risks, we simply calculate the absolute difference of privacy risks: d(ri, rj) = |ri − rj |.
If the modified ϵ-δ-IF is satisfied, for all users such that |ri − rj | ≤ ϵ, we have |gi − gj | ≤ δ. The
proposed δ-IF has a relation to the modified ϵ-δ-IF.

Proposition 1. If a training algorithm satisfies δ-IF regarding privacy risks and gains, the algorithm
also satisfies ϵ-δ′-IF in the setting where inputs are privacy risks and outputs are gains. Here, δ′ =
σg

σr
ϵ+ 2σgδ.

For the proof, please refer to Appendix A. Note that the converse is not true because ϵ-δ-IF does not
hypothesize the correlation between privacy risks and gains.

3.4 VALIDATION USING SYNTHETIC DATA

We validate the proposed IF using two synthetic data. As described above, unfairness δ̂ is expected
to be small if g′ is correlated with r′, and δ̂ is expected to be large if g′ is inversely correlated with r′.
We verify this expectation using the first synthetic data. Specifically, we generate [ rigi ] using a two-
dimensional Gaussian distribution with a mean µ = [ 00 ] and covariate matrix Σ = [ 1 c

c 1 ], changing
c from -1.0 to 1.0 by 0.2. For each c, we calculate δ̂ 100 times using 100 generated samples. We
show examples of synthetic data in Fig. 5 in Appendix and unfairness δ̂ in Fig. 2(a). As expected,
δ̂ was 0 when g′ was completely correlated with r′, and δ̂ was the largest when g′ was completely
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inversely correlated with r′. When g′ did not correlate with r′, i.e., c = 0.0, δ̂ was close to 4.0.
This result shows that a training algorithm is unfair if δ̂ is close to 4.0 or larger. Figure 2(b) shows
the distributions of di = g′i − r′i. Since the Gaussian distribution generates many data close to the
mean, the number of users having di close to 0 was large. The maximum and minimum values of di
becomes large and small as c decreases. Note that based on the modified ϵ-δ-IF, unfairness is small
when c = −1.0 because users having similar r′ obtain similar g′. This is because the correlation
between r′ and g′ is not assumed in the modified ϵ-δ-IF.

We generate the second synthetic data to confirm that the distribution of di is useful. The second
synthetic data consists of three types of users. The first type of users obtain g′ corresponding to r′,
and we generate [ rigi ] using a two-dimensional Gaussian distribution with µ = [ 00 ] and Σ = [ 1 0.8

0.8 1 ].
The second type of users obtain small g′ compared with r′, and we generate [ rigi ] using a distribution
with µ =

[
2
−2

]
and Σ = [ 0.1 0

0 0.1 ]. The third type of users obtain large g′ compared with r′, and
we generate [ rigi ] using a distribution with µ =

[−2
2

]
and Σ = [ 0.1 0

0 0.1 ]. We generate 100 samples
by changing the ratio of unfair users from 0.1 to 0.9 by 0.1. When the ratio is a, we generate
(1− a)× 100 samples using the first distribution, a× 50 samples using the second distribution, and
a × 50 samples using the third distribution. Examples of the synthetic data are shown in Fig 6 in
Appendix. For each ratio a, we calculate unfairness δ̂ 100 times as shown in Fig. 2(c). Since the
generated data always contained unfair users, unfairness was large without depending on a. Even
though unfairness is similar, Fig. 2(d) shows the difference in the distributions of di. When a was
small, the number of unfair users was small, and the majority of users had di close to 0. When a
was close to 0.5, there were various types of users; di was close to 0, large, and small. When a was
large, the number of unfair users was large, and the majority of users had large or small di.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

We describe important points of the setup. For more details, please refer to Appendix B.

Dataset. We used two image datasets and two tabular datasets containing user information. The
image datasets are FEMNIST and Celeba, both made by Caldas et al. (2018). FEMNIST contains
28×28 gray scale handwritten digits for 10 class-classification. Celeba contains 64×64 facial im-
ages for classifying “smile” and “not smile”. The tabular datasets are Adult (Kohavi & Becker,
1996) and Texas (Texas Department of State Health Services, 2013). Adult contains users’ attribute
vectors of size 108 for classifying whether their income is larger than 50k. Texas contains patients’
attribute vectors of size 72 for classifying whether their total charge is larger than 50k. For each
dataset, we selected 100 users from the test datasets to evaluate fairness. We selected a variety of
users from ordinary to outlier users to estimate the overall trend of the proposed IF. For the detailed
procedure, please refer to Appendix B.

Machine learning algorithm and hyperparameters. We used two NNs for the image datasets
(ConvNet and ResNet18) and one NN (FC) and two tree-based algorithms (DPBoost and DPXG-
Boost) for the tabular datasets.

• ConvNet: This is a six-layer CNN designed by referring to the prior work (Nasr et al.,
2021). ConvNet consists of two convolutional layers, two max-pooling layers, and two
fully connected layers. We trained ConvNet with DP-SGD and changed the strength of
privacy protection using different variances of the noises: σ = 0.1, 0.3, 0.5, and 0.7.

• ResNet18: This is an 18-layer CNN with the shortcut connections (He et al., 2016). We
trained ResNet18 with DP-SGD using the same hyperparameters as ConvNet.

• FC: This is a five-layer fully connected NN. The number of units in the intermediate layers
is 500, and their activation functions are ReLU. We trained FC with DP-SGD using the
same hyperparameters as ConvNet.

• DPBoost: This is a differentially private Gradient Boosting Decision Trees (Li et al., 2020).
We changed the strength of privacy protection using different values of total budget:
100, 50, 10, and 5.
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Figure 3: Main experimental results. (a) and (e) show unfairness when using the image and tabular
datasets. (b)/(f) and (c)/(g) show means and standard deviations of users’ privacy risks and gains.
(d) and (h) show classification performance on data provided by users, i.e., training datasets. The
classification performance (accuracy for multi-class classification and area under the curve (AUC)
for binary classification) is calculated using 10 shadow models, and the mean and standard devia-
tions are shown. The protection level = [1, 2, 3, 4] corresponds to σ = [0.1, 0.3, 0.5, 0.7] for NNs,
total budget = [100, 50, 10, 5] for DPBoost, and dp epsilon per tree = [100, 10, 1, 0.1]
for DPXGBoost.

• DPXGBoost: This is a differentially private XGBoost proposed for improving scalabil-
ity (Grislain & Gonzalvez, 2021). We changed the strength of privacy protection using
different values of dp epsilon per tree: 100, 10, 1, and 0.1.

4.2 EXPERIMENTAL RESULTS

We evaluated the unfairness, privacy risks, gains, and classification performance changing the
strength of privacy protection as shown in Fig. 3. When calculating the privacy risks using the
NNs, we repeated the game shown in Fig. 7 in Appendix B 1,000 times to improve efficiency. When
using the tree-based algorithms, we repeated the game shown in Fig. 1 1,000 times for each user. As
detailed results, we show the distributions of di in Fig. 8 in Appendix.

The results were different for NNs and tree-based algorithms. The results of NNs show that privacy
risks, gains, and classification performance decreased as privacy protection became stronger. The
unfairness of NNs was large without depending on the strength of privacy protection. These results
show that we cannot improve the proposed IF by changing the strength of privacy protection. To
look deeper into the results, we show users’ privacy risks and gains in Fig. 4 when using ConvNet
and σ = 0.1. The results show that privacy risks and gains of the majority of users had a positive
correlation, but some users’ gains were small compared with their risks. Such users were the main
cause of unfairness. Figure 8 in Appendix shows such users were also the cause of unfairness in
other settings.

The results of tree-based algorithms were surprising and show that privacy risks and gains were
extremely small without depending on the strength of privacy protection. Unfairness was large
without depending on the strength of privacy protection. Even though the unfairness of tree-based
algorithms was large, users do not seem to consider that the unfairness is a problem because the
magnitude of privacy risks and gains was similar and extremely small for all users. However, this
result raises a new question about users’ motivation for providing their data. For example, some
users are unwilling to provide their data if their data do not improve the ML service.
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when using ConvNet and σ = 0.1

Table 1: Changes in unfairness on FEMNIST

FEMNIST/ConvNet FEMNIST/ResNet18
σ 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7
Top1 -1.02 -1.13 0.74 -0.14 0.02 -0.88 -0.17 2.68
Top2 -0.27 -1.11 0.19 0.78 0.44 -0.85 -0.28 1.55
Round1 0.01 0.89 -0.73 -0.36 1.11 -0.82 0.72 -0.15
Round2 0.04 0.52 -0.01 -0.86 0.77 -0.89 0.04 1.62
Round3 -0.00 0.65 0.47 0.13 0.43 -1.15 0.30 1.64
Temp5 0.09 -0.58 -1.09 -0.90 -0.08 1.17 2.24 -0.22
Temp15 0.30 -0.58 -1.58 1.75 0.19 0.35 1.97 2.62

Table 2: Changes in unfairness on Celeba, Adult, and Texas

Celeba/ConvNet Celeba/ResNet18 Adult/FC Texas/FC
σ 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7
Round1 0.60 0.06 -0.66 -0.52 0.61 1.26 -2.92 -0.88 -0.36 -0.41 -1.73 -0.55 0.05 0.31 0.20 -1.68
Round2 0.70 0.42 -0.74 -0.77 0.61 0.80 -3.92 -1.27 1.82 -0.17 -0.75 -0.04 -1.04 -0.72 -1.10 -1.65
Round3 0.97 0.43 -0.52 -0.87 0.44 0.56 -3.25 0.70 0.86 -0.06 -1.31 0.28 -0.34 -0.52 -0.54 -1.19
Temp5 0.00 -0.00 0.09 -0.01 0.02 -0.03 -0.04 0.01 -0.02 0.01 -0.01 -0.00 0.00 -0.01 -0.01 -0.08
Temp15 0.00 -0.00 0.09 -0.01 0.02 -0.03 -0.04 0.01 -0.02 0.01 -0.01 -0.00 0.00 -0.01 -0.01 -0.08

4.3 EFFECTIVENESS OF DEFENSES AGAINST MEMBERSHIP INFERENCE ATTACK

The experimental results of NNs indicate that the proposed IF can be improved by reducing the
privacy risks of users whose gains are small. Hence, we further investigate the unfairness when
applying defenses against membership inference attacks (MIAs). Since the proposed IF is impor-
tant only for NNs based on the experimental results, we investigate changes in unfairness when
applying defenses to NNs. In order not to decrease gains, we used three defenses that do not affect
classification performance but can reduce privacy risks.

• Topk: This defense outputs predictions on k classes with the largest confidence. This
defense makes MIA difficult when the confidence of the correct class is small. We expect
that this defense reduces the privacy risks of users whose accuracies are low. Note that this
defense can be applied to only multi-class classification, i.e., FEMNIST. We used k = 1, 2.

• Roundd: This defense rounds confidence to d decimal places. This defense can make MIA
difficult because attackers cannot use small changes in confidence. We used d = 1, 2, 3.

• Tempt: This defense replaces a temperature parameter of the softmax function with t. This
defense can make MIA difficult because attackers cannot use small changes in confidence.
We used t = 5, 15.

Tables 1–2 show changes in unfairness when applying the defenses. The negative and positive values
mean that unfairness was decreased and increased by applying the defenses, respectively. We also
show changes in privacy risks in Tables 6 in Appendix because the defenses affect privacy risks
as well. The effects differ depending on defenses. Topk improved the fairness when the privacy
protection is relatively weak, i.e., σ = 0.3. Top1 and Top2 improved the fairness to a similar extent.
Roundd improved the fairness when the privacy protection is strong, i.e., σ = 0.5 or 0.7. Round1–
3 improved the fairness to a similar extent except for FEMNIST and ConvNet. Round3 was not
effective for FEMNIST and ConvNet. Tempt improved the fairness of FEMNIST and ConvNet, but
did not improve the fairness of the other settings. All defenses are effective in some settings, but no
defense improved fairness in all settings. In contrast, unfairness was increased by the defenses in
some settings. These results show that a method is required for improving the proposed IF of NNs.

5 DISCUSSION

Necessity of the proposed individual fairness. As aforementioned in Section 4.2, the proposed IF
does not seem to be important for tree-based algorithms because both privacy risks and gains were
extremely small. Here, we discuss the necessity of the proposed IF for NNs. The experimental re-
sults show that privacy risks decrease as the strength of privacy protection increases. With extremely

8



Under review as a conference paper at ICLR 2023

strong privacy protection, all users’ privacy risks are expected to be negligibly small. In such a case,
the proposed IF does not seem to be important. However, strong privacy protection for NNs deteri-
orates classification performance as shown in Fig. 3(d,h). For this reason, using an extremely large
σ is impractical. Using a moderate σ that can limit privacy risks to an acceptable level and building
an individually fair model is reasonable in practice.

Possibility of other gains. In this paper, we calculated gains by the accuracy improvement on users’
data. However, the gains are not limited to the accuracy improvement, and we could assume other
gains such as premium service and a monetary reward. Even when using such gains, we can evaluate
IF based on our definition. Since all users need to obtain the gains corresponding to their risks to
achieve small δ in our definition, the gains are required to be adjustable depending on users’ risks.

6 RELATED WORK

Fairness and privacy protection. Related work regarding fairness and privacy protection is divided
into three lines. The first and main line of work is studying the relation between group fairness
and privacy protection. Many studies have investigated the effect of privacy protection with DP
on group fairness (Bagdasaryan et al., 2019; Pujol et al., 2020; Farrand et al., 2020; Tran et al.,
2021). All studies show that privacy protection deteriorates fairness. One study focused on the
relationship between vulnerability against MIA and group fairness (Chang & Shokri, 2021). This
study shows that there is a tradeoff between vulnerability and fairness because training data needs
to be memorized to make a model fair.

The second line of work is studying the difference in privacy risks depending on groups (Zhang
et al., 2020; Zhong et al., 2022). These studies employ MIA to evaluate privacy risks and show that
minority groups face larger privacy risks than majority ones. The studies further show that privacy
protection with DP decreases the difference in privacy risks between minority and majority groups.

The third line of work is proposing methods satisfying both privacy protection and group fairness.
Xu et al. (2019) proposed a logistic regression guaranteeing both DP and group fairness, and Xu
et al. (2020) extended DP-SGD for reducing unfairness by adjusting the clipping of each class.

Lower bound of DP parameter ϵ. In this paper, when calculating the lower bound, we assume a
realistic attacker who can access outputs of the trained model via an API. Not only such a realistic
attacker but also stronger attackers were proposed to calculate lower bounds (Nasr et al., 2021). The
stronger attackers can access intermediate models during training and manipulate the whole dataset.
In this paper, we assume a realistic attacker because the trained models are assumed to be carefully
protected by ML services.

7 CONCLUSION

In this paper, we propose a new definition of individual fairness (IF) from the perspective of privacy
protection and experimentally evaluate privacy-preserving machine learning (ML) based on the pro-
posed IF. For the proposed definition, we assume that users provide their data to an ML service and
consider the principle that all users should obtain gains corresponding to their privacy risks. Fur-
thermore, we discuss the relationship between the proposed IF and prior IF for classification and
validate the proposed IF using synthetic data.

We conducted experiments on the image and tabular datasets using three neural networks (NNs)
and two tree-based algorithms with differential privacy guarantee. The experimental results of NNs
show that we cannot stably improve the proposed IF by changing the strength of privacy protection
and applying defenses against membership inference attacks. These results show the need for a
method that stably improves the proposed IF of NNs. The results of tree-based algorithms show
that privacy risks and gains were extremely small without depending on the strength of privacy
protection. For tree-based algorithms, the proposed IF seems not to be important, but these results
raise a new question about the motivation of users for providing their data.
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A PROOF OF PROPOSITION 1

Proof. From Definition 4, if a training algorithm satisfies δ-IF, for a user ui having a privacy risk r′i
and a gain g′i, the following holds:

r′i − δ ≤ g′i ≤ r′i + δ.

Unnormalizing r′i and g′i with r′i =
ri−µr

σr
and g′i =

gi−µg

σg
, ri and gi satisfy the following:

σg

σr
(ri − µr)− σgδ + µg ≤ gi ≤

σg

σr
(ri − µr) + σgδ + µg.

Considering a user uj having a privacy risk rj = ri + ϵ, the gain gj satisfies the following:

σg

σr
(ri + ϵ− µr)− σgδ + µg ≤ gj ≤

σg

σr
(ri + ϵ− µr) + σgδ + µg.
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Figure 5: First type of synthetic data with different c
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Figure 6: Second type of synthetic data with different a

The difference between gains of users ui and uj such that d(ri, rj) = |ri − rj | ≤ ϵ takes the
supremum when rj = ri + ϵ or rj = ri − ϵ:

max
d(ri,rj)≤ϵ

|gi − gj | ≤ σg

σr
ϵ+ 2σgδ = δ′.

This shows that a training algorithm satisfies ϵ-δ′-IF.

B DETAILED EXPERIMENTAL SETUP

For the experiments of NNs, we used PyTorch v1.10.1 (Paszke et al., 2017) and Opacus
v1.0.0 (Yousefpour et al., 2021) for implementation and conducted our experiments on NVIDIA
Tesla V100 16GB with CUDA 11.3.1.

Dataset. We used two image datasets and two tabular datasets containing user information.

• FEMNIST: This dataset consists of 28×28 gray scale handwritten images written by 3,500
users (Caldas et al., 2018). We randomly selected 500 users from users having more than
100 images of digits 0–9. We used 59,556 images of the selected users as the training
dataset D0 and trained models for 10-class classification.

• Celeba: This dataset consists of images of 9,343 users for facial expression recogni-
tion (Caldas et al., 2018). We resized images to 64 × 64 and randomly selected 2,000
users from users having more than 10 images. We used 46,116 images of the selected users
as D0 and trained models classifying “smile” and “not smile”.

• Adult: This dataset consists of 14 types of users’ attributes extracted from the 1994 US
Census database (Kohavi & Becker, 1996). We used one-hot encoding for categorical
attributes, and the size of encoded feature vectors is 108. We randomly selected 39,073
users as D0 and trained models classifying whether a user’s income is larger than 50k.

• Texas: This dataset consists of patients’ attributes (Texas Department of State Health Ser-
vices, 2013). We used 12 types of attributes: DISCHARGE, TYPE OF ADMISSION,
PAT STATE, PAT STATUS, SEX CODE, RACE, ETHNICITY, ADMIT WEEKDAY,
PAT AGE, RISK MORTALITY, ILLNESS SEVERITY, LENGTH OF STAY. We used
one-hot encoding for categorical attributes, and the size of encoded feature vectors is 72.
We randomly selected 50,000 users as D0 and trained models classifying whether a pa-
tient’s TOTAL CHARGES is larger than 50k.

We normalized each channel of FEMNIST and Celeba so that its mean and variance are 0 and 1,
respectively. We normalized each element of Adult and Texas so that its minimum and maximum
values are 0 and 1, respectively.
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Table 3: Hyperparameters

Algorithm Hyperparameter Candidates Selected

ConvNet

Patch size 3× 3, 5× 5 5× 5
Output channel size 32, 64, 128 64
Number of units in the FC layer 256, 512, 1024 512
Batchsize 64, 128, 512 512

FC Number of layers 3, 5, 10 5
Number of units 100, 500, 1,000 500

DPBoost

num leaves 20, 30, 50, 100 30
max depth 3, 6, 10 10
my n trees 20, 30, 50 50
inner boost round 20, 30, 50 50

DPXGBoost
n trees 10, 20, 30 20
subsample 0.1, 0.2, 0.3 0.2
max depth 3, 6, 10 6

Table 4: Architecture of ConvNet

Layer Type (Activation) Patch Output channels
1 Convolution (ReLU) 5× 5 64
2 Max pooling 2× 2 64
3 Convolution (ReLU) 5× 5 64
4 Max pooling 2× 2 64
5 Fully connected (ReLU) 512
6 Fully connected (Softmax) 10 or 2

For each dataset, we selected 100 users from the test datasets to evaluate fairness. Even though 100
users are a part of the users, we can estimate the overall trend of the proposed IF by selecting users
considering their variety. To select a variety of users from ordinary to outlier users, we trained 10
shadow models using the training dataset and calculated the accuracy of each user’s data. We sorted
users in descending order, selected 20 users each from 4

8 × 100, 5
8 × 100, 6

8 × 100, and 7
8 × 100

percentiles, and selected 20 users with the lowest accuracies. Since each user has multiple data in
image datasets, we selected data with the lowest accuracy from each user’s data for the evaluation.
We calculated the accuracy using ConvNet (described below) and σ = 0.1. Note that each user has
one sample of data in tabular datasets.

Machine learning algorithm and hyperparameters. We used three NNs and two tree-based al-
gorithms. We selected the best hyperparameters in terms of classification performance on the test
dataset. For classification performance, we calculate accuracy for multi-class classification, i.e.,
FEMNIST, and AUC for binary classification, i.e., Celeba, Adult, and Texas. The candidates of
hyperparameters and selected ones are shown in Table 3. We used different random seeds for each
experiment and set a millisecond obtained with time.time() as a random seed.

• ConvNet: This is a six-layer CNN designed by referring to the prior work (Nasr et al.,
2021). ConvNet consists of two convolutional layers, two max-pooling layers, and two
fully connected layers. The details of the architecture are shown in Table 4. We optimize
ConvNet with DP-SGD using commonly used hyperparameters; the number of epochs is
50, the batchsize is 512, the optimizer is Adam (Kingma & Ba, 2014), the learning rate η is
0.001, the clipping threshold of the gradient C = 1, and the privacy parameter δ = 10−5.
We changed the strength of privacy protection using different variances of the noises: σ =
0.1, 0.3, 0.5, and 0.7. The corresponding upper bounds of ϵ by theoretical analysis are
42,967.4, 217.0, 36.1, and 12.5.

• ResNet18: This is a 18-layer CNN with the shortcut connections (He et al., 2016). To
apply DP-SGD to ResNet18, we replaced the BatchNorm layers with GroupNorm layers
referring to the tutorial of Opacus (Meta Platforms, Inc., 2022). BatchNorm layers cause a
privacy violation because they use means and variances regarding samples in a minibatch.
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Figure 7: Multiple-sample game for efficient calculation of lower bound

The means and variances make dependencies between samples in a minibatch and violate
DP. For this reason, we fix ResNet18 with ModuleValidator. For optimization, we
used the DP-SGD and the same hyperpatrameters as ConvNet.

• FC: This is a five-layer fully connected neural network. The number of units in the inter-
mediate layers is 500, and their activation is ReLU. For optimization, we used the DP-SGD
and the same hyperparameters as ConvNet.

• DPBoost: This is a differentially private Gradient Boosting Decision Trees (Li et al., 2020).
DPBoost obtains a tighter sensitivity bound with Gradient-based Data Filtering and Geo-
metric Leaf Clipping. We changed the strength of privacy protection by specifying the
upper bounds of ϵ using different values of total budget: 100, 50, 10, and 5.

• DPXGBoost: This is a differentially private XGBoost proposed for improving scalabil-
ity (Grislain & Gonzalvez, 2021). We changed the strength of privacy protection using
different values of dp epsilon per tree: 100, 10, 1, and 0.1. The corresponding
upper bounds of ϵ by theoretical analysis are 1,967.8, 167.8, 5.9, and 0.4.

Efficient calculation of lower bound. One drawback of the lower bound calculation is computa-
tional cost. Specifically, when the game is repeated 1,000 times, 1,000 models need to be trained
with privacy-preserving ML in total. In our experiments, we calculate the lower bounds for 100
users and need to train 100× 1, 000 models. When using NNs, the computational cost is extremely
expensive. To tackle this problem, we use a multiple-sample game shown in Fig. 7 designed by
referring to an efficient method for label DP (Malek Esmaeili et al., 2021). In the multiple-sample
game, the attacker sends a dataset D0 and n target samples {(xi, yi)}ni=1 to the trainer. The trainer
randomly decides whether to use each target sample for training. In Fig. 7, bi represents whether
the sample (xi, yi) is used for training. The trainer builds a model using the dataset D0 and the
selected target samples with a privacy-preserving ML algorithm M and returns the losses on the
target samples to the attacker. The attacker predicts whether each sample is used for training with
the dataset D0, the target samples {(xi, yi)}ni=1, and the loss li on the sample (xi, yi). Finally, the
trainer checks if the predictions are correct. We repeat the multiple-sample game multiple times and
calculate the lower bound ϵLB following Eq. 1 for each target sample. When we use 100 samples in
our game, we can reduce the number of training by 1/100.

We validated the reliability of the multiple-sample game using users’ data with the lowest accuracies.
We calculated the lower bounds with the game shown in Fig. 1 and the multiple-sample game shown
in Fig. 7 and checked if the lower bounds were close to each other. We repeated both games 1,000
times each using DP-SGD parameter σ = 0.1 and used 100 target samples in the multiple-sample
game. Table 5 shows that we obtained good approximations of the lower bounds with the multiple-
sample game.
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Table 5: Lower bounds of ϵ calculated with one-sample and multiple-sample games. The one-sample
game is a game shown in Fig. 1.

Dataset Network One-sample Multiple-sample
FEMNIST ConvNet 2.00 1.98
FEMNIST ResNet18 2.99 2.58
Celaba ConvNet 3.21 3.35
Celaba ResNet18 2.53 2.35
Adult FC 1.73 1.52
Texas FC 1.00 1.05
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Table 6: Changes in privacy risks when applying defenses. We calculated a change for each user
and show the means and standard deviations of the changes. The negative and positive values mean
that privacy risks were decreased and increased by applying the defenses, respectively.

FEMNIST/ConvNet FEMNIST/ResNet18
σ 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7
Top1 -0.58 ± 0.55 -0.17 ± 0.21 -0.09 ± 0.11 -0.06 ± 0.11 -0.40 ± 0.42 -0.15 ± 0.19 -0.09 ± 0.11 -0.06 ± 0.09
Top2 -0.30 ± 0.46 -0.08 ± 0.20 -0.06 ± 0.11 -0.03 ± 0.08 -0.16 ± 0.22 -0.07 ± 0.14 -0.05 ± 0.11 -0.04 ± 0.08
Round1 -0.64 ± 0.52 -0.19 ± 0.19 -0.13 ± 0.14 -0.07 ± 0.10 -0.39 ± 0.28 -0.16 ± 0.17 -0.09 ± 0.10 -0.06 ± 0.09
Round2 -0.51 ± 0.48 -0.16 ± 0.18 -0.09 ± 0.11 -0.06 ± 0.10 -0.25 ± 0.24 -0.11 ± 0.16 -0.07 ± 0.10 -0.05 ± 0.08
Round3 -0.42 ± 0.47 -0.12 ± 0.17 -0.08 ± 0.10 -0.05 ± 0.09 -0.15 ± 0.21 -0.07 ± 0.13 -0.05 ± 0.09 -0.04 ± 0.07
Temp5 -0.02 ± 0.11 0.00 ± 0.06 -0.00 ± 0.08 0.00 ± 0.06 -0.01 ± 0.19 0.01 ± 0.10 0.00 ± 0.11 -0.02 ± 0.06
Temp15 -0.13 ± 0.26 -0.02 ± 0.10 -0.03 ± 0.12 -0.01 ± 0.10 -0.12 ± 0.26 -0.04 ± 0.15 -0.00 ± 0.15 -0.03 ± 0.10

Celeba/ConvNet Celeba/ResNet18
σ 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7
Round1 -0.84 ± 0.48 -0.53 ± 0.47 -0.33 ± 0.34 -0.27 ± 0.23 -0.17 ± 0.15 -0.15 ± 0.14 -0.15 ± 0.20 -0.12 ± 0.12
Round2 -0.67 ± 0.45 -0.38 ± 0.41 -0.23 ± 0.31 -0.20 ± 0.23 -0.13 ± 0.15 -0.12 ± 0.13 -0.11 ± 0.18 -0.09 ± 0.11
Round3 -0.51 ± 0.40 -0.20 ± 0.22 -0.16 ± 0.25 -0.12 ± 0.17 -0.11 ± 0.14 -0.07 ± 0.11 -0.08 ± 0.18 -0.06 ± 0.09
Temp5 -0.00 ± 0.01 -0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.00 0.00 ± 0.01 0.00 ± 0.01 -0.00 ± 0.00
Temp15 -0.00 ± 0.01 -0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.00 0.00 ± 0.01 0.00 ± 0.01 -0.00 ± 0.00

Adult/FC Texas/FC
σ 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7
Round1 -0.22 ± 0.41 -0.08 ± 0.16 -0.08 ± 0.14 -0.05 ± 0.09 -0.20 ± 0.30 -0.10 ± 0.15 -0.07 ± 0.12 -0.04 ± 0.08
Round2 -0.18 ± 0.38 -0.07 ± 0.16 -0.06 ± 0.12 -0.04 ± 0.08 -0.16 ± 0.31 -0.08 ± 0.14 -0.06 ± 0.11 -0.04 ± 0.07
Round3 -0.08 ± 0.17 -0.04 ± 0.10 -0.04 ± 0.12 -0.03 ± 0.07 -0.08 ± 0.17 -0.04 ± 0.10 -0.03 ± 0.06 -0.03 ± 0.06
Temp5 -0.00 ± 0.00 -0.00 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.01 -0.00 ± 0.01 -0.00 ± 0.00 -0.00 ± 0.00
Temp15 -0.00 ± 0.00 -0.00 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.01 -0.00 ± 0.01 -0.00 ± 0.00 -0.00 ± 0.00
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