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Abstract
Graph Neural Networks (GNNs) are limited in
their propagation operators. In many cases, these
operators often contain non-negative elements
only and are shared across channels, limiting
the expressiveness of GNNs. Moreover, some
GNNs suffer from over-smoothing, limiting their
depth. On the other hand, Convolutional Neural
Networks (CNNs) can learn diverse propagation
filters, and phenomena like over-smoothing are
typically not apparent in CNNs. In this paper,
we bridge these gaps by incorporating trainable
channel-wise weighting factors ω to learn and mix
multiple smoothing and sharpening propagation
operators at each layer. Our generic method is
called ωGNN, and is easy to implement. We study
two variants: ωGCN and ωGAT. For ωGCN, we
theoretically analyse its behaviour and the impact
of ω on the obtained node features. Our experi-
ments confirm these findings, demonstrating and
explaining how both variants do not over-smooth.
Additionally, we experiment with 15 real-world
datasets on node- and graph-classification tasks,
where our ωGCN and ωGAT perform on par with
state-of-the-art methods.

1. Introduction
Graph Neural Networks (GNNs) are useful for a wide array
of fields, from computer vision and graphics (Monti et al.,
2017; Wang et al., 2018; Eliasof & Treister, 2020) and social
network analysis (Kipf & Welling, 2017; Defferrard et al.,
2016) to bio-informatics (Eliasof et al., 2022a; Jumper et al.,
2021). Most GNNs are defined by applications of propa-
gation and point-wise operators, where the former is often
fixed and based on the graph Laplacian (e.g., GCN (Kipf
& Welling, 2017)), or is defined by an attention mechanism
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(Veličković et al., 2018; Kim & Oh, 2021; Brody et al.,
2022).

Most recent GNNs follow a general structure that involves
two main ingredients – the propagation operator, denoted by
S(l), and a 1× 1 convolution denoted by K(l), as follows

f (l+1) = σ(S(l)f (l)K(l)), (1)

where f (l) denotes the feature tensor at the l-th layer. The
main limitation of the above formulation is that the propaga-
tion operators in most common architectures are constrained
to be non-negative. This leads to two drawbacks. First, this
limits the expressiveness of GNNs (Chien et al., 2021). For
example, the gradient of given graph node features can not
be expressed by a non-negative operator. A mixed-sign
operator, as in our proposed method, can achieve this, as
demonstrated in Fig. 1 and Fig. 2. Second, the utiliza-
tion of strictly non-negative propagation operators yields a
smoothing process, that may lead GNNs to suffer from over-
smoothing. That is, the phenomenon where node features
become indistinguishable from one another as more GNN
layers are stacked – causing severe performance degradation
in deep GNNs (Nt & Maehara, 2019; Oono & Suzuki, 2020;
Cai & Wang, 2020).

The above drawbacks are two gaps between GNNs and Con-
volutional Neural Networks (CNNs), which can be inter-
preted as structured versions of GNNs (i.e., GNNs operating
on a regular grid). The structured convolutions in CNNs al-
low to learn diverse propagation operators, and in particular,
it is known that mixed-sign (high-pass) kernels like sharpen-
ing filters are useful feature extractors in CNNs (Krizhevsky
et al., 2012), and such operators cannot be obtained by non-
negative (smoothing) kernels only. In the context of GNNs,
Chien et al. (2021) have noticed that high-pass polynomial
filters are learnt in their framework for heterophilic datasets,
while low-pass filters are learnt for homophilic ones. A sim-
ilar observation was noted in Eliasof et al. (2022b) as well.
In addition, the over-smoothing phenomenon is typically
not evident in standard CNNs where the spatial filters are
learnt, and usually adding more layers improves accuracy
(He et al., 2016).

A third gap between GNNs and CNNs is the ability of
the latter to learn and mix multiple propagation operators.
In the scope of separable convolutions, CNNs typically
learn a distinct kernel per channel, known as a depth-wise
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convolution (Sandler et al., 2018) – a key element in modern
CNNs (Tan & Le, 2019; Liu et al., 2022). On the contrary,
in many GNNs the propagation operator S(l) from (1) acts
on all channels (Chen et al., 2020b; Veličković et al., 2018;
Chien et al., 2021), and in some cases on all layers (Kipf &
Welling, 2017; Wu et al., 2019). One exception is the multi-
head GAT (Veličković et al., 2018) where several attention
heads are learnt per layer. However, this approach typically
employs only a few heads due to the high computational
cost and is still limited by learning non-negative propagation
operators only. Another exception is the recent (Wang &
Zhang, 2022), a linear spectral GNN that learns a different
high-order (k-hop) polynomial filter per channel. In contrast,
our GNN is non-linear and faithful to the form (1) with a
1-hop spatial operator and 1× 1 convolution at each layer,
similar to classical and universal CNNs.

In this paper we propose a simple and effective modifica-
tion of GNNs that closes the three gaps of GNNs discussed
above, by introducing a parameter ω to control the contri-
bution and type of the propagation operator. We call our
general approach ωGNN, and utilize GCN (Kipf & Welling,
2017) and GAT (Veličković et al., 2018) to construct two
variants, ωGCN and ωGAT. We theoretically prove and
empirically demonstrate that our ωGNN can prevent over-
smoothing. Secondly, we show that by learning ω, our
ωGNNs can yield propagation operators with mixed signs,
ranging from smoothing to sharpening operators (see Fig. 1
for an illustration). This approach enhances the expressive-
ness of the network, as demonstrated in Fig. 2, in contrast
to many other GNNs that employ non-negative (smoothing)
propagation operators only. Lastly, we propose and demon-
strate that by learning different ω per layer and channel,
similarly to a depth-wise convolution in CNNs, our ωGNNs
obtain competitive accuracy.

Our contributions are summarized as follows:

• We propose ωGNN, an effective and computationally
light modification to GNNs of a common and generic
structure, that directly avoids over-smoothing and en-
hances the expressiveness of GNNs. Our method is
demonstrated by ωGCN and ωGAT.

• A theoretical analysis and experimental validation of
the behaviour of ωGNN are provided to expose its
improved expressiveness compared to standard propa-
gation operators in GNNs.

• We propose to learn multiple propagation operators by
learning ω per layer and per channel and mixing them
using a 1 × 1 convolution followed by a non-linear
activation) to enhance the expressiveness of GNNs.

• Our experiments with 15 real-world datasets on nu-
merous applications and settings, from semi- and fully-
supervised node classification to graph classification

Figure 1. The impulse response of ωGCN’s propagation operator
for different ω values. For ω = 0.5, 1.0 non-negative values are
obtained, while for ω = 1.5 we see mixed-sign values. The dashed
node starts from a feature of 1 and the rest with 0.
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Figure 2. The expressiveness of ωGNNs. Our ωGCN can estimate
the gradient of the node features while GCN cannot.

show that our ωGCN and ωGAT read performance on
par with current state-of-the-art methods.

2. Method
We start by providing the notations that will be used through-
out this paper, and displaying our general ωGNN in Section
2.1. Then we consider two popular GNNs that adhere to the
structure presented in (1), namely GCN and GAT. We for-
mulate and analyse the behaviour of their two counterparts
ωGCN and ωGAT in Section 2.2 and 2.3, respectively.

Notations. Assume we are given an undirected graph de-
fined by the set G = (V, E) where V is a set of n vertices
and E is a set of m edges. Let us denote by fi ∈ Rc the
feature vector of the i-th node of G with c channels. Also,
we denote the adjacency matrix A, where Aij = 1 if there
exists an edge (i, j) ∈ E and 0 otherwise. We also define
the diagonal degree matrix D where Dii is the degree of
the i-th node. The graph Laplacian is given by L = D−A.
Let us also denote the adjacency and degree matrices with
added self-loops by Ã and D̃, respectively. Lastly, we
denote the symmetrically normalized graph Laplacian by
L̃sym = D̃− 1

2 L̃D̃− 1
2 where L̃ = D̃− Ã.

2.1. ωGNNs

The goal of ωGNNs is to utilize learnable mixed-sign prop-
agation operators that control smoothing and sharpening to
enrich GNNs expressiveness. Below, we describe how the
learnt ω influences the obtained operator and how to learn
and mix multiple operators for enhanced expressiveness.
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Learning propagation weight ω. To address the expres-
siveness and over-smoothing issues, we suggest a general
form given an arbitrary non-negative and normalized (e.g.,
such that its row sums equal to 1) propagation operator S(l).
Our general ωGNN is then given by

f (l+1) = σ
((

I− ω(l)
(
I− S(l)

))
f (l)K(l)

)
, (2)

where ω(l) is a scalar that is learnt per layer, and in the next
paragraph we offer a more elaborated version with a parame-
ter ω per layer and channel. The introduction of ω(l) allows
our ωGNN layer to behave in a three-fold manner. When
ω(l) ≤ 1, a smoothing process is obtained 1. Note, that for
ω(l) = 1, (2) reduces to the standard GNN dynamics from
(1). In case ω(l) = 0, (2) reduces to a 1 × 1 convolution
followed by a non-linear activation function, and does not
propagate neighbouring node features. On the other hand, if
ω(l) > 1, we obtain an operator with negative signs on the
diagonal but positive on the off-diagonal entries, inducing
a sharpening operator. An example of various ω(l) values
and their impulse response is given in Fig. 1. Thus, a learn-
able ω(l) allows to learn a new family of operators, namely
sharpening operators, that are not achieved by methods like
GCN and GAT. To demonstrate the importance of sharpen-
ing operators, we consider a synthetic task of node gradient
feature regression, given a graph and input node features(see
Appendix B for more details). As depicted in Fig. 2, using a
non-negative operator as in GCN cannot accurately express
the gradient operator output, while our ωGCN estimates the
gradient output with a machine precision accuracy. Also,
the benefit of employing both smoothing and sharpening
operators is reflected in the obtained accuracy of our method
on real-world datasets in Section 4.

Multiple propagation operators. To learn multiple prop-
agation operators, we extend (2) from a channels-shared
weight to channel-wise weights by learning a vector ω⃗(l) ∈ c
as follows

f (l+1) = σ
((

I−Ωω⃗(l)

(
I− S(l)

))
f (l)K(l)

)
, (3)

where Ωω⃗(l) is an operator that scales each channel j with
a different ω(l)

j . As discussed in Section 1, this procedure
yields a propagation operator per-channel, which is similar
to depth-wise convolutions in CNNs (Howard et al., 2017;
Sandler et al., 2018). Thus, the extension to a vector ω⃗(l)

helps to further bridge the gap between GNNs and CNNs.

We note that using this approach, our ωGNN is suitable to
many existing GNNs, and in particular to those which act

1The use of the value 1 in this discussion corresponds to a
non-negative operator S(l) with zeros on its diagonal, normalized
to have row sums of 1. Other normalizations may yield other
constants. Also, if 0 < S

(l)
ii < 1, then setting ω(l) > 1

1−S
(l)
ii

flips

the sign of the i-th diagonal entry.

as a separable convolution, as described in Eq. (1). In what
follows, we present and analyse two variants based on GCN
and GAT, called ωGCN and ωGAT, respectively.

2.2. ωGCN

GCNs are a class of GNNs that employ a pre-determined
propagation operator P̃ = D̃− 1

2 ÃD̃− 1
2 , that stems from

the graph Laplacian. For instance, GCN (Kipf & Welling,
2017) is given by:

f (l+1) = σ(P̃f (l)K(l)), (4)

that is, by setting S(l) = P̃ in (1).

Other methods like SGC (Wu et al., 2019), GCNII (Chen
et al., 2020b) and EGNN (Zhou et al., 2021) also rely on P̃
as a propagation operator.

The operator P̃ is a fixed non-negative smoothing opera-
tor, hence, repeated applications of (4) lead to the over-
smoothing phenomenon, where the feature maps converge
to a single eigenvector as shown by (Wu et al., 2019; Wang
et al., 2019). Moreover, P̃ is pre-determined, and solely
depends on the graph connectivity, disregarding the node
features, which may harm performance.

By baking our proposed ωGNN with a learnable weight,
denoted by ω(l) ∈ R into GCN we obtain the following
propagation scheme, named ωGCN:

f (l+1) = σ
((

I− ω(l)
(
I− P̃

))
f (l)K(l)

)
. (5)

We now present theoretical analyses of our ωGCN and rea-
son about its non over-smoothing property. We first define
the node features Dirichlet energy at the l-th layer, as in
(Zhou et al., 2021):

E(f (l)) =
∑
i∈V

∑
j∈Ni

1

2

∥∥∥∥ f
(l)
i√

(1+di)
− f

(l)
j√

(1+dj)

∥∥∥∥2
2

. (6)

Fig. 3 demonstrates how the Dirichlet energy E(f (l)) de-
cays to zero when ω is a constant, and to a fixed positive
value when ω is learnt. Next, we provide a theorem that
characterizes the behaviour of ω and how it prevents over-
smoothing. To this end we denote the propagation operator
of ωGCN from (5) by

P̃ω = I− ω
(
I− P̃

)
(7)

= I− ω
(
I− D̃− 1

2 ÃD̃− 1
2

)
(8)

= I− ωD̃− 1
2LD̃− 1

2 , (9)

where the latter equality is shown in Appendix A. In essence,
we show that repeatedly applying the operator P̃ is equiva-
lent to applying gradient descent steps for minimizing (6)
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with a learning rate ω. We build on the observation that
smoothing is beneficial (Gasteiger et al., 2019; Chamber-
lain et al., 2021) and assume that for each dataset there
exists a plausible energy value at the last layer that satis-
fies 0 < E(f (L)) < E(f (0)). We note that if the graph is
strongly connected, then if E(f (L)) = 0 it means that all
the feature maps are constant at the output of the network.
It is reasonable to expect that such constant feature maps
will not yield good performance, at least in tasks like node
classification, for example.

Now, assuming that we wish to have some energy E∗ at the
last layer, we show that if we learn a single ω(l) = ω > 0,
shared across all layers, then taking L to infinity will lead
the learned ω to zero, scaling as 1/L. Thus, our ωGCN
will not over-smooth, as the energy at the last layer E(f (L))
can reach to EL. Later, in Corollary 2.2, we generalize
this result for a per-layer ω(l), and empirically validate both
results in Section 4.4 and Fig. 4. The proofs for the Theorem
and Corollary below are given in Appendix A.

Theorem 2.1. Consider L applications of (7), i.e., f (L) =
(P̃ω)

Lf (0) with a shared parameter ω(l) = ω that is used
in all the layers. Also, assume that there is some desired
Dirichlet energy E(f (L)) = E∗ of the final feature map that
satisfies 0 < E∗ < E(f (0)). Then, at the limit, as more
layers are added and L grows, the value of the learnt ω
converges to T/L for some constant T , up to first-order
accuracy.

Corollary 2.2. Allowing a variable ω(l) > 0 at each layer
in Theorem 2.1, yields that

∑L−1
l=0 ω(l) converges to a con-

stant independent of L up to first order accuracy.

Next, we dwell on the second mechanism in which ωGCN
prevents over-smoothing. We analyse the eigenvectors of
P̃ω , showing that different choices of ω yield different lead-
ing eigenvectors that alter the behaviour of the propagation
operator (i.e. smoothing and sharpening processes). This
result is useful because changing the leading eigenvector pre-
vents the gravitation towards a specific eigenvector, which
causes the over-smoothing to occur (Wu et al., 2019; Oono
& Suzuki, 2020).

Theorem 2.3. Assume that the graph is connected. Then,
there exists some ω0 ≥ 1 where for all 0 < ω < ω0, the
operator P̃ω in (7) is smoothing and the leading eigenvector
is D̃

1
21. For ω > ω0 or ω < 0, the leading eigenvector

changes.

The proof for the theorem is given in Appendix A.

ωGCN with multiple propagation operators. To further
increase the expressiveness of our ωGCN we extend ω(l) ∈
R to ω⃗(l) ∈ Rc and learn a propagation operator per channel,
at each layer. To this end, we modify (5) to the following

formulation

f (l+1) = σ
((

I−Ωω⃗(l)

(
I− P̃

))
f (l)K(l)

)
. (10)

As we show in Section 4.4, learning a propagation operator
per channel is beneficial to improve accuracy.

2.3. ωGAT

The seminal GAT (Veličković et al., 2018) learns a non-
negative edge-weight as follows

α
(l)
ij =

exp
(
LeakyReLU

(
a(l)⊤ [W(l)f

(l)
i ||W(l)f

(l)
j ]

))∑
p∈Ni

exp
(
LeakyReLU

(
a(l)⊤ [W(l)f

(l)
i ||W(l)f

(l)
p ]

)) ,
(11)

where a(l) ∈ R2c and W(l) ∈ Rc×c are trainable parame-
ters and || denotes channel-wise concatenation. Here, GAT
is obtained by defining the propagation operator S(l) in (1)
as Ŝ(l)

ij = αij .

To avoid repeated equations, we skip the per-layer ω formu-
lation (as in (2)) and directly define the per-channel ωGAT
as follows

f (l+1) = σ
((

I−Ωω⃗(l)

(
I− Ŝ(l)

))
f (l)K(l)

)
. (12)

The introduction of Ωω⃗(l) yields a learnable propagation
operator per layer and channel. We note that it is also pos-
sible to obtain multiple propagation operators from GAT
by using a multi-head attention. However, we distinguish
our proposition from GAT in a 2-fold fashion. First, our
propagation operators belong to a broader family that in-
cludes smoothing and sharpening operators as opposed to
smoothing-only due to the SoftMax normalization in GAT.
Secondly, our method requires less computational overhead
when adding more propagation operators, as our ωGAT re-
quires a scalar per operator, while GAT doubles the number
of channels to obtain more attention-heads. Also, utilizing a
multi-head GAT can still lead to over-smoothing, as all the
heads induce a non-negative operator.

To study the behaviour of our ωGAT, we inspect its node
features energy compared to GAT. To this end, we define
the GAT energy as

EGAT(f
(l)) =

∑
i∈V

∑
j∈Ni

1

2
||f (l)i − f

(l)
j ||22. (13)

This modification of the Dirichlet energy from (6) is re-
quired because in GAT (Veličković et al., 2018) the leading
eigenvector of the propagation operator Ŝ(l) is the constant
vector 1 as shown by Chen et al. (2020a), unlike the vec-
tor D̃

1
21 in the symmetric normalized P̃ from GCN (Kipf

& Welling, 2017) where the Dirichlet energy is natural to
consider (Pei et al., 2020).

We present the energy of a 64 layer GAT trained on the Cora
dataset in Fig. 3. It is evident that the accuracy degradation
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Figure 3. Node features energy at the l-th layer relative to the initial node embedding energy on Cora. Both ωGCN and ωGAT control the
respective energies from (6) and (13) to avoid over-smoothing, while the baselines with ω = 1 reduce the energies to 0 and over-smooth.

of GAT reported by (Zhao & Akoglu, 2020) is in congruence
with the decaying energy in (13), while our ωGAT does not
experience decaying energy nor accuracy degradation as
more layers are added, as can be seen in Table 2. To further
validate our findings, we repeat this experiment in Appendix
D on additional datasets and reach the same conclusion.

2.4. Computational Costs

Our ωGNN approach is general and can be applied to any
GNN that conforms to the structure of (1) and can be mod-
ified into (3). The additional parameters compared to the
baseline GNN are the added Ωω⃗(l) ∈ Rc parameters at each
layer, yielding a relatively low computational overhead. For
example, in GCN (Kipf & Welling, 2017) there are c × c
trainable parameters requiring c× c×n multiplications due
to the 1× 1 convolution K(l). In our ωGCN, we will have
c × c + c parameters and (c + 1) × c × n multiplications.
That is in addition to applying the propagation operators
S(l), which are identical for both methods. A similar anal-
ysis holds for GAT. To validate the actual complexity of
our method, we present the training and inference times
for ωGCN and ωGAT in Appendix G. We see a negligible
addition to the runtimes compared to the baselines, at the
return of better performance.

3. Other Related Work
Over-smoothing in GNNs. The over-smoothing phe-
nomenon was identified by (Li et al., 2018), and was pro-
foundly studied in recent years. Various methods stem-
ming from different approaches were proposed. For exam-
ple, methods like DropEdge (Rong et al., 2020), PairNorm
(Zhao & Akoglu, 2020), and EGNN (Zhou et al., 2021) pro-
pose augmentation, normalization and energy-based penalty
methods to alleviate over-smoothing, respectively. Other

methods like (Min et al., 2020) propose to augment GCN
with geometric scattering transforms and residual convo-
lutions, and GCNII (Chen et al., 2020b) present a spectral
analysis of the smoothing property of GCN (Kipf & Welling,
2017) and propose adding an initial identity residual con-
nection and a decay of the weights of deeper layers, which
are also used in EGNN (Zhou et al., 2021). Also, in (Luan
et al., 2020), low and high pass filter banks are utilized to
alleviate over-smoothing.

Graph Neural Diffusion. The view of GNNs as a diffusion
process has gained popularity in recent years. Methods like
APPNP (Klicpera et al., 2019) propose to use a personalized
PageRank (Page et al., 1999) algorithm to determine the dif-
fusion of features, and GDC (Gasteiger et al., 2019) imposes
constraints on the ChebNet (Defferrard et al., 2016) archi-
tecture to obtain diffusion kernels, showing accuracy im-
provement. Other works like GRAND (Chamberlain et al.,
2021), CFD-GCN (Belbute-Peres et al., 2020), PDE-GCN
(Eliasof et al., 2021) and GRAND++ (Thorpe et al., 2022)
propose to view GNN layers as time steps in the integration
process of ODEs and PDEs that arise from a non-linear heat
equation, allowing to control the diffusion (smoothing) in
the network to prevent over-smoothing. In addition, some
GNNs (Eliasof et al., 2021; Rusch et al., 2022a) propose a
mixture between diffusion and oscillatory processes to avoid
over-smoothing by frequency preservation of the features.

Mixed-sign operators in GNNs. The importance of mixed-
sign high-pass vs low-pass filters was discussed in the spec-
tral GPRGNN (Chien et al., 2021), which utilizes a single
high-order polynomial (k-hop) filter. The authors show
that weights corresponding to high-pass filters are obtained
for heterophilic datasets. In Appendix K, we show similar
conclusions. Other similar spectral methods include Jacobi-
Conv (Wang & Zhang, 2022), BernNet (He et al., 2021a). In
all these methods, a high-order polynomial is learnt, where

5



Improving Graph Neural Networks with Learnable Propagation Operators

all the propagation layers are stacked linearly one after the
other. In contrast, we wish to follow the non-linear form (1)
with a 1-hop propagation and 1 × 1 convolution for each
layer, as this is a form that is closest to standard CNNs,
which have been proven to be effective for many challeng-
ing tasks in computer vision (Chen et al., 2017; Tan & Le,
2019; Sandler et al., 2018). Mixed-sign operators were
also presented in the works of Yang et al. (2021) and Yan
et al. (2021), employing attention-based propagation opera-
tor with a tanh/cosine activation function to obtain values
in [−1, 1]. This mechanism is different than our weighting
approach which in which the type of operation is learnt di-
rectly. Lastly, mixed-sign operators were also discussed
in (Eliasof et al., 2022b), where k-hop filters and stochastic
path sampling mechanisms are utilized. However, such a
method requires significantly more computational resources
than a standard GNN like (Kipf & Welling, 2017) due to
the path sampling strategy and larger filters of 5-hop re-
quired for optimal accuracy. However, our ωGNNs perform
1-hop propagations and, as we show in Appendix G, obtain
competitive results without significant added computational
costs.

4. Experiments
We demonstrate our ωGCN and ωGAT 2 on node classi-
fication, inductive learning and graph classification tasks.
Additionally, we conduct an ablation study of the different
configurations of our method and experimentally verify the
theorems from Section 2. A description of the network archi-
tectures is given in Appendix E. We use the Adam (Kingma
& Ba, 2014) optimizer in all experiments, and perform grid
search to determine the hyper-parameters reported in Ap-
pendix F. The objective function in all experiments is the
cross-entropy loss, besides inductive learning on PPI (Hamil-
ton et al., 2017) where we use the binary cross-entropy loss.
Our code is implemented with PyTorch (Paszke et al., 2019)
and PyTorch-Geometric (Fey & Lenssen, 2019) and trained
on an Nvidia Titan RTX GPU.

We show that for all the considered tasks and datasets, whose
statistics are provided Appendix C, our ωGCN and ωGAT
are either better or on par with other state-of-the-art models.

4.1. Node Classification

We employ the Cora, Citeseer, and Pubmed datasets using
the standard training/validation/testing split by (Yang et al.,
2016), with 20 nodes per class for training, 500 validation
nodes, and 1,000 testing nodes. We follow the training
and evaluation scheme of (Chen et al., 2020b) and compare
with models like GCN, GAT, superGAT (Kim & Oh, 2021),
Inception (Szegedy et al., 2017), APPNP (Klicpera et al.,

2We discuss additional backbones in Appendix L.

2019), JKNet (Xu et al., 2018), DropEdge (Rong et al.,
2020), GCNII (Chen et al., 2020b), GRAND (Chamberlain
et al., 2021), PDE-GCN (Eliasof et al., 2021) and EGNN
(Zhou et al., 2021). We summarize the results in Table
1 where we see better or on par performance with other
existing methods. Additionally, we report the accuracy per
number of layers, from 2 to 64 in Table 2, where it is evident
that our ωGCN and ωGAT do not over-smooth. We report
additional results with deeper layers in Appendix H as well
as an experiment with 100 random splits in Appendix J
where our ωGCN and ωGAT perform similarly to the splits
in Table 1.

To further validate the efficacy of our method on fully-
supervised node classification, both on homophilic and het-
erophilic datasets as defined in (Pei et al., 2020). Specif-
ically, examine our ωGCN and ωGAT on Cora, Cite-
seer, Pubmed, Chameleon (Rozemberczki et al., 2021),
Film, Cornell, Texas and Wisconsin using the identical
train/validation/test splits of 48%, 32%, 20%, respectively,
and report the average performance over 10 random splits
from (Pei et al., 2020). We compare our performance
with, GCN, GAT, Geom-GCN (Pei et al., 2020), APPNP
(Klicpera et al., 2019), JKNet (Xu et al., 2018), MixHop
(Abu-El-Haija et al., 2019), WRGAT(Suresh et al., 2021),
GCNII (Chen et al., 2020b), PDE-GCN (Eliasof et al., 2021),
GRAND (Chamberlain et al., 2021), GraphCON (Rusch
et al., 2022a), MagNet (Zhang et al., 2021), FAGCN (Bo
et al., 2021), GPRGNN (Chien et al., 2021), ACMP-GCN
(Wang et al., 2022), NSD (Bodnar et al., 2022), H2GCN
(Zhu et al., 2020), GGCN (Yan et al., 2021), C&S (Huang
et al., 2020), DMP (Yang et al., 2021), LINKX (Lim et al.,
2021), ACMII-GCN++ (Luan et al., 2022), and G2 (Rusch
et al., 2022b) as presented in Tables 3-4. Additionally, we
evaluate our ωGCN and ωGAT on the Ogbn-arxiv (Hu et al.,
2020) dataset, as reported in Table 18 in the Appendix. We
see an accuracy improvement across all benchmarks com-
pared to the considered methods. In Appendix K we present
the learnt ω⃗ for homophilic and heterophilic datasets.

4.2. Inductive Learning

We employ the PPI dataset (Hamilton et al., 2017) for the
inductive learning task. We use 8 layer ωGCN and ωGAT,
with a learning rate of 0.001, dropout of 0.2 and no weight-
decay. As a comparison, we consider several methods and
report the micro-averaged F1 score in Table 5. Our ωGCN
achieves a score of 99.60, which is higher than the other
methods like GAT, JKNet, GeniePath, Cluster-GCN and
PDE-GCN.

4.3. Graph Classification

Previous experiments considered the node-classification
task. To further demonstrate the efficacy of our ωGNNs
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Table 1. Summary of semi-supervised node classification accuracy (%)

Method GCN GAT APPNP GCNII GRAND superGAT EGNN ωGCN (Ours) ωGAT (Ours)

Cora 81.1 83.1 83.3 85.5 84.7 84.3 85.7 85.9 84.8
Citeseer 70.8 70.8 71.8 73.4 73.6 72.6 – 73.3 74.0
Pubmed 79.0 78.5 80.1 80.3 71.0 81.7 80.1 81.1 81.8

Table 2. Semi-supervised node classification accuracy (%). – indicates not available results.

Dataset Cora Citeseer Pubmed
Layers 2 4 8 16 32 64 2 4 8 16 32 64 2 4 8 16 32 64

GCN 81.1 80.4 69.5 64.9 60.3 28.7 70.8 67.6 30.2 18.3 25.0 20.0 79.0 76.5 61.2 40.9 22.4 35.3
GCN (Drop) 82.8 82.0 75.8 75.7 62.5 49.5 72.3 70.6 61.4 57.2 41.6 34.4 79.6 79.4 78.1 78.5 77.0 61.5
JKNet – 80.2 80.7 80.2 81.1 71.5 – 68.7 67.7 69.8 68.2 63.4 – 78.0 78.1 72.6 72.4 74.5
JKNet (Drop) – 83.3 82.6 83.0 82.5 83.2 – 72.6 71.8 72.6 70.8 72.2 – 78.7 78.7 79.7 79.2 78.9
Incep – 77.6 76.5 81.7 81.7 80.0 – 69.3 68.4 70.2 68.0 67.5 – 77.7 77.9 74.9 – –
Incep (Drop) – 82.9 82.5 83.1 83.1 83.5 – 72.7 71.4 72.5 72.6 71.0 – 79.5 78.6 79.0 – –
GCNII 82.2 82.6 84.2 84.6 85.4 85.5 68.2 68.8 70.6 72.9 73.4 73.4 78.2 78.8 79.3 80.2 79.8 79.7
GCNII* 80.2 82.3 82.8 83.5 84.9 85.3 66.1 66.7 70.6 72.0 73.2 73.1 77.7 78.2 78.8 80.3 79.8 80.1
PDE-GCND 82.0 83.6 84.0 84.2 84.3 84.3 74.6 75.0 75.2 75.5 75.6 75.5 79.3 80.6 80.1 80.4 80.2 80.3
EGNN 83.2 – – 85.4 – 85.7 – – – – – – 79.2 – – 80.0 – 80.1
ωGCN (Ours) 82.6 83.8 84.2 84.4 85.5 85.9 71.3 71.6 72.1 72.4 73.3 73.3 79.7 80.2 80.1 80.5 80.8 81.1
ωGAT (Ours) 83.4 83.7 84.0 84.3 84.4 84.8 72.5 73.1 73.3 73.5 73.9 74.0 80.3 81.0 81.2 81.3 81.5 81.8

Table 3. Node classification accuracy (%) on homophilic datasets.
† denotes the maximal accuracy of several proposed variants.

Method Cora Citeseer Pubmed
Homophily 0.81 0.80 0.74

GCN 85.77 73.68 88.13
GAT 86.37 74.32 87.62
GCNII† 88.49 77.13 90.30
Geom-GCN† 85.27 77.99 90.05
APPNP 87.87 76.53 89.40
JKNet 85.25 75.85 88.94
WRGAT 88.20 76.81 88.52
PDE-GCNM 88.60 78.48 89.93
NSD† 87.14 77.14 89.49
GGCN 87.95 77.14 89.15
H2GCN 87.87 77.11 89.49
C&S 89.05 77.29 90.01
DMP† 86.52 76.87 89.27
LINKX 84.64 73.19 87.86
ACMII-GCN++ 88.25 77.12 89.71

ωGCN (Ours) 89.30 77.88 90.45
ωGAT (Ours) 89.25 78.01 90.65

Table 4. Node classification accuracy (%) on heterophilic datasets.
† denotes the maximal accuracy of several proposed variants.

Method Squirrel Film Cham. Corn. Texas Wisc.
Homophily 0.22 0.22 0.23 0.30 0.11 0.21

GCN 23.96 26.86 28.18 52.70 52.16 48.92
GAT 30.03 28.45 42.93 54.32 58.38 49.41
GCNII 38.47 32.87 60.61 74.86 69.46 74.12
Geom-GCN† 38.32 31.63 60.90 60.81 67.57 64.12
MixHop 43.80 32.22 60.50 73.51 77.84 75.88
PDE-GCNM – – 66.01 89.73 93.24 91.76
GRAND 40.05 35.62 54.67 82.16 75.68 79.41
NSD† 56.34 37.79 68.68 86.49 85.95 89.41
WRGAT 48.85 36.53 65.24 81.62 83.62 86.98
MagNet – – – 84.30 83.30 85.70
GGCN 55.17 37.81 71.14 85.68 84.86 86.86
H2GCN 36.48 35.70 60.11 82.70 84.86 87.65
GraphCON† – – – 84.30 85.40 87.80
FAGCN 42.59 34.87 55.22 79.19 82.43 82.94
GPRGNN 31.61 34.63 46.58 80.27 78.38 82.94
DMP† 47.26 35.72 62.28 89.19 89.19 92.16
ACMP-GCN – – – 85.4 86.2 86.1
LINKX 61.81 36.10 68.42 77.84 74.60 75.49
G2† 64.26 37.30 71.40 87.30 87.57 87.84
ACMII-GCN++ 67.40 37.09 74.76 86.49 88.38 88.43

ωGCN (Ours) 59.41 38.94 70.02 91.35 94.05 92.35
ωGAT (Ours) 58.96 38.64 72.23 91.62 94.59 92.94
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Table 5. Inductive learning on PPI dataset. Results are reported in
micro-averaged F1 score.

Method Micro-averaged F1

GCN (Kipf & Welling, 2017) 60.73
GraphSAGE (Hamilton et al., 2017) 61.20
VR-GCN (Chen et al., 2018) 97.80
GaAN (Zhang et al., 2018a) 98.71
GAT (Veličković et al., 2018) 97.30
JKNet (Xu et al., 2018) 97.60
GeniePath (Liu et al., 2018) 98.50
Cluster-GCN (Chiang et al., 2019) 99.36
GCNII* (Chen et al., 2020b) 99.58
PDE-GCNM (Eliasof et al., 2021) 99.18

ωGCN (Ours) 99.60
ωGAT (Ours) 99.48

Table 6. Graph classification accuracy (%) on TUDatasets (Morris
et al., 2020).

Method MUTAG PTC PROTEINS NCI1 NCI109

PK 76.0 ± 2.7 59.5± 2.4 73.7± 0.7 82.5± 0.5 –
WL Kernel 90.4± 5.7 59.9± 4.3 75.0± 3.1 86.0± 1.8 –

DGCNN 85.8±1.8 58.6±2.5 75.5±0.9 74.4±0.5 –
IGN 83.9±13.0 58.5±6.9 76.6±5.5 74.3±2.7 72.8±1.5
PPGNS 90.6±8.7 66.2±6.6 77.2±4.7 83.2±1.1 82.2±1.4
GSN 92.2±7.5 68.2±7.2 76.6±5.0 83.5±2.0 –
SIN – – 76.4±3.3 82.7±2.1 –
CIN 92.7±3.6 68.2±3.5 77.0±3.4 83.6±3.1 84.0±3.1
GIN 89.4±5.6 64.6±7.0 76.2±2.8 82.7±1.7 82.2±1.6
GCONV 90.5±4.6 64.9±10.4 73.9±6.1 82.4±2.7 81.7±1.0
RNI 91.0±4.9 64.3±6.1 73.3±3.3 82.1±1.7 81.7±1.0

ωGCN (Ours) 94.6 ± 4.1 73.8 ± 4.3 80.2 ± 2.5 84.1 ± 1.2 84.5 ± 1.8
ωGAT (Ours) 95.2 ± 3.7 75.8 ± 3.5 80.7 ± 3.7 84.4 ± 1.7 83.6 ± 1.2

we experiment with graph classification on TUDatasets
(Morris et al., 2020). Here, we follow the same experi-
mental settings from (Xu et al., 2019), and report the 10
fold cross-validation performance on MUTAG, PTC, PRO-
TEINS, NCI1 and NCI109 datasets. The hyper-parameters
are determined by a grid search, as in (Xu et al., 2019) and
are reported in Appendix E. We compare our ωGCN and
ωGAT with recent and popular methods like GIN (Xu et al.,
2019), GCONV (Morris et al., 2019), RNI (Abboud et al.,
2020), DGCNN (Zhang et al., 2018b), IGN (Maron et al.,
2018), GSN (Bouritsas et al., 2022), SIN (Bodnar et al.,
2021b), CIN (Bodnar et al., 2021a) and others. We also
compare with methods that stem from ’classical’ graph al-
gorithms like PK (Neumann et al., 2016) and WL Kernel
(Shervashidze et al., 2011). All the results are summarized
in Table 6, with an evident improvement or similar results
to current deep learning as well as classical methods, high-
lighting the efficacy of our approach.

Table 7. Accuracy (%) of variants of ωGCN on semi-supervised
classification.

Data. Variant Layers
2 4 8 16 32 64

Cora ωGCNG 83.4 84.3 84.2 84.1 84.3 84.4
ωGCNPL 83.0 83.6 84.0 84.2 84.5 84.8
ωGCN 82.6 83.8 84.2 84.4 85.5 85.9

Cite. ωGCNG 71.0 71.4 71.3 71.7 72.0 71.8
ωGCNPL 71.1 71.3 71.5 71.8 72.4 72.6
ωGCN 71.3 71.6 72.1 72.4 73.3 73.3

Pub. ωGCNG 79.8 80.4 80.5 80.4 80.2 80.3
ωGCNPL 79.8 80.0 80.2 80.4 80.5 80.8
ωGCN 79.7 80.2 80.1 80.5 80.8 81.1

2 4 8 16 32 64

10−1

100

Layers

ω̄

Cora Citeseer Pubmed

ωGCNPL ωGCNG

Figure 4. The average value of ω across the layers (denoted by
ω̄ = 1

L

∑L−1
l=0 ω(l)) vs. the number layers for ωGCNG and

ωGCNPL. Here, ω̄ scales like 1
L

for a varying L, in congruence
with Theorem 2.1.

4.4. Ablation Study

In this section we study the different components and con-
figurations of our ωGNN. We start by allowing a global
(single) ω to be learnt throughout all the layers—this archi-
tecture is dubbed as ωGCNG. We validate that this simple
variant does not over-smooth, depicted in Table 7. The table
also shows ωGCNPL, that includes a single parameter ω(l)

per layer, and ωGCN shown in the results earlier that has
Ω(l), i.e., a parameter per layer and channel, which yields
further accuracy improvements. In addition, we empirically
verify our theoretical results from Section 2 in Fig. 4, where
we show that the obtained values of ω (whether the global or
averaged per-layer ones) scale as 1/L and behave according
to Theorem 2.1 and Corollary 2.2. For completeness, we
also perform the ablation study on ωGAT in Appendix I.
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5. Summary
In this work we propose an effective and computationally
light modification of the large family of GNNs that car-
ries the form of a separable propagation and 1 × 1 convo-
lutions. In particular, we demonstrate its efficacy on the
popular GCN and GAT architectures. Our theorems show
that ωGNNs can avoid over-smoothing as their learnable
weighting factors ω⃗ enable mixing smoothing and sharpen-
ing propagation operators. This flexibility also enhances
expressiveness. Through an extensive set of experiments
on 15 datasets (ranging from node classification to graph
classification), an ablation study, and comparisons to sev-
eral recent methods, we validate our theoretical findings and
demonstrate the performance of our ωGNN.
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A. Proofs of Theorems
Here we repeat the theorems, observations and corollaries from the main paper, for convenience, and provide their proofs or
derivation.

P̃ is a Scaled Diffusion Operator

Assume that A is the adjacency matrix, and D is the degree matrix. Denote the adjacency matrix with added self-loops by
Ã = A+ I. Then, the convolution operator from GCN (Kipf & Welling, 2017) is

P̃ = D̃− 1
2 ÃD̃− 1

2 (14)

We first note that the Laplacian including self-loops is the same as the regular Laplacian:

L̃ = D̃− Ã = D+ I−A− I = D−A = L. (15)

Therefore, it holds that:

P̃ = I− I+ D̃− 1
2 ÃD̃− 1

2

= I− D̃− 1
2 D̃D̃− 1

2 + D̃− 1
2 ÃD̃− 1

2

= I− D̃− 1
2 (D̃− Ã)D̃− 1

2 (16)

= I− D̃− 1
2 (D−A)D̃− 1

2

= I− D̃− 1
2LD̃− 1

2 .

Proof of Theorem 2.1

Proof. First, note that (6) from the main paper can be written as

E(f (l)) =
∑
i∈V

∑
j∈Ni

1

2

∥∥∥∥ f
(l)
i√

(1+di)
− f

(l)
j√

(1+dj)

∥∥∥∥2
2

= 1
2∥GD̃− 1

2 f (l)∥22, (17)

where G is the graph gradient operator, also known as the incidence matrix, that for each edge subtracts the features of the
two connected nodes, i.e., Gf

(l)
(i,j) = f

(l)
i − f

(l)
j for (i, j) ∈ E . Let us assume that the initial feature f (0) has some Dirichlet

energy E0 > Eopt as defined in (17). Since

∇E = D̃− 1
2G⊤GD̃− 1

2 f (l)

we see that the forward propagation through a GCN approximates the gradient flow of the Dirichlet energy. That is, for
given L and and ω we have that

f (l+1) = f (l) − ω∇E = f (l) − ωD̃− 1
2G⊤GD̃− 1

2 f (l) = (I− ωD̃− 1
2LD̃− 1

2 )f (l) (18)

where we used that G⊤G = L. Equation 18 can be seen both as a gradient descent step to reduce E, and also as a forward
Euler approximation with step size ω of the solution of

∂f(t)

∂t
= −D̃− 1

2LD̃− 1
2 f(t), f(0) = f (0). (19)

It is known that the solution to (19) is given by

f(t) = exp
(
−tD̃− 1

2LD̃− 1
2

)
f(0). (20)

Since the Dirichlet energy of f(t) is continuous in t and decays monotonically from E0 to zero, there exists a T such that
E(f(T )) = E∗. Now, considering discrete time intervals 0 = t0, ..., tL = T , then, similarly to (20), for any two subsequent
time steps tl+1 and tl we have that

f(tl+1) = exp
(
−(tl+1 − tl)D̃

− 1
2LD̃− 1

2

)
f(tl). (21)
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Figure 5. Difference norm ∥f(T )− f (L)∥2 between an analytical solution f(t) = exp (−tA) f(0) like in (20) and a propagated solution
f (l+1) = (I− ωA)f (l) like in (18) using a random and diagonally normalized symmetric positive definite matrix A ∈ R100×100, and a
random initial feature f(0). The integration goes from t = 0 to T = 1, and hence ω = 1/L. It is clear that the difference norm at the last
layer scales like 1/L, as expected.

Taking fixed-interval time steps such that tl+1 − tl = ω = T/L for l = 0, ..., L, we get

f(tl+1) = exp
(
−ωD̃− 1

2LD̃− 1
2

)
f(tl) = (I− ωD̃− 1

2LD̃− 1
2 )f(tl) +O(ω2), (22)

where the rightmost approximation holds due to the Taylor expansion, up to first-order approximation. Denoting f (l) = f(tl)
and ω̄ = T , we complete the proof.

Remark 1. At the basis of our analysis above there is the analytical solution in (20), which, as shown in Eq. (22), is
O(ω2) different than the propagated solution through (18). After L layers, the O(ω2) term may accumulate L times. Since
ω = T/L where T is fixed, then O(Lω2) is equivalent to O(ω), resulting in a first order approximation to the analytical
solution in (20). This is often referred to as forward Euler integration. To demonstrate and verify this, we perform a
small experiment with a random and diagonally normalized symmetric positive definite matrix A (in the role of symmetric
normalized Laplacian). See Fig. 5 for details. Indeed, the difference between the analytical and propagated solutions at the
last layer scales as ω or 1/L where L is the number of layers.

Proof of Corollary 2.2

Proof. The proof follows immediately by setting variable tl+1 − tl = ω(l) and placing in (22).

Remark 2 (The non-negativity of P̃ω). By definition, for 0 < ω ≤ 1 all the spatial weights of P̃ω defined in (7) are
non-negative, and it is that the operator is smoothing as it is a low-pass filter. For ω > 1 or ω < 0, by definition we have an
operator with mixed signs.

Proof of Theorem 2.3

Proof. Assuming that the graph is connected, it is known that the graph Laplacian matrix has the eigenvector 1 whose
eigenvalue is 0, i.e. L1 = 0. Hence, we get that D̃− 1

2LD̃− 1
2 D̃

1
21 = 0 so D̃

1
21 is the eigenvector of the normalized

Laplacian with eigenvalue of 0.

Furthermore, denote the normalized Laplacian by L̃ = D̃− 1
2LD̃− 1

2 . Consider the range

0 < ω <
2

ρ(L̃)
= ω0,

where ρ(L̃) denotes the spectral radius of the matrix L̃. It is easy to verify that for this range of values for ω, the largest
eigenvalue in magnitude of P̃ω is 1, and it corresponds to the null eigenvector of L̃, i.e., D̃

1
21. Hence, for this range, P̃ is
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smoothing. For ω > ω0 and ω < 0, the leading eigenvector of P̃ω becomes the leading eigenvector of L̃. Furthermore, it
can be shown that ρ(L̃) ≤ 2 (see (Williamson, 2016) for the proof), hence ω0 ≥ 1.

B. Synthetic Expressiveness Task
To demonstrate the importance and benefit of learning sharpening propagation operators in addition to smoothing operators,
we propose the following synthetic node gradient regression task. Given a graph G = (V, E) with some input node features
f in ∈ Rn×cin , we wish a GNN to regress the node features gradient, ∇f in, where the node feature gradient of the i-th node
is defined as an upwind gradient operator:

∇f ini = maxj∈Ni
(fi − fj), (23)

where the goal of the considered GNN is to minimize the following objective:

∥GNN(f in,G)−∇f in∥22. (24)

As a comparison, we consider two GNNs: GCN (Kipf & Welling, 2017) and our ωGCN with 64 channels and 2 layers. In
both cases we use a learning rate of 1e− 4 without weight decay and train the network for 5000 iterations (no further benefit
was obtained with any of the considered methods). The input graph is a random Erdős–Rényi graph with 8 nodes and an
edge rate of 30%, with input node features sampled from a uniform distribution in the range of 0 to 1. The obtained loss
of GCN is of order 1e− 1, while our ωGCN obtains a loss of order 1e− 12, also as can be seen in Fig. 2. We therefore
conclude that introducing the ability to learn mixed-sign operators by ω is beneficial to enhance the expressiveness of GNNs.

C. Datasets
In this section we provide the statistics of the datasets used throughout our experiments. Table 8 presents information
regarding node-classification datasets, and Table 9 summarizes the graph-classification datasets. For each dataset, we also
provide the homophily score as defined by (Pei et al., 2020).

Table 8. Node classification datasets statistics. Hom. score denotes the homophily score.

Dataset Cora Citeseer Pubmed Chameleon Film Cornell Texas Wisconsin PPI Ogbn-arxiv

Classes 7 6 3 5 5 5 5 5 121 40
Nodes 2,708 3,327 19,717 2,277 7,600 183 183 251 56,944 169,343
Edges 5,429 4,732 44,338 36,101 33,544 295 309 499 818,716 1,116,243
Features 1,433 3,703 500 2,325 932 1,703 1,703 1,703 50 128
Hom. score 0.81 0.80 0.74 0.23 0.22 0.30 0.11 0.21 0.17 0.63

Table 9. TUDatasets graph classification statistics.

Dataset MUTAG PTC PROTEINS NCI1 NCI109

Classes 2 2 2 2 2
Graphs 188 344 1113 4110 4127
Avg. nodes 17.93 14.29 39.06 29.87 32.13
Avg. edges 19.79 14.69 72.82 32.30 32.13

D. Over-smoothing in GAT
In addition to the observation presented in Section 2.1 and specifically in Fig. 3 where we see that recurrent applications of
GAT reduce the node feature energy from (13), which causes over-smoothing as shown by (Wu et al., 2019; Wang et al.,
2019) (as discussed in the main paper), here, we also show that the same behaviour is evident with Citeseer and Pubmed
datasets in Fig. 6.
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Figure 6. Node features energy at the l-th layer relative to the initial node embedding energy on Citeseer and Pubmed. ωGAT controls the
energy from Eq. (13) to avoid over-smoothing, while the baseline GAT with ω = 1 reduce the energy to 0 and over-smooth.

E. Architectures in Details
We now elaborate on the specific architectures used in our experiments in Section 4. As noted in the main paper, all our
network architectures consist of an opening (embedding) layer (1× 1 convolution), a sequence of ωGNN (i.e., ωGCN or
ωGAT) layers, and a closing (classifier) layer (1× 1 convolution). In total, we have two types of architectures – one that is
based on GCN, for node classification tasks reported in Table 10, and the other for the graph classification task which is
based on (Xu et al., 2019) and is reported in Table 11. Throughout the following, we denote by cin and cout the input and
output channels, respectively, and c denotes the number of features in hidden layers (which is reported in Appendix F). We
initialize the embedding and classifier layers with the Glorot (Glorot & Bengio, 2010) initialization, and K(l) from (2) is
initialized with an identity matrix of shape c× c. The initialization of Ω(l) also starts from a vector of ones. We note that our
initialization yields a standard smoothing process, which is then adapted to the data as the learning process progresses, and if
needed also changes the process to a non-smoothing one by the means of mixed-signs, as discussed earlier and specifically
in Theorem. 2.3. We denote the number of ωGNN layers by L, and the dropout probability by p. The main differences
between the two architectures are as follows. First, for the graph classification we use the standard add-pool operation as in
GIN (Xu et al., 2019) to obtain a global graph feature. Second, we follow GIN and in addition to the graph layer (which is
ωGNN in our work), we add batch normalization (denoted by BN), 1 × 1 convolution and a ReLU activation past each
graph layer.

Table 10. The architecture used for node classification and inductive learning.

Input size Layer Output size

n× cin 1× 1 Dropout(p) n× cin
n× cin 1× 1 Convolution n× c
n× c ReLU n× c
n× c L× ωGNN layers n× c
n× c Dropout(p) n× c
n× c 1× 1 Convolution n× cout

F. Hyper-parameters Details
We provide the selected hyper-parameters in our experiments. We denote the learning rate of our ωGNN layers by LRGNN ,
and the learning rate of the 1× 1 opening and closing as well as any additional classifier layers by LRoc. Also, the weight
decay for the opening and closing layers is denoted by WDoc. We denote the ω parameter learning rate and weight decay
by LRω and WDω , respectively. c denotes the number of hidden channels. In the case of ωGAT, the attention head vector a
are learnt with the same learning rate as LRGNN and WDGNN .
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Table 11. The architecture used for graph classification.

Input size Layer Output size

n× cin 1× 1 Convolution n× c
n× c ReLU n× c
n× c L× [ ωGNN , BN, 1× 1 Convolution, ReLU ] n× c
n× c 1× 1 Add-pool 1× c
1× c 1× 1 Convolution 1× c
1× c 1× 1 Dropout(p) 1× c
1× c 1× 1 Convolution 1× cout

F.1. Semi-supervised Node Classification

The hyper-parameters for this experiment are summarized in Table 12.

Table 12. Semi-supervised node classification hyper-parameters.

Architecture Dataset LRGNN LRoc LRω WDGNN WDoc WDω c p

ωGCN Cora 0.01 0.01 0.01 1e-4 8e-5 2e-4 64 0.6
Citeseer 1e-4 0.005 0.005 1e-5 5e-6 2e-4 256 0.7
Pubmed 0.001 5e-4 0.005 2e-4 1e-4 1e-4 256 0.5

ωGAT Cora 0.01 0.01 0.005 1e-5 1e-5 1e-5 64 0.6
Citeseer 0.005 0.005 0.001 1e-4 1e-5 1e-4 256 0.7
Pubmed 0.005 0.001 0.05 4e-5 1e-5 1e-4 256 0.5

F.2. Full-supervised Node Classification

The hyper-parameters for this experiment are summarized in Table 13. For Ogbn-arxiv from Table 18, 8 layer ωGCN and
ωGAT were employed

F.3. Inductive Learning

The hyper-parameters for the inductive learning on PPI are listed in Section 4.2 in the main paper, and are the same for
ωGCN and ωGAT.

F.4. Graph Classification

The hyper-parameters for the graph classification experiment on TUDatasets are reported in Table 14. We followed the
same grid-search procedure as in GIN (Xu et al., 2019). In all experiments, a 5 layer (including the initial embedding layer)
ωGCN and ωGAT are used, similarly to GIN.

F.5. Ablation Study

In this experiment we used the same hyper-parameters as reported in Table 12.

G. Runtimes
Following the computational cost discussion from Section 2.4 in the main paper, we also present in Table 15 the measured
training and inference times of our baselines GCN and GAT with 2 layers, where we see that indeed the addition of ω per
layer and channel requires a negligible addition of time, at the return of a significantly more accurate GNN. We note that
further accuracy gain can be achieved when adding more ωGNN layers as reported in Table 2 in the main paper. However,
since GCN and GAT over-smooth, the comparison here is done with 2 layers, where the highest accuracy is obtained for the
baseline models.
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Table 13. Full-supervised node classification hyper-parameters.

Architecture Dataset LRGNN LRoc LRω WDGNN WDoc WDω c p

ωGCN Cora 0.01 0.05 0.005 0.01 1e-4 1e-4 64 0.5
Citeseer 0.001 0.08 0.005 0.005 1e-4 0 64 0.5
Pubmed 0.005 0.005 0.01 0.003 5e-5 0.01 64 0.5
Chameleon 1e-4 0.005 5e-4 1e-4 1e-4 1e-5 64 0.5
Film 0.05 0.01 0.05 1e-4 1e-4 1e-5 64 0.5
Cornell 0.01 0.05 0.01 0.005 1e-4 0 64 0.5
Texas 0.08 0.08 0.005 0.005 5e-4 0 64 0.5
Wisconsin 0.001 0.05 0.005 1e-4 3e-4 3e-4 64 0.5
Ogbn-arxiv 0.01 0.01 0.01 0 0 0 256 0

ωGAT Cora 0.001 0.01 0.05 0.001 5e-4 0 64 0.5
Citeseer 0.005 0.05 0.03 0.005 5e-4 0.001 64 0.5
Pubmed 0.05 0.005 0.005 0.003 1e-6 0.003 64 0.5
Chameleon 0.005 0.005 3e-4 5e-4 5e-4 1e-5
Film 0.05 0.01 0.01 5e-4 0.001 4e-4 64 0.5
Cornell 0.001 0.01 0.005 1e-4 1e-5 0 64 0.5
Texas 1e-4 0.02 0.05 5e-4 5e-4 0 64 0.5
Wisconsin 0.01 0.05 0.005 0.001 5e-4 0 64 0.5
Ogbn-arxiv 0.01 0.01 0.01 0 0 0 256 0

Table 14. Graph classification hyper-parameters. BS denoted batch size.

Architecture Dataset LRGNN LRoc LRω WDGNN WDoc WDω c p BS

ωGCN MUTAG 0.01 0.01 0.01 0 0 0 32 0 32
PTC 0.01 0.01 0.01 0 0 0 32 0 32
PROTEINS 0.01 0.01 0.01 0 0 0 32 0 128
NCI1 0.01 0.01 0.01 0 0 0 32 0.5 32
NCI109 0.01 0.01 0.01 0 0 0 32 0 32

ωGAT MUTAG 0.01 0.01 0.01 0 0 0 32 0 32
PTC 0.01 0.01 0.01 0 0 0 32 0 128
PROTEINS 0.01 0.01 0.01 0 0 0 32 0 128
NCI1 0.01 0.01 0.01 0 0 0 32 0.5 128
NCI109 0.01 0.01 0.01 0 0 0 32 0.5 32

H. Depth Study
In addition to the results in Section 4.1, we now provide results with up to 256 layers, on the Cora, Citeseer, Pubmed,
Chameleon, and Cornell datasets, to demonstrate that our ωGCN does not over-smooth, in Figure 7.

I. Ablation Study using ωGAT
To complement our ablation study on ωGCN in Section 4.4 in the main paper, we perform a similar study on ωGAT. Here,
we show in Table 16, that indeed the single ω variant, dubbed ωGATG does not over-smooth, and that by allowing the greater
flexibility of a per-layer and per layer and channel of our ωGATPL and ωGAT, respectively, better performance is obtained.

J. Statistical Significance of Semi-supervised Node Classification Results
Throughout our semi-supervised node classification experiment in Section 4 on Cora, Citeseer and Pubmed, the standard
split from (Kipf & Welling, 2017) was considered, to a direct comparison with as many as possible methods. However, since
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Table 15. Training and inference GPU runtimes [ms] on Cora.

Runtime GCN GAT ωGCN (Ours) ωGAT (Ours)

Training 7.71 14.59 7.79 14.95
Inference 1.75 2.98 1.88 3.09
Accuracy (%) 81.1 83.1 82.6 83.4
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Figure 7. The obtained node classification accuracy (%) with varying number of layers of ωGCN.

Table 16. Ablation study on ωGAT.

Data. Variant Layers
2 4 8 16 32 64

Cora ωGATG 83.3 83.3 83.4 83.6 83.7 83.9
ωGATPL 83.4 83.5 83.8 84.0 84.1 84.0
ωGAT 83.4 83.7 84.0 84.3 84.4 84.8

Cite. ωGATG 71.5 71.8 71.9 72.2 72.4 72.9
ωGATPL 72.1 72.3 72.4 72.8 73.1 73.2
ωGAT 72.5 73.1 73.3 73.5 73.9 74.0

Pub. ωGATG 80.0 80.2 80.3 80.5 80.6 80.9
ωGATPL 80.0 80.4 80.7 81.1 81.2 81.4
ωGAT 80.3 81.0 81.2 81.3 81.5 81.8

this result reflects the accuracy from a single split, we also repeat this experiment with 100 random splits as in (Chamberlain
et al., 2021) and compare with applicable methods that also conducted such statistical significance test. In Table 17, we
report our obtained accuracy on Cora, Citeseer, and Pubmed. It is possible to see that in this experiment our ωGCN and
ωGAT outperform or obtain similar results compared with the considered methods, which further highlights the performance
advantage of our method.

K. The Learnt ω⃗
One of the main advantages of our method in Section 2 is that our method is capable of learning both smoothing and
sharpening propagation operators, which cannot be obtained in most current GNNs. In Fig. 8 we present the actual {ω⃗(l)}Ll=1

as a matrix of size L× c that was learnt for two dataset of different types—with high and low homophily score (as described
in (Pei et al., 2020)). Namely, the Cora dataset with a high homophily score of 0.81, and the Texas dataset with a low
homophily score of 0.11 (i.e., a heterophilic dataset). We see that on a homophilic dataset like Cora, the network learnt
to perform diffusion, albeit in a controlled manner, and not to simply employ the standard averaging operator P̃. We can
further see that for a heterophilic dataset the ability to learn contrastive (i.e., sharpening) propagation operators in addition
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Table 17. Semi-supervised node classification test accuracy 100 random train-val-test splits.

Method Cora Citeseer Pubmed

GCN (Kipf & Welling, 2017) 81.5 71.9 77.8
GAT (Veličković et al., 2018) 81.8 71.4 78.7
MoNet (Monti et al., 2017) 81.3 71.2 78.6
GRAND-l (Chamberlain et al., 2021) 83.6 73.4 78.8
GRAND-nl (Chamberlain et al., 2021) 82.3 70.9 77.5
GRAND-nl-rw (Chamberlain et al., 2021) 83.3 74.1 78.1
GraphCON-GCN (Rusch et al., 2022a) 81.9 72.9 78.8
GraphCON-GAT (Rusch et al., 2022a) 83.2 73.2 79.5
GraphCON-Tran (Rusch et al., 2022a) 84.2 74.2 79.4

ωGCN (ours) 84.5 73.8 82.9
ωGAT (ours) 84.3 73.6 82.6

Table 18. Node classification accuracy (%) on additional datasets.

Method Ogbn-arxiv

GCN (Kipf & Welling, 2017) 71.74
GAT (Veličković et al., 2018) 71.59
GATv2 (Brody et al., 2022) 71.87
APPNP (Klicpera et al., 2019) 71.82
Geom-GCN-P (Pei et al., 2020) –
JKNet (Xu et al., 2018) 72.19
SGC (Wu et al., 2019) 69.20
GCNII (Chen et al., 2020b) 72.74
EGNN (Zhou et al., 2021) 72.70
GRAND (Chamberlain et al., 2021) 72.23
AGDN (Zhao et al., 2021) 73.41

ωGCN (Ours) 73.02
ωGAT (Ours) 72.76

to diffusive kernels is beneficial, and is also reflected in our results in Table 3-4, where a larger improvement is achieved in
datasets like Cornell, Texas and Wisconsin, which have low homophily scores (Rusch et al., 2022a).

Figure 8. The learnt ω⃗ ∈ R64×64 of ωGCN with 64 layers (x-axis) and 64 channels (y-axis) for Cora (homophilic) and Texas (heterophilic)
datasets. Smoothing operators appear in blue, while sharpening operators appear in red. White entries are obtained for ω = 1.
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L. Additional Backbones
In the main paper we considered GCN and GAT as our backbone to demonstrate ωGNNs. However, other architectures
may also be augmented by learning the appropriate ω parameters. For instance, it may be possible to augment GRAND
(Chamberlain et al., 2021), or the attention based (He et al., 2021b), as well as (Corso et al., 2020) that proposed to use
multiple fixed propagation operators. We now provide a discussion regarding the augmentation of GRAND to obtain
ωGRAND, followed by several experimental results.

ωGRAND Let us consider the GRAND method, as described in Equation 2 in (Chamberlain et al., 2021):

∂f(t)

∂t
= (Ŝ− I)f(t) , t ∈ (0, T ], (25)

equipped with some initial value f(t = 0) = f0. Here, Ŝ is the learnable attention propagation operator based on GAT
(Veličković et al., 2018), which as discussed in Section 2.3 is non-negative and therefore smooths the node features f(t). By
discretizing Equation (25) with the forward Euler method, one obtains:

f (l+1) − f (l)

h
= (Ŝ− I)f (l) , l ∈ 0, . . . , L− 1. (26)

By rearranging Equation (26), one obtains:

f (l+1) = (I− h(I− Ŝ))f (l) , l = 0, . . . , L− 1. (27)

Importantly, we note that Equation (27) here is the same as Equation (2) in the main paper without the 1× 1 convolution,
and the non-linearity activation function σ. The time h step is in fact equivalent to our learnable weight ω. The major
difference is that we let ω to be learned rather than a fixed hyperparameter as in GRAND. In particular, GRAND employs
the integration scheme in Equation (27) here, to compute (see Section 4 of GRAND (Chamberlain et al., 2021) for more
information):

f(T ) = f(0) +

∫ T

0

∂f(t)

∂t
dt. (28)

However, in GRAND the time step h (which is equal to our ω), is fixed, and the time T is replaced with L layers. Because in
our ωGNNs (and specifically ωGRAND) we let ω change, we essentially learn the time integration length T . Furthermore,
as shown in GRAND++ (Thorpe et al., 2022) (in the supplementary material, Table 5), increasing T , which is equivalent to
adding more layers, causes accuracy degradation that is associated with the over-smoothing phenomenon. In light of our
discussion above, and the findings in (Thorpe et al., 2022), we propose to consider an ωGRAND variant. Below, in Table 19
we show the results obtained with ωGRAND, on Cora and Citeseer using the 10 splits from Geom-GCN with a varying
number of layers, from 8 to 64. Our results show that adding more layers to ωGRAND with a parameter per layer does
not lead to performance degradation, unlike simply increasing T in GRAND. Note, that in our case, the time integration
length is equal to the sum of all ω (in all layers and channels), i.e., T =

∑
ω. Therefore, we also report the effective time

integration length in Table 19.

Table 19. The obtained accuracy (%) / total integration length (T) with GRAND and ωGRAND with a varying number of layers.

Dataset Method Layers
8 16 32 64

Cora ωGRAND 88.12 / 7.88 88.20 / 9.19 88.18 / 9.06 88.11 / 9.24
GRAND 87.83 / 8 87.31 / 16 86.20 / 32 73.06 / 64

Citeseer ωGRAND 77.21 / 6.11 77.31 / 6.33 77.28 / 7.08 77.19 / 6.88
GRAND 76.89 / 8 76.05 / 16 73.14 / 32 69.90 / 64
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