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ABSTRACT

With the advancement of language models, unified multimodal understanding and
generation have made significant strides, with model architectures evolving from
separated components to unified single-model frameworks. This paper explores an
efficient training paradigm to build a single transformer for unified multimodal un-
derstanding and generation. Specifically, we propose a multimodal warmup strat-
egy utilizing prior knowledge to extend capabilities. To address cross-modal com-
patibility challenges, we introduce feature pre-scaling and multimodal AdaLN
techniques. Integrating the proposed technologies, we present the HaploOmni,
a new single multimodal transformer. With limited training costs, HaploOmni
achieves competitive performance across image and video understanding and gen-
eration benchmarks over advanced unified models. All codes will be made public.

1 INTRODUCTION

In recent years, large-scale language models (LLMs) ( ,

, ) have exhibited remarkable capabilities across diverse domams promptmg researchers
to extensively investigate their potential applications in multimodal contexts. There is an increasing
focus on developing unified approaches that simultaneously address both multimodal understanding
and generation capabilities. The former research can be categorized into three phases in terms of
implementation architecture, progressing from segregated to unified frameworks.

In the first phase, tool-based methods like InstructGPT ( , ) and HuggingGPT (

, ) employ LLMs to allocate task-specific tools. While these methods offer simplicity and
ease of use, their reliance on text-tool interactions limits their flexibility and controllability. In
the second phase, methodologies incorporate separate encoders and decoders in conjunction with
LLMs, exemplified by Seed ( R ), Emu-2 ( s ), and VILA-U ( R

), achieving multimodal input-output compatibility through feature interaction mechanisms.
Although these approaches have achieved commendable results on general multimodal benchmarks,
their segregated processes result in insufficient modal integration, constraining their capability to
handle fine-grained understanding and generation tasks.

In the third phase, the latest approaches utilize a unified single-transformer framework. One sub-
set, including Chameleon ( s ) and Show-o ( R ), achieves model unification

Video Single Und. Gen.

Method Support Transformer Data Data SEED POPE MVBench VBench
SEED-X ( , ) X X 152M  152M - 84.2 - -
TokenFlow ( , ) X X 1IOM 60M 68.7 86.8 - -
Janus-Pro ( s ) X X 41IM 98M 72.1 874 - -
Show-o ( s ) X v 36M  611M - 73.8 - -
ViLA-U ( , ) 4 X ™ 16M 59.0 8538 38.9 73.4
HaploOmni (ours) v v 4M 3M 746 88.3 52.9 78.1

Table 1: Characteristics comparison with some other unified models. Video support means that the
models can process video inputs and generate videos. “Und. Data” and “Gen. Data” indicate the
number of training data for understanding and generation tasks, respectively.
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Figure 1: Illustration of our HaploOmni-attention mechanism and HaploOmni Block. We imple-
ment a hybrid masking strategy that applies causal attention to text features and timestep tokens (a
vector € R'*?) while adopting bidirectional attention for processing visual signals and latent noise.
Drawing from the standard transformer module, we develop the HaploOmni block through the im-
plementation of multimodal AdaLLN.

through image discretization tokens. Another subset, exemplified by Transfusion ( , ),
employs hybrid text autoregressive and image diffusion modeling processes for unification. Com-
pared to the encoder-decoder methods, these single-transformer methods are more streamlined and
enable cross-modal early-fusion and late-fusion, thereby enhancing fine-grained multimodal rep-
resentation capabilities ( , ). However, existing methods adopt from-scratch training
approaches. Due to the absence of prior knowledge, their overall performance falls short of encoder-
decoder methods while incurring substantial training costs. Consequently, this paper explores a new
perspective: efficiently constructing a single multimodal transformer by leveraging knowledge from
specialized models to achieve high-performance unified multimodal understanding and generation.

To achieve it, we propose a new training paradigm for single multimodal transformers. Considering
that the natural language possesses more abstract and higher-level semantic representations com-
pared to natural images ( , ), we propose a multimodal warmup process that depth-wise
partitions a transformer decoder into three components: visual encoding, text encoding-decoding,
and visual decoding. These components are initialized using corresponding prior models and sub-
sequently fine-tuned independently to accommodate identity mapping across other modalities. Fol-
lowing the warmup phase, the model undergoes unified training for multimodal understanding and
generation in an end-to-end manner. Furthermore, we find that different modalities exhibit varying
preferences for feature scaling, significantly impacting training effectiveness and stability. Inspired
by the diffusion transformer, we propose feature pre-scaling strategies and Multimodal AdaLLN. The
former pre-establishes initial feature transformation scales for different modalities based on statisti-
cal information, while the latter enables the model to autonomously select normalization parameters
for various inputs.

With the proposed techniques, we present the HaploOmni, a cost-efficient yet high-performance
single transformer for multimodal understanding and generation. As demonstrated in table |, we
evaluate our method on image and video multimodal understanding and generation benchmarks.
Compared with previous models, our HaploOmni achieves superior performance across multiple

image understanding datasets, including SEEDBench ( s ) and POPE ( s ).
Additionally, it significantly outperforms unified video-text model, VILA-U, in both MVBench (
s ) video understanding and VBench ( s ) generation benchmarks.

2 RELATED WORK

Text-to-video generation models aim to automatically produce visually and logically consistent
videos based on textual descrlptlons of scenes, objects and actions. Most text-to-video models (

; s s ) are built on latent diffusion
models with a U-Net archltecture The ﬁeld achleved a significant milestone with the introduction
of diffusion transformers ( ) ), as demonstrated by the impressive Sora ( s

). Following this breakthrough, the majority of studies have adopted diffusion transformers to
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develop open-source text-to-video models. For example, CogVideoX ( , ) introduces
an expert transformer to improve the fusion of visual and textual modalities.

Unified multi-modal LLMs are capable of performing both understanding and generation tasks
within a single framework. Several efforts (

, ) have been made to unify vision understandlng and generatlon with an addltlonal
diffusion-based image decoder ( , ). In contrast, discrete sequence modeling meth-
ods ( (2024, (2024); ( ); (2024); ( )

( )) discretize visual features and train token-based autoregressive models on mixed
image and text data. It is worth mentioning that TransFusion ( , ) attempts to inte-
grate diffusion and autoregressive approaches within a single transformer. Despite recent advances,
current approaches are limited by their inability to effectively trade off between performance and
training resources, let alone extending to video understanding and generation area. In this paper, we
introduce a method for efficiently constructing a unified single transformer achieving comparable
performance across both vision understanding and generation tasks, including video area.

3 METHOD

In this section, we begin by introducing the preliminaries, followed by a detailed elaboration of our
unified single transformer (HaploOmni) and the novel training paradigm we propose. This approach
leverages knowledge from specialized models to efficiently construct HaploOmni, enabling high-
performance unified multimodal understanding and generation.

3.1 PRELIMINARIES

Multimodal LLMs. Given a visual signal (image/video) and a series of corresponding text re-
quests a common approach for answer generation is to use a multimodal large language model (

, ), which typically integrates a vision encoder
and a language model. Generally, the raw visual input is transformed into a discrete or continuous
feature space, which is then combined with text embeddings generated by a linguistic tokenizer. An
auto-regressive LLM then processes the mixed multimodal sequence {xt}tTgll to predict the next
tokens by modeling the conditional probability:

T
P(l‘l,l’g,"',xT):HP($t|$1,$2,"',l’tfl). (1)
t=1

Then, the Lyrp is defined using cross-entropy and the conditional probability described above, uti-
lized to optimize the LLM during the training phase.

Diffusion Transformer. Diffusion models, such as the denoising diffusion probabilistic model
(DDPM), generate data by progressively transforming noise into a target distribution over a series
of timesteps. The Diffusion Transformer (DiT) integrates the transformer architecture into this gen-
erative process, enabling it to learn the reversal of the incremental noise-adding procedure in the
forward process. At each timestep ¢, the model estimates the noise ¢; added to the data at the previ-
ous timestep. The objective function for training the Diffusion Transformer can be written as:

Lag=E [|lex — ég(x¢,1)]1%] 2)

where x; is the noisy data at timestep ¢, X is the raw image or video data, and €4(+) is the model’s
estimate of the noise at each timestep, parameterized by the network 6.

3.2 MODEL DESIGN

Overall, to streamline the training of the unified single transformer for multimodal understanding
and generation, we first partition it into three components: pre-decoder, base-decoder, and post-
decoder. All parts consist of multiple HaploOmni Blocks as shown in Fig. |. Following this, two
connector modules are employed to integrate the above three components 1nt0 a complete trans-
former decoder. In contrast to previous decoupled paradigms ( ,

, ), our unified architecture processes both visual and textual 1nputs together, ehmlnatlng
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Figure 2: The progressive training stages of our HaploOmni, including multimodal warmup, con-
nector alignment and unified tuning.

the need for a separate vision encoder, and enabling direct end-to-end visual generation conditioned
on multimodal instructions. Additionally, we develop a three-stage training strategy to significantly
reduce the training resources required. The following section provides an in-depth explanation of
the specific modules within our HaploOmni.

HaploOmni Block. First, in light of the distinct characteristics of visual and linguistic modalities,
we adopt a HaploOmni-attention mechanism with an adaptive mask strategy as shown in F1g (@)
to 1mprove multimodal representation capacity following previous methods (

, ). Inspired by the expert adaptive LayerNorm (AdaLN) mtroduced by
CongdeOX to facilitate the fusion of different modalities by separately normalizing the condition
and noise embeddings, we develop a multimodal AdaLLN as shown in Fig. 1(c). Considering that
AdaLN breaks the internal coherence required for constructing a one-transformer model, we intro-
duce a dynamic strategy for input-aware normalization. Specifically, we compute the state matrix
S € R2*3 offline to store two sets of scale, shift, and gate parameters as SiLU(@)WLa, where
SiLU, 6, and Wgq, are the activation function, frozen time embedding, and a learnable matrix, re-
spectively. Based on the input feature h; of the i-th token in the sequence, we compute two switch
score sets used to perform a weighted summation over the discrete state matrix. The resulting AdaS-
cale, AdaShift, and AdaGate parameters are then applied in the following feature transformation.
The detailed operation is shown in algorithm |. Leveraging the Multimodal AdalLN, we develop a
HaploOmni block which is used to construct the complete model. The block is derived from the
standard transformer structure, which includes two normalization layers, a feed-forward network,
and an attention layer, with its execution order and residual method adhering to the original design,
as depicted in Fig. | (b).

Pre & Post Connector. Integrating specific Algorithm 1 Multimodal AdaLN

decoders leads to discrepancies in the feature Input:
space across different modalities, which poses h; € R}¥4 > Input feature
challenges for joint training and modality fu- WaaL € R3%2 > Input learnable matrix
sion. To alleviate this, we introduce a novel S e R3*? > State matrix
connector module with multimodal LN to align Forward:
the rpodalities.within a ur}iﬁed feature space. Ry — WWJ AL
Specifically, given a multimodal sequence X Set § € R1X2
with the length of L concatenated by {z1, x can(hF

& y { L 2} O zp(hy) > Switch Score

where {x1, 2} indicates the condition tokens S22 eap(hd)
= :

and latent noise tokens respectively, we utilize a
set of LayerNorm with learnable transition ma-

trices W' to process the sequence as follows:

X = SiLU(LayerNorm(X))W'  (3)

[AdaScale, AdaShift, AdaGate] < 55"
Do: > Feature Transform

hi < (AdaScale 4+ 1) x LN (h;) + AdaShift

Output: };, AdaGate
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Then, we obtain the corresponding switch scores P*°° € RL*?2 through an indicator layer con-
sisting of a SiLU function, a learnable matrix Wsy, and a Softmax function (o), which can be
formulated as:

P — o (Wen(SiLU(X))) 4)

With a characteristic function I, the score is multiplied by the input X to obtain the well-aligned
feature { X/} ;:

X}Z — I[O(PSCOI‘G))’Z‘i + ]Il (PSCOre)Xi (5)

Feature Pre-scaling. Although the model can ultimately be optimized through the connector we
designed, the optimization process is relatively slow. We observe that aligning features across
modalities gives rise to considerable amplitude inconsistencies, with the amplitudes of noise to-
kens often being about 10 times larger than those of the visual features distilled by a prior ViT. This
disparity intensifies feature-space distribution differences, complicating the training process. Addi-
tionally, in our paradigm, small perturbations near extreme points, stemming from the pre-trained
model, lead to diminished gradient amplitudes, which slow parameter updates. Therefore, we in-
troduce a feature pre-scaling mechanism into the Pre and Post-decoder, significantly simplifying
training and accelerating model convergence.

Inference Mode. In the inference stage, our model uses a unified transformer to execute multi-
modal understanding and generation tasks seamlessly. For the understanding task, given a visual
signal such as an image or video and a corresponding text query, the visual input is first converted
into a sequence via a patchification layer, while the text is tokenized into a sequence. The concate-
nated multimodal sequences are then fed into the transformer and output with the corresponding
response. For the generation task, we combine condition tokens (typically text embeddings), a
timestep token (a vector € R'*¢ calculated in the same way as the time embedding in the classic
diffusion model) and random noise tokens into a multimodal sequence, process it iteratively through
a unified transformer according to the DDIM ( , ) schedule, and decode the resulting
latent representation into the final image or video using a VAE decoder ( , ).

3.3 TRAINING PROCEDURE

HaploOmni is initially partitioned into three components: pre-decoder, base-decoder, and post-
decoder. We then train these components in three distinct stages: Multimodal Warmup, Connector
Alignment, and Unified Tuning, as shown in Fig.

Stage 1: Multimodal Warmup. The three sub-decoders are first initialized using the correspond-
ing prior models and subsequently fine-tuned independently to accommodate identity mapping
across other modalities. At this stage, we only train pre-decoder and post-decoder to ensure they
conform to the auto-regressive paradigm without altering the original model’s learnable parameters.
This adjustment enables compatibility with the LLM reasoning framework, including KV-Cache,
temperature setting, and top-p truncation. For the pre-decoder, a mixed sequence of text and image
tokens is used as input and we leverage the HaploOmni-attention mechanism for multimodal inter-
action. Two losses are applied during training: Identity Loss for linguistic modality and distillation
loss to preserve visual knowledge while learning new text-based knowledge. On the other hand, we
train the denoising capability of the post-decoder with randomly noisy video as input, conditioned
by the corresponding text description, while applying both distillation loss and identity loss. Given

the input signal, 2™M3°, 2'X for pre-decoder while 2 and x!*°" for post-decoder, the correspond-
ing outputs are y™, yxt yteXt and 3", The CLIP-ViT outputs y,;** and CogVideoX outputs

latent the objective functions of pre and post-decoder in this training stage are formulated as:

Yeog >

image  image

Lore = AV (|4 — gfoxt |2 4 A [Jaimaze — ymoee |2 4 ppre 22 U

e |, (©)
__ y\Post || __text text ||2 post ||, latent latent ||2 post T Yoo
Lpost - )\1 H.T 7ypost” +)‘2 H‘E 7yC0g H +)\3 W
atent
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Type Model Size SEEDT POPET AI2D1 RWQAT MMMU?T MMB; iyt MMStart VQAv2T GQAT
Und. Qwen-VL-Chat ( s ) 7B 582 - 459 49.3 35.9 60.6 37.5 78.2 57.5
Only InternVL-Chat ( s ) 7B - 864 548 - - - - 79.3 62.9
ShareGPT4V ( s ) 7B - - 58.0 54.9 37.2 68.8 33.0 80.6 63.3
LLaVA-1.6 ( s ) B 64.7 86.5 66.6 57.8 35.1 67.4 - 81.8 64.2
LLaVA-OV ( R ) 7B 754 - 81.4 66.3 48.8 80.8 61.7
Fuyu-8B ( s ) 8B - 74.1 64.5 - 279 10.7 - 74.2 -
EVE-7B ( s ) 8B 543 83.6 - - - 49.5 28.2 75.4 60.8
Emu3-Chat ( s ) 8B  68.2 852 700 57.4 31.6 58.5 - 75.1 60.3
Und. NEXT-GPT ( ,2023) 3B - - - - - - - 66.7 .
and VILA-U ( R ) 8B  59.0 85.8 - - - - - 79.4 60.8
Gen. Janus-Pro ( s ) 8B 72.1 874 - - 1.0 79.2 - - 62.0
Chameleon ( s ) 30B - - - - - 37.6 - 69.6 -
Show-o ( R ) 1.3B - 73.8 - - 25.1 - - 59.3 48.7
TokenFlow-XL( s ) 13B  68.7 86.8  66.7 53.7 38.7 68.9 - 719 62.7
HaploOmni (ours) 9B 740 89.6  78.7 63.5 46.1 78.2 57.8 75.6 60.8

Table 2: Comparison with state-of-the-arts on image understanding benchmarks. “Und.” and “Gen.”
denote “understanding” and “generation”, respectively. Models below the dotted line are the single-
transformer methods. Bold indicates the best result, while underlined marks the second-best.

Stage 2: Connector Alignment. This stage

. .. L Model Size EgoSchemat MVBencht
aims to optimize the model training cycle
across three progressive steps. In the first step, Und. only
the pre-connector is trained on multimodal un-  LLaMA-VID ( ,2025) 7B 38.5 419
derstanding tasks with Ly7p. In the second step, ~ Video-LLaVA ( ,2023) 7B 384 41.0
we train the post-connector, equipping the post- ~ VideoChat2 ( . ) 1B 422 5L
decoder to handle video and image denoising Und. and Gen.
ba}sed on semantic feat}lre§ from the base LLM Vidoo LaVIT ( 0y B 73 -
with diffusion loss, which is formulated as L. vy x ’ ) B 3.4 189
Finally, we train both the pre-connector and  HaploOmni (ours) 9B 471 509

post-decoder to allow the entire model to pro-

cess visual, text, and latent noise features di- Typle 3: Comparison on Video understanding
rectly in an end-to-end manner. benchmarks. “Und.” and “Gen.” denote “under-
standing” and “generation”, respectively.

Stage 3: Unified Tuning. At this stage, we

integrate the three decoders into a unified single transformer (HaploOmni). The entire model is fine-
tuned using a combination of understanding and generation datasets. Inputs across all modalities are
uniformly processed through HaploOmni, which then generates the corresponding output. In this
stage, we leverage both Lyrp and L4y to optimize HaploOmni.

4 EXPERIMENTS

We conduct extensive experiments to evaluate the effectiveness of our HaploOmni and compare it to
the widely adopted large language model approaches on multimodal understanding and generation
tasks under a fair evaluation setting. More ablation results can be shown in the Appendix.

4.1 IMPLEMENTATION DETAILS

The base-decoder of our HaploOmni is based on Qwen2.5-7B ( , ). During the
distillation stage, we employ CLIP-ViT-L and CogVideoX-2B as the teacher models for the pre-
decoder and post-decoder, respectively, with the decoders comprising 24 and 30 layers (/N1 and
N5). Due to the limited space, more implementation details are shown in Appendix.

Datasets. We classify image-text data pairs for multlmodal understanding into three types consist-
ing of 1.7M image caption data ( , ), 1.2M single-image instruction
data ( , ; s ) and 1.1IM mterleaved multi-image and video datasets (

, ; s ; , ). For the vision generation task, we curated 2M Jour-
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Type Model Su'bject Scenet Dynamic Motion Back.ground
Consistency T Degreef  SmoothnessT  Consistency?
OpenSora-V1.1 ( s ) 96.8 27.2 47.7 98.3 97.6
AnimateDiff-V2 ( s ) 95.3 50.2 40.8 97.8 97.7
Pika ( s ) 96.9 49.8 475 99.5 97.4
Gen. Only VideoCrafter-2.0 ( s ) 96.9 55.3 42.5 97.7 98.2
CogVideoX-5B ( R ) 96.2 53.2 71.0 96.9 96.5
Kling ( s ) 98.3 50.9 46.9 99.4 97.6
Gen-3 ( s ) 67.1 54.6 60.1 99.2 96.6
Emu3-gen ( s ) 95.3 37.1 79.3 98.9 97.7
Und. and Gen. VILA-U( § ) 87.0 318 87 9.3 4.4
HaploOmni (ours) 96.4 34.6 65.3 96.8 97.6

Table 4: Comparison with state-of-the-arts on video generation benchmark, VBench ( s
). “Und.” and “Gen.” denote “understanding” and “generation”, respectively. Bold indicates
the best result, while underlined marks the second-best.

Pre- MM 0.7 1 = W/O Multimodal LN
MMMU MVBench VBench z '\\ W/ Multimodal LN
Scaling Warmup AdaLN E B o
344 46.3 68.1 3
0.3
v 40.1 48.3 72.7
(a) Ablation on Pre-Connector
v v 42.7 50.2 74.4
v v v 46.1 52.9 78.1 — WO Pre-scaling

W/ Pre-scaling

%

NTP Loss 2

Table 5: “MM” denotes Multimodal. The ef-
fectiveness of our proposed modules and algo-

el
=3

rithms across three tasks: vision understand- (b) Ablation on Post-Connector
ing (image/video) and video generation, as
on MMMU ( R ), MVBench (
, ) and VBench ( ,  Figure 3: Loss curve comparison of different
) benchmarks, respectively. settings. The x-axis is the training step.
neyDB ( , ) image-text pairs and approximately 1M video generation data, including
374K WebVid ( , ), 626K in-house data. More details are shown in Appendix.

4.2 MAIN RESULTS

Vision Understanding. We provide a comparative analysis of state-of-the-art models on vision
understanding task across various benchmarks as depicted in Tab. 2 and Tab. 3 involving image and
video, respectively. As depicted in Tab. 2, our HaploOmni, as a unified multimodal model outper-
forms existing methods on most evaluation metrics. HaploOmni achieves state-of-the-art results
among unified models on most benchmarks, with notable scores such as 74.8 on SEED and 87.9
on POPE, surpassing prior approaches like Janus and VILA-U. Additionally, HaploOmni demon-
strates competitive performance compared to understanding-only models, achieving scores of 76.6
on AI2D and 60.8 on RWQA, outperforming Emu3-chat by +6.6% and +3.4%, respectively. Fur-
thermore, the comparison results in Tab. 3 highlight HaploOmni’s impressive video understanding
capabilities. Specifically, HaploOmni achieves 47.1 on EgoSchema and 52.9 on MVBench, surpass-
ing Video-LaVIT with 37.3 on EgoSchema, and VILA-U with 38.9 on MVBench.

Video Generation. We compare the performance of our proposed HaploOmni with state-of-the-
art video generation models on the VBench benchmark as shown in Tab. 4. Following previous
works ( , ) on video generation, we selected some aspects that
can reflect the quahty of the generated video, like dynamic degree, subject consistency, and motion
smoothness. HaploOmni as a unified model, exhibits strong performance across most evaluated
aspects. Specifically, we achieve a Scene Consistency score of 96.4, outperforming other multimodal
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Type MMMU-val MMStar AI2D Chameleon Janus HaploOmni
HaploOmni-Block 39.7 734  76.6 GPUs Hours 856481 21504 5792

Table 6: Effectiveness of HaploOmni Block. T,ple 8: Comparison of training GPUs hours
A standard block refers to a commonly used

: - among some unified multi-modal large language
block architecture in large language models

! - . models.
with pretrained weights of LLaMA-3.
ImageNet Acc. VBench Overall.
LLM Type Size MMMU-val SEED POPE CLIP-ViT.L 799 X
LLaMA-2 7B 34.7 66.1 86.2 Pre-decoder 79.0 X
LLaMA-3 8B 39.7 74.8 879 CogVideox-2B X 77.3
Qwen-2.5 7B 46.1 74.0 89.6 Post-decoder X 78.3

Table 7: Performance comparison with differ- Table 9: Performance Comparison after Multi-
ent LLM backbones. modal Warmup training stage.

C C

A contemplative man stands on a sandy shore at dusk, silhouetted against the setting sun, with a child by his side and another individual walking towards the sea.

Figure 4: Qualitative results of HaploOmni. The resolution of all the generated videos is 480 x720.

models like VILA-U (87.0) while remaining competitive with pure generative models such as Kling
(98.3) and Pika (96.9).

4.3 ABLATION STUDY

We conduct various analysis experiments and present some visual results to illustrate the effective-
ness of our method. As shown in Fig. 3, multimodal LN effectively reduces the difficulty of visual
generation training, while feature pre-scaling accelerates the training process for multimodal under-
standing and improves loss convergence. They are both beneficial for performance improvement as
illustrated in Tab. 5. We ablate various strategies by generating a cute cat as illustrated in Fig.
Noise increases when multimodal AdaLN is absent. As shown in Tab. 6, our HaploOmni Block
outperforms the standard version under a fair evaluation protocol, which demonstrates the effec-
tiveness of our architectural design. Tab. 7 illustrates different performance across three common
LLM backbones. Moreover, we have evaluated our pre and post-decoder after the first training stage
as shown in Tab. 9. The former achieves comparable performance with its teacher while the latter
outperforms its teacher, which emphasizes the effectiveness of the Multimodal Warmup stage.

4.4 QUALITATIVE RESULTS

To better illustrate the capabilities of our HaploOmni, we provide examples of image understanding,
video understanding, and video generation. As shown in Fig. 5, with the decoder-only architecture,
the model can handle input images of varying resolutions and perceive the fine-grained information.
Meanwhile, HaploOmni effectively displays the motion range of generated concepts, such as the
butterfly in Fig. 6 and building fragments in Fig. 4. More qualitative results are shown in Fig.
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Image Understanding

‘ Users: How many people are there?

HaploOmni: There are three people in the image.
VILA-U: There are two people in the image.
Show-0: There are two people in the image.
Janus-Pro: There are three people in the image.

Users: How long will this exhibition last?

HaploOmni: The exhibition will last from September 1 to 25, 1980.
VILA-U: The exhibition will last until September 18, 2016.

Show-0: The exhibition will last for about two weeks.

Janus-Pro: The exhibition will last from September 1 to September 25, 1980.

Users: Describe in one sentence where the scene in the video changes from and to.

HaploOmni: The scene starts with a close-up of the grass, followed by a aerial view of a winding path and a person walking alongside it, and then concludes with
a scene from inside a house, with a person standing in front of a window looking out.
VILA-U: The video shows a person walking on a path, a man in a room looking out the window, and a person in a room looking out the window.

Figure 5: Performance comparison on image and video understanding capability.

eo Generation

User: A butterfly flutters among colorful flowers under a blue sky, their wings shimmering in the sunlight.

User: A golden retriever, sporting sleek black sunglasses ... emphasizing the vibrant golden coat of the canine as it dashes towards the viewer.
HaploOmni:

Figure 6: Performance comparison on video generation capabilities. The resolution of the generated
video is 480 x720.

5 CONCLUSION

This paper explores a new training paradigm for single multimodal transformers. By introducing a
multimodal warmup strategy incorporating prior knowledge, we substantially reduce training com-
plexity and computational costs. Furthermore, we propose the feature pre-scaling strategy and mul-
timodal AdaLLN to address cross-modal integration challenges. With these techniques, our proposed
HaploOmni demonstrates high performance in both image and video understanding and generation,
achieving state-of-the-art results across multiple benchmarks. Additionally, we believe our method-
ological approach can inspire future LLM-based research.
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APPENDIX

A IMPLEMENTATION DETAILS

A.1 DATASETS.

We classify image-text data pairs for multimodal understanding into three types: 1) image cap-
tion data, which include 1.2M ShareGPT4V-PT ( , ) and 558K LLaVA pretrain-
ing data ( , ); 2) single-image instruction data, comprising 665K LLaVA v1.5 (

s ) and 0.5M public dataset ( s ); and 3) interleaved multi-image and video
datasets, which consist of 0.6M CC3M ( , ), LLaVA-Hound mixed data, and 0.5M
video datasets ( s ; s ). Furthermore, we follow existing works (

, ; , ) to organize the above caption data into question-
answering palrs For the v1sual generation task, we curated 2M JourneyDB ( ,
image-text pairs and approximately 1M video generation datasets, including 374K WebVid (

s ), 626K in-house data.

(a) W/O Multimodal Warmup (b) W/O Pre-: scalmg

(c) W/O Multimodal AdaLN (d) Ours

Figure 7: Visualization results for the ablation of different components. (d) indicates the final version
of our model.

A.2 METRICS.

In multimodal understanding, our model HaploOmni is evaluated on widely adopted image-based
benchmarks. including GQA ( R ), VQAV2 ( , ), AI2D (
, ), MMBench-EN-dev (MMB), MMMU ( , ), RealWorldQA, MM-
Star ( , ), POPE ( , ) and SEED-Bench-IMG (SEED) ( , )
as well as the video benchmarks, including MVbench ( , ) and EgoSchema (
) ). For generation tasks, we evaluate our model on VBench ( s ), which
involves various metrics such as dynamic degree, motion smoothness, and subject consistency.

A.3 IMPLEMENTATION.

The base-decoder of our HaploOmni is based on Qwen2.5 ( , ). During the distil-
lation stage, we employ CLIP-ViT-L and CogVideoX-2B as the teacher models for the pre-decoder
and post-decoder, respectively, with the decoders comprising 24 and 30 layers (N7 and N5). In the
decoder warmup stage, the pre-decoder is trained with a learning rate of 1e-4 and a batch size of 256,
while the post-decoder is trained using a learning rate of 2e-4 and a batch size of 32. In step 1 of the
alignment stage, we align the pre-decoder and mid-decoder with a learning rate of le-5 and a batch
size of 128, training only the pre-connector with a 2K-step warmup. In step 2, the pre-connector is
warmed up for 10K iterations using JourneyDB data with a learning rate of le-4 and a batch size
of 128, after which we relax the training for the post-decoder. In step 3, we train the pre-connector,
post-connector, and post-decoder with the same settings, enabling end-to-end input-output of latent
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APTEOAPT AR ImageNet Ace APost \Post \Post yBench (Overall)
1.0 1.0 05 76.2 1.0 10 04 77.0
1.0 0.8 05 77.8 1.0 08 03 76.2
1.0 08 12 78.3 1.0 08 12 75.3
1.0 10 10 79.0 1.0 10 1.0 78.3
Table 10: Ablation about loss coefficient of Table 11: Ablation about loss coefficient of
pre-decoder in Multimodal Warmup training post-decoder in Multimodal Warmup train-
stage. ing stage.
Type MMMU VBench Type Method User Study
Causal 45.7 58.6 Und. & Gen. VILA-U 14%
Omni  46.1 78.1 Gen. only  CogVideoX-2B 42%
Und. & Gen. HaploOmni 44%
Table 12: Ablation about different at-
tention mechanisms. Omni indicates our Table 13: User studies about different types
HaploOmni-attention mechanism. of models.

features. Finally, in the third stage, the HaploOmni is fine-tuned uniformly with mixed video and
image generation, as well as multimodal understanding data with a learning rate of 2e-5 and a batch
size of 32. Across all experiments, the AdamW optimizer is configured with betas (0.9, 0.999) and
a momentum of 0.9 ( , ). By default, the number of multimodal AdaLLN
layers is set to 2.

A.4 LIMITATION ANALYSIS

We focus on providing a framework that efficiently develops a unified single-transformer video
model within a decoder-only paradigm, substantially narrowing the gap compared to previous uni-
fied approaches. Nevertheless, there remains considerable room for improving the model’s runtime
efficiency, which we plan to investigate in future work.

B USE OF LARGE LANGUAGE MODELS

We used GPT-5 (OpenAl, 2025) exclusively for language polishing, such as grammar, clarity, and
style. The model was not involved in generating ideas, designing experiments, or interpreting results.
All technical content was independently written, verified, and approved by the authors.

C ETHICS STATEMENT

This work mainly relies exclusively on publicly available, open-source datasets that have been
widely used in prior academic research. All datasets are employed strictly for scholarly purposes
and will not be used in any commercial applications.

D REPRODUCIBILITY STATEMENT

To support reproducibility, we will release the project as open-source software. The model archi-
tecture is described in detail in Section 3, and Section 4 outlines the complete training pipeline,
implementation details, and all hyperparameter settings to enable faithful replication.
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A 3D model of a 1800s victorian house

-

A flag with red and black stripes and a white emblem featuring a crown and two stars is seen fluttering in the wind against a blue sky with scattered clouds...
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Figure 8: More qualitative results about video generation.
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