

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 UNIFIED SINGLE TRANSFORMER FOR MULTIMODAL VIDEO UNDERSTANDING AND GENERATION

Anonymous authors

Paper under double-blind review

ABSTRACT

With the advancement of language models, unified multimodal understanding and generation have made significant strides, with model architectures evolving from separated components to unified single-model frameworks. This paper explores an efficient training paradigm to build a single transformer for unified multimodal understanding and generation. Specifically, we propose a multimodal warmup strategy utilizing prior knowledge to extend capabilities. To address cross-modal compatibility challenges, we introduce feature pre-scaling and multimodal AdaLN techniques. Integrating the proposed technologies, we present the HaploOmni, a new single multimodal transformer. With limited training costs, HaploOmni achieves competitive performance across image and video understanding and generation benchmarks over advanced unified models. All codes will be made public.

1 INTRODUCTION

In recent years, large-scale language models (LLMs) (Dubey et al., 2024; Yang et al., 2024a; Achiam et al., 2023) have exhibited remarkable capabilities across diverse domains, prompting researchers to extensively investigate their potential applications in multimodal contexts. There is an increasing focus on developing unified approaches that simultaneously address both multimodal understanding and generation capabilities. The former research can be categorized into three phases in terms of implementation architecture, progressing from segregated to unified frameworks.

In the first phase, tool-based methods like InstructGPT (Ouyang et al., 2022) and HuggingGPT (Shen et al., 2024) employ LLMs to allocate task-specific tools. While these methods offer simplicity and ease of use, their reliance on text-tool interactions limits their flexibility and controllability. In the second phase, methodologies incorporate separate encoders and decoders in conjunction with LLMs, exemplified by Seed (Ge et al., 2024), Emu-2 (Sun et al., 2024b), and ViLA-U (Wu et al., 2024b), achieving multimodal input-output compatibility through feature interaction mechanisms. Although these approaches have achieved commendable results on general multimodal benchmarks, their segregated processes result in insufficient modal integration, constraining their capability to handle fine-grained understanding and generation tasks.

In the third phase, the latest approaches utilize a unified single-transformer framework. One subset, including Chameleon (Team, 2024) and Show-o (Xie et al., 2024), achieves model unification

Method	Video Support	Single Transformer	Und. Data	Gen. Data	SEED	POPE	MVBench	VBench
SEED-X (Ge et al., 2024)	✗	✗	152M	152M	-	84.2	-	-
TokenFlow (Qu et al., 2024)	✗	✗	10M	60M	68.7	86.8	-	-
Janus-Pro (Chen et al., 2025)	✗	✗	41M	98M	72.1	87.4	-	-
Show-o (Xie et al., 2024)	✗	✓	36M	611M	-	73.8	-	-
ViLA-U (Wu et al., 2024b)	✓	✗	7M	16M	59.0	85.8	38.9	73.4
HaploOmni (ours)	✓	✓	4M	3M	74.6	88.3	52.9	78.1

Table 1: Characteristics comparison with some other unified models. Video support means that the models can process video inputs and generate videos. “Und. Data” and “Gen. Data” indicate the number of training data for understanding and generation tasks, respectively.

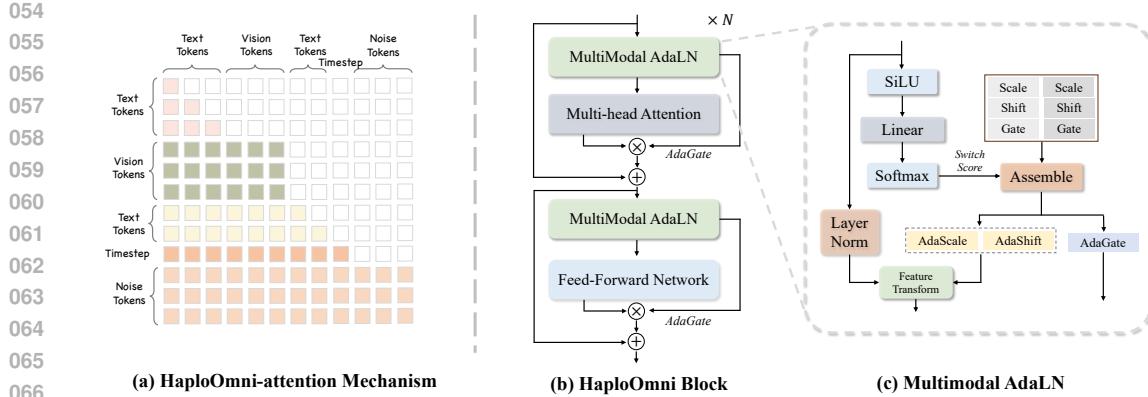


Figure 1: Illustration of our HaploOmni-attention mechanism and HaploOmni Block. We implement a hybrid masking strategy that applies causal attention to text features and timestep tokens (a vector $\in \mathbb{R}^{1 \times d}$) while adopting bidirectional attention for processing visual signals and latent noise. Drawing from the standard transformer module, we develop the HaploOmni block through the implementation of multimodal AdaLN.

through image discretization tokens. Another subset, exemplified by *Transfusion* (Zhou et al., 2024), employs hybrid text autoregressive and image diffusion modeling processes for unification. Compared to the encoder-decoder methods, these single-transformer methods are more streamlined and enable cross-modal early-fusion and late-fusion, thereby enhancing fine-grained multimodal representation capabilities (Zhou et al., 2024). However, existing methods adopt from-scratch training approaches. Due to the absence of prior knowledge, their overall performance falls short of encoder-decoder methods while incurring substantial training costs. Consequently, this paper explores a new perspective: *efficiently constructing a single multimodal transformer by leveraging knowledge from specialized models to achieve high-performance unified multimodal understanding and generation.*

To achieve it, we propose a new training paradigm for single multimodal transformers. Considering that the natural language possesses more abstract and higher-level semantic representations compared to natural images (Liu et al., 2024c), we propose a multimodal warmup process that depth-wise partitions a transformer decoder into three components: visual encoding, text encoding-decoding, and visual decoding. These components are initialized using corresponding prior models and subsequently fine-tuned independently to accommodate identity mapping across other modalities. Following the warmup phase, the model undergoes unified training for multimodal understanding and generation in an end-to-end manner. Furthermore, we find that different modalities exhibit varying preferences for feature scaling, significantly impacting training effectiveness and stability. Inspired by the diffusion transformer, we propose feature pre-scaling strategies and Multimodal AdaLN. The former pre-establishes initial feature transformation scales for different modalities based on statistical information, while the latter enables the model to autonomously select normalization parameters for various inputs.

With the proposed techniques, we present the **HaploOmni**, a cost-efficient yet high-performance single transformer for multimodal understanding and generation. As demonstrated in table 1, we evaluate our method on image and video multimodal understanding and generation benchmarks. Compared with previous models, our HaploOmni achieves superior performance across multiple image understanding datasets, including SEEDBench (Li et al., 2023a) and POPE (Li et al., 2023c). Additionally, it significantly outperforms unified video-text model, VILA-U, in both MVBench (Li et al., 2024b) video understanding and VBBench (Huang et al., 2024) generation benchmarks.

2 RELATED WORK

Text-to-video generation models aim to automatically produce visually and logically consistent videos based on textual descriptions of scenes, objects, and actions. Most text-to-video models (Ho et al., 2022; Hong et al., 2022; He et al., 2022; Chen et al., 2023a) are built on latent diffusion models with a U-Net architecture. The field achieved a significant milestone with the introduction of diffusion transformers (Peebles & Xie, 2023), as demonstrated by the impressive Sora (openai, 2024). Following this breakthrough, the majority of studies have adopted diffusion transformers to

108 develop open-source text-to-video models. For example, CogVideoX (Yang et al., 2024c) introduces
 109 an expert transformer to improve the fusion of visual and textual modalities.
 110

111 **Unified multi-modal LLMs** are capable of performing both understanding and generation tasks
 112 within a single framework. Several efforts (Ge et al., 2024; Wu et al., 2024b; Wang et al., 2024;
 113 Xiao et al., 2025) have been made to unify vision understanding and generation with an additional
 114 diffusion-based image decoder (Podell et al., 2023). In contrast, discrete sequence modeling meth-
 115 ods (Team (2024); Wang et al. (2024); Wu et al. (2024b); Xie et al. (2024); Wu et al. (2024a);
 116 Qu et al. (2024)) discretize visual features and train token-based autoregressive models on mixed
 117 image and text data. It is worth mentioning that TransFusion (Zhou et al., 2024) attempts to inte-
 118 grate diffusion and autoregressive approaches within a single transformer. Despite recent advances,
 119 current approaches are limited by their inability to effectively trade off between performance and
 120 training resources, let alone extending to video understanding and generation area. In this paper, we
 121 introduce a method for efficiently constructing a unified single transformer achieving comparable
 122 performance across both vision understanding and generation tasks, including video area.
 123

3 METHOD

125 In this section, we begin by introducing the preliminaries, followed by a detailed elaboration of our
 126 unified single transformer (HaploOmni) and the novel training paradigm we propose. This approach
 127 leverages knowledge from specialized models to efficiently construct HaploOmni, enabling high-
 128 performance unified multimodal understanding and generation.
 129

3.1 PRELIMINARIES

130 **Multimodal LLMs.** Given a visual signal (image/video) and a series of corresponding text re-
 131 quests, a common approach for answer generation is to use a multimodal large language model (Liu
 132 et al., 2024c; Yang et al., 2024a; Chen et al., 2024b), which typically integrates a vision encoder
 133 and a language model. Generally, the raw visual input is transformed into a discrete or continuous
 134 feature space, which is then combined with text embeddings generated by a linguistic tokenizer. An
 135 auto-regressive LLM then processes the mixed multimodal sequence $\{x_t\}_{t=1}^{T-1}$ to predict the next
 136 tokens by modeling the conditional probability:
 137

$$P(x_1, x_2, \dots, x_T) = \prod_{t=1}^T P(x_t | x_1, x_2, \dots, x_{t-1}). \quad (1)$$

138 Then, the \mathcal{L}_{NTP} is defined using cross-entropy and the conditional probability described above, uti-
 139 lized to optimize the LLM during the training phase.
 140

141 **Diffusion Transformer.** Diffusion models, such as the denoising diffusion probabilistic model
 142 (DDPM), generate data by progressively transforming noise into a target distribution over a series
 143 of timesteps. The Diffusion Transformer (DiT) integrates the transformer architecture into this gen-
 144 erative process, enabling it to learn the reversal of the incremental noise-adding procedure in the
 145 forward process. At each timestep t , the model estimates the noise ϵ_t added to the data at the previ-
 146 ous timestep. The objective function for training the Diffusion Transformer can be written as:
 147

$$\mathcal{L}_{diff} = \mathbb{E} [\|\epsilon_t - \hat{\epsilon}_\theta(\mathbf{x}_t, t)\|^2] \quad (2)$$

148 where \mathbf{x}_t is the noisy data at timestep t , \mathbf{x}_0 is the raw image or video data, and $\hat{\epsilon}_\theta(\cdot)$ is the model’s
 149 estimate of the noise at each timestep, parameterized by the network θ .
 150

3.2 MODEL DESIGN

151 Overall, to streamline the training of the unified single transformer for multimodal understand-
 152 ing and generation, we first partition it into three components: pre-decoder, base-decoder, and post-
 153 decoder. All parts consist of multiple HaploOmni Blocks as shown in Fig. 1. Following this, two
 154 connector modules are employed to integrate the above three components into a complete trans-
 155 former decoder. In contrast to previous decoupled paradigms (Ge et al., 2024; Sun et al., 2024b; Wu
 156 et al., 2024a), our unified architecture processes both visual and textual inputs together, eliminating
 157

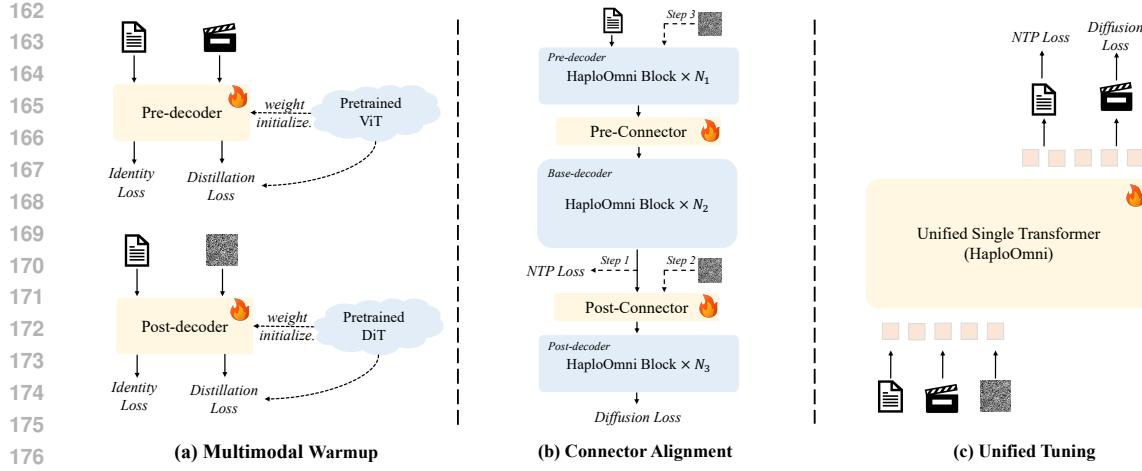


Figure 2: The progressive training stages of our HaploOmni, including multimodal warmup, connector alignment and unified tuning.

the need for a separate vision encoder, and enabling direct end-to-end visual generation conditioned on multimodal instructions. Additionally, we develop a three-stage training strategy to significantly reduce the training resources required. The following section provides an in-depth explanation of the specific modules within our HaploOmni.

HaploOmni Block. First, in light of the distinct characteristics of visual and linguistic modalities, we adopt a HaploOmni-attention mechanism with an adaptive mask strategy as shown in Fig. 1 (a) to improve multimodal representation capacity following previous methods (Xie et al., 2024; Zhou et al., 2024; Xiao et al., 2024). Inspired by the expert adaptive LayerNorm (AdaLN) introduced by CogVideoX to facilitate the fusion of different modalities by separately normalizing the condition and noise embeddings, we develop a multimodal AdaLN as shown in Fig. 1(c). Considering that AdaLN breaks the internal coherence required for constructing a one-transformer model, we introduce a dynamic strategy for input-aware normalization. Specifically, we compute the state matrix $S \in \mathbb{R}^{2 \times 3}$ offline to store two sets of scale, shift, and gate parameters as $\text{SiLU}(\theta)W_{\text{Ada}}^\top$, where SiLU , θ , and W_{Ada} are the activation function, frozen time embedding, and a learnable matrix, respectively. Based on the input feature h_i of the i -th token in the sequence, we compute two switch score sets used to perform a weighted summation over the discrete state matrix. The resulting AdaScale, AdaShift, and AdaGate parameters are then applied in the following feature transformation. The detailed operation is shown in algorithm 1. Leveraging the Multimodal AdaLN, we develop a HaploOmni block which is used to construct the complete model. The block is derived from the standard transformer structure, which includes two normalization layers, a feed-forward network, and an attention layer, with its execution order and residual method adhering to the original design, as depicted in Fig. 1 (b).

Pre & Post Connector. Integrating specific decoders leads to discrepancies in the feature space across different modalities, which poses challenges for joint training and modality fusion. To alleviate this, we introduce a novel connector module with multimodal LN to align the modalities within a unified feature space. Specifically, given a multimodal sequence X with the length of L concatenated by $\{x_1, x_2\}$ where $\{x_1, x_2\}$ indicates the condition tokens and latent noise tokens respectively, we utilize a set of LayerNorm with learnable transition matrices W' to process the sequence as follows:

$$\tilde{X} = \text{SiLU}(\text{LayerNorm}(X))W' \quad (3)$$

Algorithm 1 Multimodal AdaLN

Input:

$$\begin{aligned} h_i &\in \mathbb{R}^{1 \times d} && \triangleright \text{Input feature} \\ W_{\text{MAL}} &\in \mathbb{R}^{d \times 2} && \triangleright \text{Input learnable matrix} \\ S &\in \mathbb{R}^{3 \times 2} && \triangleright \text{State matrix} \end{aligned}$$

Forward:

$$\begin{aligned} \bar{h}_i &\leftarrow \frac{h_i}{1 + \exp(-h_i)} W_{\text{MAL}}^\top \\ \text{Set } \delta &\in \mathbb{R}^{1 \times 2} \\ \delta_k &\leftarrow \frac{\exp(h_i^k)}{\sum_{j=1}^2 \exp(h_i^j)} && \triangleright \text{Switch Score} \\ [\text{AdaScale}, \text{AdaShift}, \text{AdaGate}] &\leftarrow \delta S^\top \\ \text{Do:} \quad \tilde{h}_i &\leftarrow (\text{AdaScale} + 1) \times \text{LN}(h_i) + \text{AdaShift} && \triangleright \text{Feature Transform} \end{aligned}$$

Output: $\tilde{h}_i, \text{AdaGate}$

216 Then, we obtain the corresponding switch scores $P^{\text{score}} \in \mathbb{R}^{L \times 2}$ through an indicator layer con-
 217 sisting of a SiLU function, a learnable matrix W_{SN} , and a Softmax function (σ), which can be
 218 formulated as:

$$219 \quad P^{\text{score}} = \sigma(W_{\text{SN}}(\text{SiLU}(X))) \quad (4)$$

221 With a characteristic function \mathbb{I} , the score is multiplied by the input \tilde{X} to obtain the well-aligned
 222 feature $\{X'_i\}_{i=1}^L$:

$$223 \quad X'_i = \mathbb{I}_0(P^{\text{score}})\tilde{X}_i + \mathbb{I}_1(P^{\text{score}})X_i \quad (5)$$

225 **Feature Pre-scaling.** Although the model can ultimately be optimized through the connector we
 226 designed, the optimization process is relatively slow. We observe that aligning features across
 227 modalities gives rise to considerable amplitude inconsistencies, with the amplitudes of noise to-
 228 kens often being about 10 times larger than those of the visual features distilled by a prior ViT. This
 229 disparity intensifies feature-space distribution differences, complicating the training process. Addi-
 230 tionally, in our paradigm, small perturbations near extreme points, stemming from the pre-trained
 231 model, lead to diminished gradient amplitudes, which slow parameter updates. Therefore, we in-
 232 troduce a feature pre-scaling mechanism into the Pre and Post-decoder, significantly simplifying
 233 training and accelerating model convergence.

235 **Inference Mode.** In the inference stage, our model uses a unified transformer to execute multi-
 236 modal understanding and generation tasks seamlessly. For the understanding task, given a visual
 237 signal such as an image or video and a corresponding text query, the visual input is first converted
 238 into a sequence via a patchification layer, while the text is tokenized into a sequence. The concate-
 239 nated multimodal sequences are then fed into the transformer and output with the corresponding
 240 response. For the generation task, we combine condition tokens (typically text embeddings), a
 241 timestep token (a vector $\in \mathbb{R}^{1 \times d}$ calculated in the same way as the time embedding in the classic
 242 diffusion model) and random noise tokens into a multimodal sequence, process it iteratively through
 243 a unified transformer according to the DDIM (Song et al., 2020) schedule, and decode the resulting
 244 latent representation into the final image or video using a VAE decoder (Yang et al., 2024c).

245 3.3 TRAINING PROCEDURE

247 HaploOmni is initially partitioned into three components: pre-decoder, base-decoder, and post-
 248 decoder. We then train these components in three distinct stages: Multimodal Warmup, Connector
 249 Alignment, and Unified Tuning, as shown in Fig. 2.

251 **Stage 1: Multimodal Warmup.** The three sub-decoders are first initialized using the correspond-
 252 ing prior models and subsequently fine-tuned independently to accommodate identity mapping
 253 across other modalities. At this stage, we only train pre-decoder and post-decoder to ensure they
 254 conform to the auto-regressive paradigm without altering the original model’s learnable parameters.
 255 This adjustment enables compatibility with the LLM reasoning framework, including KV-Cache,
 256 temperature setting, and top-p truncation. For the pre-decoder, a mixed sequence of text and image
 257 tokens is used as input and we leverage the HaploOmni-attention mechanism for multimodal inter-
 258 action. Two losses are applied during training: Identity Loss for linguistic modality and distillation
 259 loss to preserve visual knowledge while learning new text-based knowledge. On the other hand, we
 260 train the denoising capability of the post-decoder with randomly noisy video as input, conditioned
 261 by the corresponding text description, while applying both distillation loss and identity loss. Given
 262 the input signal, x^{image} , x^{text} for pre-decoder while x^{text} and x^{latent} for post-decoder, the correspond-
 263 ing outputs are y^{image} , $y^{\text{text}}_{\text{pre}}$, $y^{\text{text}}_{\text{post}}$ and y^{latent} . The CLIP-ViT outputs $y^{\text{image}}_{\text{vit}}$ and CogVideoX outputs
 264 $y^{\text{latent}}_{\text{cog}}$, the objective functions of pre and post-decoder in this training stage are formulated as:

$$266 \quad \mathcal{L}_{\text{pre}} = \lambda_1^{\text{pre}} \|x^{\text{text}} - y^{\text{text}}_{\text{pre}}\|^2 + \lambda_2^{\text{pre}} \|x^{\text{image}} - y^{\text{image}}_{\text{vit}}\|^2 + \lambda_3^{\text{pre}} \frac{x^{\text{image}} y^{\text{image}}_{\text{vit}}}{\|x^{\text{image}}\| \cdot \|y^{\text{image}}_{\text{vit}}\|} \quad (6)$$

$$267 \quad \mathcal{L}_{\text{post}} = \lambda_1^{\text{post}} \|x^{\text{text}} - y^{\text{text}}_{\text{post}}\|^2 + \lambda_2^{\text{post}} \|x^{\text{latent}} - y^{\text{latent}}_{\text{cog}}\|^2 + \lambda_3^{\text{post}} \frac{x^{\text{latent}} y^{\text{latent}}_{\text{cog}}}{\|x^{\text{latent}}\| \cdot \|y^{\text{latent}}_{\text{cog}}\|}$$

Type	Model	Size	SEED↑	POPE↑	AI2D↑	RWQA↑	MMMU↑	MMB _(test) ↑	MMStar↑	VQAv2↑	GQA↑
Und.	Qwen-VL-Chat (Bai et al., 2023)	7B	58.2	-	45.9	49.3	35.9	60.6	37.5	78.2	57.5
Only	InternVL-Chat (Chen et al., 2024b)	7B	-	86.4	54.8	-	-	-	-	79.3	62.9
ShareGPT4V (Chen et al., 2023b)	7B	-	-	58.0	54.9	37.2	68.8	33.0	80.6	63.3	
LLaVA-1.6 (Liu et al., 2024b)	7B	64.7	86.5	66.6	57.8	35.1	67.4	-	81.8	64.2	
LLaVA-OV (Li et al., 2024a)	7B	75.4	-	81.4	66.3	48.8	80.8	61.7	-	-	-
Fuyu-8B (Bavishi et al., 2023)	8B	-	74.1	64.5	-	27.9	10.7	-	74.2	-	
EVE-7B (Diao et al., 2024)	8B	54.3	83.6	-	-	-	49.5	28.2	75.4	60.8	
Emu3-Chat (Wang et al., 2024)	8B	68.2	85.2	70.0	57.4	31.6	58.5	-	75.1	60.3	
Und.	NExT-GPT (Wu et al., 2023)	13B	-	-	-	-	-	-	-	66.7	-
and	VILA-U (Wu et al., 2024b)	8B	59.0	85.8	-	-	-	-	-	<u>79.4</u>	60.8
Gen.	Janus-Pro (Chen et al., 2025)	8B	<u>72.1</u>	<u>87.4</u>	-	-	<u>41.0</u>	<u>79.2</u>	-	-	<u>62.0</u>
Chameleon (Team, 2024)	30B	-	-	-	-	-	37.6	-	69.6	-	
Show-o (Xie et al., 2024)	1.3B	-	73.8	-	-	25.1	-	-	59.3	48.7	
TokenFlow-XL (Qu et al., 2024)	13B	68.7	86.8	66.7	<u>53.7</u>	38.7	68.9	-	<u>77.9</u>	62.7	
HaploOmni (ours)	9B	74.0	89.6	78.7	63.5	46.1	78.2	57.8	75.6	60.8	

Table 2: Comparison with state-of-the-arts on image understanding benchmarks. “Und.” and “Gen.” denote “understanding” and “generation”, respectively. Models below the dotted line are the single-transformer methods. Bold indicates the best result, while underlined marks the second-best.

Stage 2: Connector Alignment. This stage aims to optimize the model training cycle across three progressive steps. In the first step, the pre-connector is trained on multimodal understanding tasks with \mathcal{L}_{NTP} . In the second step, we train the post-connector, equipping the post-decoder to handle video and image denoising based on semantic features from the base LLM with diffusion loss, which is formulated as \mathcal{L}_{diff} . Finally, we train both the pre-connector and post-decoder to allow the entire model to process visual, text, and latent noise features directly in an end-to-end manner.

Stage 3: Unified Tuning. At this stage, we integrate the three decoders into a unified single transformer (HaploOmni). The entire model is fine-tuned using a combination of understanding and generation datasets. Inputs across all modalities are uniformly processed through HaploOmni, which then generates the corresponding output. In this stage, we leverage both \mathcal{L}_{NTP} and \mathcal{L}_{diff} to optimize HaploOmni.

4 EXPERIMENTS

We conduct extensive experiments to evaluate the effectiveness of our HaploOmni and compare it to the widely adopted large language model approaches on multimodal understanding and generation tasks under a fair evaluation setting. More ablation results can be shown in the Appendix.

4.1 IMPLEMENTATION DETAILS

The base-decoder of our HaploOmni is based on Qwen2.5-7B (Yang et al., 2024b). During the distillation stage, we employ CLIP-ViT-L and CogVideoX-2B as the teacher models for the pre-decoder and post-decoder, respectively, with the decoders comprising 24 and 30 layers (N_1 and N_2). Due to the limited space, more implementation details are shown in Appendix.

Datasets. We classify image-text data pairs for multimodal understanding into three types consisting of 1.7M image caption data (Chen et al., 2023b; Liu et al., 2024c), 1.2M single-image instruction data (Liu et al., 2024a; Li et al., 2024a) and 1.1M interleaved multi-image and video datasets (Zhu et al., 2023; Zhang et al., 2024; Li et al., 2024a). For the vision generation task, we curated 2M Jour-

Type	Model	Subject Consistency↑	Scene↑	Dynamic Degree↑	Motion Smoothness↑	Background Consistency↑
Gen. Only	OpenSora-V1.1 (Lin et al., 2024)	96.8	27.2	47.7	98.3	97.6
	AnimateDiff-V2 (Guo et al., 2023)	95.3	50.2	40.8	97.8	97.7
	Pika (Pika, 2023)	96.9	49.8	47.5	99.5	97.4
	VideoCrafter-2.0 (Chen et al., 2023a)	96.9	55.3	42.5	97.7	98.2
	CogVideoX-5B (Yang et al., 2024c)	96.2	53.2	71.0	96.9	96.5
	Kling (Kling, 2024)	98.3	50.9	46.9	99.4	97.6
	Gen-3 (Runway, 2024)	67.1	54.6	60.1	99.2	96.6
Und. and Gen.	Emu3-gen (Wang et al., 2024)	95.3	37.1	79.3	98.9	97.7
	VILA-U (Wu et al., 2024b)	<u>87.0</u>	<u>31.8</u>	<u>58.7</u>	<u>95.3</u>	<u>94.4</u>
	HaploOmni (ours)	96.4	34.6	65.3	96.8	97.6

Table 4: Comparison with state-of-the-arts on video generation benchmark, VBench (Huang et al., 2024). “Und.” and “Gen.” denote “understanding” and “generation”, respectively. Bold indicates the best result, while underlined marks the second-best.

Pre-Scaling	MM Warmup	MM AdaLN	MMMU	MVBench	VBench
			34.4	46.3	68.1
✓			40.1	48.3	72.7
✓	✓		42.7	50.2	74.4
✓	✓	✓	46.1	52.9	78.1

Table 5: “MM” denotes Multimodal. The effectiveness of our proposed modules and algorithms across three tasks: vision understanding (image/video) and video generation, as on MMMU (Yue et al., 2024), MVBench (Li et al., 2024b) and VBench (Huang et al., 2024) benchmarks, respectively.

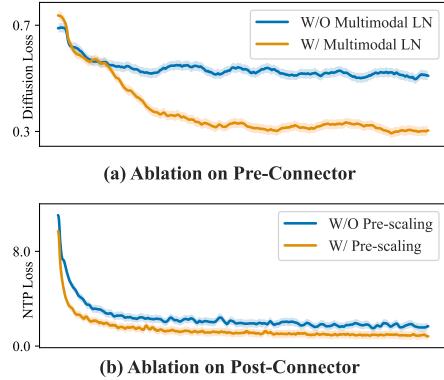


Figure 3: Loss curve comparison of different settings. The x-axis is the training step.

neyDB (Sun et al., 2024a) image-text pairs and approximately 1M video generation data, including 374K WebVid (Bain et al., 2021), 626K in-house data. More details are shown in Appendix.

4.2 MAIN RESULTS

Vision Understanding. We provide a comparative analysis of state-of-the-art models on vision understanding task across various benchmarks as depicted in Tab. 2 and Tab. 3 involving image and video, respectively. As depicted in Tab. 2, our HaploOmni, as a unified multimodal model outperforms existing methods on most evaluation metrics. HaploOmni achieves state-of-the-art results among unified models on most benchmarks, with notable scores such as 74.8 on SEED and 87.9 on POPE, surpassing prior approaches like Janus and VILA-U. Additionally, HaploOmni demonstrates competitive performance compared to understanding-only models, achieving scores of 76.6 on AI2D and 60.8 on RWQA, outperforming Emu3-chat by +6.6% and +3.4%, respectively. Furthermore, the comparison results in Tab. 3 highlight HaploOmni’s impressive video understanding capabilities. Specifically, HaploOmni achieves 47.1 on EgoSchema and 52.9 on MVBench, surpassing Video-LaVIT with 37.3 on EgoSchema, and VILA-U with 38.9 on MVBench.

Video Generation. We compare the performance of our proposed HaploOmni with state-of-the-art video generation models on the VBench benchmark as shown in Tab. 4. Following previous works (Wang et al., 2024; Yang et al., 2024c) on video generation, we selected some aspects that can reflect the quality of the generated video, like dynamic degree, subject consistency, and motion smoothness. HaploOmni as a unified model, exhibits strong performance across most evaluated aspects. Specifically, we achieve a Scene Consistency score of 96.4, outperforming other multimodal

Type	MMMU-val	MMStar	AI2D
Standard	34.4	68.1	72.3
HaploOmni-Block	39.7	73.4	76.6

Table 6: Effectiveness of HaploOmni Block. A standard block refers to a commonly used block architecture in large language models with pretrained weights of LLaMA-3.

LLM	Type	Size	MMMU-val	SEED	POPE
LLaMA-2		7B	34.7	66.1	86.2
LLaMA-3		8B	39.7	74.8	87.9
Qwen-2.5		7B	46.1	74.0	89.6

Table 7: Performance comparison with different LLM backbones.

Figure 4: Qualitative results of HaploOmni. The resolution of all the generated videos is 480 × 720.

models like VILA-U (87.0) while remaining competitive with pure generative models such as Kling (98.3) and Pika (96.9).

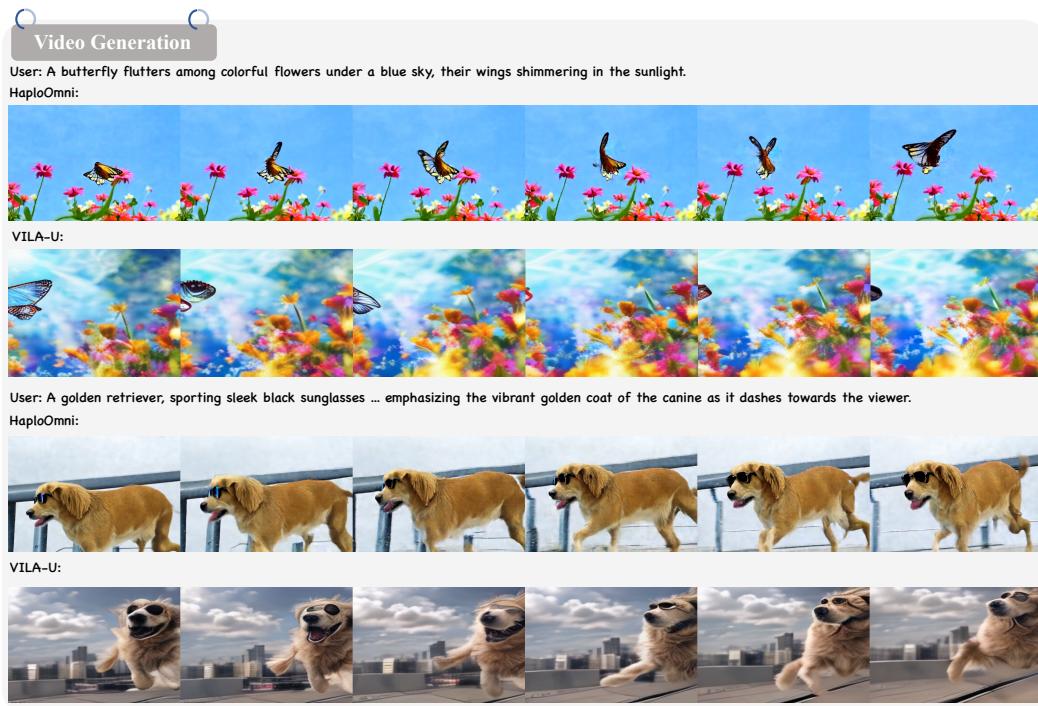
4.3 ABLATION STUDY

We conduct various analysis experiments and present some visual results to illustrate the effectiveness of our method. As shown in Fig. 3, multimodal LN effectively reduces the difficulty of visual generation training, while feature pre-scaling accelerates the training process for multimodal understanding and improves loss convergence. They are both beneficial for performance improvement as illustrated in Tab. 5. We ablate various strategies by generating a cute cat as illustrated in Fig. 7. Noise increases when multimodal AdaLN is absent. As shown in Tab. 6, our HaploOmni Block outperforms the standard version under a fair evaluation protocol, which demonstrates the effectiveness of our architectural design. Tab. 7 illustrates different performance across three common LLM backbones. Moreover, we have evaluated our pre and post-decoder after the first training stage as shown in Tab. 9. The former achieves comparable performance with its teacher while the latter outperforms its teacher, which emphasizes the effectiveness of the Multimodal Warmup stage.

4.4 QUALITATIVE RESULTS

To better illustrate the capabilities of our HaploOmni, we provide examples of image understanding, video understanding, and video generation. As shown in Fig. 5, with the decoder-only architecture, the model can handle input images of varying resolutions and perceive the fine-grained information. Meanwhile, HaploOmni effectively displays the motion range of generated concepts, such as the butterfly in Fig. 6 and building fragments in Fig. 4. More qualitative results are shown in Fig. 8.

Figure 5: Performance comparison on image and video understanding capability.

Figure 6: Performance comparison on video generation capabilities. The resolution of the generated video is 480×720 .

5 CONCLUSION

This paper explores a new training paradigm for single multimodal transformers. By introducing a multimodal warmup strategy incorporating prior knowledge, we substantially reduce training complexity and computational costs. Furthermore, we propose the feature pre-scaling strategy and multimodal AdaLN to address cross-modal integration challenges. With these techniques, our proposed HaploOmni demonstrates high performance in both image and video understanding and generation, achieving state-of-the-art results across multiple benchmarks. Additionally, we believe our methodological approach can inspire future LLM-based research.

486 REFERENCES
487

488 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
489 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
490 report. *arXiv:2303.08774*, 2023.

491 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
492 Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
493 *arXiv preprint arXiv:2308.12966*, 2023.

494 Max Bain, Arsha Nagrani, Gü̈l Varol, and Andrew Zisserman. Frozen in time: A joint video and
495 image encoder for end-to-end retrieval. In *IEEE International Conference on Computer Vision*,
496 2021.

497 Rohan Bavishi, Erich Elsen, Curtis Hawthorne, Maxwell Nye, Augustus Odena, Arushi Somani,
498 and Sägnak Täsirlar. Introducing our multimodal models, 2023. URL <https://www.adept.ai/blog/fuyu-8b>.

499 Haoxin Chen, Menghan Xia, Yingqing He, Yong Zhang, Xiaodong Cun, Shaoshu Yang, Jinbo Xing,
500 Yaofang Liu, Qifeng Chen, Xintao Wang, et al. Videocrafter1: Open diffusion models for high-
501 quality video generation. *arXiv preprint arXiv:2310.19512*, 2023a.

502 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Conghui He, Jiaqi Wang, Feng Zhao, and Dahua
503 Lin. Sharegpt4v: Improving large multi-modal models with better captions. *arXiv:2311.12793*,
504 2023b.

505 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi
506 Wang, Yu Qiao, Dahua Lin, et al. Are we on the right way for evaluating large vision-language
507 models? *arXiv preprint arXiv:2403.20330*, 2024a.

508 Xiaokang Chen, Zhiyu Wu, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda Xie, Xingkai Yu, and
509 Chong Ruan. Janus-pro: Unified multimodal understanding and generation with data and model
510 scaling, 2025.

511 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
512 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
513 for generic visual-linguistic tasks. In *CVPR*, 2024b.

514 Haiwen Diao, Yufeng Cui, Xiaotong Li, Yueze Wang, Huchuan Lu, and Xinlong Wang. Unveiling
515 encoder-free vision-language models. *arXiv:2406.11832*, 2024.

516 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
517 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
518 *arXiv:2407.21783*, 2024.

519 Yuying Ge, Sijie Zhao, Jinguo Zhu, Yixiao Ge, Kun Yi, Lin Song, Chen Li, Xiaohan Ding, and Ying
520 Shan. Seed-x: Multimodal models with unified multi-granularity comprehension and generation.
521 *arXiv preprint arXiv:2404.14396*, 2024.

522 Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in vqa
523 matter: Elevating the role of image understanding in visual question answering. In *Proceedings
524 of the IEEE conference on computer vision and pattern recognition*, pp. 6904–6913, 2017.

525 Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang, Yaohui Wang, Yu Qiao, Maneesh
526 Agrawala, Dahua Lin, and Bo Dai. Animatediff: Animate your personalized text-to-image diffu-
527 sion models without specific tuning. *arXiv preprint arXiv:2307.04725*, 2023.

528 Yingqing He, Tianyu Yang, Yong Zhang, Ying Shan, and Qifeng Chen. Latent video diffusion
529 models for high-fidelity long video generation. *arXiv preprint arXiv:2211.13221*, 2022.

530 Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
531 Fleet. Video diffusion models. *Advances in Neural Information Processing Systems*, 35:8633–
532 8646, 2022.

540 Wenyi Hong, Ming Ding, Wendi Zheng, Xinghan Liu, and Jie Tang. Cogvideo: Large-scale pre-
 541 training for text-to-video generation via transformers. *arXiv preprint arXiv:2205.15868*, 2022.
 542

543 Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianx-
 544 ing Wu, Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark suite for
 545 video generative models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 546 *Pattern Recognition*, pp. 21807–21818, 2024.

547 Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning
 548 and compositional question answering. In *Proceedings of the IEEE/CVF conference on computer*
 549 *vision and pattern recognition*, pp. 6700–6709, 2019.
 550

551 Yang Jin, Zhicheng Sun, Kun Xu, Liwei Chen, Hao Jiang, Quzhe Huang, Chengru Song, Yuliang
 552 Liu, Di Zhang, Yang Song, et al. Video-lavit: Unified video-language pre-training with decoupled
 553 visual-motional tokenization. *arXiv preprint arXiv:2402.03161*, 2024.

554 Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Minjoon Seo, Hannaneh Hajishirzi, and Ali
 555 Farhadi. A diagram is worth a dozen images. In *Computer Vision–ECCV 2016: 14th Euro-
 556 pean Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV 14*,
 557 pp. 235–251. Springer, 2016.

558 ai Kling. Kuaishou. <https://klingai.com/>, 2024.

560 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Yanwei
 561 Li, Ziwei Liu, and Chunyuan Li. Llava-onevision: Easy visual task transfer. *arXiv:2408.03326*,
 562 2024a.

563

564 Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao Ge, and Ying Shan. Seed-bench: Bench-
 565 marking multimodal llms with generative comprehension. *arXiv preprint arXiv:2307.16125*,
 566 2023a.

567 Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao Ge, and Ying Shan. Seed-bench: Bench-
 568 marking multimodal llms with generative comprehension. *arXiv preprint arXiv:2307.16125*,
 569 2023b.

570

571 Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen,
 572 Ping Luo, et al. Mvbench: A comprehensive multi-modal video understanding benchmark. In
 573 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 574 22195–22206, 2024b.

575

576 Yanwei Li, Chengyao Wang, and Jiaya Jia. Llama-vid: An image is worth 2 tokens in large language
 577 models. In *European Conference on Computer Vision*, pp. 323–340. Springer, 2025.

578

579 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating
 580 object hallucination in large vision-language models. *arXiv preprint arXiv:2305.10355*, 2023c.

581

582 Bin Lin, Yang Ye, Bin Zhu, Jiaxi Cui, Munan Ning, Peng Jin, and Li Yuan. Video-llava: Learning
 583 united visual representation by alignment before projection. *arXiv preprint arXiv:2311.10122*,
 2023.

584

585 Bin Lin, Yunyang Ge, Xinhua Cheng, Zongjian Li, Bin Zhu, Shaodong Wang, Xianyi He, Yang Ye,
 586 Shenghai Yuan, Liuhan Chen, et al. Open-sora plan: Open-source large video generation model.
 587 *arXiv preprint arXiv:2412.00131*, 2024.

588

589 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 tuning. In *CVPR*, 2024a.

590

591 Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
 592 Llava-next: Improved reasoning, ocr, and world knowledge, 2024b.

593

594 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In *NeurIPS*,
 2024c.

594 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
 595 *arXiv:1711.05101*, 2017.

596

597 Karttikeya Mangalam, Raiymbek Akshulakov, and Jitendra Malik. Egoschema: A diagnostic bench-
 598 mark for very long-form video language understanding. *Advances in Neural Information Process-
 599 ing Systems*, 36:46212–46244, 2023.

600 openai. Sora, 2024. URL <https://openai.com/sora>.

601

602 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 603 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 604 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 605 27730–27744, 2022.

606 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 607 *the IEEE/CVF International Conference on Computer Vision*, pp. 4195–4205, 2023.

608

609 Labs Pika. Pika. <https://pika.art/home/>, 2023.

610

611 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 612 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 613 synthesis. *arXiv preprint arXiv:2307.01952*, 2023.

614 Liao Qu, Huichao Zhang, Yiheng Liu, Xu Wang, Yi Jiang, Yiming Gao, Hu Ye, Daniel K Du, Ze-
 615 huan Yuan, and Xinglong Wu. Tokenflow: Unified image tokenizer for multimodal understanding
 616 and generation. *arXiv preprint arXiv:2412.03069*, 2024.

617 Runway. Gen-3 alpha: A new frontier for video generation.
 618 <https://runwayml.com/research/introducing-gen-3-alpha/>, 2024.

619

620 Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugging-
 621 gpt: Solving ai tasks with chatgpt and its friends in hugging face. *Advances in Neural Information
 622 Processing Systems*, 36, 2024.

623 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv
 624 preprint arXiv:2010.02502*, 2020.

625

626 Keqiang Sun, Junting Pan, Yuying Ge, Hao Li, Haodong Duan, Xiaoshi Wu, Renrui Zhang, Aojun
 627 Zhou, Zipeng Qin, Yi Wang, et al. Journeydb: A benchmark for generative image understanding.
 628 *Advances in Neural Information Processing Systems*, 36, 2024a.

629

630 Quan Sun, Yufeng Cui, Xiaosong Zhang, Fan Zhang, Qiyi Yu, Yueze Wang, Yongming Rao,
 631 Jingjing Liu, Tiejun Huang, and Xinlong Wang. Generative multimodal models are in-context
 632 learners. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
 633 nition*, pp. 14398–14409, 2024b.

634 Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. *arXiv preprint
 635 arXiv:2405.09818*, 2024.

636

637 Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan
 638 Zhang, Yueze Wang, Zhen Li, Qiyi Yu, et al. Emu3: Next-token prediction is all you need.
 639 *arXiv preprint arXiv:2409.18869*, 2024.

640 Chengyue Wu, Xiaokang Chen, Zhiyu Wu, Yiyang Ma, Xingchao Liu, Zizheng Pan, Wen Liu,
 641 Zhenda Xie, Xingkai Yu, Chong Ruan, et al. Janus: Decoupling visual encoding for unified
 642 multimodal understanding and generation. *arXiv preprint arXiv:2410.13848*, 2024a.

643

644 Shengqiong Wu, Hao Fei, Leigang Qu, Wei Ji, and Tat-Seng Chua. Next-gpt: Any-to-any multi-
 645 modal llm. *arXiv preprint arXiv:2309.05519*, 2023.

646

647 Yecheng Wu, Zhuoyang Zhang, Junyu Chen, Haotian Tang, Dacheng Li, Yunhao Fang, Ligeng
 648 Zhu, Enze Xie, Hongxu Yin, Li Yi, et al. Vila-u: a unified foundation model integrating visual
 649 understanding and generation. *arXiv preprint arXiv:2409.04429*, 2024b.

648 Shitao Xiao, Yueze Wang, Junjie Zhou, Huaying Yuan, Xingrun Xing, Ruiran Yan, Shuting
 649 Wang, Tiejun Huang, and Zheng Liu. Omnigen: Unified image generation. *arXiv preprint*
 650 *arXiv:2409.11340*, 2024.

651 Yicheng Xiao, Lin Song, Yukang Chen, Yingmin Luo, Yuxin Chen, Yukang Gan, Wei Huang, Xiu
 652 Li, Xiaojuan Qi, and Ying Shan. Mindomni: Unleashing reasoning generation in vision language
 653 models with rgpo. *arXiv preprint arXiv:2505.13031*, 2025.

654 Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin,
 655 Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer
 656 to unify multimodal understanding and generation. *arXiv preprint arXiv:2408.12528*, 2024.

657 An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
 658 Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. *arXiv:2407.10671*,
 659 2024a.

660 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 661 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint*
 662 *arXiv:2412.15115*, 2024b.

663 Rui Yang, Lin Song, Yicheng Xiao, Runhui Huang, Yixiao Ge, Ying Shan, and Hengshuang
 664 Zhao. Haplov1: A single-transformer baseline for multi-modal understanding. *arXiv preprint*
 665 *arXiv:2503.14694*, 2025.

666 Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
 667 Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models
 668 with an expert transformer. *arXiv preprint arXiv:2408.06072*, 2024c.

669 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
 670 Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multi-
 671 modal understanding and reasoning benchmark for expert agi. In *Proceedings of the IEEE/CVF*
 672 *Conference on Computer Vision and Pattern Recognition*, pp. 9556–9567, 2024.

673 Ruohong Zhang, Liangke Gui, Zhiqing Sun, Yihao Feng, Keyang Xu, Yuanhan Zhang, Di Fu, Chun-
 674 yuan Li, Alexander Hauptmann, Yonatan Bisk, et al. Direct preference optimization of video large
 675 multimodal models from language model reward. *arXiv preprint arXiv:2404.01258*, 2024.

676 Chunting Zhou, Lili Yu, Arun Babu, Kushal Tirumala, Michihiro Yasunaga, Leonid Shamis, Jacob
 677 Kahn, Xuezhe Ma, Luke Zettlemoyer, and Omer Levy. Transfusion: Predict the next token and
 678 diffuse images with one multi-modal model. *arXiv preprint arXiv:2408.11039*, 2024.

679 Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: Enhancing
 680 vision-language understanding with advanced large language models. *arXiv:2304.10592*, 2023.

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

APPENDIX

A IMPLEMENTATION DETAILS

A.1 DATASETS.

We classify image-text data pairs for multimodal understanding into three types: 1) image caption data, which include 1.2M ShareGPT4V-PT (Chen et al., 2023b) and 558K LLaVA pretraining data (Liu et al., 2024a); 2) single-image instruction data, comprising 665K LLaVA v1.5 (Liu et al., 2024a) and 0.5M public dataset (Li et al., 2024a); and 3) interleaved multi-image and video datasets, which consist of 0.6M CC3M (Zhu et al., 2023), LLaVA-Hound mixed data, and 0.5M video datasets (Zhang et al., 2024; Li et al., 2024a). Furthermore, we follow existing works (Wu et al., 2024a; Xie et al., 2024; Yang et al., 2025) to organize the above caption data into question-answering pairs. For the visual generation task, we curated 2M JourneyDB (Sun et al., 2024a) image-text pairs and approximately 1M video generation datasets, including 374K WebVid (Bain et al., 2021), 626K in-house data.

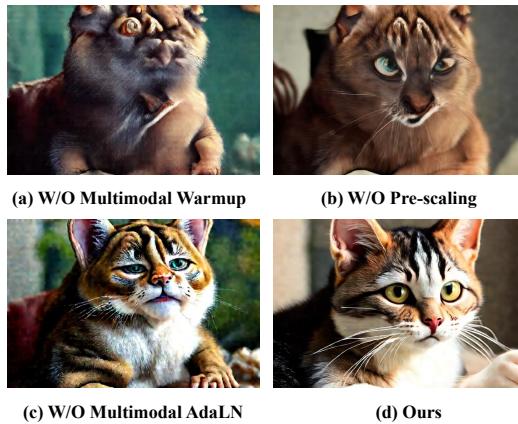


Figure 7: Visualization results for the ablation of different components. (d) indicates the final version of our model.

A.2 METRICS.

In multimodal understanding, our model HaploOmni is evaluated on widely adopted image-based benchmarks, including GQA (Hudson & Manning, 2019), VQAv2 (Goyal et al., 2017), AI2D (Kembhavi et al., 2016), MMBench-EN-dev (MMB), MMMU (Yue et al., 2024), RealWorldQA, MMStar (Chen et al., 2024a), POPE (Li et al., 2023c) and SEED-Bench-IMG (SEED) (Li et al., 2023b) as well as the video benchmarks, including MVbench (Li et al., 2024b) and EgoSchema (Mangalam et al., 2023). For generation tasks, we evaluate our model on VBench (Huang et al., 2024), which involves various metrics such as dynamic degree, motion smoothness, and subject consistency.

A.3 IMPLEMENTATION.

The base-decoder of our HaploOmni is based on Qwen2.5 (Yang et al., 2024b). During the distillation stage, we employ CLIP-ViT-L and CogVideoX-2B as the teacher models for the pre-decoder and post-decoder, respectively, with the decoders comprising 24 and 30 layers (N_1 and N_2). In the decoder warmup stage, the pre-decoder is trained with a learning rate of 1e-4 and a batch size of 256, while the post-decoder is trained using a learning rate of 2e-4 and a batch size of 32. In step 1 of the alignment stage, we align the pre-decoder and mid-decoder with a learning rate of 1e-5 and a batch size of 128, training only the pre-connector with a 2K-step warmup. In step 2, the pre-connector is warmed up for 10K iterations using JourneyDB data with a learning rate of 1e-4 and a batch size of 128, after which we relax the training for the post-decoder. In step 3, we train the pre-connector, post-connector, and post-decoder with the same settings, enabling end-to-end input-output of latent

λ_1^{pre}	λ_2^{pre}	λ_3^{pre}	ImageNet Acc
1.0	1.0	0.5	76.2
1.0	0.8	0.5	77.8
1.0	0.8	1.2	78.3
1.0	1.0	1.0	79.0

Table 10: Ablation about loss coefficient of pre-decoder in Multimodal Warmup training stage.

Type	MMMU	VBench
Causal	45.7	58.6
Omni	46.1	78.1

Table 12: Ablation about different attention mechanisms. Omni indicates our HaploOmni-attention mechanism.

λ_1^{post}	λ_2^{post}	λ_3^{post}	VBench (Overall)
1.0	1.0	0.4	77.0
1.0	0.8	0.3	76.2
1.0	0.8	1.2	75.3
1.0	1.0	1.0	78.3

Table 11: Ablation about loss coefficient of post-decoder in Multimodal Warmup training stage.

Type	Method	User Study
Und. & Gen.	VILA-U	14%
Gen. only	CogVideoX-2B	42%
Und. & Gen.	HaploOmni	44%

Table 13: User studies about different types of models.

features. Finally, in the third stage, the HaploOmni is fine-tuned uniformly with mixed video and image generation, as well as multimodal understanding data with a learning rate of 2e-5 and a batch size of 32. Across all experiments, the AdamW optimizer is configured with betas (0.9, 0.999) and a momentum of 0.9 (Loshchilov & Hutter, 2017). By default, the number of multimodal AdaLN layers is set to 2.

A.4 LIMITATION ANALYSIS

We focus on providing a framework that efficiently develops a unified single-transformer video model within a decoder-only paradigm, substantially narrowing the gap compared to previous unified approaches. Nevertheless, there remains considerable room for improving the model’s runtime efficiency, which we plan to investigate in future work.

B USE OF LARGE LANGUAGE MODELS

We used GPT-5 (OpenAI, 2025) exclusively for language polishing, such as grammar, clarity, and style. The model was not involved in generating ideas, designing experiments, or interpreting results. All technical content was independently written, verified, and approved by the authors.

C ETHICS STATEMENT

This work mainly relies exclusively on publicly available, open-source datasets that have been widely used in prior academic research. All datasets are employed strictly for scholarly purposes and will not be used in any commercial applications.

D REPRODUCIBILITY STATEMENT

To support reproducibility, we will release the project as open-source software. The model architecture is described in detail in Section 3, and Section 4 outlines the complete training pipeline, implementation details, and all hyperparameter settings to enable faithful replication.



Figure 8: More qualitative results about video generation.