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Abstract

In the stochastic multi-armed bandit problem, a
randomized probability matching policy called
Thompson sampling (TS) has shown excellent per-
formance in various reward models. In addition
to the empirical performance, TS has been shown
to achieve asymptotic problem-dependent lower
bounds in several models. However, its optimality
has been mainly addressed under light-tailed or
one-parameter models that belong to exponential
families. In this paper, we consider the optimality
of TS for the Pareto model that has a heavy tail
and is parameterized by two unknown parameters.
Specifically, we discuss the optimality of TS with
probability matching priors that include the Jef-
freys prior and the reference priors. We first prove
that TS with certain probability matching priors
can achieve the optimal regret bound. Then, we
show the suboptimality of TS with other priors,
including the Jeffreys and the reference priors.
Nevertheless, we find that TS with the Jeffreys
and reference priors can achieve the asymptotic
lower bound if one uses a truncation procedure.
These results suggest carefully choosing nonin-
formative priors to avoid suboptimality and show
the effectiveness of truncation procedures in TS-
based policies.

1. Introduction
In the multi-armed bandit (MAB) problem, an agent plays
an arm and observes a reward only from the played arm,
which is partial feedback (Thompson, 1933; Robbins, 1952).
The rewards are further assumed to be generated from the
distribution of the corresponding arm in the stochastic MAB
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problem (Bubeck et al., 2012). Since only partial obser-
vations are available, the agent has to estimate unknown
distributions to guess which arm is optimal while avoiding
playing suboptimal arms that induce loss of resources. Thus,
the agent has to cope with the dilemma of exploration and
exploitation.

In this problem, Thompson sampling (TS), a randomized
Bayesian policy that plays an arm according to the posterior
probability of being optimal, has been widely adopted be-
cause of its outstanding empirical performance (Chapelle
& Li, 2011; Russo et al., 2018). Following its empirical
success, theoretical analysis of TS has been conducted for
several reward models such as Bernoulli models (Agrawal
& Goyal, 2012; Kaufmann et al., 2012), one-dimensional
exponential families (Korda et al., 2013), Gaussian mod-
els (Honda & Takemura, 2014), and bounded support mod-
els (Riou & Honda, 2020; Baudry et al., 2021) where asymp-
totic optimality of TS was established. Here, an algorithm is
said to be asymptotically optimal if it can achieve the theo-
retical problem-dependent lower bound derived by Lai et al.
(1985) for one-parameter models and Burnetas & Katehakis
(1996) for multiparameter or nonparametric models. Note
that the performance of any reasonable algorithms cannot
be better than these lower bounds.

Apart from the problem-dependent regret analysis, sev-
eral works studied the problem-independent or prior-
independent bounds of TS (Bubeck & Liu, 2013; Russo
& Van Roy, 2016; Agrawal & Goyal, 2017). In this paper,
we study how the choice of noninformative priors affects
the performance of TS for any given problem instance. In
other words, we focus on the asymptotic optimality of TS
depending on the choice of noninformative priors.

The asymptotic optimality of TS has been mainly considered
in the one-parameter model, while its optimality under the
multiparameter model has not been well-studied. To the best
of our knowledge, the asymptotic optimality of TS in the
noncompact multiparameter model is only known for the
Gaussian bandits (Honda & Takemura, 2014) where both the
mean and variance are unknown. They showed that TS with
the uniform prior is optimal while TS with the Jeffreys prior
and reference prior cannot achieve the lower bound. The
success of the uniform prior is due to its frequent playing
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of seemingly suboptimal arms. Its conservativeness comes
from a moderate overestimation of the posterior probability
that current suboptimal arms might be optimal.

In this paper, we consider the two-parameter Pareto models
where the tail function is heavy-tailed. We first derive the
closed form of the problem-dependent constant that appears
in the theoretical lower bound in Pareto models, which is
not trivial, unlike those for exponential families. Based on
this result, we show that TS with some probability-matching
priors achieves the optimal bound, which is the first result
for two-parameter Pareto bandit models, to our knowledge.

We further show that TS with different choices of probability
matching priors, called optimistic priors, suffers a polyno-
mial regret in expectation. Therefore, being conservative
would be better when one chooses noninformative priors to
avoid suboptimality in view of expectation. Nevertheless,
we show that TS with the Jeffreys prior or the reference prior
can achieve the optimal regret bound if we add a truncation
procedure on the shape parameter. Our contributions are
summarized as follows:

• We prove the asymptotic optimality/suboptimality of
TS under different choices of priors, which shows the
importance of the choice of noninformative priors in
cases of two-parameter Pareto models.

• We provide another option to achieve optimality:
adding a truncation procedure to the parameter space of
the posterior distribution instead of finding an optimal
prior.

This paper is organized as follows. In Section 2, we formu-
late the stochastic MAB problems under the Pareto distribu-
tion and derive its regret lower bound. Based on the choice
of noninformative priors and their corresponding posteriors,
we formulate TS for the Pareto models and propose another
TS-based algorithm to solve the suboptimality problem of
the Jeffreys prior and the reference prior in Section 3. In
Section 4, we provide the main results on the optimality of
TS and TS with a truncation procedure, whose proof outline
is given in Section 6. Numerical results that support our
theoretical analysis are provided in Section 5.

2. Preliminaries
In this section, we formulate the stochastic MAB problem.
We derive the exact form of the problem-dependent constant
that appears in the lower bound of the expected regret in
Pareto bandits.

2.1. Notations

We consider the stochastic K-armed bandit problem where
the rewards are generated from Pareto distributions with
fixed parameters. An agent chooses an arm a in [K] :=

{1, . . . ,K} at each round t ∈ N and observes an indepen-
dent and identically distributed reward from Pa(κa, αa),
where Pa(κ, α) denotes the Pareto distribution parameter-
ized by scale κ > 0 and shape α > 0. This has the density
function of the form

fPaκ,α(x) =
ακα

xα+1
1[x ≥ κ], (1)

where 1[·] denotes the indicator function. We consider a
bandit model where parameters θa = (κa, αa) ∈ R+ ×
(1,∞) are unknown to the agent. We denote the mean of
a random variable following Pa(θa) by µa = µ(θa) :=
κaαa

αa−1 . Note that α > 1 is a necessary condition of an
arm to have a finite mean, which is required to define the
sub-optimality gap ∆a := maxi∈[K] µi − µa. We assume
without loss of generality that the arm 1 has the maximum
mean for simplicity, i.e., µ1 = maxi∈[K] µi. Let j(t) be the
arm played at round t ∈ N and Na(t) =

∑t−1
s=1 1[j(s) =

a] denote the number of rounds the arm a is played until
round t. Then, the regret at round T is given as

Reg(T ) =

T∑
t=1

∆j(t) =

K∑
a=2

∆aNa(T + 1).

Let ra,n be the n-th reward generated from the arm a. In
the Pareto distribution, the maximum likelihood estimators
(MLEs) of κ, α for arm a given n rewards and their distri-
butions are given as follows (Malik, 1970):

κ̂a(n) = min
s∈[n]

ra,s ∼ Pa(κa, nαa),

α̂a(n) =
n∑n

s=1 log(ra,s)− n log κ̂a(n)
∼ IG(n− 1, nαa), (2)

where IG(n, α) denotes the inverse-gamma distribution
with shape n > 0 and scale α > 0. Note that Malik (1970)
further showed the stochastic independence of α̂(n) and
κ̂(n).

2.2. Asymptotic lower bound

Burnetas & Katehakis (1996) provided a problem-dependent
lower bound of the expected regret such that any uni-
formly fast convergent policy, which is a policy satisfying
Reg(T ) = o(Tα) for all α ∈ (0, 1), must satisfy

lim inf
T→∞

E[Reg(T )]
log T

≥
K∑

a=2

∆a

infθ:µ(θ)>µ1
KL(Pa(κa, αa),Pa(θ))

, (3)

where KL(·, ·) denotes the Kullback-Leibler (KL) diver-
gence. Notice that the bandit model (θa)a∈[K] is considered
as a fixed constant in the problem-dependent analysis.
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The KL divergence between Pareto distributions is given as

KL(Pa(κ1, α1),Pa(κ2, α2))

=

{
log
(

α1

α2

)
+ α2 log

(
κ1

κ2

)
+ α2

α1
− 1 if κ2 ≤ κ1,

∞ otherwise.

Here the divergence sometimes becomes infinity since the
scale parameter κ determines the support of the Pareto dis-
tribution. We denote the numerator in (3) for a ̸= 1 by

KLinf(a) := inf
θ:µ(θ)>µ1

KL(Pa(κa, αa),Pa(θ))

= inf
θ∈Θa

log
αa

α
+ α log

κa
κ

+
α

αa
− 1,

where

Θa = {(κ, α) ∈ (0, κa]× (0,∞) : µ(κ, α) > µ1} . (4)

Notice that Θa allows parameters whose expected rewards
are infinite (α ∈ (0, 1]), although we consider a bandit
model with αa > 1 for all a ∈ [K] so that the sub-optimality
gap ∆a becomes finite. This implies that KLinf(a) does not
depend on whether the agent considers the possibility that
an arm has the infinite expected reward or not. Then, we
can simply rewrite the lower bound in (3) as

lim inf
T→∞

E[Reg(T )]
log T

≥
K∑

a=2

∆a

KLinf(a)
.

The following lemma shows the closed form of this infimum,
whose proof is given in Appendix B.
Lemma 1. For any arm a ̸= 1, it holds that

KLinf(a) = log

(
αa
µ1 − κa
µ1

)
+

1

αa

µ1

µ1 − κa
− 1.

2.3. Relation with bounded moment models

In MAB literature, several algorithms based on the upper
confidence bound (UCB) were proposed to tackle heavy-
tailed models with infinite variance under additional assump-
tions on moments (Bubeck et al., 2013). One major assump-
tion is that the moment of any arm a satisfies E[|ra,n|γ ] ≤ v
for some fixed γ ∈ [1, 2) and known v < ∞ (Bubeck
et al., 2013). Note that the γ-th raw moment of the density
function of X following Pa(κ, α) is given as

E [Xγ ] =

{
∞ α ≤ γ,
ακγ

α−γ α > γ,
(5)

which implies that the Pareto models and the bounded mo-
ment models are not a subset of each other.

Recently, Agrawal et al. (2021) proposed an asymptotically
optimal KL-UCB based algorithm that requires solving the
optimization problem at every round. Since the bounded
moment model only covers certain Pareto distributions in
general, the known optimality result of KL-UCB does not
necessarily imply the optimality in the sense of (3).

3. Thompson sampling and probability
matching priors

TS is a policy from the Bayesian viewpoint, where the
choices of priors are important. Although one can utilize
prior knowledge on parameters when choosing the prior,
such information would not always be available in practice.
To deal with such scenarios, we consider noninformative
priors based on the Fisher information (FI) matrix, which
does not assume any information on unknown parameters.

For a random variable X with density f(·|θ), FI is defined
as the variance of the score, a partial derivative of log f with
respect to θ, which is given as follows (Cover & Thomas,
2006):

[I(θ)]ij = Iij

= EX

[(
∂

∂θi
log f(X|θ)

)(
∂

∂θj
log f(X|θ)

) ∣∣∣∣θ] . (6)

It is known that the FI matrix in (6) coincides with the
negative expected value of the Hessian matrix of log f(X|θ)
if the model satisfies the FI regular condition (Schervish,
2012). However, Pa(κ, α) does not satisfy this condition
since it is a parametric-support family. Therefore, for X
with density function in (1), one can obtain the FI matrix of
Pa(κ, α) based on (6) as follows (Li et al., 2022):

I(κ, α) =

[
α2

κ2 0
0 1

α2

]
=

[
I11(κ)I11(α) 0

0 I22(α)

]
, (7)

where I11(κ) = 1
κ2 , I11(α) = α2, and I22(α) = 1

α2 . Note

that I11 differs from −E
[

∂2

∂κ2 log f
Pa
κ,α(X; θ)

∣∣∣ θ] = α
κ2 .

Based on (7), the Jeffreys prior and the reference prior
are given as πJ(κ, α) ∝

√
det(I) = 1

κ and πR(κ, α) ∝√
I11(κ)I22(α) =

1
κα , respectively. Here, the reverse ref-

erence prior is the same as the reference prior from the
orthogonality of parameters (Datta & Ghosh, 1995; Datta,
1996).

From the orthogonality of parameters, the probability match-
ing prior when κ is of interest and α is the nuisance parame-
ter is given as

πP(κ, α) ∝
√
I11g1(α) =

α

κ
g1(α)

for arbitrary g1(α) > 0 (Tibshirani, 1989). In this paper, we
consider the prior π(κ, α) ∝ α−k

κ for k ∈ Z since the cases
k = 0, 1 correspond to the Jeffreys prior and the (reverse)
reference prior, respectively.

Remark 1. The Pareto distribution discussed in this paper
is sometimes called the Pareto type 1 distribution (Arnold,
2008). On the other hand, Kim et al. (2009) derived sev-
eral noninformative priors for a special case of the Pareto
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Algorithm 1 STS / STS-T
1: Parameter: k ∈ Z, n̄ = max{2, k + 1}.
2: Initialization: Select each arm n̄ times.
3: Loop:
4: Sample α̃a(t) ∼ Erlang

(
Na(t)− k, Na(t)

α̂a(Na(t))

)
.

5: ᾱa(Na(t))← min(Na(t), α̂a(Na(t))) .
6: Sample α̃a(t) ∼ Erlang

(
Na(t)− k, Na(t)

ᾱa(Na(t))

)
.

7: if {a ∈ [K] : α̃a(t) ≤ 1} ≠ ∅ then
8: Select j(t) = argmina∈[K] α̃a(t).
9: else

10: Sample ua ∼ U(0, 1) for every a ∈ [K].
11: κ̃a(t) = κ̂a(Na(t))u

1/(Na(t)α̃a(t))
a .

12: Play j(t) = argmaxa∈[K]
κ̃a(t)α̃a(t)
α̃a(t)−1

13: = argmaxa∈[K] µ̃a(t).
14: end if

type 2 distribution called the Lomax distribution (Lomax,
1954), where the FI matrix can be written using the negative
Hessian.

In the multiparameter cases, the Jeffreys prior is known to
suffer from many problems (Datta & Ghosh, 1996; Ghosh,
2011). For example, it is known that the Jeffreys prior
leads to inconsistent estimators for the error variance in
the Neyman-Scott problem (see Berger & Bernardo, 1992,
Example 3.). This might be a possible reason why TS
with Jeffreys prior suffers a polynomial expected regret in
a multiparameter distribution setting. More details on the
probability matching prior and the Jeffreys prior can be
found in Appendix E.

3.1. Sampling procedure

LetFt := (j(s), rj(s),Nj(s)(s))
t−1
s=1 be the history until round

t. Under the prior α−k

κ with k ∈ Z, the marginalized poste-
rior distribution of the shape parameter of arm a is given as

αa | Ft ∼ Erlang

(
Na(t)− k,

Na(t)

α̂a(Na(t))

)
, (8)

where Erlang(s, β) denotes the Erlang distribution with
shape s and rate β. Note that we require n̄ ≥ max{2, k+1}
initial plays to avoid improper posteriors and MLE of α.
When the shape parameter αa is given as β, the cumulative
distribution function (CDF) of the conditional posterior of
κa is given as

P [κa ≤ x | Ft, αa = β] =

(
x

κ̂a(Na(t))

)βNa(t)

, (9)

if 0 < x ≤ κ̂a(Na(t)). Since one can derive the posteriors
following the same steps as Sun et al. (2020), the detailed
derivation is postponed to Appendix E.3. At round t, we
denote the sampled scale and shape parameters of arm a
by κ̃a(t) and α̃a(t), respectively, and the corresponding

mean reward by µ̃a(t) := µ(κ̃a(t), α̃a(t)). We first sample
the shape parameter from the marginalized posterior in (8).
Then, we sample the scale parameter given the sampled
shape parameter from the CDF of the conditional posterior
in (9) by using inverse transform sampling. TS based on this
sequential procedure, which we call Sequential Thompson
Sampling (STS), can be formulated as Algorithm 1.

In Theorem 3 given in the next section, STS with the Jef-
freys prior and the reference prior turns out to be suboptimal
in view of the lower bound in (3). Their suboptimality is
mainly due to the behavior of the posterior in (8) when
α̂1(n) is overestimated for small N1(t) = n. To over-
come such issues, we propose the STS-T policy, a vari-
ant of STS with truncation, where we replace α̂(n) with
ᾱ(n) := min (n, α̂(n)) in (8). Note that such a truncation
procedure is especially considered in the posterior sampling
by (8) and (9). We show that STS-T with the Jeffreys prior
and the reference prior can achieve the optimal regret bound
in Theorem 4.

3.2. Interpretation of the prior parameter k

The Erlang distribution is a special case of the Gamma
distribution, where the shape parameter is a positive integer.
If a random variable X follows Erlang(s, β), then it has the
density of form

fEr
s,β(x) =

βs

Γ(s)
xs−1e−βx

1[x ∈ R+], (10)

where s ∈ N and β > 0 denote the shape and rate parameter,
respectively. Then, the CDF evaluated at x > 0 is given as

FEr
s,β(x) =

∫ βx

0
ts−1e−tdt

Γ(s)
=
γ(s, βx)

Γ(s)
, (11)

where γ(·, ·) denotes the lower incomplete gamma function.
Since γ(s+1, x) = sγ(s, x)−xse−x holds, one can observe
that for any x > 0

FEr
s,β(x) ≥ FEr

s+1,β(x). (12)

From the sampling procedure of STS and STS-T, µ̃ de-
pends on κ̃ only when α̃ > 1 holds since α̃ ≤ 1 results
in µ(·, α̃) = ∞. Therefore, for any β > 1 in (9), κ̃ will
concentrate on κ̂ for sufficiently large Na(t) = n. Thus, µ̃
will be mainly determined by α̃ and κ̂, where the choice of
k affects the sampling of α̃ by (8). From (12), one could see
that the probability of sampling small α̃ increases as shape
n − k decreases. Therefore, µ̃ of suboptimal arms would
increase as k increases for the same n. In other words, the
probability of sampling large µ̃ becomes large as k increases.
Therefore, TS with large k becomes a conservative policy
that could frequently play currently suboptimal arms. In
contrast, priors with small k yield an optimistic policy that
focuses on playing the current best arm.
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4. Main results
In this section, we provide regret bounds of STS and STS-T
with different choices of k ∈ Z. At first, we show the
asymptotic optimality of STS for priors π(κ, α) ∝ α−k

κ
with k ∈ Z≥2.

Theorem 2. Assume that arm 1 is the unique optimal
arm with a finite mean. For every a ∈ [K], let εa =

min
{

κa

αa(κa+1)
κaδa

µa(µa+δa−κa)+κaδa
, κaδa
µa(1+µa+δa)

}
where

δa = ∆a

2 for a ̸= 1 and δ1 = mina̸=1 δa. Given arbi-
trary ϵ ∈ (0,mina∈[K] εa), the expected regret of STS with
k ∈ Z≥2 is bounded as

E[Reg(T )] ≤
K∑

a=2

∆a log T

Da,k(ϵ)
+O

(
ϵ−2
)
.

Here, for ba,k(ϵ) = (1 + (max(0, k) + 1)αaϵ)
−1,

Da,k(ϵ) = inf
θ:µ(θ)>µ1−ϵ

KL(Pa(κa + ϵ, αaba,k(ϵ)),Pa(θ)),

which satisfies limϵ→0Da,k(ϵ) = KLinf(a) for any fixed
k ∈ Z.

By letting ϵ = o (1) in Theorem 2, we see that STS with
k ∈ Z≥2 satisfies

lim inf
T→∞

E[Reg(T )]
log T

≤
K∑

a=2

∆a

KLinf(a)
,

which shows the asymptotic optimality of STS in terms of
the lower bound in (3).

Next, we show that STS with k ∈ Z≤1 cannot achieve
the asymptotic bound in the theorem below. Following the
proofs for Gaussian bandits (Honda & Takemura, 2014), we
consider two-armed bandit problems where the full informa-
tion on the suboptimal arm is given to simplify the analysis.
We further assume that two arms have the same scale pa-
rameter κ1 = κ2. A similar result for the case κ1 < κ2 can
be found in Appendix D.

Theorem 3. Consider a two-armed bandit problem where
κ1 = κ2 and 1 < α1 < α2. When α̃1(t) and κ̃1(t) are sam-
pled from the posteriors in (8) and (9) with prior parameter
k ∈ Z≤1, respectively and µ̃2(t) = µ2 holds, there exists a
constant C(α1, α2) > 0 satisfying

lim inf
T→∞

E[Reg(T )]
log T

≥ C(α1, α2),

where C(α1, α2) >
∆2

KLinf (2)
holds for some instances. In

particular, for k ∈ Z≤0, there exists C ′(α1, α2) > 0 satis-
fying

lim inf
T→∞

E[Reg(T )]√
T

≥ C ′(α1, α2).

From Theorems 2 and 3, we find that the prior should be
conservative to some extent when one considers maximizing
rewards in expectation.

Although STS with the Jeffreys prior (k = 0) and reference
prior (k = 1) were shown to be suboptimal, we show that a
modified algorithm, STS-T, can achieve the optimal regret
bound with k ∈ Z≥0.
Theorem 4. With the same notation as Theorem 2, the
expected regret of STS-T with k ∈ Z≥0 is bounded as

E[Reg(T )] ≤
K∑

a=2

∆a log T

Da,k(ϵ)
+O(ϵ−m),

where m = max(2, 3− k).

From Theorems 2 and 4, we have two choices to achieve
the lower bound in (3): use either the conservative priors
with MLEs or moderately optimistic priors with truncated
samples. Since initialization steps require playing every
arm max(2, k + 1) times, if the number of arms K is large,
the Jeffreys priors or the reference prior with the truncated
estimator would be a better choice. On the other hand, if the
model can contain arms with large α, where the truncation
might be problematic for small n, it would be better to use
STS with conservative priors.

5. Experiments
In this section, we present numerical results to demonstrate
the performance of STS and STS-T, which supports our
theoretical analysis. We consider the 4-armed bandit model
θ4 with parameters given in Table 1 as an example where
suboptimal arms have smaller, equal, and larger κ compared
with the optimal arm. θ4 has µ = (4.55, 3.2, 2.74, 3) and
infinite variance. Further experimental results can be found
in Appendix H.

Table 1. 4-armed bandit model θ4.

ARM 1 ARM 2 ARM 3 ARM 4

κ 1.3 1.2 1.3 1.5
α 1.4 1.6 1.9 2.0

Figure 1 shows the cumulative regret for the proposed poli-
cies with various choices of parameters k on the prior.
The solid lines denote the averaged cumulative regret over
100,000 independent runs of priors that can achieve the op-
timal lower bound in (3), whereas the dashed lines denote
that of priors that cannot. The green dotted line denotes the
problem-dependent lower bound and shaded regions denote
a quarter standard deviation.

In Figures 2 and 3, we investigate the difference between
STS and STS-T with the same k. The solid lines denote
the averaged cumulative regret over 100,000 independent
runs. The shaded regions and dashed lines show the central
99% interval and the upper 0.05% of regret.
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(a) Cumulative regret of STS with various k (b) Cumulative regret of STS-T with various k

Figure 1. The solid lines denote the averaged cumulative regret over 100,000 independent runs of priors that can achieve the optimal lower
bound in (3). The dashed lines denote that of priors that cannot achieve the optimal lower bound in (3). The shaded regions show a quarter
standard deviation. The green dotted line denotes the problem-dependent lower bound based on Lemma 1.

(a) The Jeffreys prior k = 0 (b) The reference prior k = 1 (c) Prior with k = 3

Figure 2. The solid lines denote an averaged regret over independent 100,000 runs. The shaded regions and dashed lines show the central
99% interval and the upper 0.05% of the regret, respectively.

The Jeffreys prior (k = 0) In Figure 1(a), the Jeffreys
prior seems to have a larger order of the regret compared
with priors k = 1, 3, which performed the best in this set-
ting. As Theorem 4 states, its performance improves un-
der STS-T, which shows a similar performance to that of
k = 1, 3.

Figure 2(a) illustrates the possible reason for the improve-
ments, where the central 99% interval of the regret notice-
ably shrank under STS-T. Since the suboptimality of STS
with the Jeffreys prior (k = 0) is due to an extreme case
that induces a polynomial regret with small probability, this
kind of shrink contributes to decreasing the expected regret
of STS-T with the Jeffreys prior.

The reference prior (k = 1) The reference prior showed
a similar performance to the asymptotically optimal prior

k = 3, although it was shown to be suboptimal for some
instances under STS in Theorem 3. Similarly to the Jeffreys
prior (k = 0), the reference prior (k = 1) under STS-T
has a smaller central 99% interval of the regret than that
under STS as shown in Figure 2(b), although its decrement
is comparably smaller than that of the Jeffreys prior. This
would imply that the reference prior is more conservative
than the Jeffreys prior.

The conservative prior (k = 3) Interestingly, Figure 2(c)
showed that a truncated procedure does not affect the central
99% interval of the regret and even degrade the performance
in upper 0.05%. Notice that the upper 0.05% of the regret
of k = 3 is much lower than that of k = 0, 1, which shows
the stability of the conservative prior in Figure 2.

Since a truncation procedure was adopted to prevent an
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(a) Prior with k = −1 (b) Prior with k = −3

Figure 3. The solid lines denote an averaged regret over independent 100,000 runs. The shaded regions and dashed lines show the central
99% interval and the upper 0.05% of the regret, respectively.

extreme case that was a problem for k ∈ Z≤1, it is natural
to see that there is no difference between STS and STS-T
with k = 3. This would imply that k = 3 is sufficiently
conservative, and so the truncated procedure does not affect
the overall performance.

Optimistic priors (k < 0) In Figure 1(a), one can see that
the averaged regret of k = −1 and k = −3 increases much
faster than that of k = 0, 1, 3 under the STS policy, which
illustrates the suboptimality of STS with priors k ∈ Z<0.

As the optimistic priors (k < 0) showed better perfor-
mance under STS-T in Figure 1, we can check the effec-
tiveness of a truncation procedure in the posterior sam-
pling with optimistic priors. However, as Figures 3(a)
and 3(b) illustrate, there is no big difference in the central
99% interval of the regret between STS and STS-T with
k = −1,−3, which might imply that a prior with k ∈ Z<0

is too optimistic. Therefore, we might need to use a more
conservative truncation procedure such as the one using
ᾱa(n) = max(

√
n, α̂a(n)) or max(log n, α̂a(n)), which

would induce a larger regret in the finite time horizon.

6. Proof outline of optimal results
In this section, we provide the proof outline of Theorem 2
and Theorem 4, whose detailed proof is given in Appendix C.
Note that the proof of Theorem 3 is postponed to Ap-
pendix D.

Let us first consider good events on MLEs defined by

Ka,n(ϵ) := {κ̂a(n) ∈ [κa, κa + ϵ]}
Aa,n(ϵ) := {α̂a(n) ∈ [αa − ϵa,l(ϵ), αa + ϵa,u(ϵ)]}
Ea,n(ϵ) := Ka,n(ϵ) ∩ Aa,n(ϵ),

where n ∈ N and

ϵa,l(ϵ) =
ϵα2

a

1 + ϵαa
, ϵa,u(ϵ) =

ϵα2
a(κa + 1)

κa − ϵαa(κa + 1)
. (13)

Note that ᾱa(n) = α̂a(n) holds on Aa,n(ϵ) for any n ≥
αa + 1. Here, we set εa to satisfy µ̂a ∈ [µa − δa, µa + δa]
on Ea(ϵ) for any ϵ ≤ εa. Define an event on the currently
optimal sample, µ̃∗(t) = maxa∈[K] µ̃a(t),

Mϵ(t) := {µ̃∗(t) ≥ µ1 − ϵ}.

Then, the expected regret at round T can be decomposed as
follows:

E[Reg(T )] = E

[
T∑

t=1

∆j(t)

]

=

K∑
a=2

∆a

(
n̄+

T∑
t=n̄K+1

E[1[j(t) = a]]

)

≤ ∆2

T∑
t=n̄K+1

(
E
[
1[j(t) ̸= 1,K1,N1(t)(ϵ),M

c
ϵ(t)]

]
+ E

[
1[j(t) ̸= 1,Kc

1,N1(t)
(ϵ),Mc

ϵ(t)]
])

+

K∑
a=2

∆a

{
n̄

+

T∑
t=n̄K+1

(
E
[
1[j(t) = a,Mϵ(t), Ea,Na(t)(ϵ)]

]
E
[
1[j(t) = a,Mϵ(t), Eca,Na(t)

(ϵ)]
])}

,

where Ec denotes the complementary set of E . Lemmas 5–8
complete the proof of Theorems 2 and 4, whose proofs are
given in Appendix C.
Lemma 5. Under STS with k ∈ Z≥2,

T∑
t=n̄K+1

E
[
1[j(t) ̸= 1,Kc

1,N1(t)
(ϵ),Mc

ϵ(t)]
]
≤ O(ϵ−2).

and under STS-T with k ∈ Z≥0,
T∑

t=n̄K+1

E
[
1[j(t) ̸= 1,Kc

1,N1(t)
(ϵ),Mc

ϵ(t)]
]
≤ O(ϵ−m),

7
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where m = max(2, 3− k).

Although Lemma 6 contributes to the main term of the
regret, the proof of Lemma 5 is the main difficulty in the
regret analysis. We found that our analysis does not result
in a finite upper bound for STS with k ∈ Z<2 and designed
STS-T to solve such problems.

Lemma 6. Under STS and STS-T with k ∈ Z, it holds
that for any a ∈ [K]

T∑
t=n̄K+1

E[1[j(t) = a,Mϵ(t), Ea,Na(t)(ϵ)]]

≤ max(0, k) + 1 +
1

αaϵ
1[k > 0] +

log T

Da,k(ϵ)
.

where Da,k(ϵ) > 0 is a finite problem-deterministic con-
stant satisfying limϵ→0Da,k(ϵ) = KLinf(a).

Since large k yields a more conservative policy and requires
additional initial plays of every arm, large k might induce
larger regret for a finite time horizon T , which corresponds
to the component of the regret discussed in Lemma 6. Thus,
this lemma would imply that the policy has to be conserva-
tive to some extent, and being overly conservative would
induce larger regrets in a finite time.

Lemma 7. Under STS and STS-T with k ∈ Z≥0,

T∑
t=n̄K+1

E
[
1[j(t) ̸= 1,K1,N1(t)(ϵ),M

c
ϵ(t)]

]
≤ O(ϵ−1).

The key to Lemma 7 is to convert the term on µ̃1(t),
Mϵ(t), to a term on α̃1(t). Since µ(κ, α) = ∞ holds
for α ≤ 1, µ̃1 = µ(κ̃1, α̃1) becomes infinity regard-
less of the value of κ̃1 if α̃1 ≤ 1 holds, which implies
P[Mc

ϵ(t), α̃1(t) ≤ 1] = 0. Therefore, it is enough to con-
sider the case where α̃1(t) > 1 holds to prove Lemma 7.
Although density functions of α̃1 under STS and STS-T
are different, conditional CDFs of κ̃1 given α1 = α̃1 are the
same, which is given in (9) as

P[κ̃1 ≤ x|Ft, α̃1 = α1] =

(
x

κ̂1(N1(t))

)α̃1N1(t)

.

Therefore, for sufficiently largeN1(t) and α̃1(t) > 1, κ̃1(t)
will concentrate on κ̂1(N1(t)) with high probability, which
is close to its true value κ1 under the event {K1,N1(t)(ϵ)}.
Thus, µ̃1 = κ̃1α̃1

α̃1−1 ≥
κ1α̃1

α̃1−1 = µ(κ1, α̃1) holds with high
probability, which implies that P[K1,N1(t)(ϵ),Mc

ϵ(t)|Ft]
can be roughly bounded by P[K1,N1(t)(ϵ), α̃1(t) ≥ c|Ft]
for some problem-dependent constants c > 1. Since K1 is
deterministic given Ft, we have

P[K1,N1(t)(ϵ), α̃1(t) ≥ c|Ft]

= 1[K1,N1(t)(ϵ)]P[α̃1(t) ≥ c|Ft],

which implies µ̃1(t) is mainly determined by the value
of α̃1(t) under the event {K1,N1(t)(ϵ)} for both policies.
In such cases, STS and STS-T behave like TS in the
Pareto distribution with a known scale parameter, where
µ̃1(t) := µ(κ1, α̃1(t)) for t ∈ N. Here, the Pareto distri-
bution with the known scale parameter belongs to the one-
dimensional exponential family, where Korda et al. (2013)
showed the optimality of TS with the Jeffreys prior. Since
the posterior of α under the Jeffreys prior is given as the Er-
lang distribution with shape N1(t) + 1 in the one-parameter
Pareto model, we can apply the results by Korda et al. (2013)
to prove Lemma 7 by using some properties of the Erlang
distribution such as (12).

Lemma 8. Under STS and STS-T with k ∈ Z, it holds
that for any a ̸= 1

T∑
t=n̄K+1

E
[
1[j(t) = a, Eca,Na(t)

(ϵ)]
]
≤ O

(
ϵ−2
)
.

Lemma 8 controls the regret induced when estimators of the
played arm are not close to their true parameters, which is
not difficult to analyze as in the usual analysis of TS. In fact,
the proof of this lemma is straightforward since the upper
bounds of P[Kc

a] and P[Ka,Ac
a] can be easily derived based

on the distributions of κ̂a and α̂a in (2).

7. Conclusion
We considered the MAB problems under the Pareto dis-
tribution that has a heavy tail and follows the power-law.
While most previous research on TS has focused on one-
dimensional or light-tailed distributions, we focused on
the Pareto distribution characterized by unknown scale and
shape parameters. By sequentially sampling parameters via
their marginalized and conditional posterior distributions,
we can realize an efficient sampling procedure. We showed
that TS with the appropriate choice of priors achieves a
problem-dependent optimal regret bound in such a setting
for the first time. Although the Jeffreys prior and the ref-
erence prior are shown to be suboptimal under the direct
implementation of TS, we showed that they could achieve
the optimal regret bound if we add a truncation procedure.
Experimental results support our theoretical results, which
show the optimality of conservative priors and the effective-
ness of the truncation procedure for the Jeffreys prior and
the reference prior.
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A. Notations
Tables 2–5 summarize the symbols used in this paper.

Table 2. Notations for the bandit problem.

Symbol Meaning

K the number of arms.
T time horizon.
j(t) the index of the played arm at round t.
k ∈ Z prior parameter, see Section 3 for details.
n̄ = max(2, k + 1) initial plays to avoid improper posteriors.
Na(t) the number of playing arm a until round t.
ra,n n-th reward generated from the arm a.
µ(θ) the expected value of the random variable following Pa(θ).
µa = µ(θa) the expected rewards of arm a.
∆a sub-optimality gap of arm a.
δa = ∆a

2 for a ̸= 1 a half of sub-optimality gap of arm a.
δ1 := mina̸=1 δa defined as the minimum of sub-optimality gap.
Ft = (j(s), rj(s),Nj(s)

)t−1
s=1 the history until round t.

Pt[·] := P[·|Ft] conditional probability given Ft.
ga(c, α) KL-divergence from Pa

(
κa

c , α
)

to Pa(κa, αa) for c ≥ 1.
ha(c,µ) = ha(c) the upper bound of α satisfying µ

(
κa

c , α
)
≥ µ1 for c ≥ 1.

Table 3. Notations for probability distributions and estimators

Symbol Meaning

Pa(κ, α) Pareto distribution with the scale κ > 0 and shape α > 0.
fPaκ,α(x) density function of Pa(κ, α).
Erlang(s, β) Erlang distribution with the shape s > 0 and rate β > 0.
fEr
s,β(x) density function of Erlang(s, β).
FEr
s,β(x) CDF of Erlang(s, β) evaluated at x > 0.

IG(s, β) Inverse Gamma distribution with shape s > 0 and scale β > 0.
Fn(x) CDF of the chi-squared distribution with n degree of freedom.
Γ(s) Gamma function.
γ(s, x) the lower incomplete gamma function.
Γ(s, x) the upper incomplete gamma function.

κ̂a(n), α̂a(n) MLEs of the scale and shape parameter of arm a after n observations, defined in (2).
κ̃a(t), α̃a(t) sampled parameters at round t from posterior distribution in (9) and (8).
ᾱa(n) = max(α̂a(n), n) truncated estimator of the shape parameter.
αa,n a temporary notation that can be replaced by both α̂a(n) (STS) and ᾱa(n) (STS-T).
µ̂a(n) = µ(κ̂a(n), α̂a(n)) computed mean rewards by the MLEs after n observation.
µ̃a(t) = µ(κ̃a(t), α̃a(t)) computed mean rewards by sampled parameters κ̃a(t) and α̃a(t) at round t.
θa = (κa, αa) tuple of true parameters of arm a ∈ [K].
θ̂a,n = (κ̂a(n), α̂a(n)) tuple of MLEs of arm a after n observations.
θ̄a,n = (κ̂a(n), ᾱa(n)) tuple of estimators with a truncation procedure of arm a after n observations.
θa,n = (κ̂a(n), αa,n) a temporary notation that can be replaced by both θ̂a,n (STS) and θ̄a,n (STS-T).
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Table 4. Notations for the regret analysis

Symbol Meaning

Da,k(ϵ) a function contributes to the main term of regret analysis defined in (44).
Ka,n(ϵ) an event where MLE of κ is close to its true value at round t after n observations.
Aa,n(ϵ) an event where MLE of α is close to its true value at round t after n observations.
Ea,n(ϵ) intersection of Ka,n(ϵ) and Aa,n(ϵ).
Mϵ(t) an event where sampled mean of the optimal arm is close to its true mean reward at round t.
pn(x|θ1,n) probability of {µ̃1(t) ≤ µ1 − x} after n observation of arm 1 given θ1,n.
Gk(x;n) another expression of the CDF of the Erlang distribution in (21).

Table 5. Notations for (deterministic) constants

Symbol Meaning

εa problem-dependent constants to satisfy µ̂a(n) ∈ [µa − δa, µa + δa] on Ea,n(ϵ) for any ϵ ≤ εa.
ϵa,l(ϵ), ϵa,l(ϵ) constants to control a deviation of α̂a(ϵ) under the event Aa,n(ϵ).
ρθ1(ϵ), ρ̄ = ρθ1(ϵ/2) a difference from its true shape parameter α1 to satisfy µ(κa, α+ ρµ1(ϵ)) ≥ µ1 − ϵ

2 .
C1(µ1, ϵ, n) = C1,n a constant smaller than 1 in (21).
C2(µ1, ϵ, k) an uniform bound of pn(ϵ|·) under Kc

1,n(ϵ) ∩ A1,n(ϵ/2).
cµ1

(ϵ) a small constant with O(ϵ−2).

B. Proof of Lemma 1
Lemma 1. For any arm a ̸= 1, it holds that

KLinf(a) = log

(
αa
µ1 − κa
µ1

)
+

1

αa

µ1

µ1 − κa
− 1.

Proof. Recall the definition

KLinf(a) = KLinf(Pa(θa),Pa(θ)) := inf
θ∈Θa

log
αa

α
+ α log

κa
κ

+
α

αa
− 1,

where θ = (κ, α) and Θa defined in (4).

Here, we consider the partition of Θa,

Θ(1)
a = {(κ, α) ∈ (0, κa]× (0, 1] : µ(κ, α) > µ1} = (0, κa]× (0, 1]

Θ(2)
a =

{
(κ, α) ∈ (0, κa]× (1,∞) : µ(κ, α) =

κα

α− 1
> µ1

}
, (14)

where Θ
(1)
a ∪Θ

(2)
a = Θa. Therefore, it holds that

KLinf(a) = min

(
inf

θ∈Θ
(1)
a

log
αa

α
+ α log

κa
κ

+
α

αa
− 1, inf

θ∈Θ
(2)
a

log
αa

α
+ α log

κa
κ

+
α

αa
− 1

)
.

For (κ, α) ∈ Θ
(1)
a , µ(κ, α) =∞ holds regardless of κ. Therefore, we obtain

inf
θ∈Θ

(1)
a

log
αa

α
+ α log

κa
κ

+
α

αa
− 1 = inf

α∈(0,1]
log

αa

α
+

α

αa
− 1

= logαa +
1

αa
− 1,
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where the last equality holds since log x+ 1
x − 1 is an increasing function for x ≥ 1.

Let κa

κ = c ≥ 1 to make KL divergence from Pa(θa) to Pa(κ, α) be well-defined. From its definition of Θ(2)
a in (14), any

θ = (κ, α) ∈ Θ
(2)
a satisfies κα

α−1 ≥ µ1, i.e.,

κaα

c(α− 1)
≥ µ1 ⇔ α ≤ cµ1

cµ1 − κa
=: ha(c,µ) = ha(c).

Note that it holds that
ha(1) =

µ1

µ1 − κa
≤ µa

µa − κa
= αa

since x
x−y is decreasing with respect to x ≥ y. Then, we can rewrite the infimum of KL divergence as

KLinf(a) = min

(
logαa +

1

αa
− 1, inf

c≥1
inf

α≤ha(c)
ga(α, c)

)
,

where ga(α, c) := log αa

α + α log c+ α
αa
− 1 satisfying

∂ga(α, c)

∂α
=

1

αa
+ log c− 1

α
. (15)

Then, the inner infimum can be obtained when α = αa

1+αa log c holds if αa

1+αa log c < ha(c), where ga
(

αa

1+αa log c , c
)
=

log(1 + αa log c).

Let c∗a ≥ 1 be a deterministic constant such that

ha(c
∗
a) =

c∗aµ1

c∗aµ1 − κa
=

αa

1 + αa log c∗a
⇔ (µ1αa)c

∗
a log c

∗
a + (µ1 − αaµ1)c

∗
a = −αaκa (16)

so that ha(c) ≥ αa

1+αa log c holds for any c ≥ c∗a. Since the solution of ax log(x) + bx = −c is exp
(
W
(
− ceb/a

a

)
− b

a

)
for

principal branch of Lambert W function W (·), one can obtain c∗a by solving the equality in (16), which is

c∗a = exp

(
W

(
−κa
µ1
e

1
αa

−1

)
+ 1− 1

αa

)
. (17)

Notice that κa

µ1
e

1
αa

−1 ≤ κa

µa
e

1
αa

−1 ≤
(
1− 1

αa

)
e−(1−

1
αa

) ≤ e−1 holds so that c∗a is a real value. Here, we consider the
principal branch to ensure c∗a ≥ 1 since the solution on other branches, W−1(·), is less than 1, which is out of our interest.

Let Aa = 1− 1
αa

, which is positive as αa > 1 and Ba = κa

µ1
≤ κa

µa
= αa−1

αa
= Aa. Then, we can rewrite c∗a as

c∗a = eAaeW (−Bae
−Aa ) = eAae−Aa

−Ba

W (−Bae−Aa)
. ∵ eW (x) =

x

W (x)

Since the principal branch of Lambert W function, W (x), is increasing for x ≥ − 1
e , we have

0 > W (−Bae
−Aa) ≥W (−Bae

−Ba) = −Ba,

which implies that c∗a ≥ 1. Therefore, the infimum of ga can be written as

inf
c≥1

inf
α≤ha(c)

ga(α, c) = min

(
inf

c∈[1,c∗a]
ga(ha(c), c), inf

c≥c∗a
log(1 + αa log c)

)
= min

(
inf

c∈[1,c∗a]
ga(ha(c), c), log(1 + αa log c

∗
a)

)
,

where we follow the convention that the infimum over the empty set is defined as infinity.

13
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By substituting c∗a in (17), we obtain

log(1 + αa log c
∗
a) = log

(
αa +W

(
−κa
µ1
e

1
αa

−1

))
.

Let us consider the following inequalities:

log

(
αa +W

(
−κa
µ1
e

1
αa

−1

))
≥ log

(
αa +W

(
−κa
µa
e

1
αa

−1

))
= log

(
αa +W

(
1− αa

αa
e

1
αa

−1

))
= log

(
αa +

1

αa
− 1

)
, (18)

where the first inequality holds since the principal branch of Lambert W function W (x) is increasing and negative with
respect to x ∈ [−1/e, 0).

It remains to find the closed form of infc∈[1,c∗a]
ga(ha(c), c). From the definition of ha(c) = cµ1

cµ1−κa
, we have h′a(c) =

− µ1κa

(cµ1−κa)2
and

∂ga(ha(c), c)

∂c
=

∂

∂c

(
log

αa

ha(c)
+ ha(c) log c+

ha(c)

αa
− 1

)
∵ ga(x, c) = log

αa

x
+ x log c+

x

αa
− 1

= −h
′
a(c)

ha(c)
+ h′a(c) log c+

ha(c)

c
+

1

αa
h′a(c)

=
κa

c(cµ1 − κa)
− µ1κa

(cµ1 − κa)2
log c+

µ1

cµ1 − κa
− κaµ1

αa(cµ1 − κa)2

=
κa

c(cµ1 − κa)
− µ1κa

(cµ1 − κa)2
log c+ µ1

cµ1 − κa − κa

αa

(cµ1 − κa)2
. (19)

Since the first term in (19) is positive for c ≥ 1 and µ1 ≥ µa > κa, let us consider the last two terms for c ∈ [1, c∗a],

− µ1κa
(cµ1 − κa)2

log c+ µ1

cµ1 − κa − κa

αa

(cµ1 − κa)2
=

µ1

(cµ1 − κa)2

(
cµ1 − κa −

κa
αa
− κa log c

)
=

µ1

(cµ1 − κa)2

(
µ1 − κa −

κa
αa

+ (c− 1)µ1 − κa log c
)

=
µ1

(cµ1 − κa)2

(
µ1 − κa −

κa
αa

+ µ1

(
c− κa

µ1
log c− 1

))
.

Here,

µ1 − κa −
κa
αa
≥ µa − κa −

κa
αa

=
κaαa

αa − 1
− κa −

κa
αa

=
κa

αa(αa − 1)
> 0,

and c − κa

µ1
log c − 1 is increasing with respect to c so that c − κa

µ1
log c − 1 ≥ 0 for c ≥ 1. Therefore, ∂

∂cga(ha(c), c) is
positive for c ≥ 1, i.e., ga(ha(c), c) is an increasing function with respect to c ≥ 1.

Thus, we have for c ∈ [1, c∗a],

inf
c∈[1,c∗a]

ga(ha(c), c) = ga (ha(1), 1) = ga

(
µ1

µ1 − κa
, 1

)
= log

(
αa
µ1 − κa
µ1

)
+

1

αa

µ1

µ1 − κa
− 1.

Denote Xa = αa
µ1−κa

µ1
∈ [1, αa) where Xa = 1 happens only when µa = µ1. Then, we have for αa > 1

log(Xa) +
1

Xa
− 1 ≤ logαa +

1

αa
− 1 ≤ log

(
αa +

1

αa
− 1

)
≤ log(1 + αa log c

∗
a),

14
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where the last inequality comes from the result in (18). Therefore, we have

KLinf(a) = min

(
logαa +

1

αa
− 1, inf

c∈[1,c∗a]
ga(ha(c), c), log(1 + αa log c

∗
a)

)
= log

(
αa
µ1 − κa
µ1

)
+

1

αa

µ1

µ1 − κa
− 1,

which concludes the proof.

C. Proofs of lemmas for Theorems 2 and 4
In this section, we provide the proof of lemmas for the main results.

To avoid redundancy, we use a temporary notation αa,n when the same result holds for both α̂a(n) and ᾱa(n). When αa,n

notation is used, one can replace it with either α̂a(n) or ᾱa(n) depending on which policy we are considering. For example,
it holds that

αa,n ≤ 1⇔

{
α̂a(n) ≤ 1 under STS policy,
ᾱa(n) ≤ 1 under STS-T policy.

Similarly, we use the notation θa,n := (κ̂a(n), αa,n) when it can be replaced by both θ̂a,n = (κ̂a(n), α̂a(n)) and
θ̄a,n = (κ̂a(n), ᾱa(n)) for any arm a ∈ [K] and n ∈ N. Based on θa,n notation, we provide an inequality on the
posterior probability that the sampled mean is smaller than a given value with proofs in Appendix C.5.
Lemma 9. For any arm a ∈ [K] and fixed t ∈ N, let Na(t) = n. For any positive ξ ≤ y

y−κa
and k ∈ Z, it holds that

1[κ̂a(n) ≤ y]P[µ̃a(t) ≤ y|θa,n] ≤
∫ ∞

ξ

fEr
n−k, n

αa,n
(x)dx+

(
y

µ((κa, ξ))

)n ∫ ξ

1

fEr
n−k, n

αa,n
(x)dx,

where fEr
s,β(·) denotes the probability density function of the Erlang distribution with shape s ∈ N and rate β > 0.

Based on θ1,n notation, we denote the probability of sample from the posterior distribution after n times playing is smaller
than µ1 − x by

pn(x|θ1,n) := P[µ̃1 ≤ µ1 − x|κ̂1(n), α1,n]. (20)

Let K(ϵ) = (κ1 + ϵ, µ1 − ϵ) be an open interval on R. The Lemma 10 below shows the upper bound of pn conditioned on
θ1,n.
Lemma 10. Given ϵ > 0, define a positive problem-dependent constant ρ = ρθ1(ϵ) :=

κ1ϵ
2(µ1−ϵ/2−κ1)(µ1−κ1)

. If n ≥ n̄ =

max(2, k + 1), then for k ∈ Z≥0

pn(ϵ|θ1,n) ≤


e−n, if κ̂1(n) ≥ µ1 − ϵ,
h(µ1, ϵ, n), if κ̂1(n) ∈ K(ϵ), α1,n ≤ α1 + ρ,

C1(µ1, ϵ, n)Gk(1/α1,n;n) + 1−Gk(1/α1,n;n) if κ̂1(n) ∈ K(ϵ), α1,n ≥ α1 + ρ,

where

h(µ1, ϵ, n) := e−n 3ϵ
4µ1

(
1− 1

2
e−ncµ1

(ϵ)

)
+

1

2
e−ncµ1

(ϵ)

C1(µ1, ϵ, n) :=

(
µ1 − ϵ
µ1 − ϵ/2

)n

≤ e−n ϵ
2µ1−ϵ < 1

Gk(x;n) := FEr
n−k,nx(α1 + ρ) (21)

for FEr defined in (11). Here, cµ1(ϵ) = ζ − log(1 + ζ) = O(ϵ−2) and ζ = ϵ
4µ1−2ϵ ∈ (0, 1) are deterministic constants of

µ1 and ϵ.

Notice that µ((κ1, α1 + ρ)) = µ1 − ϵ/2 holds and there exists a problem-dependent constant C2(µ1, ϵ, k) < 1 such that for
any n ≥ n̄ = max(2, k + 1) and ϵ > 0

h(µ1, ϵ, n) ≤ 1− C2(µ1, ϵ, k). (22)
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C.1. Proof of Lemma 5

Let us start by stating a well-known fact that is utilized in the proof.

Fact 11. When X ∼ Erlang(n, β) with rate parameter β, then 1
X follows the inverse gamma distribution with shape n ∈ N

and scale β ∈ R+, i.e., 1
X ∼ IG(n, β).

Lemma 5. Under STS with k ∈ Z≥2,

T∑
t=n̄K+1

E
[
1[j(t) ̸= 1,Kc

1,N1(t)
(ϵ),Mc

ϵ(t)]
]
≤ O(ϵ−2).

and under STS-T with k ∈ Z≥0,

T∑
t=n̄K+1

E
[
1[j(t) ̸= 1,Kc

1,N1(t)
(ϵ),Mc

ϵ(t)]
]
≤ O(ϵ−m),

where m = max(2, 3− k).

Proof. Let us consider the following decomposition that holds under both STS and STS-T:

T∑
t=Kn̄+1

1[j(t) ̸= 1,Kc
1,N1(t)

(ϵ),Mc
ϵ(t)] =

T∑
n=n̄

T∑
t=Kn̄+1

1

[
j(t) ̸= 1,Kc

1,N1(t)
(ϵ),Mc

ϵ(t), N1(t) = n

]

=

T∑
n=n̄

T∑
m=1

1

[
m ≤

T∑
t=Kn̄+1

1

[
j(t) ̸= 1,Mc

ϵ(t),Kc
1,N1(t)

(ϵ), N1(t) = n

]]
.

Notice that

m ≤
T∑

t=Kn̄+1

1[j(t) ̸= 1,Kc
1,N1(t)

(ϵ),Mc
ϵ(t), N1(t) = n]

implies that µ̃1(t) ≤ µ1 − ϵ occurred m times in a row on {t : Kc
1,N1(t)

(ϵ),Mc
ϵ(t), N1(t) = n}. Thus, we have

E

[
T∑

t=Kn̄+1

1[j(t) ̸= 1,Kc
1,N1(t)

(ϵ),Mc
ϵ(t)]

]
≤ E

[
T∑

n=n̄

T∑
m=1

1[Kc
1,n(ϵ)]pn(ϵ|θ1,n)m

]

≤
T∑

n=n̄

E
[
1
[
Kc

1,n(ϵ)
] pn(ϵ|θ1,n)
1− pn(ϵ|θ1,n)

]
(23)

for pn(·|·) defined in (20). From now on, we fix n ≥ n̄ and drop the argument n of κ̂1(n), α̂1(n) and ᾱ1(n) for simplicity.

Under STS with k ∈ Z≥2: By applying Lemma 10 and (22) under STS with k ∈ Z≥0, we can decompose the expectation
in (23) as

E

[
1
[
Kc

1,n(ϵ)
] pn(ϵ|θ̂1,n)
1− pn(ϵ|θ̂1,n)

]
≤ P[κ̂1 ≥ µ1 − ϵ]

e−n

1− e−n
+ P[κ̂1 ∈ K(ϵ), α̂1 < α1 + ρ]

h(µ1, ϵ, n)

C2(µ1, ϵ, k)

+ Eθ̂1,n

[
1[κ̂1 ∈ K(ϵ), α̂1 > α1 + ρ]

Gk(1/α̂1;n)(1− C1,n)

]
︸ ︷︷ ︸

(⋇)

, (24)

where we denoted C1,n = C1(µ1, ϵ, n). For simplicity, let us define z := 1
α̂1

where z ∼ Erlang(n− 1, nα1) holds from
Fact (11) since α̂1 ∼ IG(n− 1, nα1) in (2). From the independence of κ̂ and α̂ and distributions of z and α̂ in (10) and (2),
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respectively, we have

(⋇) =

∫ 1
α1+ρ

0

zn−2e−nα1z
(nα1)

n−1

Γ(n− 1)

∫
κ̂1∈K(ϵ)

fPaκ1,nα1
(κ̂1)

Gk(z;n)(1− C1,n)
dκ̂1dz

= P[κ̂1 ∈ K(ϵ)]

∫ 1
α1+ρ

0

zn−2e−nα1z

Gk(z;n)(1− C1,n)

(nα1)
n−1

Γ(n− 1)
dz.

By substituting the CDF in (11), we obtain

Gk(z;n) = FEr
n−k,nz(α1 + ρ)

=
1

Γ(n− k)

∫ n(α1+ρ)z

0

e−ttn−k−1dt

≥ e−n(α1+ρ)z

Γ(n− k)

∫ n(α1+ρ)z

0

tn−k−1dt

=
e−n(α1+ρ)z

Γ(n− k + 1)
(n(α1 + ρ)z)n−k. (25)

Therefore,

(⋇)

P[κ̂ ∈ K(ϵ)]
≤
∫ 1

α1+ρ

0

Γ(n− k + 1)

(n(α1 + ρ)z)n−k(1− C1,n)
en(α1+ρ)z (nα1)

n−1

Γ(n− 1)
zn−2e−nα1zdz

=
Γ(n− k + 1)

Γ(n− 1)(1− C1,n)
(α1 + ρ)k−1

(
α1

α1 + ρ

)n−1

nk−1

∫ 1
α1+ρ

0

zk−2enρzdz

≤ Γ(n− k + 1)

Γ(n− 1)(1− C1,n)
(α1 + ρ)k−1e−

ρ
α1+ρ (n−1) nk−1

(nρ)k−2

∫ 1
α1+ρ

0

(nρz)k−2enρzdz. (26)

By letting nρz = y, we can bound the integral in (26) as

nk−1

(nρ)k−2

∫ 1
α1+ρ

0

(nρz)k−2enρzdz = ρ−(k−1)

∫ nρ
α1+ρ

0

yk−2eydy

≤ ρ−(k−1)en
ρ

α1+ρ

∫ nρ
α1+ρ

0

yk−2dy (27)

=
en

ρ
α1+ρ

k − 1

(
n

α1 + ρ

)k−1

, if k ∈ Z≥2 (28)

where (28) holds only for k ∈ Z≥2 since the integral in (27) diverges for k ∈ Z≤1.

By applying (28) to (26), we obtain for k ∈ Z≥2

(⋇) ≤ P[κ̂ ∈ K(ϵ)]
e

ρ
α1+ρ

1− C1,n

nk−1

k − 1

Γ(n− k + 1)

Γ(n− 1)

≤ e1−
ϵα1
κ+ϵn

1− C1,n

Γ(n− k + 1)

Γ(n− 1)

nk−1

k − 1
= O(ne−nϵ), (29)

where (29) can be obtained by Lemma 15 and ρ
α1+ρ < 1. By combining (29) with (24) and (23), we obtain for k ∈ Z≥2

E

[
T∑

t=Kn̄+1

1[j(t) ̸= 1,Kc
1,N1(t)

(ϵ),Mc
ϵ(t)]

]
≤

T∑
n=n̄

(
e−n

1− e−n
+
e−n 3ϵ

4µ1 + 1
2e

−ncµ1 (ϵ)

C2(µ1, ϵ, k)
+ (⋇)

)

≤
T∑

n=n̄

O(e−n) +O(e−nϵ) +O(e−nϵ2) +O(ne−nϵ)

= O(1) +O(ϵ−1) +O(ϵ−2) +O(ϵ−2),

which concludes the proof under STS with k ∈ Z≥2.
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Under STS-T with k ∈ Z≥0: Under STS-T, we have the following inequality instead of (24):

E
[
1 [Kc

n(ϵ)]
pn(ϵ|θ̄1,n)

1− pn(ϵ|θ̄1,n)

]
≤ P[κ̂1 ≥ µ1 − ϵ]

e−n

1− e−n
+ P[κ̂1 ∈ K(ϵ), ᾱ1 < α1 + ρ]

h(µ1, ϵ, n)

C2(µ1, ϵ, k)

+ Eθ̄1,n

[
1[κ̂1 ∈ K(ϵ), ᾱ1 ∈ (α1 + ρ, n]]

Gk(1/ᾱ1;n)(1− C1,n)

]
︸ ︷︷ ︸

(⋆)

. (30)

From 1[ᾱ1(n) < n] = 1[ᾱ1(n) = α̂1(n)], it holds that

(⋆) = Eθ̂1,n

[
1[κ̂1 ∈ K(ϵ), α̂1 ∈ (α1 + ρ, n)]

Gk(1/α̂1;n)(1− C1,n)

]
+ Eθ̄1,n

[
1[κ̂1 ∈ K(ϵ), ᾱ1 = n]

Gk(1/ᾱ1;n)(1− C1,n)

]
.

Since 1[ᾱ1(n) = n] = 1[α̂1(n) ≥ n] holds and κ̂ and α̂ are independent, we have for z = 1
α̂1
∼ Erlang(n− 1, nα1)

(⋆)

P[κ̂1 ∈ K(ϵ)]
≤
∫ 1

α1+ρ

1
n

zn−2e−nα1z

Gk(z;n)(1− C1,n)

(nα1)
n−1

Γ(n− 1)
dz︸ ︷︷ ︸

(†)

+
1

Gk(1/n;n)(1− C1,n)
P
[
1

α̂1
≤ 1

n

]
︸ ︷︷ ︸

(⋄)

, (31)

where the same techniques on (⋇) can be applied to derive an upper bound of (†). By following the same steps as (26) and
(27), we obtain

∫ nρ
α+ρ

ρ

yk−2dy ≤


(

nρ
α+ρ

)k−1

, if k ∈ Z≥2,

log
(

n
α+ρ

)
, if k = 1,

ρk−1/(1− k), if k ∈ Zk≤0,

as a counterpart of the integral in (27). By following the same steps as (28) and (29), we have

(†) ≤


Γ(n−k+1)
Γ(n−1)

enk−1

k−1 , if k ∈ Z≥2,

(n− 1) log
(

n
α+ρ

)
, if k = 1,

Γ(n−k+1)
Γ(n−1)

e
(1−k)(α+ρ)1−k , if k ∈ Zk≤0.

(32)

Note that the probability term in (⋄) is the same as the CDF of the Erlang(n− 1, nα1) with rate nα1 evaluated at 1
n since

α̂1 ∼ IG(n− 1, nα1) from (2). Thus, we have

(⋄) = 1

1− C1,n

1

Gk(1/n;n)

γ(n− 1, α1)

Γ(n− 1)

≤ eα1+ρ

1− C1,n

Γ(n− k + 1)

(α1 + ρ)n−k

γ(n− 1, α1)

Γ(n− 1)
by (25)

≤ eα1+ρ

1− C1,n

Γ(n− k + 1)

Γ(n− 1)

αn−1
1

(α1 + ρ)n−k
(33)

≤ eα1+ρ

1− C1,n

Γ(n− k + 1)

Γ(n− 1)

1

(α1 + ρ)1−k

= O(n2−k), (34)

where (33) holds from γ(s, x) ≤ xs for any s ≥ 1 and x > 0. Therefore, by combining (32) and (34) with (31) and
P[κ̂ ∈ K(ϵ)] = O(e−nϵ), we have

(⋆) ≤


O(ne−nϵ), if k ∈ Z≥2

O(n log(n)e−nϵ), if k = 1,

O(n2−ke−nϵ), if k ∈ Z≤0.

(35)
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By combining (35) with (30) and (23), we obtain for k ∈ Z≥0

E
[ T∑
t=Kn̄+1

1[j(t) ̸= 1,Kc
1,N1(t)

(ϵ),Mc
ϵ(t)]

]
≤

T∑
n=n̄

(
e−n

1− e−n
+
e−n 3ϵ

4µ1 + 1
2e

−ncµ1
(ϵ)

C2(µ, ϵ, k)
+ (⋆)

)

≤
T∑

n=n̄

(
O(e−n) +O(e−nϵ) +O

(
e−nϵ2

)
+O

(
ψ(n, k)e−nϵ

))
= O(1) +O(ϵ−1) +O(ϵ−2) +O

(
ϵ−max(2,3−k)

)
,

where
ψ(n, k) = n1[k ≥ 2] + n log(n)1[k = 1] + n2−k

1[k ≤ 0].

Note that the analysis on term (⋆) also holds for STS-T with k ∈ Z<0. However, differently from the case of k ∈ {0, 1},
priors with k ∈ Z<0 have additional problems in Lemma 10 under the event {κ̂1 ∈ K(ϵ), ᾱ1(n) ≤ α1 + ρ}, where the
upper bound becomes a constant 1

2 .

C.2. Proof of Lemma 6

Firstly, we state a well-known fact that is utilized in the proof.
Fact 12. When X ∼ Erlang(n, β) with rate parameter β, then 2βX follows the chi-squared distribution with 2n degree
of freedom, i.e., 2βX ∼ χ2

2n.
Lemma 6. Under STS and STS-T with k ∈ Z, it holds that for any a ∈ [K]

T∑
t=n̄K+1

E[1[j(t) = a,Mϵ(t), Ea,Na(t)(ϵ)]]

≤ max(0, k) + 1 +
1

αaϵ
1[k > 0] +

log T

Da,k(ϵ)
.

where Da,k(ϵ) > 0 is a finite problem-deterministic constant satisfying limϵ→0Da,k(ϵ) = KLinf(a).

Proof. From the sampling rule, it holds that
T∑

t=n̄K+1

P
[
j(t) = a, µ̃∗(t) ≥ µ1 − ϵ, Ea,Na(t)(ϵ)

]
=

T∑
t=n̄K+1

P
[
j(t) = a, max

a∈[K]
µ̃a(t) ≥ µ1 − ϵ, Ea,Na(t)(ϵ)

]

≤
T∑

t=n̄K+1

P
[
j(t) = a, µ̃a(t) ≥ µ1 − ϵ, Ea,Na(t)(ϵ)

]
.

Fix a time index t and denote Pt[·] = P[· | Ft] and Na(t) = n. To simplify notations, we drop the argument t of κ̃a(t), α̃a(t)
and µ̃a(t) and the argument n of κ̂a(n), α̂a(n), ᾱa(n).

Since κ̃a ∈ (0, κ̂a] holds from its posterior distribution, if α̃a ≥ µ1−ϵ
µ1−ϵ−κ̂a

holds, then µ̃a = κ̃aα̃a

α̃a−1 ≤ µ1 − ϵ holds for any

κ̃a. Recall that fEr
n−k, n

αa,n
(·) denotes a density function of Erlang

(
n− k, n

αa,n

)
with rate parameter n

αa,n
, which is the

marginalized posterior distribution of α̃ under STS and STS-T. From the CDF of κ̃ in (9), if κ̂a < µ1 − ϵ, then

Pt [µ̃a ≥ µ1 − ϵ] = Pt [α̃a ≤ 1] + Pt

[
κ̃a ≥

α̃a − 1

α̃a
(µ1 − ϵ) ∩ α̃a ∈

(
1,

µ1 − ϵ
µ1 − ϵ− κ̂a

)]
=

∫ 1

0

fEr
n−k, n

αa,n
(x)dx+

∫ µ1−ϵ
µ1−ϵ−κ̂

1

fEr
n−k, n

αa,n
(x)Pt

[
κ̃a ≥

x− 1

x
(µ1 − ϵ)

]
dx

=

∫ 1

0

fEr
n−k, n

αa,n
(x)dx+

∫ µ1−ϵ
µ1−ϵ−κ̂

1

fEr
n−k, n

αa,n
(x)

(
1−

(
x− 1

κ̂x
(µ1 − ϵ)

)nx)
dx

=

∫ µ1−ϵ
µ1−ϵ−κ̂

0

fEr
n−k, n

αa,n
(x)dx−

∫ µ1−ϵ
µ1−ϵ−κ̂

1

fEr
n−k, n

αa,n
(x)

(
x− 1

κ̂x
(µ1 − ϵ)

)nx

dx.
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Since x
x−y is increasing with respect to y < x and κ̂ ≤ κ+ ϵ holds on E , we have for E

µ1 − ϵ
µ1 − ϵ− κ̂

≤ µ1 − ϵ
µ1 − ϵ− (κ+ ϵ)

.

Let

ηa(ϵ) =
κa(∆a − ϵ)− ϵµa

(µa − κa)(µ1 − κa − 2ϵ)
> 0 (36)

be a deterministic constant that depends only on the model and ϵ and satisfies

αa − ηa(ϵ) =
µa

µa − κa
− κa(∆a − ϵ)− ϵµa

(µa − κa)(µ1 − κa − 2ϵ)

=
µaµ1 − κaµa − 2ϵµa − κa(µ1 − µa − ϵ) + ϵµa

(µa − κa)(µ1 − κa − 2ϵ)

=
µ1(µa − κa)− ϵ(µa − κa)
(µa − κa)(µ1 − κa − 2ϵ)

=
µ1 − ϵ

µ1 − κa − 2ϵ
.

Since ηa(ϵ) > 0, it holds that for any ϵ ∈ (0, εa)

αa − ηa(ϵ) =
µ1 − ϵ

µ1 − κa − 2ϵ
≤ µa

µa − κa
= αa. (37)

Note that µ
µ−κ = α holds and the change of µ to µ′ with fixed κ that is µ′

µ′−κ , implies how the value of the shape
parameter α′ should be to satisfy µ((κ, α′)) = µ′. For example, θ = (κa + εa, αa) satisfies µ(θ) ≤ µa + δa

2 . Thus, if
µ((κa + εa, α)) = µ1 − ϵ > µa +

δa
2 , then α should be smaller than αa. Hence, we have

1[Ea,n(ϵ)]Pt

[
µ̃a ≥ µ1 − ϵ

]
≤ 1[Ea,n(ϵ)]

(∫ µ1−ϵ
µ1−ϵ−κ̂

0

fEr
n−k, n

αa,n
(x)dx−

∫ µ1−ϵ
µ1−ϵ−κ̂

1

fEr
n−k, n

αa,n
(x)

(
x− 1

κ̂x
(µ1 − ϵ)

)nx

dx

)

≤ 1[Ea,n(ϵ)]
∫ µ1−ϵ

µ1−ϵ−κ̂

0

fEr
n−k, n

αa,n
(x)dx (38)

≤ 1[Ea,n(ϵ)]
∫ αa−ηa(ϵ)

0

fEr
n−k, n

αa,n
(x)dx = 1[Ea,n(ϵ)]Pt[α̃a(t) ≤ αa − ηa(ϵ)]. (39)

Therefore, by taking expectation and using Fact 12, we have

P [µ̃a(t) ≥ µ1 − ϵ, Ea,n(ϵ)] ≤ P[α̃a ≤ αa − ηa(ϵ), Ea,n(ϵ)],

= P
[
Z ≤ 2n

αa,n
(α− ηa(ϵ)) , Ea,n(ϵ)

]
(40)

where Z is a random variable following the chi-squared distribution with 2(n− k) degrees of freedom, i.e., Z ∼ χ2
2n−2k.

C.2.1. UNDER STS

Here, we first consider the case of STS where we replace αa,n with α̂a(n).

Since α̂a ∈ [αa − ϵa,l, αa + ϵa,u] holds on Ea,n(ϵ), we have

1

αa
− ϵ
(
1 +

1

κa

)
=

1

αa + ϵa,u
≤ 1

α̂a
≤ 1

αa − ϵa,l
=

1

αa
+ ϵ (41)

by the definition of ϵa,l(ϵ) and ϵa,u(ϵ) in (13).
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By replacing αa,n with α̂a(n) in (40) and applying (41), we have

P [µ̃a(t) ≥ µ1 − ϵ, Ea,n(ϵ)] ≤ P
[
Z ≤ 2n

α̂a
(αa − ηa(ϵ)) , Ea,n(ϵ)

]
≤ P

[
Z ≤ 2n

(
1

αa
+ ϵ

)
(αa − ηa(ϵ))

]
= P

[
Z ≤ 2(n− k) n

n− k

(
1

αa
+ ϵ

)
(αa − ηa(ϵ))

]
. (42)

Priors with k ∈ Z≤0. Let us first consider the case k ∈ Z≤0, where we have n
n−k ≤ 1. It holds that

P [µ̃a(t) ≥ µ1 − ϵ, Ea,n(ϵ)] ≤ P
[
Z ≤ 2(n− k) n

n− k

(
1

αa
+ ϵ

)
(αa − ηa(ϵ))

]
≤ P

[
Z ≤ 2(n− k)

(
1

αa
+ ϵ

)
(αa − ηa(ϵ))

]
.

Note that the definition of εa in Theorem 2 is set to satisfy
(
1
α + ϵ

)
(α− ηa(ϵ)) < 1 for any ϵ ≤ εa. Thus, we can apply

Lemma 19, which shows

P
[
Z ≤ 2(n− k)

(
1− ηa(ϵ)

αa
+ ϵ(αa − ηa(ϵ))

)]
≤ e−(n−k)Da,k(ϵ), (43)

where

Da,k(ϵ) := − log

(
1− ηa(ϵ)

αa
+ (max(0, k) + 1)ϵ(αa − ηa(ϵ))

)
− ηa(ϵ)

αa
+ (max(0, k) + 1)ϵ(αa − ηa(ϵ)) > 0 (44)

is a finite constant that only depends on the model parameters, ϵ, and prior parameter k.

For arbitrary na > 0, applying (43) to (40) gives

T∑
t=n̄K+1

E[1[j(t) = a, µ̃1(t) ≥ µ1 − ϵ, Ea,Na(t)(ϵ)]] ≤
T∑

t=n̄K+1

P[j(t) = a, µ̃a(t) ≥ µ1 − ϵ, Ea,n(ϵ)]

≤ na +
T∑

t=n̄K+1

P[µ̃a(t) ≥ µ1 − ϵ, Ea,Na(t)(ϵ), Na(t) ≥ na]

≤ na +
T∑

t=n̄K+1

e−(na−k)Da,k(ϵ)

≤ na +
T∑

t=n̄K+1

e−naDa,k(ϵ) = na + Te−naDa,k(ϵ).

Letting na = log T
Da,k(ϵ)

concludes the cases of priors with k ∈ Z≤0.

Priors with k ∈ Z>0 Next, consider the case k ∈ Z>0. Recall that we first play every arm k + 1 times if k > 0, which
implies that n− k > 0. For n ≥ 1

αϵ + k + 1, it holds that

n

n− k

(
1

α
+ ϵ

)
≤ 1

α
+ (k + 1)ϵ. (45)

By applying (45) to (40), we have for n ≥ 1
αϵ + k + 1,

P[α̃a ≤ αa − ηa(ϵ), Ea,Na(t)(ϵ)] ≤ P
[
Z ≤ 2(n− k)

(
1− ηa(ϵ)

αa
+ (k + 1)ϵ(αa − ηa(ϵ))

)]
.
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Similarly, by applying Lemma 19, one can see that for n ≥ 1
αaϵ

+ k + 1

P[α̃a ≤ αa − ηa(ϵ), Ea,Na(t)(ϵ)] ≤ e
−(n−k)Da,k(ϵ), (46)

where Da,k(ϵ) is defined in (44).

When k ∈ Z>0, let na ≥ 1
αaϵ

+ k + 1 be arbitrary. By applying (46) to (40) again, we have

T∑
t=n̄K+1

E[1[j(t) = a, µ̃1(t) ≥ µ1 − ϵ, Ea,Na(t)(ϵ)]] ≤
T∑

t=n̄K+1

P[j(t) = a, µ̃a(t) ≥ µ1 − ϵ, Ea,n(ϵ)]

≤ na +
T∑

t=n̄K+1

P[µ̃a(t) ≥ µ1 − ϵ, Ea,Na(t)(ϵ), Na(t) ≥ na]

≤ na +
T∑

t=n̄K+1

e−(na−k)Da,k(ϵ) = na + Te−(na−k)Da,k(ϵ).

Letting na = k + 1 + 1
αaϵ

+ log T
Da,k(ϵ)

concludes the cases of priors with k > 0.

C.2.2. UNDER STS-T

Here, we consider the case of STS-T where we replace αa,n with ᾱa(n) = min(α̂a(n), n). From the definition of ᾱa(n),
it holds that for ϵ ≤ εa

∀n ≥ αa + 1 : 1[ᾱa(n) = α̂a(n),Aa,n(ϵ)] = 1.

Therefore, for n ≥ αa + 1, the analysis on STS can be applied to STS-T directly.

Let us consider the case where ᾱa(n) = n < αa + 1 holds under the condition Aa,n(ϵ). By replacing αa,n with n in (40)
and following the same steps as in (40) and (43), we have for any k ∈ Z,

P [µ̃a(t) ≥ µ1 − ϵ, Ea,n(ϵ)] ≤ P
[
Z ≤ 2n

n
(αa − ηa(ϵ)) , Ea,n(ϵ)

]
≤ P

[
Z ≤ 2(n− k) 1

n− k

(
1

αa
+ ϵ

)
(αa − ηa(ϵ)) , Ea,n(ϵ)

]
≤ P

[
Z ≤ 2(n− k)

(
1

αa
+ ϵ

)
(αa − ηa(ϵ)) , Ea,n(ϵ)

]
≤ e−(n−k)Da,k(ϵ),

where Da,k(ϵ) defined in (44). Therefore, the same result follows by the analysis in Section C.2.1.

C.2.3. ASYMPTOTIC BEHAVIOR OF Da,k(ϵ)

Here, we first provide the alternative formulation of Da,k(ϵ) defined in (44). Let us rewrite the definition of Da,k(ϵ) as

Da,k(ϵ) = − log

(
1− ηa(ϵ)

αa
+ (max(0, k) + 1)ϵ(αa − ηa(ϵ)

)
− ηa(ϵ)

αa
+ (max(0, k) + 1)ϵ(αa − ηa(ϵ)

= − log

(
(αa − ηa(ϵ))(1 + (max(0, k) + 1)αaϵ)

αa

)
+

(αa − ηa(ϵ))(1 + (max(0, k) + 1)αaϵ)

αa
− 1

= log

(
αa

1

αa − ηa(ϵ)
1

1 + (max(0, k) + 1)αaϵ

)
+

(αa − ηa(ϵ))(1 + (max(0, k) + 1)αaϵ)

αa
− 1.

By injecting the closed form of αa − ηa(ϵ) given in (37) and defining ba,k(ϵ) = 1
1+(max(0,k)+1)αaϵ

, Da,k can be written as

Da,k(ϵ) = log

(
αaba,k(ϵ)

µ1 − ϵ− (κa + ϵ)

µ1 − ϵ

)
+

1

αaba,k(ϵ)

µ1 − ϵ
µ1 − ϵ− (κa + ϵ)

− 1.
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From Lemma 1, one can observe that

Da,k(ϵ) = inf
θ:µ(θ)>µ1−ϵ

KL(Pa(κa + ϵ, αaba,k(ϵ)),Pa(θ)).

Since limϵ→0 ba,k(ϵ) = 1 for any a ∈ [K] and k ∈ Z, it holds that

lim
ϵ→0

Da,k(ϵ) = inf
θ:µ(θ)>µ1

KL(Pa(κa, αa),Pa(θ)) = KLinf(a),

C.3. Proof of Lemma 7

Firstly, we state two well-known facts that are utilized in the proof.

Fact 13. When X ∼ Pa(κ, α) with the scale parameter κ ∈ R and rate parameter α ∈ R+, then log
(
X
κ

)
follows the

exponential distribution with rate α, i.e., log
(
X
κ

)
∼ Exp(α).

Fact 14. Let X1, . . . , Xn be identically independently distributed with the exponential distribution with the rate parameter
α, i.e., Xi

i.i.d.∼ Exp(α) for any i ∈ [n]. Then, their sum follows the Erlang distribution with the shape parameter n ∈ N and
rate parameter α, i.e.,

∑n
i=1Xi ∼ Erlang(n, α).

Lemma 7. Under STS and STS-T with k ∈ Z≥0,

T∑
t=n̄K+1

E
[
1[j(t) ̸= 1,K1,N1(t)(ϵ),M

c
ϵ(t)]

]
≤ O(ϵ−1).

Proof. When one considers the Pareto distribution with known scale parameter κ that belongings to the one-dimensional
exponential family, the posterior on the shape parameter αone > 0 after observing n = N1(t) rewards is given for k ∈ Z

αone | Ft ∼ Erlang (n− k + 1, Xn) , (47)

where Xn =
∑n

s=1 log(r1,s) − n log(κ1). Note that Xn ∼ Erlang(n, α1) from Facts 13 and 14. Let α̃one
1 be a sample

from the posterior distribution in (47). Then, for one-dimensional Pareto bandits, it holds from (11) that

P[µ̃1(t) ≤ µ1 − ϵ|Ft] = P [α̃one
1 ≥ β | Ft] =

Γ (n− k + 1, βXn)

Γ(n− k + 1)
,

where we denoted β = µ1−ϵ
µ1−ϵ−κ1

satisfying µ(κ1, β) = µ1 − ϵ. Therefore, Lemma 23 can be written as

T∑
t=1

E [1 [j(t) ̸= 1,Mc
ϵ(t)]] =

T∑
t=1

T∑
n=1

E [1 [j(t) ̸= 1,Mc
ϵ(t), N1(t) = n]]

=

T∑
t=1

T∑
n=1

E [P [j(t) ̸= 1,Mc
ϵ(t), N1(t) = n | Ft]]

=

T∑
t=1

T∑
n=1

∫ ∞

0

Γ(n+ 1, βx)

Γ(n+ 1)

αn
1

Γ(n)
xn−1e−α1xdx ≤ O(ϵ−1),

where we injected the density function of the Erlang distribution into the last equality.

On the other hand, for two-parameter Pareto bandits where the scale parameter is unknown, it holds by the law of total
expectation that

E[1[j(t) ̸= 1,K1,N1(t)(ϵ),M
c
ϵ(t)]] = Eκ̂1,α̂1

[
P[j(t) ̸= 1,K1,N1(t)(ϵ),M

c
ϵ(t)|Ft]

]
= Eκ̂1,α̂1

[
1[K1,N1(t)(ϵ)]P[j(t) ̸= 1,Mc

ϵ(t)|Ft]
]
,

where the last equality holds since K is determined by the history Ft.
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From Lemma 9 with y = µ1 − ϵ, it holds for any ξ ≤ µ1−ϵ
µ1−ϵ−κ1

= β that

1[K1,n(ϵ)]P[µ̃1(t) ≤ µ1 − ϵ|Ft] ≤ 1[K1,n(ϵ)]

((
µ1 − ϵ

µ((κ1, ξ))

)n ∫ ξ

1

fEr
n−k, n

α1,n

(x)dx+

∫ ∞

ξ

fEr
n−k, n

α1,n

(x)dx

)

≤ 1[K1,n(ϵ)]

( µ1 − ϵ
µ((κ1, ξ))

)n
1−

Γ
(
n− k, n

α1,n
ξ
)

Γ(n− k)

+
Γ
(
n− k, n

α1,n
ξ
)

Γ(n− k)


(48)

which is a convex combination of 1 and
(

µ1−ϵ
µ((κ1,ξ))

)n
. Therefore, RHS of (48) increases as

Γ
(
n−k, n

α1,n
ξ
)

Γ(n−k) increases. From

the definition of Γ(n, x), it holds that Γ(n, x) ≥ Γ(n, x+ y) for any positive y > 0 and Γ(n+ 1, x) = nΓ(n, x) + xne−x.
Since n

α̂1(n)
≤ n

ᾱ1(n)
holds for any n ∈ N, it holds for k ∈ Z≥0 that

Γ
(
n− k, n

ᾱ1(n)
ξ
)

Γ(n− k)
≤

Γ
(
n− k, n

α̂1(n)
ξ
)

Γ(n− k)
≤

Γ
(
n, n

α̂1(n)
ξ
)

Γ(n)
.

Let us denote Yn := n
α̂1(n)

=
∑n

i=1 log(r1,s)− n log(κ̂1(n)), which follows the Erlang distribution with shape n− 1 and
rate α1 (Malik, 1970). By taking expectation with respect to κ̂1(n), we have for any ξ ≤ β that

Eκ̂1
[1[K1,n(ϵ)]P[µ̃1(t) ≤ µ1 − ϵ|Ft]] ≤

∫ κ1+ϵ

κ1

((
µ1 − ϵ

µ((κ1, ξ))

)n(
1− Γ (n, ξYn)

Γ(n)

)
+

Γ (n, ξYn)

Γ(n)

)
P[κ̂1(n) = x]dx

= P[K1,n(ϵ)]

((
µ1 − ϵ

µ((κ1, ξ))

)n(
1− Γ (n, ξYn)

Γ(n)

)
+

Γ (n, ξYn)

Γ(n)

)
=

(
1−

(
κ1

κ1 + ϵ

)nα1
)((

µ1 − ϵ
µ((κ1, ξ))

)n(
1− Γ (n, ξYn)

Γ(n)

)
+

Γ (n, ξYn)

Γ(n)

)
,

where we used κ̂1(n) ∼ Pa(κ1, nα1) in (2) for the last equality.

Therefore, under the two-parameter Pareto distribution, the following holds for any ξ ≤ β under both STS and STS-T with
k ∈ Z≥0 that

Eκ̂1,α̂1
[1[K1,n(ϵ)]P[µ̃1(t) ≤ µ1 − ϵ|Ft]]

≤
(
1−

(
κ1

κ1 + ϵ

)nα1
)∫ ∞

0

((
µ1 − ϵ

µ((κ1, ξ))

)n(
1− Γ (n, ξy)

Γ(n)

)
+

Γ (n, ξy)

Γ(n)

)
αn−1
1

Γ(n− 1)
yn−2e−α1ydy.

Therefore, Lemma 23 concludes the proof for any n ∈ N, by carefully selecting ξ ≤ β satisfying(
1−

(
κ1

κ1 + ϵ

)nα1
)∫ ∞

0

((
µ1 − ϵ

µ((κ1, ξ))

)n(
1− Γ (n, ξy)

Γ(n)

)
+

Γ (n, ξy)

Γ(n)

)
αn−1
1

Γ(n− 1)
yn−2e−α1ydy

≤
∫ ∞

0

Γ(n+ 1, βy)

Γ(n+ 1)

αn
1

Γ(n)
yn−1e−α1ydy.

Note that when we consider STS with k = −1, we have to find ξ′ ≤ β such that(
1−

(
κ1

κ1 + ϵ

)nα1
)∫ ∞

0

((
µ1 − ϵ

µ((κ1, ξ′))

)n(
1− Γ (n+ 1, ξ′y)

Γ(n+ 1)

)
+

Γ (n+ 1, ξ′y)

Γ(n+ 1)

)
αn−1
1

Γ(n− 1)
yn−2e−α1ydy

≤
∫ ∞

0

Γ(n+ 1, βy)

Γ(n+ 1)

αn
1

Γ(n)
yn−1e−α1ydyd.

From Γ(n, x) ≥ Γ(n, x+ y) for any positive x, y > 0 and ξ′ ≤ β, we have for any x > 0 that

Γ (n+ 1, ξ′x)

Γ(n+ 1)
≥ Γ(n+ 1, βx)

Γ(n+ 1)
.

Therefore, for k ∈ Z≤−1, we might not be able to apply the results by Korda et al. (2013).
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C.4. Proof of Lemma 8

We first state two lemmas on the event K and A.
Lemma 15. For any algorithm and a ∈ [K], it holds that for all ϵ > 0, t > 0, and n ∈ N

P
[
Kc

a,Na(t)
(ϵ), Na(t) = n

]
≤ exp

(
− αaϵ

κa + ϵ
n

)
.

Lemma 16. For any algorithm and for any a ∈ [K], it holds that for all ϵ ∈
(
0, κa

αa(κa+1)

)
and t > 0, and n ≥ n̄

P
[
Ac

a,Na(t)
(ϵ),Ka,Na(t)(ϵ), Na(t) = n

]
≤ 2 exp

(
−α

2
aϵ

2

4
n

)
,

Lemma 8. Under STS and STS-T with k ∈ Z, it holds that for any a ̸= 1

T∑
t=n̄K+1

E
[
1[j(t) = a, Eca,Na(t)

(ϵ)]
]
≤ O

(
ϵ−2
)
.

Proof. From the Lemmas 15 and 16, one can see that for n ≥ n̄,

P
[
Eca,Na(t)

(ϵ), Na(t) = n
]
= P

[
Kc

a,Na(t)
(ϵ), Na(t) = n

]
+ P

[
Ac

a,Na(t)
(ϵ),Ka,Na(t)(ϵ), Na(t) = n

]
≤ exp

(
− αaϵ

κa + ϵ
n

)
+ 2 exp

(
−α

2
aϵ

2

4
n

)
.

Since
{
j(t) = a, Eca,n(ϵ), Na(t) = n

}
occurs only once for any n ∈ N, it holds that

T∑
t=n̄K+1

E
[
1

[
j(t) = a, Eca,Na(t)

(ϵ)
]]

=

T∑
t=n̄K+1

T∑
n=n̄

E
[
1

[
j(t) = a, Eca,Na(t)

(ϵ), Na(t) = n
]]

≤
∞∑

n=n̄

E
[
1

[
Eca,Na(t)

(ϵ), Na(t) = n
]]

=

∞∑
n=n̄

P
[
Kc

a,Na(t)
(ϵ), Na(t) = n

]
+ P

[
Ac

a,Na(t)
(ϵ) ∩ Ka,Na(t)(ϵ), Na(t) = n

]
≤

∞∑
n=n̄

exp

(
− αaϵ

κa + ϵ
n

)
+ 2 exp

(
−α

2
aϵ

2

4
n

)
.

Since exp(−an) with a > 0 is a decreasing function with respect to n, it holds that
∞∑

n=2

exp(−an) ≤
∫ ∞

1

exp(−an)dn =
exp(−a)

a
,

which concludes the proof.

C.4.1. PROOF OF LEMMA 15

Lemma 15. For any algorithm and a ∈ [K], it holds that for all ϵ > 0, t > 0, and n ∈ N

P
[
Kc

a,Na(t)
(ϵ), Na(t) = n

]
≤ exp

(
− αaϵ

κa + ϵ
n

)
.

Proof. Since κ̂a(n) ∼ Pa(κa, nαa) holds for any n ∈ N in (2), it holds that

P
[
Kc

a,Na(t)
, Na(t) = n

]
= P [κ̂a(Na(t)) ≥ κa + ϵ,Na(t) = n]

=

(
κa

κa + ϵ

)nαa

≤ exp

(
− αaϵ

κa + ϵ
n

)
,

which concludes the proof.
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C.4.2. PROOF OF LEMMA 16

Lemma 16. For any algorithm and for any a ∈ [K], it holds that for all ϵ ∈
(
0, κa

αa(κa+1)

)
and t > 0, and n ≥ n̄

P
[
Ac

a,Na(t)
(ϵ),Ka,Na(t)(ϵ), Na(t) = n

]
≤ 2 exp

(
−α

2
aϵ

2

4
n

)
,

Proof. Fix a time index t and denote Pt[·] = P[· | Ft] and Na(t) = n. To simplify notations, we drop the argument n of
κ̂a(n) and α̂a(n).

Let r′a,k be the k-th order statistics of (ra,s)ns=1 for arm a such that r′a,1 ≤ r′a,2 . . . ≤ r′a,n. From the definition of MLE of
αa,

P[α̂a ≤ αa − ϵa,l(ϵ),Ka,Na(t)(ϵ), Na(t) = n] ≤ P

[
n∑n

s=1 log r
′
a,s − n log r′a,1

≤ αa − ϵa,l(ϵ)

]

= P

[
n

αa − ϵa,l(ϵ)
≤

n∑
s=1

log
r′a,s
r′a,1

]

= P

[
n

αa − ϵa,l(ϵ)
≤ n log κ

r′a,1
+

n∑
s=1

log
r′a,s
κ

]

≤ P

[
n

αa − ϵa,l(ϵ)
≤

n∑
s=1

log
ra,s
κa

]

≤ P

[
ϵ ≤ 1

n

n∑
s=1

log
ra,s
κa
− 1

αa

]
,

where the first equality holds from the definition of MLEs in (2), the second inequality holds since any sample generated
from the Pareto distribution cannot be smaller than its scale parameter κ, and the last inequality holds from the definition of
ϵa,l(ϵ) in (13).

Similarly, one can derive that

P[α̂a ≥ αa + ϵa,u(ϵ),Ka,Na(t)(ϵ), Na(t) = n] ≤ P

[
n∑

s=1

log
ra,s
κa
≤ n

αa + ϵa,u(ϵ)
+ n log

r′1
κ
∩ K

]

≤ P

[
n∑

s=1

log
ra,s
κ
≤ n

αa + ϵa,u(ϵ)
+ n log

κa + ϵ

κa

]

≤ P

[
n∑

s=1

log
ra,s
κa
≤ n

αa + ϵa,u(ϵ)
+
nϵ

κa

]

≤ P

[
1

n

n∑
s=1

log
ra,s
κa
− 1

αa
≤ −ϵ

]
,

where the second inequality holds since r′a,1 = κ̂a ≤ κa + ϵ holds on Ka,n, the third inequality from log(1 + x) ≤ x for

x > −1, and the last inequality comes from the definition of ϵa,u(ϵ). From Fact 13, ya,s := log
(

ra,s

κa

)
∼ Exp(αa) and the

last probability can be considered as a deviation of the sum of exponentially distributed random variables.

For the exponential distribution Exp(α), we say that Bernstein’s condition with parameter b holds if

E [Mk] ≤
1

2
k!

1

α2
bk−2 for k = 3, 4, . . . ,

where Mk implies the k-th central moment. For Exp(αa), it holds that

E [Mk] =
!k

αk
a

≤ k!

2

1

α2
a

(
1

αa

)k−2

,
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where !k is the subfactorial of k such that !k ≤ k!
e + 1

2 ≤
k!
2 for k ≥ 3. Hence, the exponential distribution with parameter

αa satisfies Bernstein’s condition with parameter 1
αa

, so that it is subexponential with parameters
(

2
α2

a
, 2
αa

)
. Therefore, by

applying Lemma 20, we have

P

(∣∣∣∣∣ 1n
n∑

s=1

ya,s −
1

αa

∣∣∣∣∣ ≥ ϵ
)
≤ 2 exp

(
−n
4
min{α2

aϵ
2, αaϵ}

)
.

Note that it holds for ϵ < κa

αa(κa+1) that

P[α̂a ≤ αa − ϵa,l(ϵ) ∩ Ka,n] ≤ P

(
1

n

n∑
s=1

ya,s −
1

αa
≥ ϵ

)

P[α̂a ≥ αa + ϵa,u(ϵ) ∩ Ka,n] ≤ P

(
1

n

n∑
s=1

ya,s −
1

αa
≤ −ϵ

)
,

for ϵa,l(ϵ) =
ϵα2

a

1+ϵαa
and ϵa,u(ϵ) =

ϵα2
a(κa+1)

κa−ϵαa(κa+1) , which satisfy limϵ→0 max{ϵa,l(ϵ), ϵa,u(ϵ)} = 0+. Hence, by recovering
the original notations, we obtain

P[Ac
a,Na(t)

(ϵ),Ka,Na(t)(ϵ), Na(t) = n] = P[α̂a(n) ≤ αa − ϵa,l(ϵ),Ka,Na(t), Na(t) = n]

+ P[α̂a(n) ≥ αa + ϵa,u(ϵ),Ka,Na(t), Na(t) = n]

≤ 2 exp

(
−α

2
aϵ

2

4
n

)
,

for ϵ < 1
αa

with αa > 1.

C.5. Proof of Lemma 9

Before beginning the proof, we first provide the intermediate equation for the probability that the sampled mean is less than
the given value, which is used several times in the proof.
Lemma 17. For any arm a ∈ [K] and fixed t ∈ N, let Na(t) = n. For any prior parameter k ∈ Z, if y ≥ κ̂a(n), then

P[µ̃a(t) ≤ y|θa,n] =
∫ y

y−κ̂a(n)

1

fEr
n−k, n

αa,n
(x)

(
x− 1

κ̂a(n)x
y

)nx

dx+

∫ ∞

y
y−κ̂a(n)

fEr
n−k, n

αa,n
(x)dx.

Proof. Fix a time index t with Na(t) = n and denote Pt[·] = P[· | Ft]. To simplify notations, we drop the argument n of
κ̂a(n) and the argument t of κ̃a(t), α̃a(t), and µ̃a(t).

When κ̂a < y holds, µ̃a ≤ y can hold regardless of the value of κ̃a if κ̂a α̃a

α̃a−1 ≤ y holds since κ̃a ∈ (0, κ̂a] holds from its
posterior distribution in (9). Hence, if κ̂a < y, then

α̃(t) ≥ y

y − κ̂a
=⇒ µ̃a ≤ y. (49)

When 1 < α̃a <
y

y−κ̂a
,

µ̃a = κ̃a
α̃a

α̃a − 1
≤ y ⇔ κ̃a ≤ y

α̃a − 1

α̃a
. (50)

Since α̃a ≤ 1 implies µ̃a =∞, from (49) and (50), it holds that

Pt[µ̃a ≤ y] =
∫ y

y−κ̂a

1

fEr
n−k, n

αa,n
(x)Pt

[
κ̃a ≤

x− 1

x
y

]
dx+

∫ ∞

y
y−κ̂a

fEr
n−k, n

αa,n
(x)dx

=

∫ y
y−κ̂a

1

fEr
n−k, n

αa,n
(x)

(
x− 1

κ̂ax
y

)nx

dx+

∫ ∞

y
y−κ̂a

fEr
n−k, n

αa,n
(x)dx, (51)

where we recovered the CDF in (9) in (51).
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Lemma 9. For any arm a ∈ [K] and fixed t ∈ N, let Na(t) = n. For any positive ξ ≤ y
y−κa

and k ∈ Z, it holds that

1[κ̂a(n) ≤ y]P[µ̃a(t) ≤ y|θa,n] ≤
∫ ∞

ξ

fEr
n−k, n

αa,n
(x)dx+

(
y

µ((κa, ξ))

)n ∫ ξ

1

fEr
n−k, n

αa,n
(x)dx,

where fEr
s,β(·) denotes the probability density function of the Erlang distribution with shape s ∈ N and rate β > 0.

Proof. From Lemma 17, if y ≥ κ̂a(n), it holds that

P[µ̃a ≤ y|θa,n] =
∫ y

y−κ̂a

1

fEr
n−k, n

αa,n
(x)

(
x− 1

κ̂ax
y

)nx

dx+

∫ ∞

y
y−κ̂a

fEr
n−k, n

αa,n
(x)dx.

Take any finite y′ > y and let ξ := y′

y′−κa
< y

y−κa
such that µ((κa, ξ))) = y′. Since a

a−b is decreasing with respect to
a > b > 0, one can see that

1[κ̂a(n) ≤ y]P[µ̃a ≤ y|θa,n] ≤
∫ y

y−κ̂a

1

fEr
n−k, n

αa,n
(x)

(
x− 1

κ̂ax
y

)nx

dx+

∫ ∞

y
y−κ̂a

fEr
n−k, n

αa,n
(x)dx

≤
∫ y′

y′−κ̂a

1

fEr
n−k, n

αa,n
(x)

(
x− 1

κ̂ax
y

)nx

dx+

∫ ∞

y′
y′−κ̂a

fEr
n−k, n

αa,n
(x)dx

≤
∫ y′

y′−κa

1

fEr
n−k, n

αa,n
(x)

(
x− 1

κ̂ax
y

)nx

dx+

∫ ∞

y′
y′−κa

fEr
n−k, n

αa,n
(x)dx

≤
∫ ξ

1

fEr
n−k, n

αa,n
(x)

(
x− 1

κax
y

)n

dx+

∫ ∞

ξ

fEr
n−k, n

αa,n
(x)dx (52)

≤
(
ξ − 1

κaξ
y

)n ∫ ξ

1

fEr
n−k, n

αa,n
(x)dx+

∫ ∞

ξ

fEr
n−k, n

αa,n
(x)dx (53)

=

(
y

µ((κa, ξ))

)n ∫ ξ

1

fEr
n−k, n

αa,n
(x)dx+

∫ ∞

ξ

fEr
n−k, n

αa,n
(x)dx,

where (52) comes from κ̂a ≥ κa and we used the increasing property of x−1
x in (53).

C.6. Proof of Lemma 10

Lemma 10. Given ϵ > 0, define a positive problem-dependent constant ρ = ρθ1(ϵ) :=
κ1ϵ

2(µ1−ϵ/2−κ1)(µ1−κ1)
. If n ≥ n̄ =

max(2, k + 1), then for k ∈ Z≥0

pn(ϵ|θ1,n) ≤


e−n, if κ̂1(n) ≥ µ1 − ϵ,
h(µ1, ϵ, n), if κ̂1(n) ∈ K(ϵ), α1,n ≤ α1 + ρ,

C1(µ1, ϵ, n)Gk(1/α1,n;n) + 1−Gk(1/α1,n;n) if κ̂1(n) ∈ K(ϵ), α1,n ≥ α1 + ρ,

where

h(µ1, ϵ, n) := e−n 3ϵ
4µ1

(
1− 1

2
e−ncµ1

(ϵ)

)
+

1

2
e−ncµ1

(ϵ)

C1(µ1, ϵ, n) :=

(
µ1 − ϵ
µ1 − ϵ/2

)n

≤ e−n ϵ
2µ1−ϵ < 1

Gk(x;n) := FEr
n−k,nx(α1 + ρ)

for FEr defined in (11). Here, cµ1(ϵ) = ζ − log(1 + ζ) = O(ϵ−2) and ζ = ϵ
4µ1−2ϵ ∈ (0, 1) are deterministic constants of

µ1 and ϵ.

Proof. Similarly to other proofs, fix t and let N1(t) = n. To simplify notations, we drop the argument t of κ̃1(t), α̃1(t) and
µ̃1(t) and the argument n of κ̂1(n), α̂1(n), ᾱ1(n).
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Case 1. On {κ̂1 ≥ µ1 − ϵ} Under the condition {κ̂1 ≥ µ1 − ϵ}, the event {µ̃1 ≤ µ1 − ϵ} is eventually determined by the
value of κ̃ since {κ̃1 ∈ (µ1 − ϵ, κ̂1]} is a sufficient condition to {µ̃1 > µ1 − ϵ}. Therefore, if κ̂1 ≥ µ1 − ϵ, then

pn(ϵ|θ1,n) =
∫ ∞

1

fEr
n−k, n

α1,n

(x)

(
µ1 − ϵ
κ̂1

x− 1

x

)nx

dx.

Then,

1[κ̂1 ≥ µ1 − ϵ]pn(ϵ|θ1,n) = 1[κ̂1 ≥ µ1 − ϵ]
(∫ ∞

1

fEr
n−k, n

α1,n

(x)

(
µ1 − ϵ
κ̂1

x− 1

x

)nx

dx

)
≤ 1[κ̂1 ≥ µ1 − ϵ]

∫ ∞

1

fEr
n−k, n

α1,n

(x)

(
1− 1

x

)nx

dx

≤ 1[κ̂1(n) ≥ µ1 − ϵ]
∫ ∞

1

fEr
n−k, n

α1,n

(x)e−ndx

≤ 1[κ̂1(n) ≥ µ1 − ϵ]e−n,

where the second inequality holds from µ1 − ϵ ≤ κ̂1.

Case 2. On {κ̂1 ∈ K(ϵ), α1,n ≤ α1 + ρ} By applying Lemma 9 with y = µ1 − ϵ, we have for any ξ ≤ µ1−ϵ
µ1−ϵ−κ1

that

1[κ̂1 < µ1 − ϵ, α1,n ≤ α+ ρ]pn(ϵ|θ1,n) ≤
(

µ1 − ϵ
µ((κ1, ξ))

)n ∫ ξ

1

fEr
n−k, n

α1,n

(x)dx+

∫ ∞

ξ

fEr
n−k, n

α1,n

(x)dx

≤
(

µ1 − ϵ
µ((κ1, ξ))

)n ∫ ξ

0

fEr
n−k, n

α1,n

(x)dx+

∫ ∞

ξ

fEr
n−k, n

α1,n

(x)dx. (54)

Let us define ρ̄ := ρθ(ϵ/2). Then, it satisfies µ((κ1, α1 + ρ̄)) = µ1 − ϵ
4 and

α1 + ρ̄ =
µ− ϵ/4

µ− ϵ/4− κ1
<

µ− ϵ
µ− ϵ− κ1

,

where the inequality holds from the decreasing property of the function x
x−y with respect to x > y. By replacing ξ with

α1 + ρ̄ in (54), we have

1[κ̂1 < µ1 − ϵ, α1,n ≤ α1 + ρ]pn(ϵ|θ̄1,n)

≤ 1[κ̂1 < µ1 − ϵ, α1,n ≤ α1 + ρ]

((
µ1 − ϵ
µ1 − ϵ/4

)n ∫ ξ

0

fEr
n−k, n

α1,n

(x)dx+

∫ ∞

α1+ρ̄

fEr
n−k, n

α1,n(n)
(x)dx

)
≤ 1[κ̂1 < µ1 − ϵ, α1,n ≤ α1 + ρ]

(
e
−n

(
3ϵ

4µ1−ϵ

)
(1− P[α̃1 ≥ α1 + ρ̄]) + P[α̃1 ≥ α1 + ρ̄]

)
. (55)

Let Zn be a random variable that follows the chi-squared distribution with n degree of freedom and Fn(·) denote the CDF
of Zn. Then, it holds that

P
[
α̃1 ≥ α1 + ρ̄, α1,n ≤ α1 + ρ

]
= P

[
Z ≥ 2n

α1,n
(α1 + ρ̄), α1,n ≤ α1 + ρ

]
by Fact 12

≤ P
[
Z ≥ 2n

α1 + ρ̄

α1 + ρ

]
≤ P

[
Z ≥ 2n

µ1 − ϵ/4
µ1 − ϵ/2

]
= 1− F2n−2k(2n(1 + ζ)), (56)

where ζ = ϵ
4µ1−2ϵ ∈ (0, 1). By applying Lemma 21, we have if nζ > −k,

P[α̃1 ≥ α1 + ρ̄, α1,n ≤ α1 + ρ] ≤ 1− F2n−2k (2n(1 + ζ))

<
1

2

√
2π(n− k)n−k−1/2e−(n−k)

Γ(n− k)
erfc

(√
n(ζ + k)− (n− k) log n(1 + ζ)

n− k

)
,
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where Γ(·) denotes the Gamma function. For n ≥ 1/2, it holds from Stirling’s formula that
√
2πnn−1/2e−n ≤ Γ(n) ≤

√
2πe1/6nn−1/2e−n,

which results in

P[α̃1 ≥ α1 + ρ̄, α1,n ≤ α1 + ρ] <
1

2
erfc

(√
n(ζ + k)− (n− k) log n(1 + ζ)

n− k

)
. (57)

Notice that (n − k) log n(1+ζ)
n−k > 0 always holds from the assumption of nζ > −k where priors with k ∈ Z≥0 satisfies

regardless of n. Thus, if ζ + k ≤ 0, then the argument in the complementary error function in (57) becomes negative. This
makes the upper bound in (57) greater than or equal to 1

2 . Therefore, for the priors with k ∈ Z<0, the right term in (57) is
bounded by a constant since ζ ∈ (0, 1).

Since the complementary error function is a decreasing function, for priors with k ∈ Z≥0, it holds from (57) that

P[α̃1 ≥ α1 + ρ̄, α1,n ≤ α1 + ρ] ≤ 1

2
erfc

(√
n(ζ − log(1 + ζ)

)
,

where we substitute k = 0. By the change of variables, the complementary error function is bounded for any x ≥ 0 as
follows (Simon & Divsalar, 1998):

erfc(x) ≤ e−x2

,

which implies

P[α̃1 ≥ α1 + ρ̄, α1,n ≤ α1 + ρ] ≤ 1

2
e−ncµ1 (ϵ), (58)

where cµ1
(ϵ) = ζ − log(1 + ζ) > 0 is a deterministic constants on µ1 and ϵ. By combining (58) with (55), we have

1[κ̂1 < µ1 − ϵ, α1,n ≤ α1 + ρ]pn(ϵ|θ1,n) ≤ e−n 3ϵ
4µ1

(
1− 1

2
e−ncµ1 (ϵ)

)
+

1

2
e−ncµ1 (ϵ) =: h(µ1, ϵ, n).

From the power-series expansion of log(1 + x), we have log(1 + x) ≥ x− x2

2 + x3

3 for x ∈ (0, 1) and

cµ1
(ϵ) = ζ − log(1 + ζ) ≤ ζ2

2
− ζ3

3
=
ζ2

6
(3− 2ζ)

≤ ζ2

2
= O(ϵ−2).

Case 3. On {κ̂1 ∈ K(ϵ), α1,n ≥ α1 + ρ} By applying Lemma 9 with y = µ1 − ϵ and ξ = α1 + ρ, we have

1[κ̂1 < µ1 − ϵ]pn(ϵ|θ1,n) ≤
(

µ1 − ϵ
µ1 − ϵ/2

)n ∫ α1+ρ

1

fEr
n−k, n

α1,n

(x)dx+

∫ ∞

α1+ρ

fEr
n−k, n

α1,n

(x)dx

= C1(µ1, ϵ, n)P [α̃1 ∈ [1, α1 + ρ] | α1,n] + P [α̃1 ≥ α1 + ρ | α1,n]

≤ C1(µ1, ϵ, n)P [α̃1 ≤ α1 + ρ | α1,n] + P [α̃1 ≥ α1 + ρ | α1,n] ,

where C1(µ1, ϵ, n) :=
(

µ1−ϵ
µ1−ϵ/2

)n
≤ e−n ϵ

2µ1−ϵ < 1. Since α̃1 follows Erlang
(
n− k, n

α1,n

)
, it holds that

P [α̃1 ≤ α1 + ρ | α1,n] =
γ
(
n− k, n(α1+ρ)

α1,n

)
Γ(n− k)

,

where γ(·, ·) denotes the lower incomplete gamma function. Therefore, letting

Gk(x;n) :=
γ (n− k, n(α1 + ρ)x)

Γ(n− k)

concludes the proof.
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D. Proof of Theorem 3
As shown in proofs of Theorem 2, the integral term in (27) diverges for k ∈ Z≤1 without the restriction on α̂. In this

section, we provide the partial proof of Theorem 3 for k ∈ Z≤0, which shows the necessity of such requirement to achieve
asymptotic optimality.

Proof of Theorem 3. Recall that STS starts from playing every arms twice for priors k ≤ 1, i.e., Na(s) ≥ 2 holds for all
a ∈ {1, 2}. We have for T ≥ 5

E[Reg(T )] = ∆2E

[
T∑

t=1

1[j(t) = 2]

]

≥ ∆2E

[
T∑

t=5

1[j(t) = 2, N1(t) = 2]

]
.

From the definition of N1(·), {j(s) ̸= 2, N1(s) = 2} implies N1(t) > 2 for t > s. Therefore, for any t ≥ 5,

{j(t) = 2, N1(t) = 2} ⇔ {∀s ∈ [1, t− 4] : j(s+ 4) = 2}
⇔ {∀s ∈ [1, t− 4] : µ̃1(s+ 4) < µ2}.

Let T ′ = T − 4, then we have

E
[ T∑

t=5

1[j(t) = 2, N1(t) = 2]

]
= E

[
T∑

t=5

1 [∀s ∈ [1, t− 4] : µ̃1(s+ 4) < µ2]

]

= E

 T ′∑
s=1

(P[µ̃1 ≤ µ2|κ̂1(2), α̂1(2)])
s

 . (59)

Notice that the above discussion is applicable to any bandit instance.

Then, let us consider a two-armed bandit problem with θ1 = (κ, α1) and θ2 = (κ, α2). Let γ = max{⌈α2⌉, ⌊α2⌋+ 1} and
m = γ

γ−1 , so that µ2

m = κ α2

α2−1
γ−1
γ > κ. Assume 1 < α1 < α2 and µ̃2(s) = µ2 = κ α2

α2−1 for all s ∈ N.

Notice that κ̂1(N1(s)) = κ̂1(2) and α̂1(N1(s)) = α̂1(2) hold for all s ≥ 2 since only j(s) = 2 holds for all s ≥ 2. Here,
we first provide the lower bound on P[µ̃1 ≤ µ2|κ̂1, α̂1]. Since µ2

m = κα2

α2−1
γ−1
γ > κ holds, we can consider the case where

κ̂1(2) ≤ µ2

m occurs.

From Lemma 17, it holds for y ≥ κ̂1(n) that

P[µ̃1 ≤ y|θ̂1,n] =
∫ y

y−κ̂1(n)

1

fEr
n−k, n

α̂1(n)
(x)

(
x− 1

κ̂1(n)x
y

)nx

dx+

∫ ∞

y
y−κ̂1(n)

fEr
n−k, n

α̂1(n)
(x)dx

≥
∫ ∞

y
y−κ̂1(n)

fEr
n−k, n

α̂1(n)
(x)dx.

By letting n = 2 and y = µ2, we have for k ∈ Z≤1

P[µ̃1 ≤ µ2|κ̂1(2), α̂1(2)] ≥ 1

[
κ̂1(n) ≤

µ2

m

] ∫ ∞

µ2
µ2−κ̂

fEr
2−k, 2

α̂
(x)dx

≥ 1

[
κ̂ ≤ µ2

m

] ∫ ∞

γ

fEr
2−k, 2

α̂
(x)dx (60)

= 1

[
κ̂ ≤ µ2

m

] Γ(2− k, 2γα̂ )

Γ(2− k)
, (61)

where (60) holds from µ2

µ2−κ̂1(2)
≤ µ2

µ2−µ2/m
= m

m−1 = γ = ⌈α2⌉ and Γ(·, ·) is the upper incomplete Gamma function. To
simplify the notations, we drop the arguments on n and t of µ̃1(t), κ̂1(n), and α̂1(n) in the following sections.
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D.1. Priors k ∈ Z≤1

Note that Γ(n, x) is an increasing function with respect to n for fixed x. Therefore, (68) implies that if the lower bound of
regret for the reference prior is larger than the lower bound, then every prior with k ∈ Z≤0 are suboptimal. Therefore, let us
consider the case k = 1, where we can rewrite (68) as

P[µ̃1 ≤ µ2|κ̂1, α̂1] ≥ 1

[
κ̂1 ≤

µ2

m

] Γ(1, 2γα̂1
)

Γ(1)
= e−

2γ
α̂1 . (62)

Since α̂1(2) ∼ IG(1, 2α1) in (2), z := 2γ
α̂ follows an exponential distribution with rate parameter α1/γ, i.e., z ∼

Exp(α1/γ). By combining (62) with (59), we have

E

[
T∑

t=5

1[j(t) = 2, N1(t) = 2]

]
≥ Eκ̂,z

 T ′∑
s=1

(
1[κ̂ ≤ µ2/m]e−z

)s


= P[κ̂ ≤ µ2/m]Ez∼Exp(α1/γ)

 T ′∑
s=1

e−zs

 , (63)

where we used the stochastic independence of α̂ and κ̂. Here,

Ez∼Exp(α1/γ)

 T ′∑
s=1

e−zs

 = Ez∼Exp(α1/γ)

[
(1− e−zT ′

)
e−z

1− e−z

]

=

∫ ∞

0

(1− e−xT ′
)

e−x

1− e−x
e−

α1
γ xdx

≥
∫ ∞

0

(1− e−xT ′
)
e−2x

1− e−x
dx by

α1

γ
< 1

≥
(
1− 1

e

)∫ ∞

1
T ′

e−2x

1− e−x
dx

=

(
1− 1

e

)[
log(ex − 1)− z + e−z

]∞
x= 1

T ′

≥
(
1− 1

e

)(
log T ′ + 1− 3

2T ′

)
, (64)

where the last inequality holds from its power series expansion

log(ex − 1)− x+ e−x ≥ log(x) + 1− 3

2
x

and limx→∞ log(ex − 1) − x + e−x = 0. By combining (64) with (63) and (59) and elementary calculation with
κ̂1(2) ∼ Pa(κ1, 2α1), we have

E[Reg(T )] ≥ ∆2

(
1−

(
mκ

µ2

)2α1
)(

1− 1

e

)(
log T ′ + 1− 3

2T ′

)

= ∆2

(
1−

(
mκ

µ2

)2α1
)(

1− 1

e

)(
log(T + 4) + 1− 3

2(T + 4)

)
.

Therefore, under STS with k ∈ Z≤1, there exists a constant C(α1, α2) such that

lim inf
T→∞

E[Reg(T )]
log T

≥ C(α1, α2).
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D.2. Priors k ∈ Z≤0

Similarly to the last section, it is sufficient to consider the case k = 0, where we can rewrite (68) as

P[µ̃1 ≤ µ2|κ̂1, α̂1] ≥ 1

[
κ̂1 ≤

µ2

m

] Γ(2, 2γα̂1
)

Γ(2)
. (65)

From the definition of the upper incomplete Gamma function, we have

g(z) := Γ(2, z) =

∫ ∞

z

x1e−xdx = e−z(z + 1),

as a counterpart of e−z in (63) with the same notations z = 2γ
α̂1
∼ Exp

(
α1

γ

)
.

Therefore, by replacing e−zs in (63) with g(z)s, we have

Ez

 T ′∑
s=1

(g(z))s

 ≥ Ez

1[z ∈ (0, 1]]

T ′∑
s=1

(g(z))s


≥ Ez

1[z ∈ (0, 1]]

T ′∑
s=1

(1− z2)s


= Ez

[
1[z ∈ (0, 1]](1− (1− z2)T

′
)
1− z2

z2

]
,

where we used the fact z ∈ [0, 1], g(z) ≥ 1− z2 in the second inequality. Since z ∈
(
0, 1√

T ′

]
, (1− z2)T ′ ≤ 1

1+T ′z2 holds,

we have 1− (1− z2)T ′ ≥ T ′z2

1+T ′z2 . By applying this fact, we have for T ′ > 1,

Ez

[
T ′∑
s=1

(g(z))s

]
≥ Ez

[
T ′(1− z2)
1 + T ′z2

1

[
z ∈

(
0,

1√
T ′

]]]
≥ Ez∼Exp(α1/γ)

[(
T ′

2
− 1

2

)
1

[
z ∈

(
0,

1√
T ′

]]]
=

(
T ′

2
− 1

2

)∫ 1√
T ′

0

α1

γ
e−

α1
γ zdz (66)

=

(
T ′

2
− 1

2

)(
1− e−

α1
γ
√

T ′
)
.

Notice that e−x ≤ 1− x
2 holds for x < 1, which gives

Ez

[ T ′∑
s=1

(g(z))s
]
≥
(
T ′

2
− 1

2

)(
1− e−

α1
γ
√

T ′
)

≥
(
T ′

2
− 1

2

)
α1

2γ
√
T ′

=
α1

4γ

(√
T ′ − 1√

T ′

)
. (67)

By applying (67) to (59), we obtain for k ∈ Z≤0 and T ′ = T − 4 > 1,

E[Reg(T )] ≥ ∆2
α1

4γ

(
1−

(
mκ

µ2

)2α1
)(√

T ′ − 1√
T ′

)
= O(

√
T ).
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Notice that from the definition of m = γ
γ−1 = ⌈α2⌉

⌈α2⌉−1 , m κ
µ2

= m
(
1− 1

α2

)
< 1 holds. Therefore, under STS with priors

k ∈ Z≤0, there exists a constant C ′(α1, α2) > 0 such that

lim inf
T→∞

E[Reg(T )]√
T

≥ C ′(α1, α2).

D.3. Suboptimality for κ1 < κ2

In this section, we consider the two-armed Pareto bandit problem where κ1 < κ2 holds, indicating that the minimum reward
generated from arm 2 is greater than that from arm 1. Under this setting, we present a concrete example where the regret of
TS with prior parameter k ∈ Z≤1 is larger than the asymptotic regret lower bound in Lemma 1.

Theorem 18. Assume that the arm 1 follows Pa(κ1, α1) and the arm 2 follows Pa(κ2, α2) with κ1 < κ2 and 1 < α1 < α2.
When α̃1(t) and κ̃1(t) are sampled based on the posteriors in (8) and (9) with prior k ∈ Z≤1, respectively and µ̃2(t) = µ2

holds, there exists a constant C(α1, κ1, κ2) > 0 independent of α2 satisfying

lim inf
T→∞

E[Reg(T )]
log T

≥ C(α1, κ1, κ2),

where C(α1) >
∆2

KLinf (2)
holds for some instances. In particular, for k ∈ Z≤0, there exists a constant C ′(α1, κ1, κ2) > 0

independent of α2 satisfying

lim inf
T→∞

E[Reg(T )]√
T

≥ C ′(α1, κ1, κ2).

Proof. Recall that the discussion in the proof of Theorem 3 holds for any bandit instance until (59), which implies

E[Reg(T )] ≥ ∆2E

[
T∑

t=5

1[j(t) = 2, N1(t) = 2]

]

= E

[
T∑

t=5

1 [∀s ∈ [1, t− 4] : µ̃1(s+ 4) < µ2]

]

= E

[
T−4∑
s=1

(P[µ̃1 ≤ µ2|κ̂1(2), α̂1(2)])
s

]
.

From Lemma 17, if y ≥ κ̂1(n), then

P[µ̃1 ≤ y|θ̂1,n] =
∫ y

y−κ̂1(n)

1

fEr
n−k, n

α̂1(n)
(x)

(
x− 1

κ̂1(n)x
y

)nx

dx+

∫ ∞

y
y−κ̂1(n)

fEr
n−k, n

α̂1(n)
(x)dx

≥
∫ ∞

y
y−κ̂1(n)

fEr
n−k, n

α̂1(n)
(x)dx.

By letting n = 2 and y = µ2, we have for k ∈ Z≤1

P[µ̃1 ≤ µ2|κ̂1(2), α̂1(2)] ≥ 1 [κ̂1(2) ≤ κ2]
∫ ∞

µ2
µ2−κ̂1(2)

fEr
2−k, 2

α̂1(2)
(x)dx

≥ 1 [κ̂1(2) ≤ κ2]
∫ ∞

α2

fEr
2−k, 2

α̂1(2)
(x)dx ∵ α2 =

µ2

µ2 − κ2
≥ µ2

µ2 − κ̂1(2)

= 1 [κ̂1(2) ≤ κ2]
Γ(2− k, 2α2

α̂1(2)
)

Γ(2− k)
, (68)

where Γ(·, ·) is the upper incomplete Gamma function.
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By following the same steps in Sections D.1, just replacing γ with α2, one can obtain for k ∈ Z≤1 that

E[Reg(T )] ≥ ∆2

(
1−

(
κ1
κ2

)2α1
)(

1− 1

e

)(
log(T + 4) + 1− 3

2(T + 4)

)
.

An example of suboptimality Based on the discussion above, it holds for k ∈ Z≤1 that

lim inf
T→∞

E[Reg(T )]
log T

≥ ∆2

(
1−

(
κ1
κ2

)2α1
)
e− 1

e
.

Recall the closed form of the KLinf(2) in Lemma 1, which is

KLinf(2) = log

(
α2
µ1 − κ2
µ1

)
+

µ1

α2(µ1 − κ2)
− 1.

Then, let us consider the case θ1 = (1, 1.01) and θ2 = (10, 30) where µ1 = 101 and µ2 = 300
29 . In this case, it holds that

lim inf
T→∞

E[Reg(T )]
∆2 log T

≥

(
1−

(
κ1
κ2

)2α1
)
e− 1

e
≈ 0.626 > 0.428 ≈ 1

KLinf(2)
,

which shows the suboptimality of TS based on the probability matching prior with prior parameter k ∈ Z≤1.

E. Priors and posteriors
In this section, we provide details on the problem of Jeffreys prior and the probability matching prior under the multiparameter
models. One can find more details from references in this section.

E.1. Problems of the Jeffreys prior in the presence of nuisance parameters

The Jeffreys prior was defined to be proportional to the square root of the determinant of the FI matrix so that it remains
invariant under all one-to-one reparameterizations of parameters (Jeffreys, 1998). However, the Jeffreys prior is known to
suffer from many problems when the model contains nuisance parameters (Datta & Ghosh, 1995; Ghosh, 2011). Therefore,
Jeffreys himself recommended using other priors in the case of multiparameter models (Berger & Bernardo, 1992). For
example, for the location-scale family, Jeffreys recommended using alternate priors, which coincide with the exact matching
prior (DiCiccio et al., 2017).

As mentioned in the main text, it is known that the Jeffreys prior leads to inconsistent estimators for the variance in the
Neyman-Scott problem (see Berger & Bernardo, 1992, Example 3.). Another example is Stein’s example (Stein, 1959),
where the model of the Gaussian distribution with a common variance is considered. In this example, the Jeffreys prior lead
to an unsatisfactory posterior distribution since the generalized Bayesian estimator under the Jeffreys prior is dominated by
other estimators for the quadratic loss (see Robert et al., 2007, Example 3.5.9.). Note that Bernardo (1979) showed that the
reference prior does not suffer from such problems, which would explain why the reference prior shows better performance
than the Jeffreys prior in the multiparameter bandit problems.

E.2. Probability matching prior

The probability matching prior is a type of noninformative prior that is designed to achieve the synthesis between the
coverage probability of the Bayesian interval estimates and that of the frequentist interval estimates (Welch & Peers, 1963;
Tibshirani, 1989). Therefore, the posterior probability of certain intervals matches exactly or asymptotically the frequentist’s
coverage probability under the probability matching prior. If the posterior probability of certain intervals exactly matches
the confidence interval, such a prior is called an exact matching prior. In cases where the Bayesian interval estimate does
not exactly match the frequentist’s coverage probability, but the difference is small, it is called a k-th order matching prior.
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The difference between the two probabilities is measured by a remainder term, usually denoted as O(n− k
2 ), where n is the

sample size and k is the order of the matching1.

For example, let θ ∈ R+ be a parameter of interest. For some priors π(θ), let ψ(θ|Xn) be a posterior distribution after
observing n samples Xn. Then, for any α ∈ (0, 1), let us define θα > 0 such that∫ θα

0

ψ(θ|Xn)dθ = α.

When π(θ) is the second order probability matching prior, it holds that

P[θ ≤ θα|Xn] = α+O(n−1).

When π(θ) is the exact probability matching prior, we have

P[θ ≤ θα|Xn] = α.

For more details, we refer readers to Datta & Sweeting (2005) and Ghosh (2011) and the references therein.

E.3. Details on the derivation of posteriors

In this section, we provide the detailed derivation of posteriors.

Let the observation r = (r1, . . . , rn) of an arm and let q(n) =
∑n

s=1 log rs. Then, Bayes’ theorem gives the posterior
probability density as

p(κ, α | r) = p(r|κ, α)p(κ, α)∫∞
0

∫∞
0
p(r | κ, α)p(κ, α)dκdα

,

where

p(r | κ, α) = αnκnα

(
n∏

s=1

ra,s

)−α−1

1[κ ≤ κ̂(n)]

= αnκnα exp(−q(n)(α+ 1))1[κ ≤ κ̂(n)].

By direct computation with given prior with k ∈ Z, we have∫ ∞

0

∫ ∞

0

p(r | κ, α)p(κ, α)dκdα =

∫ ∞

0

∫ ∞

0

p(r | κ, α)α
−k

κ
dκdα

=

∫ ∞

0

αn−k exp(−q(n)(α+ 1))

∫ κ̂

0

κnα−1dκdα

=

∫ ∞

0

αn−k−1

n
e−q(n) exp(−α(q(n)− n log κ̂))dα

=
Γ(n− k)

n

e−q(n)

(q(n)− n log κ̂)n−k
.

Therefore, the joint posterior probability density is given as follows:

p(κ, α | r) = n[q(n)− n log κ̂(n)]n−k

Γ(n− k)
αn−kκnα−1e−q(n)α

1[0 < κ ≤ κ̂(n)],

which gives the marginal posterior of α as

p(α | r) = αn−k−1[q(n)− n log κ̂(n)]n−k

Γ(n− k)
e−α(q(n)−n log κ̂(n)). (69)

1Some papers call a prior k-th order matching prior when a remainder is O
(
n− k+1

2

)
(DiCiccio et al., 2017). In this paper, we follow

notations used in Mukerjee & Ghosh (1997) and Datta & Sweeting (2005).
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Thus, sample α̃ generated from the marginal posterior actually follows the Gamma distribution with shape n− k and rate
q(n) − n log κ̂(n) = n

α̂ , i.e., α̃ ∼ Erlang
(
n− k, nα̂

)
as n ∈ N and k ∈ Z if n > k. When α̃ is given, the conditional

posterior of κ is given as

p(κ | r, α) = p(κ, α | r)
p(α | r)

=
nα

κ̂nα
κnα−1

1[0 < κ ≤ κ̂(n)]. (70)

Hence, the cumulative distribution function (CDF) of κ given α is given as

P(κ ≤ x) = F (x | r, α = α̃) =

(
x

κ̂(n)

)nα̃

, 0 < x ≤ κ̂(n). (71)

Note that MLEs of κ, α are equivalent to the maximum a posteriori (MAP) estimators when one uses the Jeffreys prior (Sun
et al., 2020; Li et al., 2022).

In sum, under the aforementioned priors, we consider the marginalized posterior distribution on α

p(α | r) = Erlang
(
n− k, n

α̂

)
and the cumulative distribution function (CDF) of the conditional posterior of κ

F (x | r, α = α̃) =

(
x

α̂(n)

)nα̃

, 0 < x ≤ κ̂(n).

Note that we require max {2, k + 1} initial plays to avoid improper posteriors and improper MLEs.

E.4. The uniform priors

The uniform prior with (κ, α) parameterization, i.e., πu(κ, α) ∝ 1 cannot be represented in the probability matching priors
considered in this paper, πpm(κ, α) ∝ α−k

κ . One reason to choose πpm is its simplicity in implementation as we can obtain
the closed form of the posterior, which preserves one of the main advantages of TS. On the other hand, the marginalized
posterior density of α based on πu(κ, α) can be approximated when Na(t) = n as

πu(α | Ft) ∝
αn

nα+ 1
exp

(
− n

α̂a(n)
α

)
,

which cannot be written as some well-known distributions. In contrast, the posterior density based on πpm(κ, α) is written
as

πk
pm(α | Ft) ∝ αn−k−1 exp

(
− n

α̂a(n)
α

)
,

which is a density function of the Erlang distribution in (10). Based on the above formulations, we expect that the uniform
prior with (κ, α) parameterization will behave similarly to the probability matching priors with k ∈ (0, 1). In other
words, the uniform prior with (κ, α) parameterization is expected to be more optimistic than the reference prior and more
conservative than the Jeffreys prior. In summary, the uniform prior is not only difficult to implement but also suboptimal for
the Pareto bandits.

F. Technical lemma
In this section, we present some technical lemmas used in the proof of main lemmas.

Lemma 19. Let Z be a random variable following the chi-squared distribution with the degree of freedom 2n. Then, for
any x ∈ (0, 1)

P[Z ≤ 2nx] ≤ e−nh(x),

where h(x) = (x− 1− log x) ≥ 0.
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Proof. LetXi be random variables following the standard normal distribution so that Z =
∑2n

i=1X
2
i holds. From Lemma 22,

one can derive

P[Z ≤ 2nx] = P

[
1

2n

2n∑
i=1

X2
i ≤ x

]
≤ exp

{(
−2n inf

z≤x
Λ∗(z)

)}
.

From the definition of the moment-generating function, one can see that

Λ∗(z) = sup
λ∈R

λz − logE
[
eλX

2
1

]
= sup

λ∈R
λz +

1

2
log(1− 2λ) =

1

2
(z − 1− log z),

which concludes the proof.

G. Known results
In this section, we present some known lemmas that we use without proof.

Lemma 20 (Bernstein’s inequality). Let X be a (σ2, b)-subexponential random variable with E[X] = µ and V ar[X] = σ2,
which satisfies

E[eλX ] ≤ exp

{
λ2σ2

2

}
for |λ| ≤ 1

b
.

Let Xi be independent (σ2, b)-subexponential. Then, it holds that

P

(∣∣∣∣∣ 1n
n∑

s=1

Xi − µ

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
−n
2
min

{
t2

σ2
,
t

b

})
.

For more details, we refer the reader to Vershynin (2018).

Lemma 21 (Theorem 4.1. in Wallace (1959)). Let Fn be the distribution function of the chi-squared distribution on n
degrees of freedom. For all t > n, all n > 0, and with w(t) =

√
t− n− n log(t/n),

1− Fn(t) <
dn
2
erfc

(
w(t)√

2

)
,

where dn =
(n

2 )
n−1
2 e−

n
2
√
2π

Γ(n/2) and erfc(·) is the complementary error function.

Lemma 22 (Cramér’s theorem). Let X1, . . . , Xn be i.i.d. random variables on R. Then, for any convex set C ∈ R,

P

[
1

n

n∑
i=1

Xi ∈ C

]
≤ exp

{(
−n inf

z∈C
Λ∗(z)

)}
,

where Λ∗(z) = supλ∈R λz − logE[eλX1 ].

Lemma 23 (Result of term (A) in Korda et al. (2013)). When one uses the Jeffreys prior as a prior distribution under the
Pareto distribution with known scale parameter, TS satisfies that for sufficiently small ϵ > 0,

T∑
t=1

E [1[j(t) ̸= 1,Mc
ϵ(t)]] ≤ O

(
ϵ−1
)
.

H. Additional experimental results
From Figure 4, one can observe that the performance difference between STS and STS-T is large as k decreases. Since a
truncation procedure aims to prevent an extreme case that can occur under STS with priors k ∈ Z≤1, it is quite natural to
see that there is no difference between STS and STS-T with prior k = 3. We can further see the improvement of STS-T is
dramatic as k decreases, where an extreme case can easily occur.
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(a) The Jeffreys prior k = 0 (b) The reference prior k = 1

(c) Prior with k = 3 (d) Prior with k = −1 (e) Prior with k = −3

Figure 4. The solid lines denotes an averaged regret over independent 100,000 runs. The shaded regions show a quarter standard deviation.

Comparison with KL-UCB policy in the bounded moment model When prior knowledge of the moment is available,
one can utilize policies specifically designed for the bounded-moment bandit model (Agrawal et al., 2021; Bubeck et al.,
2013). As briefly introduced in Section 2.3, a variant of KL-UCB policy proposed by Agrawal et al. (2021) is known to be
asymptotically optimal for the model where the moment of any arm a satisfies

E[|ra,n|γ ] ≤ vγ (72)

for some fixed γ ≥ 1 and known vγ <∞.

Let us denote the collection of distributions satisfying the condition in (72) by Lvγ . Originally, KL-UCB policy proposed by
Agrawal et al. (2021) first considers the infimum of KL divergence expressed by

KLLvγ

inf (ν, x) := inf{KL(ν, ν′) : ν′ ∈ Lvγ and Eν′ [X] ≥ x}

for distribution ν belonging to the class of distributions Lvγ and candidate mean x ∈ R. Then, KL-UCB selects an arm

j(t) = argmax
a∈[K]

max
{
x ∈ R : ν ∈ Lvγ , Na(t)KLLvγ

inf (ν̂a(Na(t)), x) ≤ ga(t)
}
, (73)

where ν̂a(Na(t)) denotes the empirical distributions of the arm a after observing Na(t) samples and ga(t) denotes the
threshold function and we used ga(t) = log(t) + 2 log log(t) + 2 log(1 +Na(t)) + 1 following Theorem 1 in Agrawal et al.
(2021). Notice that there are several variants of KL-UCB with different threshold functions and reward models (Kaufmann,
2018; Garivier & Cappé, 2011; Ménard & Garivier, 2017).
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(b) Cumulative regret of STS-T with various k under θ4

and KL-UCB

Figure 5. The solid lines denote the averaged cumulative regret over 100,000 independent runs of priors that can achieve the optimal lower
bound in (3). The dashed lines denote that of priors that cannot achieve the optimal lower bound in (3). The purple dash-dotted line
denotes the averaged cumulative regret over 10,000 independent runs of KL-UCB (Agrawal et al., 2021). The shaded regions show a
quarter standard deviation. The green dotted line denotes the problem-dependent lower bound based on Lemma 1.

However, the computation of j(t) requires solving an optimization problem involving the inverse function of KL-divergence,
which is very costly. Therefore, in this paper, we made three modifications to the KL-UCB policy for computational
efficiency.

• We adopt a batched version of KL-UCB proposed by Agrawal et al. (2021), where we play an arm several times. Here,
we play max(1,

⌈
0.1Nj(t)(t)

⌉
) times following the experiments in the original paper.

• We restricted Lvγ to the collection of Pareto distributions that satisfies the bounded moment condition in (72).

• We replaced the empirical distributions in (73) with the Pareto distribution using its MLEs in (2) that can be derived
from sufficient statistics (Malik, 1970).

In short, we consider the following modified KL-UCB that plays an arm

j(t) = argmax
a∈[K]

max

{
κα

α− 1
:
ακγ

α− γ
≤ vγ , α > γ,Na(t)KL(Pa(κ̂a(t), α̂a(t)),Pa(κ, α)) ≤ ga(t)

}
,

for ga(t) = log(t) + 2 log log(t) + 2 log(1 +Na(t)) + 1. In our experiment, we choose γ = 1.3 and v1.3 = 19.7. This
choice is in favor of KL-UCB since maxa∈[4] E[|ra,n|1.3] = 19.7 under θ4, that is, it corresponds to the case where the
algorithm exactly knows the maximum moment of the arms.

Due to its high computational costs, the averaged cumulative regret over 10,000 independent runs of KL-UCB is given in
Figure 5, while we plotted the same results with 100,000 independent runs of STS and STS-T. Figure 5 clearly demonstrates
that TS-based policies with optimal priors outperform KL-UCB, even though we adopt KL-UCB to the specific reward
model of the Pareto distribution and provided additional information on the moment, which is not given to TS-based policies.

A challenging problem We further consider another 4-armed bandit problem θ′
4 where κ = (1.0, 1.5, 2.0, 2.0) and

α = (1.2, 1.5, 1.8, 2.0) where µ = (5.0, 4.5, 4.5, 4.0). θ′
4 would be a more challenging problem than θ4 in the sense that

the κ determines the left boundary of the support, where larger κ implies larger minimum value of the arm. Therefore,
if κ of the suboptimal arm is larger than that of the optimal arm, it would make a problem difficult in the first few trials.
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(a) Cumulative regret of STS with various k under θ′
4 (b) Cumulative regret of STS-T with various k under θ′

4

Figure 6. The solid lines denote the averaged cumulative regret over 100,000 independent runs of priors that can achieve the optimal lower
bound in (3). The dashed lines denote that of priors that cannot achieve the optimal lower bound in (3). The green dotted line denotes the
problem-dependent lower bound based on Lemma 1.

Figures 6 and 7 show the numerical results with time horizon T = 50,000 and independent 10,000 runs. Although STS with
the reference prior shows similar performance to the conservative prior k = 3, its performance varies a lot.

Figures 7(a) and 7(b) show the effectiveness of the truncation procedure where STS-T has a much smaller upper 0.05%
regret than that of STS. Although k = −1 also shows huge improvements in the central 99% interval of regret as shown in
Figure 7(d), STS-T with k = −1 shows worse performance compared with priors with k ∈ Z≥0 in Figure 6(b).
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(a) The Jeffreys prior k = 0 (b) The reference prior k = 1

(c) Prior with k = 3 (d) Prior with k = −1 (e) Prior with k = −3

Figure 7. The solid lines denotes an averaged regret over independent 10,000 runs. The shaded regions and dashed lines show the central
99% interval and the upper 0.05% of regret, respectively.
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