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Abstract

Previous studies have verified that the functionality of black-box models can be1

stolen with full probability outputs. However, under the more practical hard-label2

setting, we observe that existing methods suffer from catastrophic performance3

degradation. We argue this is due to the lack of rich information in the probability4

prediction and the overfitting caused by hard labels. To this end, we propose a5

novel hard-label model stealing method termed black-box dissector, which consists6

of two erasing-based modules. One is a CAM-driven erasing strategy that is7

designed to increase the information capacity hidden in hard labels from the victim8

model. The other is a random-erasing-based self-knowledge distillation module9

that utilizes soft labels from the substitute model to mitigate overfitting. Extensive10

experiments on four widely-used datasets consistently demonstrate that our method11

outperforms state-of-the-art methods, with an improvement of at most 8.27%. We12

also validate the effectiveness and practical potential of our method on real-world13

APIs and defense methods. Furthermore, our method promotes other downstream14

tasks, i.e., transfer adversarial attacks.15

1 Introduction16

Machine learning models deployed on the cloud can serve users through the application program17

interfaces (APIs) to improve productivity. Since developing these cloud models is a product of18

intensive labor and monetary effort, these models are valuable intellectual property and AI companies19

try to keep them private. However, the exposure of the model’s predictions represents a significant20

risk as an adversary can leverage this information to steal the model’s functionality, a.k.a. model21

stealing attack [22, 20, 21]. With such an attack, adversaries are able to not only use the stolen model22

to make a profit, but also mount further adversarial attacks [34, 29]. Besides, the model stealing23

attacks is a kind of black-box knowledge distillation which is a hot research topic. Studying various24

mechanisms of model stealing attack is of great interest both to AI companies and researchers.25

Previous methods [20, 34, 21] mainly assume the complete probability predictions of the victim26

model available, while the real-world APIs usually only return partial probability values (top-k27

predictions) or even the top-1 prediction (i.e., hard label). In this paper, we focus on the more28

challenging and realistic scenario, i.e., the victim model only outputs the hard labels. However, under29

this setting, existing methods suffer from a significant performance degradation, even by 30.50% (as30

shown in the Fig. 1 (a) and the appendix Tab. I).31

To investigate the reason for the degradation, we evaluate the performance of attack methods with32

different numbers of prediction probability categories available and hard labels as in Fig. 1 (b). With33

the observation that the performance degrades when the top-k information missing, we conclude34

that the top-k predictions are informative as it indicates the similarity of different categories or35

multiple objects in the picture, and previous attack methods suffer from such information obscured36
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by the top-1 prediction under the hard-label setting. It motivates us to re-mine this information by37

eliminating the top-1 prediction. Particularly, we design a novel CAM-based erasing method, which38

erases the important area on the pictures based on the substitute model’s top-1 class activation maps39

(CAM) [24, 33] and queries the victim model for a new prediction. Note that we can dig out other40

class information in this sample if the new prediction changes. Otherwise, it proves that the substitute41

model pays attention to the wrong area. Then we can align the attention of the substitute and the42

victim model by learning clean samples and the corresponding erased samples simultaneously.43

(a)Hard label vs soft label

(c)W/O self-KD (d)W/ self-KD

(b) Performance with top-k available

Figure 1: (a) The test accuracies of previous methods with
hard labels are much lower than the ones with soft labels.
(KN: KnockoffNets, ‘AT’: ActiveThief, ‘E’: entropy, ‘K’:
k-Center, ‘D’: DFAL) (b) The performance decreases as the
number of available classes decreases (dotted line : hard-
label setting). (c) & (d) Loss curves for training/test set
during model training without and with self-KD. All results
are on the CIFAR10 dataset.

Besides, previous works on the44

self-Knowledge Distillation (self-45

KD) [15], calibration [8], and noisy46

label [31] have pointed out the47

hard and noisy labels will introduce48

overfitting and miscalibration. More49

specifically, the attack algorithms50

cannot access the training data, and51

thus can only use the synthetic data or52

other datasets as a substitute, which53

is noisy. Therefore, the hard-label54

setting will suffer from overfitting,55

which leads to worse performance,56

and we verify it by plotting the loss57

curves in Fig. 1 (c). To mitigate58

this problem, we introduce a simple59

self-knowledge distillation module60

with random erasing (RE) to utilize61

soft labels for generalization. Partic-62

ularly, we randomly erase one sample63

a certain number of times, query64

the substitute model for soft-label65

outputs, and take the average value66

of these outputs as the pseudo-label.67

After that, we use both hard labels68

from the victim model and pseudo labels from the previous substitute model to train a new substitute69

model. Therefore, we can also consider the ensemble of the two models as the teacher in knowledge70

distillation. As in Fig. 1 (d), such a module helps generalization and better performance.71

In summary, we propose a novel model stealing framework termed black-box dissector, which72

includes a CAM-driven erasing strategy and a RE-based self-KD module. Our method is orthogonal73

to previous approaches [20, 21] and can be integrated with them. The experiments on four widely-74

used datasets demonstrate our method achieves 43.04 − 90.57% test accuracy (47.60 − 91.37%75

agreement) to the victim model, which is at most 8.27% higher than the state of the art method.76

We also proved that our method can defeat popular defense methods and is effective for real-world77

APIs like services provided by Amazon Web Services (AWS). Furthermore, our method promotes78

downstream tasks, i.e., transfer adversarial attack, with 4.91%− 16.20% improvement.79

2 Background and Notions80

Model stealing attack is aim to find a substitute model f̂ : [0, 1]d 7→ RN that performs as similarly81

as possible to the black-box victim model f : [0, 1]d 7→ RN (with only outputs accessed). Papernot82

et al. [22] first observed that online models could be stolen through multiple queries. After that, due83

to the practical threat to real-world APIs, several studies paid attention to this problem and proposed84

many attack algorithms.85

These algorithms consist of two stages: 1) constructing a transfer dataset DT (step 1 in Fig. 2) and86

2) training a substitute model. The transfer dataset is constructed based on data synthesis or data87

selection and then feed into the victim model for labels. Methods based on data synthesis [34, 14, 2]88

adopt the GAN-based models to generate a virtual dataset. And the substitute model and the GAN89

model are trained alternatively on this virtual dataset by querying the victim model iteratively. The90

data selection methods prepare an attack dataset as the data pool, and then sample the most informative91
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Figure 2: Details of our proposed black-box dissector with a CAM-driven erasing strategy (step 2.1)
and a RE-based self-KD module (step 2.2). In step 2.1, the images in transfer set DT are erased
according to the Grad-CAM, and we selected the erased images with the largest difference from
the original images according to the substitute model’s outputs. In step 2.2, we randomly erase the
unlabeled image N times, and then average the outputs of the N erased images by the substitute
model as the pseudo-label.

data via machine learning algorithms, e.g., reinforcement learning [20] or active learning strategy [21],92

uncertainty-based strategy [17], k-Center strategy [25], and DFAL strategy [5]. Considering that93

querying the victim model will be costly, the attacker usually sets a budget on the number of the94

queries, so the size of the transfer dataset should be limited as well. Previous methods assume the95

victim model returns a complete probability prediction f(x), which is less practical.96

In this paper, we focus on a more practical scenario that is about hard-label φ(f(x)) setting, where φ97

is the truncation function used to truncate the information contained in the victim’s output and return98

the corresponding one-hot vector:99

φ(f(x))i :=

{
1 if i = arg maxn f(x)n ;

0 otherwise .
(1)

With the transfer dataset, the substitute model is optimized by minimizing a loss function L (e.g.,100

cross-entropy loss function):101 {
Ex∼DT

[
L
(
f(x), f̂(x)

)]
, for soft labels;

Ex∼DT

[
L
(
φ(f(x)), f̂(x)

)]
, for hard labels.

(2)

Knowledge distillation (KD) has been widely studied in machine learning [10, 1, 6], which transfers102

the knowledge from a teacher model to a student model. Model stealing attacks can be regarded as a103

black-box KD problem where the victim model is the teacher with only outputs accessible and the104

substitute model is the student. The main reason for the success of KD is the valuable information105

that defines a rich similarity structure over the data in the probability prediction [10]. However,106

for the hard-label setting discussed in this paper, this valuable information is lost. Inspired by KD,107

our method tries to dig out the hidden information in the data and models, and then transfers more108

knowledge to the substitute model.109

The erasing-based method, e.g., random erasing (RE) [32, 3], is currently one of the widely used110

data augmentation methods, which generates training images with various levels of occlusion, thereby111

reducing the risk of over-fitting and improving the robustness of the model. Our work is inspired112

by RE and designs a prior-driven erasing operation, which erases the area corresponding to the hard113

label to re-mine missing information.114
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3 Method115

The overview of our proposed black-box dissector is shown in Fig. 2. In addition to the conventional116

process (i.e., the transfer dataset DT constructing in step 1 and the substitute model training in the117

right), we introduce two key modules: a CAM-driven erasing strategy (step 2.1) and a RE-based118

self-KD module (step 2.2).119

3.1 A CAM-driven erasing strategy120
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Figure 3: An example from the ILSVRC-2012 dataset and
its attention map corresponding to two most likely class
“Anna humming bird" and “Common yellow throat" on the
CUBS200 trained model. The attention areas share similar
visual apparent with images of “Anna humming bird" and
“Common yellow throat", respectively.

Since the lack of class similarity infor-121

mation degrades the performance of122

previous methods under the hard-label123

setting, we try to re-dig out such hid-124

den information. Taking an example125

from the ILSVRC-2012 dataset for il-126

lustration as in Fig. 3. Querying the127

CUBS200 trained victim model with128

this image, we get two classes with129

the highest confidence score: “Anna130

hummingbird" (0.1364) and “Com-131

mon yellowthroat" (0.1165), and show132

their corresponding attention map in133

the first column of Fig. 3. It is easy to134

conclude that two different attention135

regions response for different classes136

according to the attention map. When137

training the substitute model with the138

hard label “Anna hummingbird" and139

without the class similarity informa-140

tion, the model can not learn from the area related to the “Common yellowthroat" class, which means141

this area is wasted. To re-dig out the information about the “Common yellowthroat" class, we need to142

erase the impact of the “Anna hummingbird" class.143

To this end, a natural idea is to erase the response area corresponding to the hard label. Since the144

victim model is a black-box model, we use the substitute model to approximately calculate the145

attention map instead. If the attention map calculated by the substitute model is inaccurate and the146

victim model’s prediction on the erased image does not change, we can also align the attention map of147

two models by letting the substitute model learn the original image and the erased one simultaneously.148

The attention map is also a kind of supervision signal pushing two models to be similar [30]. To149

get the attention map, we utilize the Grad-CAM [24] in this paper. With the input image x ∈ [0, 1]d150

and the trained DNN F : [0, 1]d 7→ RN , we let αck denote the weight of class c corresponding to the151

k-th feature map, and calculate it as αck = 1
Z

∑
i

∑
j
∂F(x)c

∂Ak
ij

, where Z is the number of pixels in the152

feature map, F(x)
c is the score of class c and Akij is the value of pixel at (i, j) in the k-th feature153

map. After obtaining the weights corresponding to all feature maps, the final attention map can be154

obtained as ScGrad−CAM = ReLU(
∑
k α

c
kA

k) via weighted summation.155

To erase the corresponding area, inspired by [32], we define a prior-driven erasing operation as156

ψ(I, P ), shown in Alg. 1, which randomly erases a rectangle region in the image I with random157

values while the central position of the rectangle region is randomly selected following the prior158

probability P . The prior probability P is of the same size as the input image and is used to determine159

the probability of different pixels being erased. Here, we use the attention map from Grad-CAM as160

the prior. Let x ∈ [0, 1]d denote the input image from the transfer set and Sarg max f̂(x)
Grad−CAM (x, f̂) denote161

the attention map of the substitute model f̂ . This CAM-driven erasing operation can be represented:162

ψ
(
x, S

arg max f̂(x)
Grad−CAM (x, f̂)

)
. (3)

We abbreviate it as ψ(x, S(x, f̂)). To alleviate the impact of inaccurate CAM caused by the difference163

between the substitute model and the victim one, for each image, we perform this operation N times164

(ψi means the i-th erasing) and select the one with the largest difference from the original label.165
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Algorithm 1: Prior-driven Erasing Operation ψ(I, P )

Input: Input image I , prior probability P , image size W and H , area of image S, erasing area
ratio range sl and sh, erasing aspect ratio range r1 and r2.

Output: Erased image I ′.
1 Se ← Rand(sl, sh)× S, re ← Rand(r1, r2)1

2 He ←
√
Se × re/2,We ←

√
Se

re
/2

3 xe, ye sampled randomly according to P
4 Ie ← (xe −We, ye −He, xe +We, ye +He)
5 I(Ie)← Rand(0, 255)
6 I ′ ← I

Such a data augment operation helps the erasing process to be more robust. We use the cross-entropy166

to calculate the difference between the new label and the original label, and we want to select the167

sample with the biggest difference. Formally, we define Π(x) as the function to select the most168

different variation of image x:169

Π(x) := ψk(x, S(x, f̂)),

where k := arg max
i∈[N ]

−
∑
j

φ (f (x))j · log
(
f̂
(
ψi(x, S(x, f̂))

)
j

)
= arg max

i∈[N ]

− log

(
f̂
(
ψi(x, S(x, f̂))

)
arg maxφ

(
f(x)
))

= arg min
i∈[N ]

f̂
(
ψi(x, S(x, f̂))

)
arg maxφ

(
f(x)
).

(4)

Due to the limitation of the number of queries, we cannot query the victim model for each erased170

image to obtain a new label. We continuously choose the erased image with the highest substitute’s171

confidence until reaching the budget. To measure the confidence of the model, we adopt the Maximum172

Softmax Probability (MSP) for its simplicity:173

arg max
x∼DT

MSP
(
f̂ (Π (x))

)
= arg max

x∼DT

f̂ (Π (x))arg max f̂(Π(x)),
(5)

where DT is the transfer set. The erased images selected in this way are most likely to change the174

prediction class. Then, we query the victim model to get these erased images’ labels and construct175

an erased sample set DE . Note that when the victim model’s predictions on the erased images176

change, it means our erasing method does dig out other related class information in the sample. With177

the unchanged predictions, it points out the attentions of the substitute model and the victim are178

inconsistent. Though wrong attention areas erased, training with these samples benefits aligning the179

attentions of two models. As [30] stated, the attention alignment can help more powerful KD.180

3.2 A random-erasing-based self-KD module181

We also find that in training with limited hard-label OOD samples, the substitute model is likely182

to overfit the training set, which damages its generalization ability [15, 31]. Therefore, based on183

the above erasing operation, we further design a simple RE-based self-KD method to improve the184

generalization ability of the substitute model.185

Formally, let x ∈ [0, 1]d denote the unlabeled input image. We perform the erasing operation with a186

uniform prior U on it N times, and then average the substitute’s outputs on these erased images as187

the pseudo-label of the original image:188

yp(x, f̂) =
1

N

N∑
i=1

f̂
(
ψi(x, U)

)
. (6)

1Rand(a, b) returns an evenly distributed random real number in the range of a to b.
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Algorithm 2: Black-box Dissector
Input: Unlabeled pool DU , victim model f , maximum number of queries Q.
Output: Substitute model f̂ .

1 Initialize q ← 0, DT ← ∅, DE ← ∅
2 while q < Q do
3 // Step 1
4 Select samples from DU according to budget and query f to updata DT

5 q = q + budget
6 L =

∑
x∈DT

L′
(
φ(f(x)), f̂(x)

)
7 f̂ ← update(f̂ ,L)
8 // A CAM-driven erasing strategy (step 2.1)
9 Erase samples in DT according to Eq. 4

10 Choose samples from erased samples according to Eq. 5 and budget
11 Query f to get labels and updata DE

12 L =
∑
x∈DT∪DE

L′
(
φ(f(x)), f̂(x)

)
13 f̂ ← update(f̂ ,L)
14 q = q + budget
15 // A random-erasing-based self-KD (step 2.2)
16 Select samples from DU

17 Get pseudo-labels according to Eq. 6 and construct a pseudo-label set DP

18 L =
∑
x∈DT∪DE

L′
(
φ(f(x)), f̂(x)

)
+
∑
x∈DP

L′
(
yp(x, f̂), f̂(x)

)
19 f̂ ← update(f̂ ,L)
20 end

This is a type of consistency regularization, which enforces the model to have the same predictions189

for the perturbed images and enhances the generalization ability. With Eq.6, we construct a new soft190

pseudo label set DP = {
(
x, yp(x, f̂)

)
, . . . }.191

With the transfer set DT , the erased sample set DE , and the pseudo-label set DP , we train a new192

substitute model using the ensemble of the victim model and the previous substitute model as the193

teacher. Our final objective function is:194

minL = min
[ ∑
x∈DT∪DE

L′
(
φ(f(x)), f̂(x)

)
+
∑
x∈DP

L′
(
yp(x, f̂), f̂(x)

)]
. (7)

where L′ can be commonly used loss functions, e.g., cross-entropy loss function.195

To sum up, we built our method on the conventional process of the model stealing attack (step196

1), and proposed a CAM-driven erasing strategy (step 2.1) and a RE-based self-KD module (step197

2.2) unified by a novel erasing method. The former strategy digs out missing information between198

classes and aligns the attention while the latter module helps to mitigate overfitting and enhance the199

generalization. We name the whole framework as black-box dissector and present the algorithm200

detail of it in Alg. 2.201

4 Experiment202

4.1 Experiment settings203

Victim model. The victim models we used (ResNet-34 [9]) are trained on four datasets, namely,204

CIFAR10 [16], SVHN [19], Caltech256 [7], and CUBS200 [28], and their test accuracy are 91.56%,205

96.45%, 78.40%, and 77.10%, respectively. All models are trained using the SGD optimizer with206

momentum (of 0.5) for 200 epochs with a base learning rate of 0.1 decayed by a factor of 0.1 every207

30 epochs. Following [20, 21, 34], we use the same architecture for the substitute model and will208

analyze the impact of different architectures in the supplementary.209

Attack dataset. We use 1.2M images without labels from the ILSVRC-2012 challenge [23] as the210

attack dataset. In a real attack scenario, the attacker may use pictures collected from the Internet, and211
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Table 1: The agreement and test accuracy (in %) of each method under 30k queries. For our model,
we report the average accuracy as well as the standard deviation computed over 5 runs. (Boldface:
the best value, italics: the second best value.)

Method CIFAR10 SVHN Caltech256 CUBS200
Agreement Acc Agreement Acc Agreement Acc Agreement Acc

KnockoffNets 75.32 74.44 85.00 84.50 57.64 55.28 30.01 28.03
ActiveThief(Entropy) 75.26 74.21 90.47 89.85 56.28 54.14 32.05 29.43
ActiveThief(k-Center) 75.71 74.24 81.45 80.79 61.19 58.84 37.68 34.64
ActiveThief(DFAL) 76.72 75.62 84.79 84.17 46.92 44.91 20.31 18.69
ActiveThief(DFAL+k-Center) 74.97 73.98 81.40 80.86 55.70 53.69 26.60 24.42
Ours+Random 82.14±0.16 80.47±0.02 92.33±0.47 91.57±0.29 62.15±0.52 59.91±0.58 38.28±0.31 35.24±0.49
Ours+k-Center 80.84±0.21 79.27±0.15 91.47±0.09 90.68±0.14 65.12±0.56 62.72±0.57 46.69±0.87 42.91±0.46

0 5000 10000 15000 20000 25000 30000
Queries

20

30

40

50

60

70

80

Ac
c(

%
) KnockoffNets

ActiveThief(Entropy)
ActiveThief(K-center)
ActiveThief(DFAL)
ActiveThief(DFAL+K-center)
Ours + Random
Ours + k-Center

(a) CIFAR10

0 5000 10000 15000 20000 25000 30000
Queries

20

30

40

50

60

70

80

90

Ac
c(

%
) KnockoffNets

ActiveThief(Entropy)
ActiveThief(K-center)
ActiveThief(DFAL)
ActiveThief(DFAL+K-center)
Ours + Random
Ours + k-Center

(b) SVHN

0 5000 10000 15000 20000 25000 30000
Queries

0

10

20

30

40

50

60

Ac
c(

%
) KnockoffNets

ActiveThief(Entropy)
ActiveThief(K-center)
ActiveThief(DFAL)
ActiveThief(DFAL+K-center)
Ours + Random
Ours + k-Center

(c) Caltech256

0 5000 10000 15000 20000 25000 30000
Queries

0

10

20

30

40

Ac
c(

%
) KnockoffNets

ActiveThief(Entropy)
ActiveThief(K-center)
ActiveThief(DFAL)
ActiveThief(DFAL+K-center)
Ours + Random
Ours + k-Center

(d) CUBS200

Figure 4: Curves of the test accuracy versus the number of queries.

the ILSVRC-2012 dataset can simulate this scenario well. Note that we resize all images in the attack212

dataset to fit the size of the target datasets, which is similar to the existing setting [20, 21, 34].213

Training process. We use the SGD optimizer with momentum (of 0.9) for 200 epochs and a base214

learning rate of 0.02 × batchsize
128 decayed by a factor of 0.1 every 60 epochs. The weight decay is215

set to 5 × 10−4 for small datasets (CIFAR10 [16] and SVHN [19]) and 0 for others. We set up a216

query sequence {0.1K, 0.2K, 0.5K, 0.8K, 1K, 2K, 5K, 10K, 20K, 30K} as the iterative maximum217

query budget, and stop the sampling stage whenever reaching the budget at each iteration.218

Baselines and evaluation metric. We mainly compare our method with KnockoffNets [20] and219

ActiveThief [21]. Follow Jagielski et al. [12], we mainly report the test accuracy (Acc) as the220

evaluation metric. We also report the Agreement metric proposed by Pal et al. [21] which counts how221

often the prediction of the substitute model is the same as the victim’s as a supplement.222

4.2 Experiment results223

We first report the performance of our method compared with previous methods. After that, we224

conduct ablation experiments to analyze the contribution of each module. Finally, we also analyze the225

performance of our method when encountering defense methods and real-world online APIs. More226

experiments (e.g., adversarial attack and overfitting analysis) can be found in our supplementary.227

Effectiveness of our method. As in Tab. 1, the test accuracy and agreement of our method are all228

better than the previous methods. We also plot the curves of the test accuracy versus the number of229

queries in Fig. 4. The performance of our method consistently outperforms other methods throughout230

the process. Since our method does not conflict with the previous sample selection strategy, they231

can be used simultaneously to further improve the performance of these attacks. Here, we take232

the k-Center algorithm as an example. Note that, with or without the sample selection strategy,233

our method beats the previous methods by a large margin. Particularly, the test accuracies of our234

method are 4.85%, 1.72%, 3.88%, and 8.27% higher than the previous best method, respectively.235

And the agreement metric shares similar results. It is also interesting that it is less necessary to use236

the k-Center algorithm on datasets with a small number of classes (i.e., CIFAR10 and SVHN). While237

for the datasets with a large number of classes, the k-Center algorithm can make the selected samples238

better cover each class and improve the effectiveness of the method.239

Ability to evade the SOTA defense method. The SOTA perturbation-based defense method, adap-240

tive misinformation [13], introduces an Out-Of-Distribution (OOD) detection module based on the241

maximum predicted value and punishes the OOD samples with a perturbed model f ′(·; θ′). The242

model f ′(·; θ′) is trained with arg minθ′ E(x,y)[− log(1− f ′(x; θ′)y)] to minimize the probability of243

7



Table 2: Ability to evade the state-of-the-art defense method (adaptive misinformation) on CIFAR10
dataset. The larger the threshold, the better the defence effect while the low victim model’s accuracy
(threshold 0 means no defence). Our method evades the defense best, and the self-KD part makes a
great difference.

Method Threshold
0 0.5 0.7 0.9

KnockoffNets 74.44% 74.13% 73.61% 54.98%
ActiveThief(k-Center) 74.24% 69.14% 59.78% 50.19%
ActiveThief(Entropy) 74.21% 71.61% 64.84% 51.07%
Ours 80.47% 79.95% 78.25% 74.40%
Ours w/o self-KD 79.02% 78.66% 73.61% 61.81%
victim model 91.56% 91.23% 89.10% 85.14%

the correct class. Finally, the output will be:244

y′ = (1− α)f(x; θ) + (α)f ′(x; θ′), (8)

where α = 1/(1 + eν(max f(x;θ)−τ)) with a hyper-parameter ν is the coefficient to control how245

much correct results will be returned, and τ is the threshold used for OOD detection. The model246

returns incorrect predictions for the OOD samples without having much impact on the in-distribution247

samples.248

We choose four values of the threshold τ to compare the effects of our method with the previous249

methods. The threshold value of 0 means no defence. The result is shown in Tab. 2. Compared250

with other methods, adaptive misinformation is almost invalid to our method. Furthermore, we find251

that if we remove the self-KD in our method, the performance is greatly reduced. We conclude that252

this is because adaptive misinformation adds noise labels to the substitute model’s training dataset,253

and self-KD can alleviate the overfitting of the substitute model to the training dataset, making this254

defence method not effective enough.255
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Figure 5: Ablation study on
CUBS200 dataset for the contribu-
tion of the CAM-driven erasing and
the self-KD in our method.

Ablation study. To evaluate the contribution of different mod-256

ules in our method, we conduct the ablation study on CUBS200257

dataset and plot the results in Fig. 5. If the CAM-driven erasing258

strategy is removed, the performance of our method will be259

greatly reduced, showing that it has an indispensable position260

in our method. We also give some visual examples in Fig. 7 to261

demonstrate that this strategy can help align the attention of two262

models. As depicted in the Fig. 7, at the beginning time, the263

substitute model learns the wrong attention map. Along with264

the iterative training stages, the attention area of the substitute265

model tends to fit the victim model’s, which conforms to our266

intention. We further remove the self-KD module to evaluate267

its performance. It can be found from Fig. 1 and Fig. 5 that268

the self-KD can improve the generalization of our method and269

further improve the performance.270
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Figure 6: The experiment on AWS
online API.

Stealing functionality of a real-world API. We validate our271

method is applicable to real-world APIs. The AWS Marketplace272

is an online store that provides a variety of trained ML models273

for users. It can only be used in the form of a black-box setting.274

We choose a popular model (waste classifier 2) as the victim275

model. We use ILSVRC-2012 dataset as the attack dataset and276

choose another small public waste classifier dataset 3, contain-277

ing 2, 527 images as the test dataset. As in Fig. 6, the substitute278

model obtained by our method achieves 12.63% and 7.32%279

improvements in test accuracy compared with two previous280

methods, which show our method has stronger practicality in281

the real world.282

2https://amzn.to/3nFvA54
3https://github.com/garythung/trashnet
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Table 3: Transferability of adversarial samples generated with PGD attack on the substitute models.

Method Substitute’s architecture
ResNet-34 ResNet-18 ResNet-50 VGG-16 DenseNet

KnockoffNets 57.85% 63.33% 52.04% 42.88% 60.77%
ActiveThief(k-Center) 57.44% 57.90% 57.01% 16.49% 60.72%
ActiveThief(Entropy) 63.56% 66.76% 58.19% 55.43% 62.05%
Ours 76.63% 74.10% 74.28% 67.03% 66.96%

Original image Victim’s CAMSubstitute’s CAM of  different stages

Figure 7: The visualized attention maps of the victim model and different stages substitute models
using the Grad-CAM. Along with the training stages, the attention map of the substitute model tends
to fit the victim model’s.

Transferability of adversarial samples. Though with the dominant performance on a wide range of283

tasks, deep neural networks are shown to be vulnerable to imperceptible perturbations, i.e., adversarial284

examples [27]. Since the model stealing attack can obtain a functionally similar substitute model,285

some previous works (e.g., JBDA [22], DaST [34] and ActiveThief [21]) used this substitute model286

to generate adversarial samples and then performed the transferable adversarial attack on the victim287

model. We argue that a more similar substitute model leads to a more successful adversarial attacks.288

We test the transferability of adversarial samples on the test set of the CIFAR10 dataset. Keeping the289

architecture of the victim model as the ResNet-34, we evaluate the attack success rate of adversarial290

samples generated from different substitute models (i.e., ResNet-34, ResNet-18, ResNet-50 [9], VGG-291

16 [26], DenseNet [11]). All adversarial samples are generated using Projected Gradient Descent292

(PGD) attack [18] with maximum L∞-norm of perturbations as 8/255. As shown in Tab. 3, the293

adversarial samples generated by our substitute models have stronger transferability in all substitute’s294

architectures. This again proves that our method is more practical in real-world scenarios.295

5 Conclusion296

We investigated the problem of model stealing attacks under the hard-label setting and pointed out297

why previous methods are not effective enough. We presented a new method, termed black-box298

dissector, which contains a CAM-driven erasing strategy and a RE-based self-KD module. We299

showed its superiority on four widely-used datasets and verified the effectiveness of our method300

with defense methods, real-world APIs, and the downstream adversarial attack. Though focusing301

on image data in this paper, our method is general for other tasks as long as the CAM and similar302

erasing method work, e.g., synonym saliency words replacement for NLP tasks [4]. We believe our303

method can be easily extended to other fields and inspire future researchers. Model stealing attack304

poses a threat to the deployed machine learning models. We hope this work will draw attention to305

the protection of deployed models and furthermore shed more light on the attack mechanisms and306

prevention methods.307
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