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Abstract

Spiking Neural Networks (SNNs) have demon-
strated remarkable potential across many domains,
including computer vision and natural language
processing, owing to their energy efficiency and
biological plausibility. However, their applica-
tion in long-term prediction tasks remains under-
explored, which is primarily due to two critical
challenges: (1) current SNN encoding methods
are unable to effectively encode long temporal
information, leading to increased computational
complexity and energy consumption; (2) though
Transformer-based models have achieved state-of-
the-art accuracy in temporal prediction tasks, the
absence of proper positional encoding for spik-
ing self-attention restricts Spiking Transformer
from effectively utilizing positional information,
resulting in performance degradation. To address
these challenges, we introduce an attention-free
framework, Spiking Fourier Network (SpikF),
that encodes input sequences in patches and em-
ploys an innovative frequency domain selection
mechanism to effectively utilize the sequential
properties of time-series data. Extensive evalua-
tions on eight well-established long-term predic-
tion datasets demonstrate that SpikF achieves an
averaged 1.9% reduction in Mean Absolute Error
(MAE) compared to state-of-the-art models, while
lowering total energy consumption by 3.16×.
Our code is available at https://github.com/WWJ-
creator/SpikF.

1. Introduction
Spiking Neural Networks (SNNs), as the third generation of
neural networks (Maass, 1997), emulate the brain’s informa-
tion processing mechanisms through discrete spike events
rather than continuous value computations (Roy et al., 2019).

1Tsinghua University, Beijing, China. Correspondence to:
Hong Chen <hongchen@tsinghua.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

This biologically-inspired approach addresses the critical
limitation of Artificial Neural Networks (ANNs) in energy
efficiency. While ANNs have dominated machine learning
applications, their substantial computational demands create
challenges for resource-constrained environments. By lever-
aging event-driven processing where computations occur
only during sparse spike events, SNNs achieve comparable
performance to ANNs with significantly reduced energy
consumption (Roy et al., 2019). This efficiency benefit
makes SNNs particularly suitable for edge computing and
real-time processing applications (Maass, 1996).

With these advantages, SNNs have made significant strides
across various machine learning domains, particularly in
computer vision. In image classification tasks, SNNs in-
tegrated with Transformer architectures (Vaswani et al.,
2017; Zhou et al., 2023; 2024) have achieved performance
on par with conventional ANNs. Similarly, in object de-
tection tasks, notable works such as Spiking-YOLO (Kim
et al., 2020) and SpikeYOLO (Luo et al., 2024) have fur-
ther demonstrated the potential of SNNs. Beyond computer
vision, SNNs have also shown promising results in natu-
ral language processing, exemplified by advancements like
SpikeGPT (Zhu et al., 2024), highlighting their versatility
across diverse domains.

However, the application of SNNs to long-sequence predic-
tion remains relatively unexplored. Though recent work (Lv
et al., 2024b), has investigated SNN performance in short-
sequence prediction tasks, comprehensive benchmarking of
SNNs on popular long-sequence prediction datasets (Elec-
tricity, Weather, ETT, Traffic and Exchange) has not been
extensively established.

The limited exploration of SNNs in long-term prediction
tasks is due to two critical challenges. Firstly, the cur-
rent spike encoding mechanisms employed in temporal pre-
diction tasks, such as delta encoding (Amir et al., 2017),
convolution-based encoding (Lv et al., 2024b), and linear-
based encoding (Lv et al., 2024b), treat the input sequence
as a monolithic entity. These approaches increase the hidden
dimension of the model, leading to a substantial computa-
tional burden that undermines the inherent energy efficiency
advantages of SNNs. Secondly, while ANN Transformer-
based models have achieved remarkable accuracy in long-
term prediction tasks, such as Autoformer (Wu et al., 2022),
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FEDformer (Zhou et al., 2022), PatchTST (Nie et al., 2023)
and iTransformer (Liu et al., 2024), the traditional self-
attention mechanism suffers from permutation-invariance
(Zeng et al., 2023), as detailed in Appendix A.1. This limi-
tation necessitates the incorporation of positional encoding
(Vaswani et al., 2017) to effectively embed positional infor-
mation into the input data. However, positional encoding in
Spiking Transformers remains underexplored. Despite inno-
vative approaches, such as central pattern generator-inspired
spiking positional encoding (Lv et al., 2024a), Spikformer
utilizing this mechanism exhibit only marginal performance
improvements and remain unable to deliver satisfactory
results in temporal prediction tasks. In fact, Spikformer
equipped with central pattern generator-inspired positional
encoding demonstrate suboptimal performance compared to
simpler SNN architectures, such as SpikeTCN (Tavanaei &
Maida, 2017) and SpikeRNN (Kim et al., 2019), incurring
accuracy losses of 2.6% and 7.7% in Root Relative Squared
Error (RSE), respectively. This performance gap under-
scores the current limitations of spiking positional encoding
techniques in effectively embedding positional information,
thereby hindering the potential of Spiking Transformers in
long-term prediction tasks.

In order to address the challenges, this paper proposes
Spiking Fourier Network (SpikF), an attention-free archi-
tecture. Specifically, SpikF adapts Spiking Patch Encoding
from Patch Embedding in PatchTST (Nie et al., 2023) and
incorporates a Spiking Frequency Selection mechanism to
model dependencies between patches, replacing the self-
attention mechanism and naturally leveraging the sequential
properties of time-series data. Our approach outperforms ex-
isting SOTA models by 1.9% across eight well-established
long-term prediction real-world datasets while reducing en-
ergy consumption by 75.05% in a representative study on
the ECL dataset. SpikF provides a computationally efficient
framework for long-term forecasting, demonstrating excep-
tional suitability for energy-constrained scenarios and edge
device deployment. Our key contributions include:

• We propose a Spiking Patch Encoder which divides in-
put sequences into patches and independently encodes
each sub-series into binary spike trains. By reducing
computational complexity, this design enables SNNs
to effectively handle longer input sequences, thereby
enhancing their ability to utilize historical information.

• We propose a novel Spiking Frequency Selection mech-
anism that identifies and selects critical components
from input sequences to enhance prediction perfor-
mance. This mechanism establishes long-range tempo-
ral dependencies not only within the input sequence but
also between the sequence and prediction targets, lever-
aging the positional information inherently embedded
in the Fourier Transform.

• We conduct empirical evaluations across eight real-
world long-term time-series benchmark datasets,
demonstrating that SpikF achieves superior accuracy
over SOTA ANN models, with a 1.9% reduction in
MAE. Our extensive experiments across Electricity,
Weather, ETT, Traffic and Exchange datasets validate
the robustness of our approach and establish a foun-
dational SNN benchmark for the research community.
To our knowledge, SpikF is the first SNN-based bench-
mark providing full coverage across these datasets. It
not only expands the scope of SNN research by estab-
lishing a benchmark for future SNN-based temporal
prediction models, but also provides an efficient and in-
novative solution for the temporal prediction research
community.

2. Related Works
2.1. Time-series Prediction

The time-series prediction methodologies have developed
from traditional statistical approaches, such as ARIMA (Box
et al., 1978) and exponential smoothing (Hyndman et al.,
2008), to advanced deep learning architectures. These in-
clude Temporal Convolutional Networks (TCNs) (Bai et al.,
2018; donghao & wang xue, 2024), Recurrent Neural Net-
works (RNNs) (Zhang et al., 2023; Jia et al., 2024), and
Transformer-based models. In recent years, attention-based
models (Vaswani et al., 2017) have emerged as advanced
solutions for time-series forecasting. Significant progress
in this field has been made with models such as Informer
(Zhou et al., 2021) and Autoformer (Wu et al., 2022), which
tackle the quadratic time complexity of self-attention and
enhance temporal dependency modeling. More recent inno-
vations, such as PatchTST (Nie et al., 2023), enhance the
local semantic information of time-series by dividing input
sequences into patches, while iTransformer (Liu et al., 2024)
enhances the modeling of dynamic correlations among dif-
ferent variates through inverted token mechanisms. Despite
their remarkable performance, these models often require
substantial computational resources and energy, which re-
stricts their applicability in resource-constrained environ-
ments.

In contrast, SNNs have garnered limited but growing atten-
tion for time-series prediction. Several exploratory studies
have demonstrated their potential, including a two-phase
SNN for electricity load prediction (Kulkarni et al., 2013),
a polychronous spiking network for financial data predic-
tion (Reid et al., 2014), a NeuCube-based (Kasabov, 2014)
architecture for crop yield prediction (Bose et al., 2016),
and a multi-modal SNN architecture for financial stock pre-
diction (AbouHassan et al., 2023). However, none of these
works addresses the challenge of long-term prediction. A
recent study proposed an SNN framework tailored for short-
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sequence prediction tasks (Lv et al., 2024b), representing
a significant advancement in this emerging field. Despite
these progresses, research on SNNs for long-term forecast-
ing remains relatively limited, and a comprehensive bench-
mark for evaluating their performance on widely-used long-
sequence datasets is still absent. This gap arises from the
inherent challenges faced by SNNs, including the efficient
encoding of long sequences and the inadequate utilization
of sequential information.

2.2. Frequency-based Methods in Time-series
Forecasting

Time-series forecasting has seen significant advancements
through the integration of frequency domain analysis, which
allows for more efficient processing and enhanced forecast-
ing performance.

FITS (Xu et al., 2024) employs a complex linear layer
to interpolate in the frequency domain, discarding high-
frequency noise through a cutoff frequency strategy, thus
achieving superior performance compared to DLinear.

FreTS (Yi et al., 2023) further expands the utilization of fre-
quency domain features through frequency domain MLPs,
which facilitate time-series forecasting by providing a global
view and energy compaction.

FEDformer (Zhou et al., 2022) employs frequency domain
selection to generate sparse attention, thereby reducing com-
putational complexity and capturing detailed structures of
time-series data.

FilterNet (Yi et al., 2024) adapts filters from the signal
processing field, developing two kinds of filters to weaken
or strengthen specific frequency components, thus benefiting
from the utilization of the full spectrum.

Most previous works have focused on applying FFT to
the entire series, which facilitates the utilization of high-
frequency components. In contrast, our approach employs
patch and grouping mechanisms to enhance the utilization
of low and middle-frequency components in the original se-
ries, where local information is emphasized by the spiking
patches, which are discussed in following sessions.

2.3. Spiking Neural Networks

SNNs have gained increasing attention due to their energy
efficiency and biological plausibility (Roy et al., 2019). Un-
like ANNs that process continuous activation values, SNNs
operate using discrete spikes, closely mimicking the behav-
ior of the human brain.

Spiking Neuron Model One of the most popular spiking
neuron models is Leaky Integrate-and-Fire (LIF) Neuron
(Abbott, 1999), due to its simplicity and widely utilization
in recent research (Zhou et al., 2023; 2024; Lv et al., 2024b).

The LIF neuron receives the resultant current, integrates
it to accumulate membrane potential, and compares this
potential with a predefined threshold to determine whether
to generate a spike. The membrane potential V [t] evolves
according to:

U [t] = V [t− 1] +
1

τm
(I[t]− V [t− 1] + Vrest) (1)

S[t] = H (U [t]− Vth) (2)

V [t] = U [t] (1− S[t]) + VrestS[t] (3)

where τm is the membrane time constant, Vrest is the resting
potential, H represents the Heaviside step function and I[t]
is the input current which can be calculated by:

I[t] = WSpre[t] (4)

where Spre[t] denotes the spikes emitted by the pre-synaptic
neurons, and W represents the synaptic weights between
different layers.

SNN Training Method The indifferentiable nature of the
Heaviside step function makes it challenging to train deep
SNNs. There are two popular approaches to train deep
SNNs. One is ANN2SNN conversion (Cao et al., 2015; Bu
et al., 2021; Wang et al., 2022), which trains an ANN model
and then converts the model into rate-coded SNN model.
However, this approach usually needs multiple simulating
time steps to achieve comparable accuracy with the original
ANN model, which causes large latency (Han et al., 2020).
The other approach utilizes surrogate gradient function to ap-
proximate the derivative of the Heaviside step function, and
thus conducting spatio-temporal backpropagation (STBP)
to update the network parameters. In our work, we adopt
the latter approach.

Fast Fourier Transform (FFT) in SNNs While SNNs
excel at processing temporal sequences, owing to their in-
trinsic membrane dynamics, their ability to capture global
temporal features is inherently limited by two fundamental
characteristics: the exponential decay factor of membrane
potentials and the reset mechanism of neuronal activation,
which is discussed in Appendix A.2. Recent advancements
(Lopez-Randulfe et al., 2022; Orchard et al., 2021) have
offered a promising solution to this limitation through the
integration of Fast Fourier Transform (FFT) with SNN ar-
chitectures.

Study (Lopez-Randulfe et al., 2022) has demonstrated that
matrix multiplication can be represented by a spiking linear
layer with an appropriately defined weight matrix. Accord-
ingly, they initially express the FFT as a series of matrix
multiplications and subsequently employ an SNN with an
equivalent number of layers to avoid the challenges associ-
ated with floating-point operations.
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Meanwhile, study (Orchard et al., 2021) leverages the mem-
brane dynamics of the Resonate-and-Fire neuron, an ex-
tension of the LIF model, to naturally perform the Fourier
Transform. This approach also successfully gets rid of the
need for additional floating-point operations.

3. Methodology
3.1. Problem Setup

The multivariate long-term forecasting framework can be
formulated as follows: given an input time-series x1:L ∈
RL×D of length L with D dimensions, our object is to
predict the subsequent H values, denoted as y1:H ∈ RH×D.

3.2. Overview

The overall architecture of SpikF is illustrated in Figure 1.
SpikF comprises three components: (1) a Spiking Patch
Encoder (SPE) for transforming continuous-valued input
time-series into binary spike representations; (2) a feature
extraction module with a Spiking Frequency Selector (SFS)
to select important frequency components and convolutional
layers to enhance local semantic information; (3) an MLP
Decoder to generate the final output.

Spiking Patch Encoder Although convolutional and delta
encoding mechanisms have been proposed by (Lv et al.,
2024b), they exhibit limitations in encoding extended his-
torical information. To solve the problem, we introduce a
novel patch-based encoding mechanism that processes input
sequences in segmented patches, thereby facilitating a com-
putationally efficient representation of temporal patterns.

Spiking Frequency Selector As we know, self-attention
mechanisms have gained widespread adoption across
various machine learning domains, but their inherent
permutation-invariance renders them inadequate in captur-
ing positional information in time-series data. FFT-based
models (Zhou et al., 2022; Xu et al., 2024) are effective at
capturing sequential properties, but their frequency modes
are restricted to maintain computational efficiency. Specif-
ically, FEDformer (Zhou et al., 2022) relies on fixed or
randomly selected frequency modes, while FITS (Xu et al.,
2024) adopts a cut-off frequency strategy to discard high-
frequency components. Both of the two approaches employ
artificial selection strategies, failing to take the characteris-
tics of input sequences into consideration. To address these
problems, we propose a novel frequency domain selection
mechanism that dynamically identifies relevant frequency
components of spike trains by leveraging the binary nature
of spikes. This approach not only enhances the utilization
of sequential properties but also alleviates the burden on
researchers to manually determine key frequencies for the
input sequence.

3.3. Spiking Patch Encoder

Our spike encoding pipeline comprises three key stages.
First, the input time-series signal is segmented into patches,
each of which is processed through a shared learnable linear
layer that maps the data into a higher-dimensional space, as
being put forward by PatchTST (Nie et al., 2023) to enhance
the better utilization of local semantic information. These
transformed patches are then temporally upsampled by a
factor of Ts using a zero-order hold (ZOH) strategy, increas-
ing their temporal resolution. The upsampled signals serve
as input currents to the LIF neurons and are transformed
into binary spike trains, converting the analog information
into neuromorphic representations.

The x1:L will be divided into patches:

pk = x
L
N (k−1)+1: L

N k (5)

where N is the number of patches and we assume L can be
divided by N .

Then each patch will be processed by a spiking linear layer:

STs(k−1)+1:Tsk
enc = SN (BN(LN(pk))) (6)

where LN denotes the linear transformation layer, BN rep-
resents batch normalization, and SN denotes the spiking
neuron layer.

3.4. Spiking Frequency Selector

The encoded spike trains are processed through two blocks
in parallel to enhance modeling of positional information
and energy efficiency. Initially, the spiking patches are
grouped at fixed intervals. In the first block, the grouped
patches are transformed into frequency components using a
Spiking Fast Fourier Transform (S-FFT) layer. In the second
block, the grouped patches are converted into frequency-
domain spiking selector via a spiking selector generator,
which consists of a linear projection layer, a batch normal-
ization layer, and a spiking neuron layer. To improve the
transmission efficiency of the spiking selector, a spiking
max-pooling layer is utilized. The frequency spectrum is
then selected by the spiking selector. The selected frequency
components are reconstructed in the time domain using a
grouped Spiking Inverse Fast Fourier Transform (S-iFFT)
layer. The resulting real-valued time-series are the input to
the LIF neurons, generating spike trains with reduced noise.
The sparsity of spike trains contributes to computational ef-
ficiency in both S-FFT and inverse operations. Additionally,
the S-FFT enables the spiking selector to maintain a global
receptive field across the entire time-series while leveraging
positional information.
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Figure 1. Architecture overview of the proposed SpikF framework. (a) The Spiking Patch Encoder (SPE) converts continuous time-series
data into discrete spike train representations through patch-based processing. (b) The Spiking Frequency Selector (SFS) integrates S-FFT
operations across spike train patches, thereby facilitating the natural utilization of positional information. (c) The decoder reconstructs
real-valued predictions from the processed spike patterns by employing an MLP architecture.

The spiking patches generated by the Spiking Patch Encoder
are first grouped at fixed intervals:

Gi = {Si
enc, S

i+g
enc , . . . , S

i+(NTs
g −1)g

enc } (7)

where Gi denotes ith group of patches and g represents the
number of groups.

Then each Gi is transformed into the frequency domain
through the S-FFT algorithm:

Fi = SFg(G
i) (8)

where SFg denotes the grouped S-FFT operation.

In the meantime, Gi passes through a spiking linear layer
to generate frequency domain spikes:

Mi
sel = SN (BN(LN(Gi))) (9)

Then, a spiking max pooling layer is used to emphasize the
mutual key frequencies of different groups:

Msel = SMP(M1
sel,M2

sel, . . . ,M
g
sel) (10)

where SMP represents the Spiking Max-pooling layer.

Finally, Msel selects the important frequency components
through the Hadamard product, and these components are
sent back to the time domain through S-iFFT:

Hi
F = SF−1

g (Msel ⊙ Fi) (11)

where SF−1
g denotes the grouped S-iFFT operation and ⊙

denotes the Hadamard element-wise product.

Then Hi
F serves as the stimulation current to spiking neu-

rons, generating spikes with reduced noise:

Si
F = SN (BN(Hi

F )) (12)

3.5. Multilayer Perceptron (MLP) Decoder

As is well known, it is challenging to realize high temporal
resolution of spike trains for the spike decoder, as directly
applying an MLP with a full receptive field to reconstruct
continuous-valued outputs would increase both the number
of learnable parameters and computational overhead. To
overcome this challenge while maintaining the temporal
integrity of the spiking patches, we introduce a temporal
synchronization mechanism.

We first synchronize the temporal resolution between spik-
ing patches and prediction series through upsampling the
prediction target. Then, both spikes and prediction targets
are divided into Ts groups, and the spike trains are processed
through an MLP to reconstruct the continuous-valued predic-
tion. During the training phase, the loss function is defined
as:

L =
1

Ts

Ts∑
k=1

∥∥MLP(Sk)−Y
∥∥ (13)

where Sk represents the spike train in the kth group and Y
denotes the target prediction series.

During the inference phase, the predicted sequence under-
goes dimensionality reduction through average pooling, and
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the final prediction sequence is generated. This process is
formally expressed as:

Ŷ =
1

Ts

(
Ts∑
k=1

MLP(Sk)

)
(14)

where Ŷ represents the downsampled prediction sequence.

4. Experiments
We conduct experiments to verify SpikF in time-series pre-
diction tasks across multiple dimensions. Our evaluation
framework mainly includes: (1) predictive performance on
eight well-established long-sequence prediction benchmarks
(2) computational efficiency through energy consumption
analysis (3) individual component contributions via ablation
studies of SPE, SFS and temporal synchronization mech-
anisms, and (4) generalization capability of the model for
short-term prediction tasks and extended input sequences.
The experimental results demonstrate that SpikF achieves
superior accuracy and energy efficiency compared to SOTA
models.

4.1. Long-term Prediction

In this section, we present the predictive performance
of SpikF on well-established long-sequence prediction
datasets.

Datasets The experiments are conducted on eight widely-
used long-term prediction datasets including ECL, Weather,
ETT (ETTh1, ETTh2, ETTm1 and ETTm2), Traffic and
Exchange, with detailed characteristics presented in Ap-
pendix B.1.

Benchmarks We compare SpikF with three categories of
advanced baseline models: Transformer-based models in-
cluding Autoformer (Wu et al., 2022), Crossformer (Zhang
& Yan, 2023), PatchTST (Nie et al., 2023), and iTransformer
(Liu et al., 2024); TCN-based models such as SCINet (Liu
et al., 2022) and TimesNet (Wu et al., 2023); and Linear-
based models including DLinear and RLinear (Zeng et al.,
2023). Notably, TimesNet (Wu et al., 2023) incorporates
FFT into its model architecture.

Main Results As shown in Table 1, SpikF demonstrates
superior overall performance compared to other ANN-based
models, achieving a 1.9% reduction in prediction error com-
pared to iTransformer in terms of MAE. Notably, on ETTm1
dataset, it achieves a 6.1% lower MAE than iTransformer.
While iTransformer focuses on correlations among different
variates and PatchTST considers longer history information,
both of them struggle to utilize positional information. In
contrast, SpikF integrates patch encoding and S-FFT into its
architecture, enabling utilization of local and global features
while leveraging the sequential properties of time-series

data, which contribute to its superior accuracy over these
benchmarks.

4.2. Model Analysis

Computational Efficiency Analysis To evaluate the com-
putational efficiency of our approach, we first analyze the
variation in Synaptic Operations (SOPs) for S-FFT and S-
iFFT as the firing rate α of the input sequence increases.
Based on the theoretical analysis provided in Appendix
A.3, the SOPs of S-FFT and S-iFFT operations for an input
length of L = m× 2n are:

SOPs(S -FFT )

=

n∑
k=1

L

[
8
(
1− βm×2k−1

)2
+ 6βm×2k−1

(
1− βm×2k−1

)]
+ L (2mα− 2 + 2βm)

(15)

SOPs(S - iFFT )

=

n∑
k=1

L

[
8
(
1− βm×2k−1

)2
+ 6βm×2k−1

(
1− βm×2k−1

)]
+ L (2mα− 2 + 2βm) + 6L×mα

(16)

where β = 1− α.

Figure 2 shows the formulas, indicating that the SOPs of
S-FFT and S-iFFT are significantly lower than the Floating-
Point Operations (FLOPs) of traditional FFT or iFFT when
processing sparse input sequences. Since the energy con-
sumption per SOP is 5.11 times lower than that per FLOP
(Yao et al., 2023), S-FFT in our model achieves superior
energy efficiency compared to FFT in ANN models.

Figure 2. Theoretical computational complexity of the FFT and
iFFT and their spiking version with respect to the variation of α
for an input length of L = 48. SOPs of S-FFT and S-iFFT on
ETTh1 dataset are illustrated in this figure.

To verify the efficiency of the SFS module, we compare it
with common ANN-based temporal manipulation mecha-
nisms in terms of the number of learnable parameters, oper-
ations (FLOPs or SOPs), and energy consumption caused
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Table 1. In our multivariate forecasting analysis, we conduct extensive comparisons against multiple competitive models across varying
prediction horizons, following the methodology established in iTransformer (Liu et al., 2024). All baseline models are configured with a
uniform look-back window of L = 96 timesteps. Performance metrics are averaged over H = {96, 192, 336, 720} prediction lengths.
Lower MSE or MAE values indicate better performance. The best performance metrics are highlighted in bold red, while the second-best
results are marked in underlined blue for clarity. This convention is consistently applied across all subsequent tables.

Model SpikF iTransformer RLinear PatchTST Crossformer TimesNet DLinear SCINet Autoformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ECL 0.183 0.275 0.178 0.270 0.219 0.298 0.205 0.290 0.244 0.334 0.192 0.295 0.212 0.300 0.268 0.365 0.227 0.338

Weather 0.245 0.265 0.258 0.278 0.272 0.291 0.259 0.281 0.259 0.315 0.259 0.287 0.265 0.317 0.292 0.363 0.338 0.382

ETTh1 0.440 0.428 0.454 0.447 0.446 0.434 0.469 0.454 0.529 0.522 0.458 0.450 0.456 0.452 0.747 0.647 0.496 0.487

ETTh2 0.372 0.394 0.383 0.407 0.374 0.398 0.387 0.407 0.942 0.684 0.414 0.427 0.559 0.515 0.954 0.723 0.450 0.459

ETTm1 0.388 0.385 0.407 0.410 0.414 0.407 0.387 0.400 0.513 0.496 0.400 0.406 0.403 0.407 0.485 0.481 0.588 0.517

ETTm2 0.281 0.320 0.288 0.332 0.286 0.327 0.281 0.326 0.757 0.610 0.291 0.333 0.350 0.401 0.571 0.537 0.327 0.371

Traffic 0.497 0.296 0.428 0.282 0.626 0.378 0.481 0.304 0.550 0.304 0.620 0.336 0.625 0.383 0.804 0.509 0.628 0.379

Exchange 0.360 0.402 0.360 0.403 0.378 0.417 0.367 0.404 0.940 0.707 0.416 0.443 0.354 0.414 0.750 0.626 0.613 0.539

by operations per sample. Table 2 provides a comparative
analysis of SFS with linear transform in the time domain
(Zeng et al., 2023), linear transform in the frequency do-
main (Xu et al., 2024) and inverted self-attention (Liu et al.,
2024). The results are summarized in Figure 2. The detailed
calculation basis is provided in Appendix C.1.

As shown in Table 2, the SFS module, which leverages the
grouped S-FFT paradigm and the event-driven nature of
SNNs, reduces 42.66% of the operational energy consump-
tion compared to the time domain linear transform utilized
by DLinear in terms of operational energy consumption.

Table 2. Comparison of the number of learnable parameters, op-
erations, and operational energy consumption on the Electricity
dataset with a look-back window of 96 and a prediction length
of 720. The parameters listed in the table correspond to the
key feature extraction module, which represents the Spiking Fre-
quency Selector in SpikF, time-domain linear transform for DLin-
ear, frequency-domain linear transform for FITS and inverted self-
attention for iTransformer.

Model Paras Opts Energy/µJ

SpikF 1.2K 0.13G 117.66

DLinear 0.14M 45M 205.19

FITS 18K 0.10G 475.62

iTransformer 1.6M 0.72G 3289.29

To further underscore the energy efficiency of SpikF from
a holistic perspective, we have compared the operational
energy consumption of SpikF and iTransformer across all
modules, including the encoder, feature extraction module,
and decoder. As shown in Figure 3, SpikF with Ts = 4

reduces overall operational energy consumption by 75.05%
compared to iTransformer on the ECL dataset. Notably,
operational energy consumption is reduced by 96.94% for
the encoder and 93.30% for the feature extraction module.

Figure 3. Systematic comparison of energy consumption between
iTransformer and SpikF on ECL dataset, with a look-back window
of 96 and a prediction length of 720. The comparison encompasses
all modules, including the encoder, feature extraction, and decoder.

As indicated by (Lemaire et al., 2022; Shen et al., 2024),
energy consumption comprises operational energy, memory-
access energy, and addressing energy. To provide a more
comprehensive analysis of SpikF’s energy use, we follow
the methods of (Lemaire et al., 2022; Shen et al., 2024) and
present additional statistics on SpikF’s energy efficiency in
Table 3.

where ACE refers to S-ACE for iTransformer and NS-ACE
for SpikF as proposed by (Shen et al., 2024), EMem denotes
the energy consumption for membrane accessing, EOpts

refers to the energy consumption of operations, EAddr refers
to the energy consumption for addressing, and ETotal rep-
resents the total energy consumption.
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Table 3. Energy consumption of SpikF and iTransformer.

Model ACE/M EMem/µJ EOpts/µJ EAddr/µJ ETotal/µJ

SpikF 0.39 ↓6.27× 1.14× 104 2.77× 103 4.34× 101 1.37× 104 ↓3.16×

iTransformer 2.47 3.22× 104 1.11× 104 3.22× 10−1 4.34× 104

In terms of ACE and ETotal, the energy consumption of
SpikF is 6.27× and 3.16× lower than iTransformer respec-
tively.

Ablation Study To evaluate the contributions of the three
modules proposed in Section 3, we conduct an ablation
study. For the SPE, we explore alternative encoding mecha-
nisms, including convolution encoding and delta encoding.
For the SFS, we replace the SFS module with inverted spik-
ing self-attention (iSSA) as proposed in (Lv et al., 2024b),
and we also examine the impact of completely discarding the
SFS module. Additionally, for the decoder, we investigate
the effect of removing the temporal synchronization mech-
anism. The implementation settings are provided in Ap-
pendix C.2. As demonstrated in Table 4, the SPE achieves
6.6% and 3.2% accuracy improvement over the Delta En-
coder and Convolutional Encoder respectively, due to their
limited utilization of long-term history information, while
the SFS shows a 1.6% performance enhancement compared
to iSSA, for limitations of self-attention mechanisms as
discussed in Appendix A.1. Additionally, temporal synchro-
nization contributes a 0.5% performance boost.

Parameter Sensitivity Analysis We evaluate the sensi-
tivity of SpikF to temporal resolution Ts by varying this
parameter across five values 1, 2, 4, 8, and 16 while main-
taining a fixed look-back window of 96 and a prediction
horizon of 720 across all datasets. As illustrated in Figure 4,
SpikF maintains robust performance across temporal reso-
lution variations, with an average variation of only 3.7%.
This highlights its ability to deliver consistent results even
under reduced temporal resolution. Furthermore, these ex-
perimental results offer an approach for balancing accuracy
and inference time, as lower temporal resolution typically
corresponds to lower latency.

Figure 4. Performance of SpikF under varying temporal resolu-
tions. Results show minimal fluctuations, indicating robustness to
Ts selection.

4.3. Model Generalizability

Short-term Prediction To demonstrate the versatility of
SpikF, we extend our evaluation to the Solar-energy dataset,
with detailed characteristics presented in Appendix B.1,
specifically focusing on short-sequence prediction. This
assessment aims to validate the model’s applicability across
diverse temporal scales and forecasting paradigms.

We select iTransformer (Liu et al., 2024) and iSpik-
former (Lv et al., 2024b) as benchmarks, as they are SOTA
ANN-based and SNN-based models, respectively, as indi-
cated by (Lv et al., 2024b).

As demonstrated in Table 5, SpikF achieves lower predic-
tion errors than both iSpikformer and iTransformer, with
reductions of 2.3% and 2.8% respectively, showcasing the
strengthened predictive capabilities of SpikF in handling
both long-term and short-term prediction tasks.

Table 5. Short-term prediction results on the Solar-energy dataset.
Following the experimental setup of (Lv et al., 2024b), the look-
back window is fixed at 128, and the prediction lengths are set
as H = {6, 24, 48, 96}. The Root Relative Squared Error (RSE)
is used as the evaluation metric to compare the predictive perfor-
mance of the models, where a lower RSE value indicates better
performance. The performance results for iSpikformer and iTrans-
former are sourced from (Lv et al., 2024b).

Model Solar-energy
6 24 48 96

SpikF 0.189 0.346 0.444 0.514

iSpikformer 0.204 0.333 0.465 0.521

iTransformer 0.191 0.348 0.448 0.563

Extension of Input Sequence It is widely believed that
model performance should improve with longer input se-
quences, as incorporating more historical information en-
hances the model’s ability to capture temporal patterns.
Therefore, the ability to utilize longer historical informa-
tion serves as an indicator of a model’s generalizability and
predictive performance. To explore this, we modify the
look-back window across five temporal spans: 48, 96, 192,
336, and 720 time steps, while simultaneously adjusting
the prediction length from 96, 192, 336, to 720 time steps.
As shown in Figure 5, the loss values generally decrease
as the input sequence length increases across all prediction
lengths. Specifically, when the length of input sequence ex-
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Table 4. Ablation study results of the aforementioned strategies. The full ablation study results are available in Appendix C.2.

Module Design ETTh1 ETTm1 Weather
MSE MAE MSE MAE MSE MAE

SpikF original 0.440 0.428 0.388 0.385 0.245 0.265

Spike Encoder Delta 0.468 0.450 0.431 0.424 0.260 0.281

Conv 0.467 0.446 0.404 0.397 0.249 0.272

Feature Extraction w/o 0.441 0.428 0.388 0.387 0.246 0.266

iSSA 0.452 0.440 0.389 0.389 0.247 0.268

Spike Decoder w/o 0.444 0.430 0.391 0.387 0.246 0.266

pands from 48 to 720, an averaged prediction promotion is
9.0% in terms of MSE and 2.4% in terms of MAE, demon-
strating the model’s effective utilization of longer history
information.

Figure 5. MSE and MAE values for the ETTh2 (top) and ETTm2
(bottom) datasets across varying input and output lengths. The re-
sults highlight our model’s generalization capability, as evidenced
by the consistent decrease in MSE and MAE values with the in-
crease of look-back window.

4.4. Visualization

To validate the feature extraction capability of the SFS mod-
ule, we plot the averaged selection matrix Msel for different
SFS layers on the ECL dataset, as shown in Figure 6.

In Figure 6, deeper SFS module tends to discard more fre-
quency components, while shallower module focuses on
selecting useful frequencies. This is because that the first
SFS module enhances the predictive utilization of input
spike trains by selecting relevant frequency modes. As a
result, the input to the second module contains less noise,
leading to a higher tendency for the second SFS module to
retain more frequency components. This analysis highlights
the necessity and effectiveness of the design of SFS.

Figure 6. Visualization of the SFS module across different layers.
The data is obtained from the ECL dataset with a look-back win-
dow of 96 timesteps and a prediction horizon of 720 timesteps.
The left panel shows the selection probabilities for the first SFS
module, while the right panel corresponds to the second module.
The noise frequency components and key frequency components
is highlighted in this figure.

5. Conclusion
In this study, we introduce SpikF, a novel architecture de-
signed for long-term prediction tasks, bridging the critical
gap of SNN benchmarks in this domain. The Spiking Patch
Encoder enables efficient encoding of extended historical
information, while the Spiking Frequency Selector module
inherently resolves the challenge of utilizing positional in-
formation in SNN architectures and facilitates global feature
extraction. This work not only significantly broadens the
potential applications of SNN architectures but also offers
an energy-efficient solution for the time-series prediction
community.
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A. Theoretical Analysis
A.1. Permutation-Invariance of Self-attention and Inverted Self-attention Mechanisms

Consider an input sequence X ∈ RL×D, where Xi↔j,. denotes X with its ith and jth rows exchanged, and X.,i↔j denotes
X with its ith and jth columns exchanged. For the standard self-attention mechanism, the queries Q, keys K, and values V
are computed as follows:

Q = XWQ, K = XWK , V = XWV (17)

When the rows of X are permuted, the corresponding transformations yield:

Xi↔j,.WQ = Qi↔j,., Xi↔j,.WK = Ki↔j,., Xi↔j,.WV = Vi↔j,. (18)

Furthermore, the attention scores and output are permuted accordingly:

Qi↔j,.K
T
i↔j,. = (QKT )i↔j,i↔j (19)

and

SoftMax

(
Qi↔j,.K

T
i↔j,.√

D

)
Vi↔j,. =

(
SoftMax

(
QKT

√
D

)
V

)
i↔j,.

(20)

For the inverted self-attention mechanism, where X ∈ RD×L, the formulas are:

X.,i↔j(WQ)i↔j,. = Q, X.,i↔j(WK)i↔j,., X.,i↔j(WV )i↔j,. = V (21)

This indicates that permuting the input X along the temporal dimension leads to a corresponding permutation of the output
attention map. As a result, both the standard self-attention mechanism and its inverted variant are unable to effectively
capture positional information. In the absence of subsequent position-sensitive operations, the model’s prediction output
would remain invariant under the assumption that the optimization process is guaranteed to avoid local minima. Similarly,
the spiking versions of self-attention and inverted self-attention exhibit insensitivity to the relative position of the input
sequence due to the same limitation.

In contrast, our proposed Spiking Frequency Selector (SFS) module is inherently sensitive to the relative positions of input
spikes, owing to the inclusion of the S-FFT operation. This property enables the SFS module to better model temporal
dependencies.

To experimentally evaluate the utilization of positional information, we uniformly shuffled the input sequence and compared
the prediction accuracy with that of the ordered input sequence. As shown in Figure 7, SpikF achieves a 0.8% improvement
in MAE when sequential properties are incorporated, while iTransformer shows no performance improvement, highlighting
its ineffective utilization of sequential properties.

A.2. The Role of Fourier Transform in SNN Architectures

As (Lv et al., 2024b) suggests, the dynamics of membrane potential in SNNs provide a unique method for capturing temporal
data intricacies. However, this can result in a separated receptive field, potentially missing global temporal information.

Proof:

Given the dynamics of LIF neurons:

U [t] = V [t− 1] +
1

τm
(I[t]− V [t− 1] + Vrest) (22)

S[t] = H (U [t]− Vth) (23)

V [t] = U [t] (1− S[t]) + VrestS[t] (24)
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Figure 7. Comparison of model performance with unordered versus ordered input sequences.

For two series of stimulation I1[1], I1[2], ..., I1[t
∗] and I2[1], I2[2], ..., I2[t

∗] where S[1] = S[2] = ... = S[t∗ − 1] = 0 and
S[t∗] = 1, these sequences are equivalent in terms of membrane potential when t ≥ t∗, as U [t∗] = Vrest.

If we assume that S[t1] = S[t2] = ... = S[ts] = 1 and S[t] = 0 otherwise. Then the receptive field of the LIF neuron is
limited to the regions [1, t1], [t1 + 1, t2], ..., [ts−1 + 1, ts] and [ts + 1, T ].

This limitation hinders high-prediction SNNs in long-term prediction domains, which require modeling long-term dependen-
cies (Zeng et al., 2023). Thus, relying solely on SNN internal dynamics is insufficient; external dynamics are necessary for
modeling long-term dependencies.

While typical methods to expand the receptive field of SNN involve linear layers and self-attention mechanisms, these are
less suitable for sequential tasks due to their permutation-invariance (Zeng et al., 2023), which has been proved in Appendix
A.1.

In contrast, FFT transforms temporal series into the frequency domain, expanding the receptive field to the entire time-series.
Modifications in the frequency domain influence the entire series, and sequential information is inherently embedded in
frequency components via FFT’s rotation factors:

F [k] =

T∑
t=1

S[t]e−j 2π
T kt (25)

Thus, selecting frequency components allows for global influence, as F [k] is a function of S[1], S[2], ..., S[T ], thus making
FFT an ideal approach for external dynamics.

In summary, incorporating FFT into SNN architecture is essential in the time-series domain to expand the receptive field and
improve long-term dependency modeling.

A.3. Computational Complexity of S-FFT and S-iFFT Algorithm

While numerous optimizations have been proposed to enhance the computational efficiency of Fast Fourier Transform (FFT),
we give a theoretical analysis based on the classical FFT algorithm and its spiking version, as shown in Algorithm 1, due to
its fundamental nature and universal applicability.
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Algorithm 1 Fast Fourier Transform

Require: Input sequence x[t] of length L = m× 2n, where m is not divisible by 2
Ensure: FFT output X[k]

1: {Define a recursive procedure for FFT}
2: Procedure RecursiveFFT(x,m, n)
3: if n = 0 then
4: {Base case: Directly compute DFT for segments of length m}
5: X ← DFT(x,m)
6: return X
7: else
8: {Divide the sequence into even and odd parts}
9: L← m× 2n

10: xeven ← [x[0], x[2], . . . , x[L− 2]]
11: xodd ← [x[1], x[3], . . . , x[L− 1]]
12: {Recursively compute FFT for even and odd parts}
13: Xeven ← RecursiveFFT(xeven,m, n− 1)
14: Xodd ← RecursiveFFT(xodd,m, n− 1)
15: {Combine the results using the Cooley-Tukey butterfly}
16: for k ← 0 to L/2− 1 do
17: t←W k

L ×Xodd[k]
18: X[k]← Xeven[k] + t
19: X[k + L/2]← Xeven[k]− t
20: end for
21: return X
22: end if
23: {Main call to the recursive procedure}
24: X ← RecursiveFFT(x,m, n)
25: return X

where W k
L = e

−2πik
L denotes the twiddle factor.

For S-FFT, we assume that each position of the input sequence fires randomly with a rate of α. This hypothesis remains valid
despite the temporal dynamics of the model, as it is supported by the reordering in the butterfly algorithm. In the following
analysis, a complex addition is considered as 2 SOPs (addition of real and imaginary parts), and a complex multiplication is
considered as 6 SOPs (4 multiplications and 2 additions). The calculation formulas of SOPs are provided in Appendix C.1.

In the first stage, when the algorithm reaches the recursive base case of S-FFT, the spiking components are aggregated to
perform a traditional S-DFT transformation, which calculates the transformed sequence within the group. The number of
SOPs in this stage is given by:

m∑
k=1

2× 2n ×m (k − 1)Pk = L (2mα− 2 + 2βm) (26)

where Pk represents the probability of exactly k neurons within the group spiking, and β = 1− α denotes the non-spiking
ratio.

In the second stage, when the odd and even sequences are used to compute the final S-FFT results, the following rules apply
for each component:

• If the corresponding odd S-FFT component equals zero, no calculation is performed.

• If the odd component is non-zero and the corresponding even component is zero, only one complex multiplication is
performed.

• Otherwise, one complex multiplication and one complex addition are performed.
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Thus, the number of SOPs in the second stage is:

n∑
k=1

2n−k ×m× 2k
[
8
(
1− βm×2k−1

)2
+ 6βm×2k−1

(
1− βm×2k−1

)]

=

n∑
k=1

L

[
8
(
1− βm×2k−1

)2
+ 6βm×2k−1

(
1− βm×2k−1

)] (27)

Therefore, the total SOPs for S-FFT are:

SOPs(S -FFT ) =

n∑
k=1

L

[
8
(
1− βm×2k−1

)2
+ 6βm×2k−1

(
1− βm×2k−1

)]
+ L (2mα− 2 + 2βm) (28)

For S-iFFT, the input sequence is real-valued, though many elements are zero due to the selection mechanism. Thus, in the
first stage, additional calculations involving the input sequence multiplied by the rotation factor are required. By adding this
part, the SOPs for S-iFFT are:

SOPs(S - iFFT ) =

n∑
k=1

L

[
8
(
1− βm×2k−1

)2
+ 6βm×2k−1

(
1− βm×2k−1

)]
+L (2mα− 2 + 2βm)+6L×mα (29)

It is important to note that S-FFT and S-iFFT essentially transform real-number multiplication into inter-synaptic spike
transitions and real-number addition into the accumulation of stimulation from different pre-synaptic neurons. Therefore,
the above analysis on the SOPs of S-iFFT can be converted into FLOPs of FFT and iFFT by setting α = 1. Thus, the FLOPs
for FFT and iFFT operations are:

FLOPs(FFT ) = FLOPs(iFFT ) = L (8m+ 8n− 2) (30)

A.4. The Role of Average Pooling

Under the assumption that the prediction errors independently follow the Laplace distribution, which is the theoretical
foundation of the MAE loss function, we establish the following mathematical framework to analyze the contribution of the
average pooling layer in the MLP Decoder. Let the prediction errors before average pooling be denoted as e1, e2, . . . , eTs

,
where each ek is independently and identically distributed (i.i.d.) according to the Laplace distribution:

e1, e2, . . . , eTs i.i.d. e1 ∼ f(x) =
1

2
e−|x| (31)

The characteristic function of the Laplace distribution is given by:

ϕ(t) =
1

1 + t2
(32)

Consider the error after applying average pooling, defined as e = 1
Ts

∑Ts

k=1 ek. The characteristic function of e can be
expressed as:

ϕe(t|Ts) =
1(

1 + t2

T 2
s

)Ts
(33)

Using the characteristic function inversion method, the probability density function of e is derived as:

fe(x|Ts) =
1

2π

∫ ∞

−∞

exp(−itx)(
1 + t2

T 2
s

)Ts
dt (34)
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The expectation of the absolute error Ee[|x|](Ts) is given by:

Ee[|x|](Ts) =

∫ ∞

−∞

|x|
2π

∫ ∞

−∞

exp(−itx)(
1 + t2

Ts
2

)Ts
dt dx =

2√
π
·
Γ
(
Ts +

1
2

)
Γ(Ts + 1)

(35)

where Γ(z) =
∫∞
0

tz−1e−t dt.

When Ts is incremented to Ts + 1, the expectation of the absolute error decreases by a factor of Ts+
1
2

Ts+1 . This relationship is
expressed as:

Ee[|x|](Ts + 1)

Ee[|x|](Ts)
=

Ts +
1
2

Ts + 1
(36)

It is important to note that as Ts approaches infinity, the expectation of the absolute error converges to zero:

lim
Ts→+∞

Ee[|x|](Ts) = 0 (37)

Above analysis implies that when Ts increases, the expectation of MAE will decrease because of the average pooling layer.

B. Experimental Details
B.1. Depiction of the Datasets

In our experimental evaluation, we utilize several well-established real-world datasets that have been extensively validated
in prior time-series forecasting research. The Electricity dataset (Wu et al., 2022) records hourly interval electricity
consumption data from 321 clients. The Weather dataset (Wu et al., 2022) includes meteorological measurements collected
every 10 minutes from the Weather Station of the Max Planck Biogeochemistry Institute in 2020, containing 21 variables.
The ETT dataset (Zhou et al., 2021) consists of four subsets: ETTh1 and ETTh2 with hourly interval data, and ETTm1 and
ETTm2 with 15-minute interval data, each containing two years (2016-2018) of measurements from electrical transformers,
including variables like oil temperature and load. The Traffic dataset (Wu et al., 2022) provides hourly road occupancy rates
from 862 sensors in the San Francisco Bay area between 2015 and 2016. The Exchange dataset (Wu et al., 2022) comprises
daily exchange rate data from eight countries spanning from 1990 to 2016. Solar-Energy (Lai et al., 2018), provides a
dataset documenting the solar power generation of 137 photovoltaic plants throughout the year 2006, with measurements
recorded at 10-minute intervals. All datasets are preprocessed to handle missing values and normalized to ensure consistent
scaling across variables, following the approach of (Liu et al., 2024). These datasets represent diverse domains with varying
temporal patterns, seasonality, and trends, making them ideal benchmarks for evaluating the robustness and generalizability
of time-series forecasting models.

We fix the look-back window for all datasets except Solar-energy to 96, consistent with iTransformer (Liu et al., 2024)
for long-term prediction tasks. The look-back window of Solar-energy is set to 128, following (Lv et al., 2024b). The
train-validation-test split method follow the iTransformer (Liu et al., 2024) and iSpikformer (Lv et al., 2024b) approach to
ensure fairness. Detailed dataset information is provided in Table 6.

B.2. Metrics

For long-term forecasting tasks, the Mean Absolute Error (MAE) and Mean Squared Error (MSE) are employed as evaluation
metrics, defined as follows:

MAE = ∥Y − Ŷ∥ (38)

MSE = ∥Y − Ŷ∥2 (39)

where Y and Ŷ represent the ground truth and predicted values, respectively.

For short-term forecasting tasks, the Root Relative Squared Error (RSE) is utilized to assess model performance by (Lv
et al., 2024b). The metric is defined as:
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Table 6. Dataset descriptions. The dataset size is organized in (Train, Validation, Test).

Task Dataset Dim Sampling Frequency Dataset Size Depiction

Long

Electricity 321 1 Hour (18317, 2633, 5261) Electricity

Weather 21 10 Minutes (36792, 5271, 10540) Weather

ETTh 7 1 Hour (8545, 2881, 2881) Electricity

ETTm 7 15 Minutes (34465, 11521, 11521) Electricity

Traffic 862 1 Hour (12185, 1757, 3509) Transportation

Exchange 8 1 Day (5120, 665, 1422) Economy

Short Solar-energy 137 10 Minutes (31362, 10506, 10506) Energy

RSE =

√√√√∑B
i=1 ∥Yi − Ŷi∥2∑B
i=1 ∥Yi − Ȳ∥2

=

√√√√∑B
i=1

∑H
j=1

∑D
k=1(Yi,j,k − Ŷi,j,k)2∑B

i=1

∑H
j=1

∑D
k=1(Yi,j,k − Ȳ.,j,k)2

(40)

where B denotes the number of samples, H represents the prediction length, and D corresponds to the number of dimensions.

B.3. Implementation Details

All experiments are built on the frameworks developed on PyTorch (Paszke et al., 2019) and SpikingJelly (Fang et al., 2023),
the latter being an SNN repository built upon PyTorch. SpikingJelly has been rigorously validated in prior studies, including
Spikformer (Zhou et al., 2023) and QKFormer (Zhou et al., 2024). The experiments are executed on a single NVIDIA 3090
GPU.

The surrogate function for spatio-temporal backpropagation (STBP) is selected as the Sigmoid function, defined as:

σ(x) =
1

1 + e−αx
, (41)

where the parameter α is set to 4.0, consistent with previous studies (Zhou et al., 2023; 2024) across all experiments.

Figure 8 provides a visual comparison between the Heaviside step function and the Sigmoid function, along with the
derivative of the Sigmoid function.

Figure 8. Comparison of the Heaviside step function and the Sigmoid function (left), and visualization of the derivative of the Sigmoid
function (right).

The parameters for the spiking neurons are predominantly set to their default values within the SpikingJelly library, with the
time constant τm fixed at 2.0 and the threshold potential vth at 1.0. An exception is made for the generator LIF neurons,
where vth was adjusted to 0.1 to improve passing rate of the selector. The Adam optimizer is employed with its parameters
configured as follows: β1 = 0.9 and β2 = 0.999.

The temporal resolution Ts is set to 16 for datasets exhibiting minimal variables and 4 for those with greater variables. The
feature extraction layers of the architecture are chosen from the set {1, 2, 4}, and the patch dimension are selected from
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{8, 16, 32, 64}. The hidden layer dimension within the encoder’s MLP are chosen from {180, 360, 540, 720}. Batch sizes
are selected from {4, 8, 16, 32, 64}, and initial learning rates are set from {10−4, 5× 10−4, 10−3}. The number of training
epochs is chosen from {5, 10, 15, 20}. An early-stopping strategy is implemented to optimize the use of the validation set
for model evaluation. All model parameters are fine-tuned based on validation set performance. A comprehensive tabulation
of parameter selections is provided in Table 7.

Table 7. Detailed hyperparameter selection of long term prediction datasets.

Dataset Ts Layers dpatch dhidden Batch Size lr Epoches

Electricity 4 2 16 720 8 5× 10−4 15

Weather 16 2 32 360 32 10−3 5

ETTh 16 1 32 720 32 5× 10−4 5

ETTm 16 1 32 720 32 5× 10−4 10

Traffic 4 1 16 540 4 5× 10−4 15

Exchange 16 1 32 720 32 10−4 10

Solar-Energy 4 2 16 360 16 10−3 5

C. Model Analysis
C.1. Model Efficiency

For SNN models, the SOPs of each layer are given by:

SOPs = α× T × FLOPs (42)

where α represents the firing rate of input spike trains, T is the simulation time steps of the SNN, and FLOPs denotes the
floating-point operations of the layer.

For the exact power cost of our SFS module, as detailed in Table 2, we assume the operations are implemented on 45nm
hardware (Yao et al., 2023; Zhou et al., 2023), with an energy consumption of 4.6 pJ per FLOP and 0.9 pJ per SOP.

C.2. Ablation Study

To evaluate the contribution of each module in SpikF’s design to its overall performance, we conduct detailed ablation
studies. These experiments involve systematically replacing or removing individual components while keeping the rest of
the model unchanged.

For spike encoder, we choose Delta Encoder which can be formulated as:

H = Diff(X) (43)

Senc = SN (ZOH(BN(H))) (44)

where Diff represents the differential operation, and Convolutional Encoder:

H = Conv(X) (45)

Senc = SN (ZOH(BN(H))) (46)

where Conv denotes the convolutional layer.

For feature extraction module, we consider removing the SFS and replacing it with inverted spiking self-attention mechanism
which is proposed by (Lv et al., 2024b) which can be expressed as:

Q = SNQ(BN(SencWQ)), K = SNK(BN(SencWK)), V = SN V (BN(SencWV )) (47)
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Attn = QKTV × scaler (48)

where scaler is a pre-defined constant. For spike decoder module, we consider removing the temporal synchronization
mechanism.

Full results of our ablation study are shown at Table 8.

Table 8. Comprehensive results of the ablation study.

Module Design Prediction
Length

ETTh1 ETTm1 Weather
MSE MAE MSE MAE MSE MAE

SpikF original

96 0.379 0.391 0.317 0.345 0.163 0.200
192 0.432 0.421 0.372 0.372 0.209 0.241
336 0.473 0.441 0.401 0.394 0.266 0.283
720 0.474 0.459 0.461 0.430 0.344 0.334

Avg 0.440 0.428 0.388 0.385 0.245 0.265

Spike
Encoder

Delta

96 0.419 0.422 0.372 0.393 0.179 0.219
192 0.463 0.445 0.421 0.417 0.225 0.259
336 0.502 0.462 0.438 0.429 0.279 0.297
720 0.487 0.470 0.493 0.456 0.357 0.347

Avg 0.468 0.450 0.431 0.424 0.260 0.289

Conv

96 0.406 0.411 0.343 0.369 0.166 0.210
192 0.457 0.437 0.382 0.383 0.214 0.250
336 0.502 0.459 0.409 0.399 0.270 0.290
720 0.502 0.475 0.480 0.436 0.346 0.338

Avg 0.467 0.446 0.404 0.397 0.249 0.272

Feature
Extraction

w/o

96 0.380 0.390 0.317 0.350 0.164 0.201
192 0.434 0.421 0.369 0.372 0.210 0.243
336 0.472 0.441 0.399 0.395 0.266 0.284
720 0.476 0.462 0.468 0.430 0.345 0.336

Avg 0.441 0.428 0.388 0.387 0.246 0.266

iSSA

96 0.389 0.402 0.324 0.350 0.166 0.203
192 0.436 0.428 0.366 0.374 0.213 0.245
336 0.488 0.454 0.400 0.396 0.267 0.287
720 0.495 0.476 0.465 0.435 0.344 0.338

Avg 0.452 0.440 0.389 0.389 0.247 0.268

Spike
Decoder w/o

96 0.383 0.391 0.319 0.346 0.163 0.200
192 0.435 0.422 0.374 0.373 0.211 0.243
336 0.483 0.445 0.407 0.398 0.265 0.283
720 0.478 0.461 0.466 0.433 0.346 0.336

Avg 0.444 0.430 0.391 0.387 0.246 0.266

C.3. Sensitivity to Patch Dimension

To evaluate SpikF’s sensitivity to patch dimension selection, we conduct experiments with varying patch dimension
configurations {4, 8, 16, 32} across the ETTh1, ETTm1, and ETTm2 datasets. Using a fixed look-back window of 96 time
steps and a prediction horizon of 720 time steps, our analysis shows minimal performance fluctuations across different
patch dimension configurations, with an average variation of 1.2%. Notably, the ETTm2 dataset demonstrates exceptional
stability, exhibiting only 0.5% variation. This consistent behavior demonstrates SpikF’s robust performance relative to patch
dimension selection in the encoding process.
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Figure 9. Sensitivity to patch dimension selection.

C.4. Error Bars

To assess the robustness of our proposed model, we perform three independent experimental trials with distinct random seeds
and calculate the corresponding 95% confidence intervals, as detailed in Table 9 and Table 10. It is worth noting that SpikF
is optimized using the MAE loss function, in contrast to the widely adopted MSE loss function for other benchmark models.
Therefore, to ensure a more fair comparison, we also include the 95% confidence intervals for the iTransformer model
using the Mean Absolute Error (MAE) loss function. As evidenced in Table 9 and Table 10, SpikF not only outperforms
iTransformer in prediction accuracy but also demonstrates significantly improved robustness. Specifically, on the ETTm2,
Weather, and Exchange datasets, SpikF achieves an average confidence interval length which is 85.1% shorter than that of
iTransformer.

Table 9. 95% confidence intervals of SpikF and iTransformer on ETTh1, ETTh2, and ETTm1 datasets with MAE loss function. Better
performance is highlighted in bold.

Model ETTh1 ETTh2 ETTm1

Metric MSE MAE MSE MAE MSE MAE

SpikF

96 0.379±0.003 0.391±0.001 0.290± 0.001 0.336±0.003 0.317±0.005 0.345±0.003
192 0.432±0.008 0.421±0.002 0.367±0.006 0.385±0.001 0.372±0.007 0.372±0.005
336 0.473±0.010 0.441±0.002 0.414±0.011 0.420±0.007 0.401±0.002 0.394±0.004
720 0.474±0.016 0.459±0.006 0.416±0.008 0.436±0.001 0.461±0.010 0.430±0.004

Avg 0.440±0.005 0.428±0.001 0.372±0.004 0.394±0.002 0.388±0.001 0.385±0.002

iTransformer

96 0.383±0.005 0.396±0.003 0.294±0.001 0.342±0.000 0.324±0.001 0.351±0.001
192 0.437±0.003 0.428±0.002 0.376±0.006 0.392±0.004 0.374±0.002 0.376±0.002
336 0.480±0.011 0.450±0.009 0.421±0.005 0.427±0.002 0.411±0.001 0.401±0.000
720 0.493±0.015 0.477±0.009 0.423±0.005 0.439±0.002 0.480±0.002 0.441±0.001

Avg 0.448±0.002 0.438±0.001 0.379±0.003 0.400±0.002 0.397±0.001 0.393±0.001

D. Visualization
D.1. Selection Matrix Visualization

In this section, we provide more visualizations of the SFS module to fully validate its ability of temporal feature extraction.

Different Prediction Length As illustrated in Figure 10, the SFS module effectively captures the key frequency com-
ponents of the spike series. As illustrated in Figure 10, the frequency characteristics of the input sequence with different
prediction length are consistent: the 0 frequency component is typically discarded after selection, while frequencies that are
multiples of 4 play a crucial role in predicting the final target. These observations align with the findings of FilterNet (Yi
et al., 2024), an ANN-based frequency filter model, confirming that our spiking selection mechanism successfully extracts
important frequencies from the Fourier spectrum. Notably, the selection rate gradually decreases as the prediction length
increases from 96 to 720 timesteps, as longer prediction horizons exhibit weaker correlations with the look-back 96 timesteps,
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Table 10. 95% confidence intervals of SpikF and iTransformer on ETTm2, Weather and Exchange datasets with MAE loss function.
Better performance is highlighted in bold.

Model ETTm2 Weather Exchange

Metric MSE MAE MSE MAE MSE MAE

SpikF

96 0.175±0.001 0.251±0.001 0.163±0.002 0.200±0.001 0.084±0.001 0.201±0.001
192 0.242±0.002 0.296±0.001 0.209±0.002 0.241±0.002 0.180±0.001 0.300±0.001
336 0.302±0.002 0.336±0.002 0.266±0.002 0.283±0.001 0.334±0.020 0.417±0.013
720 0.405±0.007 0.397±0.005 0.344±0.002 0.334±0.002 0.841±0.018 0.690±0.008

Avg 0.281±0.002 0.320±0.002 0.245±0.000 0.265±0.000 0.360±0.002 0.402±0.001

iTransformer

96 0.182±0.017 0.265±0.024 0.176±0.004 0.216±0.006 0.088±0.003 0.208±0.003
192 0.248±0.011 0.308±0.019 0.224±0.004 0.257±0.003 0.179±0.003 0.303±0.003
336 0.313±0.015 0.348±0.021 0.281±0.002 0.299±0.003 0.337±0.003 0.421±0.002
720 0.411±0.009 0.403±0.010 0.359±0.003 0.350±0.002 0.851±0.025 0.698±0.013

Avg 0.289±0.012 0.331±0.018 0.260±0.002 0.280±0.002 0.364±0.008 0.407±0.005

thereby diminishing the influence of the original spike trains.

Figure 10. Visualization of the Spiking Selector mechanism across varying prediction horizons. The heatmap illustrates selection
probabilities. The analysis is conducted on the ETTh1 test set with a fixed look-back window of 96 timesteps and multiple prediction
horizons (96, 192, 336, and 720 timesteps). The horizontal axis represents frequency components, while the vertical axis denotes the
multidimensional features of the dataset.

Shared and Individual Spiking Selector Generator As illustrated in Figure 11, the individual spiking generator extracts
key frequency components for each dimension of the ETTh1 dataset. In comparison, the common generator strategy
successfully identifies and highlights the shared significant frequency components across all dimensions, as the components
selected by the common generator tend to overlap with the highlighted components of each individual dimension. By
balancing the contributions of these components, the shared generator strategy achieves superior performance compared to
the individual generator. This analysis is further supported by the superior performance through weight sharing strategy of
previous works (Xu et al., 2024; Yi et al., 2024).

D.2. Visualization of Prediction Results of Different Models

To provide an intuitional comparison among different models, we present visualized prediction results on ETTh1 datasets in
Figure 12. The evaluated models include iTransformer (Liu et al., 2024), DLinear (Zeng et al., 2023), and our proposed
SpikF. The results clearly demonstrate that SpikF achieves significantly more accurate prediction compared to iTransformer
and DLinear.

D.3. Visualization of Encoded Spikes

This section presents a visualization of the encoded spikes across multiple datasets. As depicted in Figure 13, the spike
trains generated by the SPE module exhibit a strong alignment with the input sequence in terms of density. This alignment
underscores the interpretability of the spike trains and highlights their effectiveness in capturing the essential features of the
input sequence. Furthermore, the sparsity of the spike trains suggests that the energy consumption for subsequent processing
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Figure 11. Comparison of shared and individual generator strategies. The frequency components selected by the shared generator are
framed by dashed lines, along with the corresponding MSE and MAE provided at the bottom of the figure. The look-back window and
prediction horizon are set as 96.

Figure 12. Visualization of prediction results on the ETTh1 dataset, comparing SpikF with other benchmark models under a look-back
window of 96 and a prediction horizon of 96.

will be minimal, rendering the approach highly efficient.

For these datasets, the prediction horizon is set to 96. The input sequence has been preprocessed through instance
normalization (Kim et al., 2021). To enhance clarity, the averaged spike trains have been resized to match the mean and
variance of the absolute input sequence. This preprocessing step ensures a more intuitional comparison of the trends between
averaged spike trains and input sequences.

E. Full Results
E.1. Long-term Prediction

This section presents a comprehensive evaluation of long-term forecasting performance across eight benchmark datasets:
ECL, Weather, ETT (ETTh1, ETTh2, ETTm1, ETTm2), Traffic, and Exchange. The detailed performance metrics are
organized in Table 11, which offers a comparative analysis of the predictive capabilities of various models. Notably, on
ETTh1 dataset, SpikF achieves the lowest MSE and MAE across all prediction lengths.

The results of all benchmarks except SpikF are extracted from (Liu et al., 2024).

E.2. Extended Benchmark Analysis on ETT Datasets

Given SpikF’s remarkable performance on ETT datasets, we expand our evaluation by incorporating additional FFT-based
ANN and SNN-based benchmarks to comprehensively assess SpikF’s forecasting capabilities.

For FFT-based ANN models, we select FEDformer (Zhou et al., 2022), which employs a frequency domain self-attention
mechanism to enhance feature extraction, and FITS (Xu et al., 2024), which utilizes a frequency domain complex linear
layer for input sequence upsampling. These models represent advanced approaches in frequency domain analysis. On the
SNN side, we include Spiking Recurrent Neural Network (SpikeRNN) (Kim et al., 2019) and Inverted Spiking Transformer
(iSpikformer) (Lv et al., 2024b) as benchmarks, as their ANN counterparts are widely recognized for their effectiveness in
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long-term prediction tasks. SNN-based models are equipped with SPE. Results of FITS are derived from (Yi et al., 2024)
and results of FEDformer are sourced from (Liu et al., 2024).

The results, presented in Table 12, demonstrate that SpikF achieves a precision improvement of 1.4% and 0.7% in terms of
MSE and MAE respectively, compared to the second-best SNN-based model. Furthermore, MSE and MAE of SpikF are
reduced by 3.4% and 3.6%, relative to the second-best FFT-based model.
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Figure 13. Visualization of encoded spike trains alongside the input sequence for the ECL, Traffic, Weather and Exchange datasets.
The sparse yet interpretable representation of the spike trains underscores the module’s capability to extract meaningful features while
maintaining low energy consumption.
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Table 11. Full results of long-term prediction.

Model SpikF iTransformer RLinear PatchTST Crossformer TimesNet DLinear SCINet Autoformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
C

L

96 0.156 0.252 0.148 0.240 0.201 0.281 0.181 0.270 0.219 0.314 0.168 0.272 0.197 0.282 0.247 0.345 0.201 0.317
192 0.169 0.262 0.162 0.253 0.201 0.283 0.188 0.274 0.231 0.322 0.184 0.289 0.196 0.285 0.257 0.355 0.222 0.334
336 0.188 0.281 0.178 0.269 0.215 0.298 0.204 0.293 0.246 0.337 0.198 0.300 0.209 0.301 0.269 0.369 0.231 0.338
720 0.219 0.306 0.225 0.317 0.257 0.331 0.246 0.324 0.280 0.363 0.220 0.320 0.245 0.333 0.299 0.390 0.254 0.361

Avg 0.183 0.275 0.178 0.270 0.219 0.298 0.205 0.290 0.244 0.334 0.192 0.295 0.212 0.300 0.268 0.365 0.227 0.338

W
ea

th
er

96 0.163 0.200 0.174 0.214 0.192 0.232 0.177 0.218 0.158 0.230 0.172 0.220 0.196 0.255 0.221 0.306 0.266 0.336
192 0.209 0.241 0.221 0.254 0.240 0.271 0.225 0.259 0.206 0.277 0.219 0.261 0.237 0.296 0.261 0.340 0.307 0.367
336 0.266 0.283 0.278 0.296 0.292 0.307 0.278 0.297 0.272 0.335 0.280 0.306 0.283 0.335 0.309 0.378 0.359 0.395
720 0.344 0.334 0.358 0.347 0.364 0.353 0.354 0.348 0.398 0.418 0.365 0.359 0.345 0.381 0.377 0.427 0.419 0.428

Avg 0.245 0.265 0.258 0.278 0.272 0.291 0.259 0.281 0.259 0.315 0.259 0.287 0.265 0.317 0.292 0.363 0.338 0.382

E
T

T
h1

96 0.379 0.391 0.386 0.405 0.386 0.395 0.414 0.419 0.423 0.448 0.384 0.402 0.386 0.400 0.654 0.599 0.449 0.459
192 0.432 0.421 0.441 0.436 0.437 0.424 0.460 0.445 0.471 0.474 0.436 0.429 0.437 0.432 0.719 0.631 0.500 0.482
336 0.473 0.441 0.487 0.458 0.479 0.446 0.501 0.466 0.570 0.546 0.491 0.469 0.481 0.459 0.778 0.659 0.521 0.496
720 0.474 0.459 0.503 0.491 0.481 0.470 0.500 0.488 0.653 0.621 0.521 0.500 0.519 0.516 0.836 0.699 0.514 0.512

Avg 0.440 0.428 0.454 0.447 0.446 0.434 0.469 0.454 0.529 0.522 0.458 0.450 0.456 0.452 0.747 0.647 0.496 0.487

E
T

T
h2

96 0.290 0.336 0.297 0.349 0.288 0.338 0.302 0.348 0.745 0.584 0.340 0.374 0.333 0.387 0.707 0.621 0.346 0.388
192 0.367 0.385 0.380 0.400 0.374 0.390 0.388 0.400 0.877 0.656 0.402 0.414 0.477 0.476 0.860 0.689 0.456 0.452
336 0.414 0.420 0.428 0.432 0.415 0.426 0.426 0.433 1.043 0.731 0.452 0.452 0.594 0.541 1.000 0.744 0.482 0.486
720 0.416 0.436 0.427 0.445 0.420 0.440 0.431 0.446 1.104 0.763 0.462 0.468 0.831 0.657 1.249 0.838 0.515 0.511

Avg 0.372 0.394 0.383 0.407 0.374 0.398 0.387 0.407 0.942 0.684 0.414 0.427 0.559 0.515 0.954 0.723 0.450 0.459

E
T

T
m

1

96 0.317 0.345 0.334 0.368 0.355 0.376 0.329 0.367 0.404 0.426 0.338 0.375 0.345 0.372 0.418 0.438 0.505 0.475
192 0.372 0.372 0.377 0.391 0.391 0.392 0.367 0.385 0.450 0.451 0.374 0.387 0.380 0.389 0.439 0.450 0.553 0.496
336 0.401 0.394 0.426 0.420 0.424 0.415 0.399 0.410 0.532 0.515 0.410 0.411 0.413 0.413 0.490 0.485 0.621 0.537
720 0.461 0.430 0.491 0.459 0.487 0.450 0.454 0.439 0.666 0.589 0.478 0.450 0.474 0.453 0.595 0.550 0.671 0.561

Avg 0.388 0.385 0.407 0.410 0.414 0.407 0.387 0.400 0.513 0.496 0.400 0.406 0.403 0.407 0.485 0.481 0.588 0.517

E
T

T
m

2

96 0.175 0.251 0.180 0.264 0.182 0.265 0.175 0.259 0.287 0.366 0.187 0.267 0.193 0.292 0.286 0.274 0.255 0.339
192 0.242 0.296 0.250 0.309 0.246 0.304 0.241 0.302 0.414 0.492 0.249 0.309 0.284 0.362 0.399 0.445 0.281 0.340
336 0.302 0.336 0.311 0.348 0.307 0.342 0.305 0.343 0.597 0.542 0.321 0.351 0.369 0.427 0.637 0.591 0.339 0.372
720 0.405 0.397 0.412 0.407 0.407 0.398 0.402 0.400 1.730 1.042 0.408 0.403 0.554 0.522 0.960 0.735 0.433 0.432

Avg 0.281 0.320 0.288 0.332 0.286 0.327 0.281 0.326 0.757 0.610 0.291 0.333 0.350 0.401 0.571 0.537 0.327 0.371

Tr
af

fic

96 0.477 0.286 0.395 0.268 0.649 0.389 0.462 0.295 0.522 0.290 0.593 0.321 0.650 0.396 0.788 0.499 0.613 0.388
192 0.481 0.289 0.417 0.276 0.601 0.366 0.466 0.296 0.530 0.293 0.617 0.336 0.598 0.370 0.789 0.505 0.616 0.382
336 0.499 0.295 0.433 0.283 0.609 0.369 0.482 0.304 0.558 0.305 0.629 0.336 0.605 0.373 0.797 0.508 0.622 0.337
720 0.533 0.312 0.467 0.302 0.647 0.387 0.514 0.322 0.589 0.328 0.640 0.350 0.645 0.394 0.841 0.523 0.660 0.408

Avg 0.497 0.296 0.428 0.282 0.626 0.378 0.481 0.304 0.550 0.304 0.620 0.336 0.625 0.383 0.804 0.509 0.628 0.379

E
xc

ha
ng

e 96 0.084 0.201 0.086 0.206 0.093 0.217 0.088 0.205 0.256 0.367 0.107 0.234 0.088 0.218 0.267 0.396 0.197 0.323
192 0.180 0.300 0.177 0.299 0.184 0.307 0.176 0.299 0.470 0.509 0.226 0.344 0.176 0.315 0.351 0.459 0.300 0.369
336 0.334 0.417 0.331 0.417 0.351 0.432 0.301 0.397 1.268 0.883 0.367 0.448 0.313 0.427 1.324 0.853 0.509 0.524
720 0.841 0.690 0.847 0.691 0.886 0.714 0.901 0.714 1.767 1.068 0.964 0.746 0.839 0.695 1.058 0.797 1.447 0.941

Avg 0.360 0.402 0.360 0.403 0.378 0.417 0.367 0.404 0.940 0.707 0.416 0.443 0.354 0.414 0.750 0.626 0.613 0.539

26



SpikF: Spiking Fourier Network for Efficient Long-term Prediction

Table 12. More benchmarks on ETT dataset.

Model SpikF SpikeRNN iSpikformer FITS FEDformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.379 0.391 0.392 0.395 0.410 0.408 0.386 0.396 0.376 0.419
192 0.432 0.421 0.437 0.424 0.459 0.438 0.436 0.423 0.420 0.448
336 0.473 0.441 0.482 0.447 0.514 0.461 0.478 0.444 0.459 0.465
720 0.474 0.459 0.499 0.471 0.511 0.476 0.502 0.495 0.506 0.507

Avg 0.440 0.428 0.452 0.434 0.473 0.446 0.451 0.440 0.440 0.460

E
T

T
h2

96 0.290 0.336 0.295 0.335 0.308 0.349 0.295 0.350 0.358 0.397
192 0.367 0.385 0.375 0.387 0.382 0.397 0.381 0.396 0.429 0.439
336 0.414 0.420 0.422 0.422 0.439 0.433 0.426 0.438 0.496 0.487
720 0.416 0.436 0.428 0.438 0.438 0.439 0.431 0.446 0.463 0.474

Avg 0.372 0.394 0.380 0.396 0.392 0.407 0.383 0.408 0.437 0.449

E
T

T
m

1

96 0.317 0.345 0.326 0.351 0.337 0.361 0.355 0.375 0.379 0.419
192 0.372 0.372 0.376 0.377 0.380 0.383 0.392 0.393 0.426 0.441
336 0.401 0.394 0.396 0.394 0.415 0.406 0.424 0.414 0.445 0.459
720 0.461 0.430 0.459 0.433 0.476 0.443 0.487 0.449 0.543 0.490

Avg 0.388 0.385 0.389 0.389 0.402 0.398 0.415 0.408 0.448 0.452

E
T

T
m

2

96 0.175 0.251 0.176 0.251 0.178 0.256 0.183 0.266 0.203 0.287
192 0.242 0.296 0.243 0.296 0.243 0.298 0.247 0.305 0.269 0.328
336 0.302 0.336 0.302 0.335 0.304 0.338 0.307 0.342 0.325 0.366
720 0.405 0.397 0.409 0.396 0.406 0.398 0.407 0.399 0.421 0.415

Avg 0.281 0.320 0.283 0.319 0.283 0.322 0.286 0.328 0.305 0.349
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