
Encoder-Decoder Diffusion Language Models for
Efficient Training and Inference

Marianne Arriola∗ Yair Schiff∗ Hao Phung Aaron Gokaslan Volodymyr Kuleshov

Department of Computer Science, Cornell University
{marriola,yairschiff,hao}@cs.cornell.edu, {akg87,kuleshov}@cornell.edu

∗ Equal contribution; corresponding authors

Abstract

Discrete diffusion models enable parallel token sampling for faster inference than
autoregressive approaches. However, prior diffusion models use a decoder-only
architecture, which requires sampling algorithms that invoke the full network at
every denoising step and incur high computational cost. Our key insight is that
discrete diffusion models perform two types of computation: 1) representing clean
tokens and 2) denoising corrupted tokens, which enables us to use separate modules
for each task. We propose an encoder-decoder architecture to accelerate discrete
diffusion inference, which relies on an encoder to represent clean tokens and a
lightweight decoder to iteratively refine a noised sequence. We also show that
this architecture enables faster training of block diffusion models, which partition
sequences into blocks for better quality and are commonly used in diffusion lan-
guage model inference. We introduce a framework for Efficient Encoder-Decoder
Diffusion (E2D2), consisting of an architecture with specialized training and sam-
pling algorithms, and we show that E2D2 achieves superior trade-offs between
generation quality and inference throughput on summarization, translation, and
mathematical reasoning tasks. We provide the code1, model weights, and blog post
on the project page: https://m-arriola.com/e2d2.

1 Introduction

Discrete diffusion models [4], originally proposed as an extension of Gaussian diffusion [28, 59],
have steadily improved in quality on tasks, such as language modeling [24, 40, 55], music generation
[62], and biological sequence design [56, 68]. Recent successes include diffusion models at the 7-8B
parameter scale, which outperform or match comparably sized autoregressive (AR) models [46, 78].

To generate samples, diffusion models iteratively refine a sequence consisting of both clean and
corrupted tokens. We observe that this process consists of: 1) producing useful representations of
clean tokens and 2) using these representations as context for denoising corrupted tokens. However,
prior diffusion language models jointly perform both tasks within the same decoder-only architecture.
As a result, these models must invoke the full network at every denoising step, incurring high
computational cost.

In this work, we propose an encoder-decoder transformer architecture to separate the computation
for representing clean tokens and denoising corrupted tokens. In particular, we use an encoder to
represent clean tokens and a lightweight decoder to iteratively refine a noised sequence conditioned
on the encoder’s representation. This enables faster inference, as we call the lightweight decoder
multiple times to iteratively denoise tokens and invoke the encoder only periodically to update its

1Code: https://github.com/kuleshov-group/e2d2

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://m-arriola.com/e2d2
https://github.com/kuleshov-group/e2d2

Large Encoder
processes clean

tokens

Small Decoder
denoises tokens

while attending to
encoder

representations

What is [MASK]2 2

Prompt
(+ accumulated samples)

Noisy input block

+ add5 [MASK]

take 2 add [MASK]

D
ecoding steps produce new

tokens w
ithout invoking encoder

Encoder representation
Faster generation
compared to decoder-
only AR and diffusion

Extends Pareto
frontier for quality-
throughput trade-off

More efficient
training than decoder-
only block diffusion

Figure 1: Efficient Encoder-Decoder Diffusion (E2D2) enables faster generation than decoder-only
architectures. We accelerate inference by using a lightweight decoder to iteratively denoise for a fixed
number of sampling steps, without invoking the encoder. The encoder processes the newly generated
tokens periodically to update its representations.

representations. Our novel framework for Efficient Encoder-Decoder Diffusion (E2D2) consists
of an encoder-decoder transformer architecture complemented with efficient training and sampling
algorithms that enable both faster inference and KV caching support.

In addition to faster inference, our proposed encoder-decoder architecture enables faster training of
block diffusion models [1], which partition sequences into blocks to improve generation quality and
support KV caching. Block diffusion is widely used for generating with large diffusion language
models, even those trained with standard full-sequence diffusion, such as LLaDA [46], Seed Diffusion
[61], MMaDA [77]. However, decoder-only block diffusion incurs higher training costs, with forward
passes that are 2× more expensive than standard diffusion, as both the full clean and noised sequences
must be processed in every transformer layer [1]. We derive an efficient training algorithm for encoder-
decoder block diffusion that uses the encoder to process the clean sequence and the decoder to process
the noised sequence, which halves training costs compared to a decoder-only model of equal size.

To demonstrate the efficacy of our encoder-decoder diffusion framework, we train domain-specific
diffusion models for summarization, translation, and mathematical reasoning, and show that E2D2
outperforms decoder-only diffusion models in generation speed and quality.

Contributions In summary, we make the following contributions: 1) We propose an encoder-decoder
architecture for discrete diffusion modeling: the encoder represents clean tokens and the decoder
denoises corrupted tokens. 2) We derive efficient diffusion sampling algorithms that accelerate
inference by denoising tokens using a lightweight decoder. We also derive an efficient training
algorithm for block diffusion modeling using our architecture, which halves training costs compared
to a decoder-only architecture. 3) We demonstrate E2D2’s effectiveness by training task-specific
models on summarization, translation, and mathematical reasoning. We also map the Pareto frontier
of the quality-throughput trade-off by varying the decoder size and demonstrate that E2D2 achieves
state-of-the-art performance compared to decoder-only discrete diffusion models.

2 Background

2.1 Discrete Diffusion Models

Diffusion generative models [28, 59, 60] train a denoising network pθ to remove noise from latent
variables zt, for t ∈ [0, 1], obtained from a pre-defined corruption process q. This forward process
transforms data x by adding noise increasing in t, eventually reaching a limiting distribution z1.

2

Discrete denoising diffusion probabilistic models (D3PM [4]) take inspiration from diffusion and
define corruption processes over discrete one-hot vectors zt. A recent successful class of discrete
diffusion models focuses on masking (absorbing state) diffusion [47, 55, 58], where the limiting
distribution corresponds to z1 = m, a one-hot representation of a special [MASK] token. In this
framework, the corruption process is defined via interpolation between clean data x and the prior
m: q(zt|x) = Cat(zt;αtx+ (1− αt)m), where Cat(·; ·) represents a categorical distribution and
αt = α(t) ∈ [0, 1] is a noise schedule decreasing in t. For a given corruption process of this form,
the true posterior q(zs | zt,x) is known, where zs represents less noisy latents for s < t.

The optimal diffusion model pθ will exactly recover this posterior. However, during inference, we do
not have access to x. A common parameterization defines pθ as pθ(zs|zt) = q(zs|zt,x = xθ(zt))
where the denoising model xθ(zt) predicts clean tokens x given noisy latents zt.

To model sequences of L tokens x1:L, the corruption process q is applied independently to each
token in a sequence and the denoising network is assumed to factorize independently as well. This
framework can easily be extended to accommodate conditional generation by conditioning on some
prompt x1:P in both the forward q(z1:Lt | x1:L,x1:P) and reverse pθ(z

1:L
s | z1:Lt ,x1:P) processes.

2.2 Block Diffusion Language Modeling

Block diffusion language models (BD3LM [1]) improve sample quality of standard discrete diffusion
and enable efficient KV caching by introducing a parameterization that interpolates between AR
and fully-parallel diffusion. In block diffusion, blocks of tokens are modeled autoregressively with
diffusion applied within each block. Formally, tokens in x1:L are chunked into B blocks each of length
S: B = L/S. Adopting the shorthand from [1], for each block b ∈ [1, B], the tokens x1+(b−1)·S:b·S

are denoted as xb and all preceding tokens x1:(b−1)·S are denoted as x<b. The likelihood of this
model is defined as log pθ(x) =

∑B
b=1 log pθ(x

b | x<b), where each pθ(x
b | x<b) is modeled

using discrete diffusion. In the reverse process within each block pθ(z
b
s | zbt ,x<b), we account for

already decoded blocks: xθ = xθ(z
b
t ,x

<b). As with other diffusion language models, BD3LM uses
a decoder-only architecture to parameterize pθ. See Appendix A for an extended overview.

Models that are trained with standard full-sequence diffusion can apply block decoding at inference
by unmasking tokens in blocks left-to-right, such as LLaDA [46], Seed Diffusion [61], MMaDA
[77], and others [26, 81, 82]. However, since these models are trained with bidirectional context,
they require bidirectional attention over the full sequence, which restricts KV caching and requires
approximate caching methods [30, 72, 73]. Training with the block diffusion parameterization
described above can further improve sample quality [1, 2, 19].

Naively training a block diffusion model requires a separate function evaluation to predict each block,
since the clean context x<b is different for each block. To enable parallel training along the sequence
dimension, [1] concatenate the full clean sequence x1:B with a noisy sequence z1:Bt . While enabling
parallel training, this is difficult to scale since the entire model needs to process 2L tokens at every
layer, which doubles training cost relative to previous masked diffusion models.

3 Efficient Encoder-Decoder Diffusion

Decoder-only transformers [67] are inefficient when used to parameterize pθ in language modeling
since each inference step requires a full forward pass, motivating architectures that avoid this
bottleneck. Our key insight is that discrete diffusion models perform two types of computation: (1)
representing clean tokens and (2) denoising masked tokens, which suggests that we can use separate
modules for each task.

We explore an encoder-decoder architecture, commonly used in sequence-to-sequence modeling
[54, 63, 67], to separate computation used for representing clean tokens and for denoising. Specifically,
our probabilistic model pθ is defined via the denoising network xθ. For this xθ, we define 1) an
encoder that extracts features from clean tokens, and 2) a decoder that iteratively denoises a sequence
of noisy tokens conditioned on these features. Crucially, the decoder can be evaluated multiple
times to denoise a sequence of tokens, without needing to invoke the encoder. After a predetermined
number of decoder function evaluations, we can then pass newly generated tokens to the encoder,
which adds them to its running representation. Unlike existing decoder-only models, our approach

3

allows parameters and compute to be reallocated between the encoder and decoder (e.g., by using a
small decoder and a larger encoder), amortizing the encoder’s cost over multiple lightweight decoding
steps. We call this approach Efficient Encoder-Decoder Diffusion (E2D2), consisting of our proposed
encoder-decoder architecture complemented with efficient training and sampling algorithms.

We note that E2D2 can be applied to any discrete diffusion parameterization, e.g., both the standard
masked diffusion formulation presented in Section 2.1 and the block-wise factorization from Section
2.2. However, in the figures and experimental results, we focus on the block diffusion parameterization
for the following reasons: 1) block diffusion attains superior language modeling performance
compared to full-sequence masked diffusion [1], 2) block diffusion enables key-value (KV) caching
which significantly accelerates inference [1], and 3) even recent state-of-the-art large diffusion
language models which are trained with the full-sequence masked diffusion parameterization (e.g.,
LLaDA [46]) rely on block autoregressive decoding at inference due to its improved performance.

3.1 Architecture

Encoder We parameterize the encoder with a transformer model and denote the number of layers
as NEnc. The input to the encoder is a sequence of clean tokens comprised of both prompt tokens
and previously decoded tokens, which we denote as xt,Enc. The encoder outputs features ht =
ENCODER(xt,Enc). We explore different choices of encoder feature representations in Section 3.2.

Decoder As with the encoder, we use a transformer model for the decoder and denote the number of
layers as NDec. The decoder’s input, zt,Dec, corresponds to the portion of the entire sequence z1:Lt that
is “actively being denoised.” The decoder outputs logits that are conditioned on the encoder output
via cross-attention xlogit = DECODER(zt,Dec,ht), where the positions of xlogit correspond to zt,Dec.

3.2 Design Decisions

Below, we detail an efficient implementation of the decoder’s attention module using kernel fusion.
We also explore two ways of connecting the encoder outputs to the decoder: 1) a “last hidden state”
version, where the last encoder hidden representation is used as input to the decoder (see left-hand
side of Figure 5) and 2) a “shared KV cache” version, where the KV cache is shared between
corresponding layers (see right-hand side of Figure 5).

Fused Attention Kernel Previous encoder-decoder implementations, e.g., T5 [54], apply self- and
cross-attention as separate decoder operations. In contrast, we perform a single fused attention call
that jointly attends to both the encoder outputs and the decoder’s own hidden states. While this forces
the decoder to distribute its attention between the encoder representation ht and its own input zt,Dec,
it enables a fused attention kernel that reduces memory access and kernel launch overhead.

Last Hidden State The “last hidden state” version follows T5-style encoder-decoder models [54]
where we provide the final encoder layer’s output features as input to each layer of the decoder.
Formally, let gi, fi be the output of the ith layer of the encoder and decoder, respectively, with
f0 = EMBEDDING(zt,Dec). Then we define the encoder output as ht = gNEnc . Before each decoder
layer, we concatenate this representation to the decoder’s input token embeddings. Thus, the input to
each decoder layer is ht ⊕ fi−1, where ⊕ denotes concatenation along the sequence dimension.

Shared KV Cache The “shared KV cache” variant conditions the decoder on the encoder’s intermedi-
ate representations by reusing the encoder’s KVs from each layer. Unlike the “last hidden state” design
where every decoder layer attends to the same ht, the ith decoder layer uses the KVs from some jth

encoder layer, where the pairing of i and j is user-specified. This design suits fine-tuning decoder-only
models as encoder-decoders, as reusing the encoder’s cached KVs keeps the decoder’s cross-attention
inputs aligned with those expected by the base model and thus improves fine-tuning stability. We
define the encoder output as a list of KVs computed per layer ht = [KVEnc[1], . . . ,KVEnc[NEnc]]
where KVEnc[j] is the KV cache of the jth encoder layer. Let KVDec[i] be the KVs computed at the
ith decoder layer using the output from the previous decoder layer. Then, the keys and values used for
the fused cross- and self-attention in the decoder are formed via the concatenation ht[j]⊕KVDec[i].

3.3 Sampling Algorithm

E2D2 models admit faster inference by decoupling encoder and decoder calls. Whereas prior
decoder-only language models require calling the full transformer in every generation step, E2D2

4

calls a lightweight decoder multiple times throughout denoising, followed by one call to a larger
encoder. In Algorithm 1, we present the sampling procedure for E2D2 applied to the block diffusion
parameterization, which generates block-by-block while enabling efficient KV caching. We begin by
embedding the context or prompt of P tokens through the encoder to produce encoder features h1:P ,
and we pre-fill the encoder KV cache. We generate a new block by iteratively denoising a block of
masked tokens conditioned on h1:P , invoking only the decoder.

We adjust the encoder’s signature to accept the KV cache: ENCODER(xb,KV<b), where KV<b

represents the KV cache for all blocks preceding b. We also adjust the output of the encoder so that it
returns the updated KV cache for the newest block KVb. For the "last hidden state" version of E2D2,
which computes separate KVs for the encoder and decoder, we also accumulate a KV cache for the
decoder (not currently depicted in Algorithm 1).

Algorithm 1 Encoder-Decoder Block Diffusion Sampling with KV Caching

Require: Prompt x1:P , # of blocks B, # of diffusion steps T , ENCODER, DECODER, algorithm SAMPLE
1: x1:B ,KV← ∅, ∅ ▷ Output, KV cache
2: h,KV← ENCODER(x1:P , ∅) ▷ Encode prompt, collect encoder KV cache
3: for b = 1 to B do
4: zbt ∼mb ▷ Initialize noised block
5: for t = 1, T−1

T
, . . . 1

T
do

6: zbt ← SAMPLE(DECODER(zbt ,h)) ▷ Denoise block: Apply small decoder only
7: end for
8: x← x<b ⊕ zbt ▷ Accumulate output
9: h,KVb ← ENCODER(xb,KV<b) ▷ Encode new block, compute encoder KVs

10: KV← KV<b ⊕KVb ▷ Accumulate KV cache
11: end for
12: return x1:B

Table 1: Forward-pass training FLOPs comparison. N de-
notes the number of layers, L the sequence length, S the
block size, and D the hidden dimension. The expression
highlighted in blue denotes the number of attention opera-
tions. E2D2 refers to block diffusion parameterization. For
E2D2, we separate N into NEnc encoder and NDec decoder
layers. We provide the derivation in Appendix B.

Attention FLOPs MLP FLOPs

AR 4ND(L
2+L
2

) 24NLD2

MDLM 4NDL2 24NLD2

BD3LM 4ND(L2 + LS) 48NLD2

E2D2 4(NEnc +NDec)D(L
2+LS
2

) 24(NEnc +NDec)LD
2

Table 2: Inference FLOPs compari-
son. O(θ) is cost of a decoder call
and O(ϕ) is cost of an encoder call.
For E2D2, O(θ) ≪ O(ϕ). T de-
notes diffusion steps and B the num-
ber of blocks. E2D2 uses the block
diffusion parameterization.

Inference FLOPs

AR L ·O(θ)

MDLM T ·O(θ)
BD3LM BT ·O(θ)
E2D2 B ·O(ϕ)︸ ︷︷ ︸

encoder

+BT ·O(θ)︸ ︷︷ ︸
decoder

3.4 Training Algorithm

In this section, we review the algorithm and complexity of a forward pass through the E2D2 model
to compute the loss of the block diffusion objective. The training procedure for E2D2 is presented
in Algorithm 2. We model the posterior probabilities pθ(z

b
s|zbt ,xC) for all blocks b ∈ [1, . . . , B]

and context tokens xC , where C ⊂ {1, . . . , L} is a set of their position indices. For block diffusion,
context tokens for block b correspond to previous clean blocks xC = x<b. Naively, we would compute
logits by invoking the encoder and decoder for each block in a loop, since the logits for each block are
conditioned on block-specific inputs zbt ,x

C . This entails calling the encoder hC
t = ENCODER(xC)

to encode the conditioning xC and the decoder to compute xb
logit = DECODER(zbt ,h

C
t).

Vectorized Implementation To efficiently model all posterior probabilities across B blocks using a
single encoder and decoder pass, we process all clean tokens x1:L through the encoder and noised
tokens z1:Lt through the decoder. We design custom attention masks (Figure 2) to ensure that noisy
tokens attend within their noised block and to previous clean blocks, inspired by [1].

5

Encoder Attn. Mask Menc

x1:L

x1:L

Decoder Attn. Mask Mdec

h1:L

z1:Lt

z1:Lt

Self-attn w/in x1:L

Cross-attn to h1:L

Self-attn w/in z1:L
t

Figure 2: Example attention masks used in block diffusion training with an encoder-decoder archi-
tecture, for L = 6 tokens with blocks of size S = 2. Left: The encoder mask MEnc ∈ {0, 1}L×L

enables clean tokens to attend within their respective block and to previous blocks. Right: The
decoder mask MDec ∈ {0, 1}L×2L uses self-attention within noised blocks and cross-attention to
previous clean blocks using the encoder’s output representation h1:L.

Algorithm 2 Encoder-Decoder Training

Require: datapoint x1:L, noise process qt, ENCODER w/
params. ϕ, DECODER w/ params. θ, diffusion loss L

1: repeat
2: Sample t ∼ U [0, 1]
3: z1:Lt ∼ qt(·|x1:L)
4: h1:L ← ENCODER(x1:L,MEnc)
5: x1:L

logit ← DECODER(z1:Lt ,h1:L,MDec)

6: Take gradient step on∇θ,ϕL(x1:L
logit; θ, ϕ)

7: until converged

In particular, the clean sequence x1:L is passed
to the encoder with a block-causal mask
MEnc ∈ {0, 1}L×L to produce the repre-
sentations h1:L so that each clean block is
conditioned on itself xb and previous blocks
x<b(Figure 2, left). In the decoder, for a given
noisy block zbt , each token attends to tokens
within its block zbt and clean token represen-
tations from preceding blocks x<b, which we
denote as h<b. The decoder attention mecha-
nism operates over 2L keys and values corre-
sponding to the L tokens in h1:L and the L to-
kens in z1:Lt . The decoder attention pattern is enforced through an attention mask MDec ∈ {0, 1}L×2L

(Figure 2, right). We thus perform an encoder pass over the entire clean sequence, followed by a
decoder pass over the entire noisy sequence, as follows: h1:L = ENCODER(x1:L,MEnc) and
x1:L

logit = DECODER(z1:Lt ,h1:L,MDec).

Crucially, using a smaller decoder significantly improves training throughput relative to a decoder-
only BD3LM model. In Table 1, we depict the FLOPs comparison between modeling paradigms
and E2D2 applied to block diffusion, see Appendix B for a detailed derivation. Letting N be the
total number of layers in the model, which for E2D2 we have N = NEnc + NDec, we see that for
same number of layers, E2D2 uses 2× fewer FLOPs compared to BD3LM. Moreover, for any block
diffusion model of block size S < L, we achieve fewer training FLOPs relative to standard masked
diffusion models (MDLM; see Appendix C) while maintaining the superior quality of the BD3LM
block diffusion parameterization.

3.5 E2D2 for Standard Masked Diffusion (MDLM)

Below, we present details for training and sampling from a standard full-sequence masked diffusion
model (MDLM [55]), introduced in Section 2.1, using our encoder-decoder architecture. Recall that
here our denoising network predicts a joint distribution over the entire sequence pθ(z

1:L
s | z1:Lt),

unlike block diffusion which requires predicting the posterior for each block of tokens.

The encoder takes as input a sequence of clean context tokens consisting of prompt tokens and clean
tokens in z1:Lt . The decoder takes as input the full noised sequence z1:Lt , which outputs logits for each
token conditioned on the encoder’s output. This design facilitates faster inference, as the lightweight
decoder may be invoked multiple times to generate a number of tokens before calling the larger
encoder to produce a strong contextual representation.

Sampling For full-sequence masked diffusion, the sampling procedure follows Algorithm 1, except
that here the decoder generates groups of tokens that can be in any position of the full sequence rather
than in contiguous blocks. For a more formal exposition see Appendix D and Algorithm 3. As above,
we begin by encoding the P prompt tokens x1:P to attain the encoder representation h1:P . The
decoder’s input is initialized to a sequence of length L consisting of only masked tokens. The decoder
iteratively denoises this full sequence for a fixed number of steps with cross-attention to h1:P . At
the end of this denoising interval, the decoder has generated some new tokens, which are potentially

6

non-contiguous in the sequence dimension. These tokens are returned as a new ‘block’ to the encoder,
which adds them to its running context and produces an updated clean token representation. This
process is repeated until the sampling budget T is exhausted.

Training At every training step, we sample z1:Lt ∼ q(z1:Lt | x1:L). The input to the encoder consists
of the clean tokens in this sequence. The decoder receives the entire sequence z1:Lt and the encoder’s
representation of the clean tokens. Since we model the full sequence with diffusion, both the encoder
and decoder use bidirectional attention. See Appendix D for more detail.

4 Experiments

4.1 Experimental Design

We study the capabilities of E2D2 on summarization, translation, mathematical reasoning, and
zero-shot likelihood estimation on held-out data. In each setting, we train domain-specific E2D2 and
baseline models. In addition to performance metrics for each task, we report inference throughput.
By varying the decoder size, we can map the Pareto frontier of efficiency and performance, with
increasing number of layers controlling both performance (larger decoder → higher performance) and
throughput (larger decoder → lower throughput). As noted in Section 3, throughout the experiments,
we use the block diffusion parameterization in conjunction with E2D2.

Datasets We examine 1) text summarization (CNN/DailyMail; [27, 57]) for which we compute
ROUGE scores [37], 2) machine translation (WMT 14 de-en; [6]) for which we compute the BLEU
[50] score, and 3) mathematical reasoning (GSM8K; [10]) for which we compute zero-shot pass@1
accuracy. We also train E2D2 on the widely used pretraining OpenWebText dataset [21]. We compute
perplexity (PPL) on the validation set of this corpus and PPL for held-out datasets (zero-shot PPL).

Baselines We compare E2D2 against decoder-only AR models and discrete diffusion models MDLM
[55] and BD3LM [1]. For likelihood estimation, we also compare against SEDD [40].

Last Hidden State Design Decisions For the last hidden state version of E2D2, models are
parameterized using a transformer architecture based on Qwen3 [76]. Qwen3 features improvements
over prior architectures, such as removing QKV biases and introducing QK normalization [14]. We
maintain untied weights for the encoder and decoder. For the CNN/DailyMail, WMT, and OWT
datasets, we train from scratch using this last hidden state version of E2D2. Full model and training
hyperparameters are detailed in Appendix E.

Shared KV Cache Design Decisions For the shared KV cache variant of E2D2, we use pretrained
Qwen3 weights to instantiate an E2D2 encoder, letting NEnc be the same as the underlying Qwen3
LLM. We then copy these weights for the decoder, but reduce the number of layers, to instantiate a
lightweight decoder so that NDec < NEnc. In particular, we copy layers closer to the output. The KV
cache from the encoder layer is provided to the decoder layer from which it was copied, i.e., at the
ith decoder layer we use KV[NEnc −NDec + i]. We reduce the memory footprint of the model by
weight-tying the encoder and decoder parameters.

For GSM8K, we fine-tuned from a pretrained Qwen3 1.7B model using this shared KV cache
architecture. Full details are in Appendix E. We find that for tasks where the downstream dataset
is relatively small, e.g., GSM8K, initializing from the pretrained weights of the underlying Qwen
model improves convergence and downstream performance. This is similar to previous findings that
initializing diffusion training from a pretrained AR model improves convergence [22, 78].

4.2 Results

Summarization and Machine Translation For text summarization and machine translation, in
Tables 3 and 4, we see that E2D2 is able to match or outperform our diffusion baselines while
achieving higher throughput. On the summarization task, E2D2 even outperforms an AR baseline
that has the same number of layers, while increasing throughput by ∼75%. We find that AR overfits
on this dataset, unlike diffusion, which is robust against overfitting by training over masking rates
[43, 52]. Compared to MDLM, which does not support KV caching, E2D2 offers better language
modeling and downstream task performance with ∼3× faster inference. In Table 4, E2D2 achieves
higher throughput and better BLEU scores for translation relative to the 16-layer BD3LM. While a
small 12-layer BD3LM approaches the throughput of E2D2, its BLEU score worsens further.

7

Table 3: CNN/DailyMail test set ROUGE scores. Best
values for our trained models are bolded. N refers to
number of transformer layers (NEnc/NDec for E2D2).
Decoding throughput (Tput) is measured in tokens /
sec on 1 H100 80GB machine. For all models, we use
T = L sampling steps, so the throughput can be higher
for diffusion when T < L. We report mean ± standard
deviation for 100 samples.

ROUGE (↑)
1 2 L

Past baselines
GPT-2 [53] 29.3 8.3 26.6
BERT-L [39] 41.7 19.4 38.8
T5-L [54] 42.5 20.7 39.8
AR-Diff. (k = 50) [74] 39.6 16.3 37.1
GENIE (k = 50) [38] 29.3 8.3 21.9

From scratch N Tput (↑) 1 2 L
AR 28 89.1±0.6 31.7 11.7 22.1
MDLM 28 49.3±14.6 30.6 12.5 22.7
BD3LM 12 135.1±3.3 35.8 13.7 23.7
E2D2 (Ours) 20/8 155.8±2.6 36.0 14.1 23.9

Table 4: WMT (de-en) test set BLEU
score. Best values for our trained models
are bolded. N refers to number of trans-
former layers (NEnc/NDec for E2D2). De-
coding throughput (Tput) is measured in
tokens / sec on 1 H100 80GB machine. For
all models, we use T = L sampling steps,
so the throughput can be higher for diffu-
sion when T < L. We report mean ± stan-
dard deviation for 100 samples.

BLEU (↑)
Past baselines
NAT [23] 20.62
NAR autoencoders [34] 25.43
USMT [3] 17.43
CMLM Base [20] 29.47

From scratch N Tput (↑) BLEU (↑)
AR 32 77.6±0.4 25.2
MDLM 32 60.4±0.8 18.4
BD3LM 12 129.6±0.7 23.3
BD3LM 16 102.4±0.5 24.0
E2D2 (Ours) 28/4 162.0±1.4 24.8

Table 5: Evaluation on GSM8K test set. Best diffu-
sion value is bolded. N refers to number of trans-
former layers (NEnc/NDec in the case of E2D2). De-
coding throughput (Tput) is measured in tokens /
sec on 1 H100 80GB machine. For all models, we
use T = L sampling steps, so the throughput can be
higher for diffusion when T < L. We report mean
± standard deviation for 100 samples.

N PPL
(↓)

0-shot
pass@1

(↑)
Tput
(↑)

Fine-tuned
AR 28 1.49 66.6 94.1±0.5
MDLM 28 ≤2.30 14.0 31.9±3.0
BD3LM 21 ≤1.87 33.2 86.6±0.5
E2D2 (Ours) 28/14 ≤1.80 47.9 102.8±0.6

80 100 120 140
Efficiency: Throughput (tokens/sec,)

10

20

30

40

50

Pe
rfo

rm
an

ce
: 0

-s
ho

t p
as

s@
1

(
)

Improved trade-off

Pareto Frontier: Performance vs. Efficiency

BD3LM
E2D2
Decoder size

BD3LM
E2D2
Decoder size

Figure 3: Mapping the Pareto Fron-
tier: Larger models increase accuracy on
GSM8K at the cost of slower decoding.
E2D2 improves this trade-off.

Mathematical Reasoning Table 5 contains results on the GSM8K benchmark. As above, E2D2
shows improved downstream performance and decoding throughput compared to diffusion baselines.
Qualitatively, we also observe that E2D2 outperforms BD3LM models; see samples in Appendix G.

Mapping the Pareto Frontier of Performance and Efficiency By varying the depth of E2D2’s
decoder and that of baseline models, we can examine the trade-off between performance (which
increases with larger models) and throughput (which decreases with larger models). We fine-tune
models on the GSM8K dataset and compute 0-shot pass@1 accuracy and decoding throughput. We
select the number of decoder layers to roughly match the throughput for E2D2 and BD3LM models
at various sizes, with BD3LM decoder layers varying over N ∈ {10, 14, 17, 21, 28} and E2D2 (using
NEnc = 28) decoder layers varying over NDec ∈ {6, 10, 14, 21, 26}. At each throughput level, E2D2
features higher quality, extending the Pareto frontier of quality and speed in Figure 3.

Likelihood In addition to downstream task performance, we evaluate E2D2’s language modeling
capabilities. We train E2D2 model on OpenWebText (OWT; [21]) and compute zero-shot PPL (↓) on
held-out benchmark datasets from [53]. E2D2 with the block diffusion parameterization outperforms

8

full-sequence diffusion baselines SEDD and MDLM on OWT perplexity. While attaining comparable
perplexities to BD3LM, we find that E2D2 is 40% faster to train, as measured in training throughput
(tokens / sec on 1 H100 80GB, with batch size 32 and context length L = 1024, measured after 100k
steps) with a throughput of 8.4× 104 for E2D2 and 5.9× 104 for BD3LM.

Table 6: Validation perplexities (↓) for models trained on OWT. Perplexities for diffusion models are
upper bounds. All models are trained on 524B tokens. All models use 170M total parameters and
N = 12 total layers; for E2D2, we use NEnc = 10, NDec = 2. † indicates values taken from [1].

Zero-shot
OWT PTB Wikitext LM1B Lambada AG News Pubmed Arxiv

AR† 17.54 81.07 25.32 51.14 52.13 52.11 48.59 41.22

SEDD† 24.10 96.33 35.98 68.14 48.93 67.82 45.39 40.03
MDLM† 22.98 90.96 33.22 64.94 48.29 62.78 43.13 37.89
BD3LM† 20.73 96.81 31.31 60.88 50.03 61.67 42.52 39.20
E2D2 21.73 101.50 32.32 64.01 54.62 63.75 43.68 41.52

4.3 Ablations

We assess the impact of block size, number of diffusion steps, and choice of encoder-decoder
architecture on downstream performance.

Table 7: Accuracy and decoding speed trade-off
across varying block sizes for E2D2 on GSM8K.
Decoding throughput (Tput) is measured in to-
kens / sec on 1 A100 80GB machine. We report
mean ± standard deviation for 100 samples.

Block size S 0-shot pass@1 (↑) Tput (↑)
32 20.9 62.2±2.3
16 33.0 58.3±1.1
8 37.4 52.7±0.4
4 47.9 45.7±0.2
2 50.1 34.8±0.4

Block size For E2D2, using a larger block size
increases throughput, as the encoder is invoked
fewer times during generation. However, larger
block sizes lead to worse quality, as the likeli-
hood bound is less tight for larger blocks [1].
To explore this trade-off, we fine-tune E2D2
models with NEnc/NDec = 28/14 and varying
block sizes S ∈ {2, 4, 8, 16, 32} on the GSM8K
dataset. We report results in Table 7 where
we observe the anticipated trade-off, with the
best quality coming from the smallest block size
S = 2 and the highest throughput coming from
the largest block size S = 32.

Number of Diffusion Steps In Table 8, we show the effect of diffusion steps per block T on sample
quality using E2D2 and decoder-only BD3LM. For both models, we use S = 4. E2D2 outperforms
BD3LM in quality for each T . As T decreases, relative throughput gains from E2D2 diminish,
since the decoder requires fewer invocations. For T = 1, E2D2 achieves comparable throughput
to the 16-layer BD3LM because every sampling step invokes both the encoder and decoder, which
together use comparable FLOPs relative to the 16-layer BD3LM. The 12-layer BD3LM achieves
better throughput than E2D2 for T = 1, but sacrifices quality.

Table 8: Performance and decoding speed trade-off across varying number of diffusion steps T for
BD3LM and E2D2 on WMT. Decoding throughput (Tput) is measured in tokens / sec on 1 A100
80GB machine. Note that for all models, we use L total sampling steps, so the throughput for diffusion
models can in practice increase when T < S for block size S. We report mean ± standard deviation
for 100 samples. Best BLEU and throughput numbers are bolded.

BD3LM
N = 12

BD3LM
N = 16

E2D2
NEnc/NDec = 28/4

T BLEU (↑) Tput (↑) BLEU (↑) Tput (↑) BLEU (↑) Tput (↑)
1 17.2 149.2±2.4 17.9 118.7±2.0 19.3 116.6±3.2
2 21.8 100.7±2.2 22.4 77.0±1.2 23.2 103.7±1.7
4 23.3 62.5±0.5 24.0 47.1±1.0 24.8 79.0±1.5

9

Architecture Design We compare the performance of the “last hidden state” and “shared KV cache”
architecture variants (Section 3.2) when used to pretrain models for summarization and fine-tune
models for math reasoning. In Table 9, we report perplexities from training models for 20k steps.

Table 9: Validation PPL upper bounds (↓)
for last hidden state and shared KV cache
versions of E2D2 on CNN/DailyMail and
GSM8K. † indicates model used in the
main results. Best values are bolded.

CNN/
DailyMail GSM8K

Last Hidden State 14.94† 1.98
Shared KV Cache 293.50 1.80†

For models trained from scratch, e.g., on the larger sum-
marization dataset, the “last hidden state” design per-
forms best. We hypothesize that conditioning on the
encoder’s last hidden representation provides a richer
signal than using intermediate representations. When
fine-tuning from a strong Qwen3 model on the smaller
GSM8K dataset, the “shared KV cache” variant achieves
better perplexity. We speculate that by reusing the en-
coder’s cached KVs, this design keeps the decoder’s
cross-attention inputs aligned with those expected by the
base model, which facilitates more stable fine-tuning.

5 Related Work

Encoder-Decoder Models T5 [54] and follow-up works FLAN and FLAN-UL2 [9, 64] demonstrated
the efficacy of encoder-decoder architectures on a wide range of natural language benchmarks.
Recently, this architecture was applied to the more updated Gemma family of models [65] in
T5Gemma [79]. In contrast to our work, T5-style architectures use AR decoders and they separate
out cross-attention between decoder and encoder representations into distinct modules, as opposed
to performing attention over both decoder and encoder outputs in one forward pass, as in our work.
Moreover, in these AR T5-style models, the encoder is only used once to provide an embedding of
the input context. In E2D2, the encoder is applied to the context and each newly decoded block.

Diffusion Language Models Early approaches modeled word embeddings via Gaussian diffusion
[24, 36]. Modern diffusion language models adopt a decoder-only architecture that is trained via
denoising, similar to BERT [15]. The LLaDA model [46] scales masked diffusion models [45, 55] to
the 8B parameter regime and demonstrated comparable and superior performance to a similarly-sized
AR Llama model [17]. Another large discrete diffusion model Dream7B [78], which extends the
DiffuLLaMA framework [22], uses pretrained AR models to initialize their models.

Unlike E2D2, these models only train with a full-sequence diffusion parameterization instead of the
performant block diffusion framework [1]. When fine-tuning from AR checkpoints, this requires that
models, such as Dream7B, carefully anneal the causal attention mask of the original pretrained AR
LLM towards a fully bidirectional one. In contrast, for small block sizes S ≪ L, our work does not
require this tuned annealing as tokens only attend to tokens up to S positions in the future.

ENAT Highly related to our work is the discrete image generation model ENAT [44], which leverages
an encoder-decoder to decouple computational budget allocated to processing clean and masked
tokens. The bidirectional nature of this non-AR model, however, precludes ENAT from leveraging
efficient KV caching methods explored here. While our method supports variable-length sequence
modeling, the ENAT architecture is only applicable to fixed-length outputs such as images.

Efficient Inference An analogy can be drawn between E2D2 and speculative decoding methods
[8, 35], which speed up generation for AR models by utilizing smaller proposal networks. Most
related to our work is Medusa [7], which uses several small MLPs to decode blocks of tokens
conditioned on the final hidden state of the LLM. In contrast to our work however, these methods use
accept/reject algorithms to keep proposal network tokens, while we use diffusion sampling.

6 Conclusion

In this work, we propose E2D2, a novel encoder-decoder architecture with efficient diffusion training
and sampling algorithms. Our results demonstrate that E2D2 better trades off throughput and
sample quality relative to prior state-of-the-art masked diffusion models. While E2D2 represents
a promising direction to narrow both the performance and throughput gaps relative to AR models,
further innovation is required to increase training efficiency and sample quality. Finally, given we are
working on language modeling, we carry the inherent risks and opportunities of this line of research.

10

Acknowledgments

This work was partially funded by the National Science Foundation under award CAREER 2145577,
and by the National Institute of Health under award MIRA R35GM151243. Marianne Arriola
is supported by a NSF Graduate Research Fellowship under award DGE-2139899 and a Hopper-
Dean/Bowers CIS Deans Excellence Fellowship. We gratefully acknowledge use of the research
computing resources of the Empire AI Consortium, Inc, with support from Empire State Development
of the State of New York, the Simons Foundation, and the Secunda Family Foundation [5]. This
research was also supported in part through the use of computational resources provided by Lambda
(lambda.ai) in partnership with Open Athena AI Foundation, Inc. We gratefully acknowledge their
generous GPU infrastructure grants that helped make this work possible and thank Eric Czech of
Open Athena for the useful discussions and feedback.

References
[1] Marianne Arriola, Subham Sekhar Sahoo, Aaron Gokaslan, Zhihan Yang, Zhixuan Qi, Jiaqi Han,

Justin T Chiu, and Volodymyr Kuleshov. Block diffusion: Interpolating between autoregressive
and diffusion language models. In The Thirteenth International Conference on Learning
Representations, 2025.

[2] Marianne Arriola, Naveen Venkat, Jonathan Granskog, and Anastasis Germanidis. Adapting
autoregressive vision language models for parallel diffusion decoding. Runway AI Blog Post,
2025.

[3] Mikel Artetxe, Gorka Labaka, and Eneko Agirre. Unsupervised statistical machine translation.
arXiv preprint arXiv:1809.01272, 2018.

[4] Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg.
Structured denoising diffusion models in discrete state-spaces. Advances in Neural Information
Processing Systems, 34:17981–17993, 2021.

[5] Stacie Bloom, Joshua C. Brumberg, Ian Fisk, Robert J. Harrison, Robert Hull, Melur Ramasub-
ramanian, Krystyn Van Vliet, and Jeannette Wing. Empire AI: A new model for provisioning
AI and HPC for academic research in the public good. In Practice and Experience in Advanced
Research Computing (PEARC ’25), page 4, Columbus, OH, USA, July 2025. ACM.

[6] Ondrej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Johannes
Leveling, Christof Monz, Pavel Pecina, Matt Post, Herve Saint-Amand, Radu Soricut, Lucia
Specia, and Ale s Tamchyna. Findings of the 2014 workshop on statistical machine translation. In
Proceedings of the Ninth Workshop on Statistical Machine Translation, pages 12–58, Baltimore,
Maryland, USA, June 2014. Association for Computational Linguistics.

[7] Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri
Dao. Medusa: Simple llm inference acceleration framework with multiple decoding heads.
arXiv preprint arXiv:2401.10774, 2024.

[8] Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and
John Jumper. Accelerating large language model decoding with speculative sampling. arXiv
preprint arXiv:2302.01318, 2023.

[9] Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan
Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned
language models. Journal of Machine Learning Research, 25(70):1–53, 2024.

[10] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

[11] Arman Cohan, Franck Dernoncourt, Doo Soon Kim, Trung Bui, Seokhwan Kim, Walter Chang,
and Nazli Goharian. A discourse-aware attention model for abstractive summarization of
long documents. Proceedings of the 2018 Conference of the North American Chapter of the

11

https://lambda.ai

Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short
Papers), 2018.

[12] Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. In The
Twelfth International Conference on Learning Representations, 2024.

[13] Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with
gated convolutional networks. In International conference on machine learning, pages 933–941.
PMLR, 2017.

[14] Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin
Gilmer, Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al.
Scaling vision transformers to 22 billion parameters. In International Conference on Machine
Learning, pages 7480–7512. PMLR, 2023.

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[16] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.
Advances in neural information processing systems, 34:8780–8794, 2021.

[17] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd
of models. arXiv e-prints, pages arXiv–2407, 2024.

[18] Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles
Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas
Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron,
Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 12 2023.

[19] Itai Gat, Heli Ben-Hamu, Marton Havasi, Daniel Haziza, Jeremy Reizenstein, Gabriel Synnaeve,
David Lopez-Paz, Brian Karrer, and Yaron Lipman. Set block decoding is a language model
inference accelerator. arXiv preprint arXiv:2509.04185, 2025.

[20] Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-predict: Parallel
decoding of conditional masked language models. In Kentaro Inui, Jing Jiang, Vincent Ng, and
Xiaojun Wan, editors, Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Language Process-
ing (EMNLP-IJCNLP), pages 6112–6121, Hong Kong, China, November 2019. Association for
Computational Linguistics.

[21] Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus.
http://Skylion007.github.io/OpenWebTextCorpus, 2019.

[22] Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An,
Peilin Zhao, Wei Bi, Jiawei Han, Hao Peng, and Lingpeng Kong. Scaling diffusion language
models via adaptation from autoregressive models. In The Thirteenth International Conference
on Learning Representations, 2025.

[23] Jiatao Gu, James Bradbury, Caiming Xiong, Victor OK Li, and Richard Socher. Non-
autoregressive neural machine translation. arXiv preprint arXiv:1711.02281, 2017.

[24] Ishaan Gulrajani and Tatsunori B Hashimoto. Likelihood-based diffusion language models.
Advances in Neural Information Processing Systems, 36, 2024.

[25] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen,
David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern,
Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fer-
nández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler
Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array
programming with NumPy. Nature, 585(7825):357–362, September 2020.

12

http://Skylion007.github.io/OpenWebTextCorpus

[26] Guangxin He, Shen Nie, Fengqi Zhu, Yuankang Zhao, Tianyi Bai, Ran Yan, Jie Fu, Chongxuan
Li, and Binhang Yuan. Ultrallada: Scaling the context length to 128k for diffusion large
language models. arXiv preprint arXiv:2510.10481, 2025.

[27] Karl Moritz Hermann, Tomás Kociský, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa
Suleyman, and Phil Blunsom. Teaching machines to read and comprehend. In NIPS, pages
1693–1701, 2015.

[28] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020.

[29] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering,
9(3):90–95, 2007.

[30] Yuchu Jiang, Yue Cai, Xiangzhong Luo, Jiale Fu, Jiarui Wang, Chonghan Liu, and Xu Yang.
d2 cache: Accelerating diffusion-based llms via dual adaptive caching. arXiv preprint
arXiv:2509.23094, 2025.

[31] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[32] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[33] Volodymyr Kuleshov. Fast algorithms for sparse principal component analysis based on rayleigh
quotient iteration. In International Conference on Machine Learning, pages 1418–1425. PMLR,
2013.

[34] Jason Lee, Elman Mansimov, and Kyunghyun Cho. Deterministic non-autoregressive neural
sequence modeling by iterative refinement. arXiv preprint arXiv:1802.06901, 2018.

[35] Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via
speculative decoding. In International Conference on Machine Learning, pages 19274–19286.
PMLR, 2023.

[36] Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S Liang, and Tatsunori B Hashimoto.
Diffusion-lm improves controllable text generation. Advances in Neural Information Processing
Systems, 35:4328–4343, 2022.

[37] Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pages 74–81, 2004.

[38] Zhenghao Lin, Yeyun Gong, Yelong Shen, Tong Wu, Zhihao Fan, Chen Lin, Nan Duan, and
Weizhu Chen. Text generation with diffusion language models: A pre-training approach
with continuous paragraph denoise. In International Conference on Machine Learning, pages
21051–21064. PMLR, 2023.

[39] Yang Liu and Mirella Lapata. Text summarization with pretrained encoders. arXiv preprint
arXiv:1908.08345, 2019.

[40] Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion language modeling by
estimating the ratios of the data distribution. arXiv preprint arXiv:2310.16834, 2023.

[41] Mitch Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated
corpus of english: The penn treebank. Computational linguistics, 19(2):313–330, 1993.

[42] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

[43] Jinjie Ni, Qian Liu, Longxu Dou, Chao Du, Zili Wang, Hang Yan, Tianyu Pang, and
Michael Qizhe Shieh. Diffusion language models are super data learners, 2025. Notion
Blog.

13

[44] Zanlin Ni, Yulin Wang, Renping Zhou, Yizeng Han, Jiayi Guo, Zhiyuan Liu, Yuan Yao, and
Gao Huang. ENAT: Rethinking spatial-temporal interactions in token-based image synthesis.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

[45] Shen Nie, Fengqi Zhu, Chao Du, Tianyu Pang, Qian Liu, Guangtao Zeng, Min Lin, and
Chongxuan Li. Scaling up masked diffusion models on text. arXiv preprint arXiv:2410.18514,
2024.

[46] Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai
Lin, Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint
arXiv:2502.09992, 2025.

[47] Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan
Li. Your absorbing discrete diffusion secretly models the conditional distributions of clean data.
arXiv preprint arXiv:2406.03736, 2024.

[48] The pandas development team. pandas-dev/pandas: Pandas, February 2020.

[49] Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Ngoc Quan Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernandez. The LAMBADA
dataset: Word prediction requiring a broad discourse context. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
1525–1534, Berlin, Germany, August 2016. Association for Computational Linguistics.

[50] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, pages 311–318, 2002.

[51] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[52] Mihir Prabhudesai, Mengning Wu, Amir Zadeh, Katerina Fragkiadaki, and Deepak Pathak.
Diffusion beats autoregressive in data-constrained settings. arXiv preprint arXiv:2507.15857,
2025.

[53] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[54] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of machine learning research, 21(140):1–67, 2020.

[55] Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin,
Justin T Chiu, Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked
diffusion language models. arXiv preprint arXiv:2406.07524, 2024.

[56] Yair Schiff, Subham Sekhar Sahoo, Hao Phung, Guanghan Wang, Sam Boshar, Hugo Dalla-torre,
Bernardo P de Almeida, Alexander Rush, Thomas Pierrot, and Volodymyr Kuleshov. Simple
and controllable uniform discrete diffusion language models. In The Thirteenth International
Conference on Learning Representations, 2025.

[57] Abigail See, Peter J. Liu, and Christopher D. Manning. Get to the point: Summarization with
pointer-generator networks. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1073–1083, Vancouver, Canada,
July 2017. Association for Computational Linguistics.

[58] Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis Titsias. Simplified and
generalized masked diffusion for discrete data. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024.

14

[59] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. In International conference on machine
learning, pages 2256–2265. PMLR, 2015.

[60] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. Advances in neural information processing systems, 32, 2019.

[61] Yuxuan Song, Zheng Zhang, Cheng Luo, Pengyang Gao, Fan Xia, Hao Luo, Zheng Li, Yuehang
Yang, Hongli Yu, Xingwei Qu, et al. Seed diffusion: A large-scale diffusion language model
with high-speed inference. arXiv preprint arXiv:2508.02193, 2025.

[62] Haoran Sun, Lijun Yu, Bo Dai, Dale Schuurmans, and Hanjun Dai. Score-based continuous-time
discrete diffusion models. arXiv preprint arXiv:2211.16750, 2022.

[63] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger, editors,
Advances in Neural Information Processing Systems, volume 27. Curran Associates, Inc., 2014.

[64] Yi Tay, Mostafa Dehghani, Vinh Q Tran, Xavier Garcia, Jason Wei, Xuezhi Wang, Hyung Won
Chung, Siamak Shakeri, Dara Bahri, Tal Schuster, et al. Ul2: Unifying language learning
paradigms. arXiv preprint arXiv:2205.05131, 2022.

[65] Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
models based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

[66] The Mosaic ML Team. composer. https://github.com/mosaicml/composer/, 2021.

[67] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[68] Guanghan Wang, Yair Schiff, Subham Sekhar Sahoo, and Volodymyr Kuleshov. Remasking
discrete diffusion models with inference-time scaling. arXiv preprint arXiv:2503.00307, 2025.

[69] Yingheng Wang, Yair Schiff, Aaron Gokaslan, Weishen Pan, Fei Wang, Christopher De Sa, and
Volodymyr Kuleshov. InfoDiffusion: Representation learning using information maximizing
diffusion models. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of the 40th International Conference
on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pages
36336–36354. PMLR, 23–29 Jul 2023.

[70] Michael L. Waskom. seaborn: statistical data visualization. Journal of Open Source Software,
6(60):3021, 2021.

[71] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transform-
ers: State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

[72] Chengyue Wu, Hao Zhang, Shuchen Xue, Shizhe Diao, Yonggan Fu, Zhijian Liu, Pavlo
Molchanov, Ping Luo, Song Han, and Enze Xie. Fast-dllm v2: Efficient block-diffusion llm.
arXiv preprint arXiv:2509.26328, 2025.

[73] Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo,
Song Han, and Enze Xie. Fast-dllm: Training-free acceleration of diffusion llm by enabling kv
cache and parallel decoding. arXiv preprint arXiv:2505.22618, 2025.

[74] Tong Wu, Zhihao Fan, Xiao Liu, Hai-Tao Zheng, Yeyun Gong, Jian Jiao, Juntao Li, Jian
Guo, Nan Duan, Weizhu Chen, et al. Ar-diffusion: Auto-regressive diffusion model for text
generation. Advances in Neural Information Processing Systems, 36:39957–39974, 2023.

[75] Omry Yadan. Hydra - a framework for elegantly configuring complex applications. Github,
2019.

15

https://github.com/mosaicml/composer/

[76] An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang,
Feng Hu, Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin
Yang, Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin
Zhu, Rui Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin,
Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang
Zhang, Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng
Zhou, Zihan Qiu, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025.

[77] Ling Yang, Ye Tian, Bowen Li, Xinchen Zhang, Ke Shen, Yunhai Tong, and Mengdi Wang.
Mmada: Multimodal large diffusion language models. arXiv preprint arXiv:2505.15809, 2025.

[78] Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
Kong. Dream 7b, 2025.

[79] Biao Zhang, Fedor Moiseev, Joshua Ainslie, Paul Suganthan, Min Ma, Surya Bhupatiraju, Fede
Lebron, Orhan Firat, Armand Joulin, and Zhe Dong. Encoder-decoder gemma: Improving the
quality-efficiency trade-off via adaptation. arXiv preprint arXiv:2504.06225, 2025.

[80] Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. Character-level convolutional networks for
text classification. In NIPS, 2015.

[81] Siyan Zhao, Devaansh Gupta, Qinqing Zheng, and Aditya Grover. d1: Scaling reasoning in
diffusion large language models via reinforcement learning. arXiv preprint arXiv:2504.12216,
2025.

[82] Fengqi Zhu, Zebin You, Yipeng Xing, Zenan Huang, Lin Liu, Yihong Zhuang, Guoshan Lu,
Kangyu Wang, Xudong Wang, Lanning Wei, et al. Llada-moe: A sparse moe diffusion language
model. arXiv preprint arXiv:2509.24389, 2025.

16

Contents

1 Introduction 1

2 Background 2

2.1 Discrete Diffusion Models . 2

2.2 Block Diffusion Language Modeling . 3

3 Efficient Encoder-Decoder Diffusion 3

3.1 Architecture . 4

3.2 Design Decisions . 4

3.3 Sampling Algorithm . 4

3.4 Training Algorithm . 5

3.5 E2D2 for Standard Masked Diffusion (MDLM) 6

4 Experiments 7

4.1 Experimental Design . 7

4.2 Results . 7

4.3 Ablations . 9

5 Related Work 10

6 Conclusion 10

A Extended Background on Block Diffusion Language Models 18

A.1 Forward Noise Process . 18

A.2 Reverse Denoising Process . 19

A.3 Negative Evidence Lower Bound (NELBO) . 19

B Training FLOPs derivation 20

C FLOPs comparison to MDLM 21

D MDLM with Encoder-Decoder Architecture 21

E Additional Experimental Details 22

E.1 Measuring Throughput . 22

E.2 Summarization . 23

E.3 Translation . 23

E.4 Mathematical Reasoning . 24

E.5 Language Modeling . 24

F Assets 25

G Generated Samples 25

17

G.1 E2D2 . 25

G.2 BD3LM (N = 21) . 26

A Extended Background on Block Diffusion Language Models

Below, we provide an extended overview of block diffusion language models closely following
[1]. In particular, we define the masking process q(z1:Bt | z1:B) and the derivation of the objective
L(x1:B ; θ) for parameters θ.

Recall that we factorize the sequence x1:L drawn from the data distribution q(x1:L) over B blocks
of size S. We simplify notation by denoting the tokens x(b−1)·S:b·S in a block b as xb. We perform
diffusion in each block over T discretization steps. We define t, s to denote t(i) = i/T and
s(i) = (i− 1)/T , for all i ∈ [1, T]. We denote the Kullback-Leibler divergence as DKL[·]. Below
we reproduce the negative evidence lower bound (NELBO) following [1]:

− log pθ(x) = −
B∑

b=1

log pθ(x
b|x<b)

= −
B∑

b=1

logEq

pθ(z
b
t(1):t(T)|x

<b)

q(zbt(1):t(T)|xb)

= −
B∑

b=1

logEq

pθ(z
b
t(T)|x

<b)
∏T

i=1 pθ(z
b
s(i)|z

b
t(i),x

<b)∏T
i=1 q(z

b
t(i)|z

b
s(i))

≤
B∑

b=1

[
−Eq log pθ(x

b|zbt= 1
T
,x<b)︸ ︷︷ ︸

Lrecons

+ Et∈{ 2
T ,...,T−1

T ,1}EqTDKL

(
q(zbs|zbt ,xb) ∥ pθ(z

b
s|zbt ,x<b)

)
︸ ︷︷ ︸

Ldiffusion

+ DKL

(
q(zbt=1|xb) ∥ pθ(z

b
t=1)

)︸ ︷︷ ︸
Lprior

]
(1)

A.1 Forward Noise Process

Within each block, [1] adopt the masked diffusion language modeling framework, which is the most
performant [4]. They use a simplified NELBO as proposed by [47, 55, 58].

Following [4], we first define a diffusion matrix Qt ∈ RV×V corresponding to noise level t for states
i ∈ {1, . . . , V } and vocabulary size V . Recall that the prior distribution is the absorbing mask state
m, a one-hot vector centered on the special [MASK] token index. We denote this mask index as
the last token in the vocabulary, argmaxi mi = V . Consider the noise schedule function αt ∈ [0, 1],
which is monotonically decreasing in t, with α0 = 1 and α1 = 0. Then, the diffusion matrix is:

[Qt]ij =


1 if i = j = V

αt if i = j ̸= V

1− αt if j = V, i ̸= V

(2)

For the forward marginal Qt|s, we use forward marginal probabilities according to αt|s = αt/αs.
The forward noise process is applied independently for each token ℓ ∈ {1, . . . L}. We first define
the transition matrix Qt(i) = Qt(1)Qt(2) . . . Qt(i) which is used in the forward process q(zℓt|xℓ) =

Cat
(
zℓt;Qtx

ℓ
)
.

18

A.2 Reverse Denoising Process

We now may obtain the reverse posterior q(zℓs | zℓt,xℓ) derived in D3PM [4] as follows, where ⊙
denotes the Hadamard product between two vectors:

q(zℓs|zℓt,xℓ) =
q(zℓt|zℓs,xℓ)q(zℓs|xℓ)

q(zℓt|xℓ)
= Cat

(
zℓs;

Qt|sz
ℓ
t ⊙Q⊤

s x
ℓ

(zℓt)
⊤
Q⊤

t x
ℓ

)
(3)

A.3 Negative Evidence Lower Bound (NELBO)

As in block diffusion [1], we adopt the simplified objective for masked diffusion [47, 55, 58] to
obtain a tighter NELBO. We provide the sketch for the derivation, with the full proof is provided in
[47, 55, 58].

We first focus on simplifying the diffusion loss term in (1). To simplify the denoising model, we
enforce the following constraints on the design of the denoising network by taking advantage of the
fact that there only exists two possible states in the diffusion process zℓt ∈ {xℓ,m} ∀ℓ ∈ {1, . . . , L}
[55].

1. Zero Masking Probabilities. The clean sequence does not contain masks. So, we set
pθ(x

ℓ = m | zℓt) = 0.
2. Carry-Over Unmasking. If a token is unmasked in the reverse denoising process, it is

never remasked by definition of the masked diffusion process. The true reverse posterior for
the case where zℓt ̸= m is q(zℓs = zℓt|zℓt ̸= m) = 1. Thus, we set pθ(zℓs = zℓt|zℓt ̸= m) = 1.

With these two simplifications, we now use our denoising model to parameterize the posterior
pθ(z

ℓ
s = xℓ|zℓt = m). Let xb,ℓ denote a token in the ℓ-th position in block b ∈ {1, . . . , B}. The

diffusion loss term is derived as follows:

Ldiffusion =

B∑
b=1

EtEqT
[
DKL

[
q(zbs|zbt ,xb)∥pθ(zbs|zbt ,x<b)

]]
=

B∑
b=1

EtEqT

 L′∑
ℓ=1

DKL

[
q(zb,ℓs |zb,ℓt ,xb,ℓ)∥pθ(zb,ℓs |zbt ,x<b)

]
DKL is simply the discrete-time diffusion loss for the block b; hence, from [55] (Suppl. B.1), we get:

=

B∑
b=1

EtEqT

 L′∑
ℓ=1

αt − αs

1− αt
log pθ(x

b,ℓ | zb,ℓt ,x<b)


=

B∑
b=1

EtEqT

[
αt − αs

1− αt
log pθ(x

b | zbt ,x<b)

]
(4)

Lastly, we obtain a tighter approximation of the likelihood by taking the diffusion steps T → ∞ [55],
for which T (αt − αs) = α′

t:

Ldiffusion =

B∑
b=1

Et∼[0,1]Eq

[
α′
t

1− αt
log pθ(x

b | zbt ,x<b)

]
(5)

When taking T → ∞, [55] (Suppl. A.2.4) show the reconstruction loss becomes 0. In particular, we
use the fact that zbt(1) ∼ limT→∞ Cat

(
.; zb

t= 1
T

)
= Cat(.;xb). Then, we obtain:

Lrecons = −Eq log pθ(x
b|zbt(1),x

<b)

= − log pθ(x
b|zbt(1) = xb,x<b)

= 0 (6)

Also, the prior loss Lprior = DKL
(
q(zbt=1|xb) ∥ pθ(z

b
t=1)

)
reduces to 0 since αt=1 = 0 so that

q(zbt=1|xb) = Cat(.;m) and pθ(z
b
t=1) = Cat(.;m); see [55] (Suppl. A.2.4).

19

The final diffusion objective simply becomes a weighted average of cross-entropy terms:

LBD(x; θ) =

B∑
b=1

Et∼[0,1]Eq

[
α′
t

1− αt
log pθ(x

b | zbt ,x<b)

]
(7)

B Training FLOPs derivation

We derive the training FLOPs of a model forward pass in Table 1 as follows. Let L be the
sequence length, N be the number of layers, and D be the hidden dimension. We calcu-
late the attention FLOPs of the forward pass following FlashAttention [12], which is 4NDL2

for bidirectional attention, as each matrix multiplication (i.e., multiplying queries and keys
and multiplying the attention output by values) requires 2NDL2 FLOPs. Assuming a gated
MLP with three dense layers [13] and intermediate hidden dimension of 4D, the MLP FLOPs
are given as 24NLD2 = 2NL(D)(4D) (up-projection) + 2NL(D)(4D) (gate projection) +
2NL(4D)(D) (down-projection).

Autoregressive. The number of attention operations in causal attention is:
∑L

i=1 i =
L2+L

2 . Thus,
AR training uses 4ND(L

2+L
2) attention FLOPs. The MLP FLOPs are given as 24NLD2.

Full-Sequence Diffusion. Sequence diffusion models such as Masked Diffusion LMs [47, 55, 58]
training uses 4NDL2 attention FLOPs from bidirectional attention, requiring L2 attention operations.
The MLP FLOPs are also 24NLD2.

Block Diffusion. For block diffusion models [1], the sequence is split into B blocks of size S,
where L = BS.

The training algorithm proposed in BD3LM [1] is 2× more computationally expensive relative to
both AR and full-sequence diffusion. Below, we summarize the attention operations used to compute
the attention FLOPs from [1].

BD3LM uses attention mask MBD3LM ∈ {0, 1}2L×2L for both the noised tokens z1:Lt and clean
tokens x1:L. This mask can visualized as a concatenation of the encoder and decoder masks from
Figure 2. This mask is thus comprised of four L× L smaller attention masks:

MBD3LM =

[
0 MBC

MOBC MBD

]
where MBD and MOBC are used to update the representation of z1:Lt and MBC is used to update the
representation of x1:L. We define these masks as follows:

1. Block-causal self-attention mask to update clean x1:B . MBC ∈ {0, 1}L×L

[MBC]ij =

{
1 if j belongs in the same block as i, or a block before i

0 otherwise

Thus, MBC is nonzero for
∑B

b=1 bS
2 = S2B2+BS2

2 = L2+LS
2 entries

2. Block-diagonal self-attention mask to update noised z1:Bt . MBD ∈ {0, 1}L×L

[MBD]ij =

{
1 if i, j are in the same block
0 otherwise

Thus, MBD is nonzero for BS2 = LS entries.
3. Offset block-causal cross-attention mask to update z1:Bt via cross-attention to x1:B

[MOBC]ij =

{
1 if j belongs in a block before i

0 otherwise

Thus, MOBC = MBC −MBD such that the number of nonzero entries is L2+LS
2 − LS =

L2−LS
2 .

20

Thus, the total number of attention operations is L2+LS
2 + LS + L2−LS

2 = L2 + LS.

The number of MLP FLOPs is 48NLD2 as the input sequence to each layer is of length 2L from
both x1:L and z1:Lt .

Encoder-Decoder Block Diffusion (Ours). E2D2 uses half the attention FLOPs compared to
BD3LM by splitting the operation into encoder and decoder layers. This is because each encoder and
decoder layer uses the same number of attention FLOPs.

1. Encoder attention operations. The encoder uses mask MEnc ∈ {0, 1}L×L = MBC. Thus,

the encoder uses L2+LS
2 attention operations

2. Decoder attention operations. The decoder uses mask MDec ∈ {0, 1}L×2L = MOBC⊕MBD.

Thus, the decoder uses L2−LS
2 + LS = L2+LS

2 attention operations.

The FLOPs of an attention pass is 4(NEnc +NDec)D
L2+LS

2 . The MLP FLOPs is 24NLD2 since the
input sequence contains L tokens at each layer.

C FLOPs comparison to MDLM

Below, we show that E2D2 attention FLOPs for the block diffusion parameterization are upper-
bounded by decoder-only MDLM FLOPs under the same model size. Assume both models have the
same number of total layers, where N = NEnc +NDec. Then,

FLOPsE2D2 ≤ FLOPsMDLM (8)

4ND

(
L2 + LS

2

)
≤ 4NDL2(

L2 + LS

2

)
≤ L2(

L+ S

2

)
≤ L

S ≤ L (9)

So, as long as S < L, E2D2 FLOPs are fewer than that of MDLM under equal model size. When
S = L, we exactly recover MDLM FLOPs.

D MDLM with Encoder-Decoder Architecture

Notation Recall that x1:P denotes P prompt tokens. We denote the set of unmasked token indices
in z1:Lt as Ct = {ℓ | zℓt ̸= m}, and we define xCt =

⊕
ℓ∈Ct

zℓt . The encoder receives inputs
xt,Enc = x1:P ⊕ xCt and produces representations ht.

Sampling In Algorithm 3, we present the sampling procedure for MDLM parameterized by an
encoder-decoder architecture. We denote the denoising steps budget as T , and the reverse diffusion
process proceeds as t = 1, T−1

T . . . , 1
T . We also denote the number of steps where only the decoder

is called by n. Thus, the encoder will be invoked at time steps t = 1, T−n
T , T−2n

T ,

We begin by encoding the P prompt tokens x1:P to attain the encoder representation h1:P . The
decoder’s input is initialized to a sequence of length L consisting of only masked tokens. The decoder
iteratively denoises this full sequence for a fixed number of steps n with cross-attention to h1 = h1:P .
Later in the decoding process, in some interval [s, t] (with s = t− n

T), during which only the decoder
is invoked over n evaluations and the encoder is not invoked, we treat hτ as constant for all τ ∈ [s, t].
At s, the decoder returns any new tokens decoded from the interval [s, t], which are incorporated into
the encoder’s input, and the encoder is evaluated to produce an updated hs. This process is repeated
until the sampling budget T is exhausted.

21

Algorithm 3 Encoder-Decoder MDLM Sampling

Require: Prompt x1:P , number of steps during which only the decoder is invoked n, number diffusion steps T ,
ENCODER, DECODER, algorithm SAMPLE

1: h← ENCODER(x1:P) ▷ Encode prompt
2: z1:Lt ∼m1:L ▷ Initialize fully noised sequence
3: for i = T, T − n, T − 2n, . . . , n do
4: t← i

T
5: for n steps do
6: z1:Lt ← SAMPLE(DECODER(z1:Lt ,h)) ▷ Denoise sequence: Apply small decoder only
7: end for
8: xCt ← Unmasked tokens in z1:Lt ▷ Accumulate output
9: xt,Enc ← x1:P ⊕ xCt

10: h← ENCODER(xt,Enc) ▷ Encode new ‘block’
11: end for
12: return z1:Lt

Encoder Attn. Mask Menc

xCt

xCt

Decoder Attn. Mask Mdec

hCt

z1:Lt

z1:Lt

Self-attn w/in xCt

Cross-attn to hCt

Self-attn w/in z1:L
t

Figure 4: Example attention masks used in training full-sequence diffusion with an encoder-decoder
architecture, for L = 6 tokens. We denote clean tokens in z1:Lt as xCt , where Ct corresponds to
their token indices. In this example, |Ct| = 3. Left: The encoder mask MEnc ∈ {0, 1}|Ct|×|Ct|

enables clean tokens to attend to other clean tokens in the sequence. Right: The decoder mask
MDec ∈ {0, 1}L×(L+|Ct|) uses bidirectional attention across the noised sequence z1:Lt and cross-
attention to the encoder’s output representation hCt .

Training During training, we sample z1:Lt ∼ q(z1:Lt | x1:L). The input to the encoder is the
sequence of unmasked tokens xCt from the full latent sequence z1:Lt (along with the prompt tokens
x1:P , if available), and it produces a representation of these tokens ht. The input to the decoder is
z1:Lt along with ht, and it outputs logits for each token position in z1:Lt .

In Figure 4, we present a sample MEnc and MDec for training MDLM with E2D2. Both the encoder
and the decoder use full bidirectional self- and cross-attention. For batched training, where the
number of unmasked tokens can differ between sequences, we may pad the encoder input sequences:
xCt ⊕ (

⊕
ℓ/∈Ct

[PAD]) where [PAD] is a special padding token. We also adjust the attention masks
MEnc and MDec accordingly, to disable attention to padding tokens.

E Additional Experimental Details

For all of our experiments, we used architectures based on the Qwen3 family of models [76]. In all
training and fine-tuning experiments, we used the ADAM optimizer [31] with weight decay 1e−5

and (β1, β2) = (0.9, 0.98). We also apply gradient clipping to 1.0. We also utilize an exponential
moving average (EMA) copy of each model with a decay rate of 0.9999. The EMA model was used
during evaluation.

E.1 Measuring Throughput

For the main results, inference throughput was measured on a single H100 (80GB) GPU using a
batch size of 1. For the ablation results, we used a single A100 (80GB) GPU. We first processed 100
‘warm-up’ samples and then recorded decoding throughput for the subsequent 100 samples. Models
generated 256 additional tokens, with no [EOS] or other early decoding stopping criteria applied.
We report mean ± the standard deviation of tokens per second for the 100 generated samples.

22

Transformer Layer 1

Transformer Layer 2

Transformer Layer 4

Transformer Layer 3 Transformer Layer 1

Transformer Layer 2

DecoderEncoder

What is [MASK]2 2

Accumulated samples Noisy input block

+ add5 [MASK]

take 2 add [MASK]

 decoding steps per block

Last hidden state

Last hidden state

Transformer Layer 1

Transformer Layer 2

Transformer Layer 4

Transformer Layer 3

Skipped
Transformer Layer 1

Skipped
Transformer Layer 2

Transformer Layer 3

Transformer Layer 4

Decoder

K

Encoder

V

K V

What is [MASK]2 2

Accumulated samples Noisy input block

xAttn

+ add5 [MASK]

take 2 add [MASK]

 decoding steps per block

Shared KV cache

Figure 5: Encoder-decoder architecture for discrete diffusion. The encoder embeds the clean sequence.
The lightweight decoder denoises blocks over T decoding steps by cross-attending to the encoder
output. Left: “Last hidden state” version of E2D2: each decoder block attends to the last hidden state
output of the encoder. Right: “Shared KV cache” version of E2D2: Decoder layers attend to the
keys and values of corresponding encoder layers. Encoder and decoder weights are tied.

E.2 Summarization

Data For this task, we use the CNN/DailyMail dataset version 3.0 [27, 57] downloaded from
https://huggingface.co/datasets/abisee/cnn_dailymail. Data was pre-processed to add
a prefix to summarizations: “Summary: ”. Inputs and targets were truncated to a maximum length
of 512 each, ensuring a maximum sequence length of 1024 for sequences seen during training.

Hyperparameters We used the Qwen/Qwen3-0.6B-Base tokenizer. All models had hidden size
of 256 and intermediate hidden size of 768. The AR and MDLM baselines consisted of 28 transformer
layers, corresponding to 80M parameters. BD3LM had 12 layers and used a block size of S = 8,
corresponding to 60M parameters. E2D2 also used S = 8 and consisted of 20 encoder and 8 decoder
layers, corresponding to 80M parameters. We used the “last hidden state variant” of the E2D2 model.

We trained with batch size 128. Learning rate was linearly warmed-up for 1000 steps until a
maximum of 3e−4. Models were trained for a maximum of 500k steps and we use early stopping on
the validation loss to select the best model.

Evaluation Models generated 256 additional tokens. Metrics were computed using the evaluate
library from HuggingFace. Inputs were pre-processed as above, with the exception that input texts
were truncated to 2048 tokens, and generated samples were post-processed to truncate summaries
after the end of sentence special tokens. For MDLM, BD3LM, and E2D2, we apply exponential
length penalty starting at 80 tokens with a factor of 1.1 and repetition penalty with a factor of 1.5.
For the AR model, we do not apply the length or repetition penalties as these led to a performance
degradation.

For the BD3LM model, we found improved performance when aligning the input sequence to block
length. That is, for a context of length |C| the last C mod S tokens were fixed to the first decoding
block. For E2D2 and MDLM models, this alignment was not necessary. Finally, for MDLM we
decoded semi-autoregressively using a block size of 32.

E.3 Translation

Data For this task, we use the WMT14 German to English (de-en) dataset [6] downloaded from
https://huggingface.co/datasets/wmt/wmt14. For AR models, data was pre-processed to

23

https://huggingface.co/datasets/abisee/cnn_dailymail
https://huggingface.co/datasets/wmt/wmt14

add a prefix to the translations: “Translation: ”. Inputs and targets were truncated to a maximum
length of 128 each, ensuring a maximum sequence length of 256 for sequences seen during training.

Hyperparameters We used the Qwen/Qwen3-0.6B-Base tokenizer. All models had hidden size of
512 and intermediate hidden size of 1536. The AR and MDLM baselines consisted of 32 transformer
layers, corresponding to 250M parameters. We trained two BD3LM models, one with 12 layers
and one with 16 and used a block size of S = 4. This corresponds to 140M and 160M parameters,
respectively. E2D2 also used S = 4 and consisted of 28 encoder and 4 decoder layers, corresponding
to 250M parameters. We used the “last hidden state variant” of the E2D2 model.

We trained with batch size 128. Learning rate was linearly warmed-up for 1000 steps until a
maximum of 3e−4. Models were trained for a maximum of 500k steps and we use early stopping on
the validation loss to select the best model.

Evaluation Models generated 256 additional tokens. Metrics were computed using the evaluate
library from HuggingFace. Inputs were pre-processed as above and generated samples were post-
processed to truncate translations after the first ‘.’ or the end of sentence special token.

For the BD3LM model, we found improved performance when aligning the input sequence to block
length. For E2D2 and MDLM models, this alignment was not necessary. Finally, for MDLM we
decoded semi-autoregressively using a block size of 32.

E.4 Mathematical Reasoning

Data For this task, we use the GSM8K dataset [10] downloaded from https://
huggingface.co/datasets/openai/gsm8k (main version). Data was pre-processed to add
a prefix to inputs: “Please reason step by step, and put your final answer within
$\boxed{}$.”, answers were prefaced with “Answer: ”, and solution was wrapped in
“$\boxed{}$.”. Inputs and targets were truncated to a maximum length of 384 each, ensuring
a maximum sequence length of 768 for sequences seen during training.

Hyperparameters We used the Qwen/Qwen3-1.7B-Base tokenizer. For AR and MDLM models,
we used all the layers of the pretrained 1.7B parameter Qwen3, which has a hidden size of 2048 and
intermediate hidden size of 6144. For the BD3LM baselines, we used the N layers closest to the
input, as opposed to the N layers closest to the output, since we found this to be the stronger of the
two baselines. For our BD3LM baseline where N = 21, this corresponds to 1.4B parameters. For the
E2D2 decoder, we used the NDec layers closest to the output. We used the “shared KV cache variant”
of the E2D2 model and the encoder and decoder layers were weight-tied. Thus, E2D2 uses 1.7B
trainable parameters. BD3LM and E2D2 models were trained using block size of S = 4.

We trained with batch size 1. Learning rate was linearly warmed-up for 100 steps until a maximum
of 1e−5 and decayed using a cosine schedule until half the maximum value. Models were trained for
a maximum of 30k steps and we use early stopping on the validation loss to select the best model.

Evaluation Models generated 512 additional tokens. Inference was done using the lm-eval
harness library with the ‘flexible match’ criteria and similar pre-processing was applied to question
texts. Post-processing was done to truncate text at end of sentence special characters and solutions
were reverted to their original form of ### <Answer>. Inputs were pre-processed as above.

For both the BD3LM and E2D2 models, we found improved performance when aligning the input
sequence to block length.

E.5 Language Modeling

Data We train on the OpenWebText [21] dataset downloaded from https://huggingface.co/
datasets/Skylion007/openwebtext. We use the GPT2 tokenizer. We do not pad or truncate
sequences, but concatenate them and wrap them to a length of 1024. Since OWT does not have a
validation split, we leave the last 100k documents for validation. Following [1], we do not inject
[BOS] and [EOS] tokens at the beginning and end of each sequence in order to enable arbitrary-length
generation.

24

https://huggingface.co/datasets/openai/gsm8k
https://huggingface.co/datasets/openai/gsm8k
https://huggingface.co/datasets/Skylion007/openwebtext
https://huggingface.co/datasets/Skylion007/openwebtext

We evaluate zero-shot likelihoods on datasets Penn Tree Bank (PTB; [41]), Wikitext [42], LM1B,
Lambada [49], AG News [80], and Scientific Papers (Pubmed and Arxiv subsets; [11]). When
reporting zero-shot likelihoods on benchmark datasets from [53], we wrap all sequences to 1024
tokens and do not add [EOS] between sequences following [55].

Hyperparameters We train with a batch size of 512 and context length of 1024 for 1M steps. We
trained E2D2 using a block size of S = 4. All models use N = 12 total layers, and for E2D2 we
set NEnc = 10, NDec = 2. All models use 170M total parameters, including token embeddings. For
E2D2, the learning rate was linearly warmed-up for 2000 steps until a constant peak of 3e−4.

Evaluation We report validation likelihood for OWT, and we use the test splits for reporting
zero-shot likelihoods using the datasets from [53]. We use the same context length of 1024 tokens at
evaluation.

F Assets

In Table 10, we list the corresponding licenses for datasets used in this work.

Table 10: Datasets and corresponding licenses.
Dataset Licence

CNN/DailyMail Apache-2.0 License
WMT14 —
GSM8K MIT License
OpenWebText [21] Creative Commons CC0 license (“no rights reserved”)

In Table 11, we list the corresponding licenses for software packages used in this work.

Table 11: Software and corresponding licenses.
Library License

HuggingFace [71] Apache 2.0
Hydra [75] MIT
Language Model Evaluation Harness [18] MIT
Matplotlib [29] Matplotib license
MosaicML Composer [66] Apache 2.0
NumPy [25] NumPy license
OmegaConf BSD 3-Clause
Pandas [48] BSD 3-Clause “New" or “Revised"
PyTorch [51] BSD-3 Clause
Seaborn [70] BSD 3-Clause “New" or “Revised"
TorchMetrics Apache 2.0

G Generated Samples

Below, we provide example generations from GSM8K from E2D2 NEnc/NDec = 28/14 and BD3LM
N = 21.

G.1 E2D2

Question: Every day, Wendi feeds each of her chickens three cups of mixed
chicken feed, containing seeds, mealworms and vegetables to help keep them
healthy. She gives the chickens their feed in three separate meals. In
the morning, she gives her flock of chickens 15 cups of feed. In the
afternoon, she gives her chickens another 25 cups of feed. How many cups

25

https://matplotlib.org/stable/users/project/license.html
https://numpy.org/doc/stable/license.html

of feed does she need to give her chickens in the final meal of the day if
the size of Wendi’s flock is 20 chickens?

Answer: Wendi feeds her chickens 3 cups of feed per day for 20 chickens
for a total of 3*20 = «3*20=60»60 cups of feed. In the morning, she gives
her chickens 15 cups of feed and in the afternoon, she gives them another
25 cups of feed for a total of 15+25 = «15+25=40»40 cups of feed. She
needs 60 cups of feed and has already given 40 cups so she needs to give
her chickens 60-40 = «60-40=20»20 cups of feed in the final meal #### 20

Question: Josh decides to try flipping a house. He buys a house
for $80,000 and then puts in $50,000 in repairs. This increased
the value of the house by 150%. How much profit did he make?

Answer: The repairs cost 50,000*.5=$«50000*.5=25000»25,000. So the
house was worth for 80,000+25,000=$«80000+25000=105000»105,000. So he
made a profit of 105,000-80,000=$«105000-80000=25000»25,000 #### 25000

G.2 BD3LM (N = 21)

Question: Every day, Wendi feeds each of her chickens three cups of mixed
chicken feed, containing seeds, mealworms and vegetables to help keep them
healthy. She gives the chickens their feed in three separate meals. In
the morning, she gives her flock of chickens 15 cups of feed. In the
afternoon, she gives her chickens another 25 cups of feed. How many cups
of feed does she need to give her chickens in the final meal of the day if
the size of Wendi’s flock is 20 chickens?

Answer: In the morning, Wendi gives her chickens 15 cups of feed. In
the afternoon, she gives her chickens another 25 cups of feed. In the
final, she gives her chickens 20 * 3 = «20*3=60»60 cups of feed. Thus,
in the final meal of the day, Wendi gives her chickens 60 - 25 - 15 =
«60-25-15=10»10 cups of feed. #### 10

Question: Josh decides to try flipping a house. He buys a house for
$80,000 and then puts in $50,000 in repairs. This increased the value of
the house by 150%. How much profit did he make?

Answer: The value of the house increased by 50000*.15=$«50000*.15=7500»7500
So the value of the house was 80000+7500=$«80000+7500=87500»87500
So he made 87500-80000=$«87500-80000=7500»7500 #### 7500

26

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract correctly summarizes the main claims made in this work.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In Section 6, we discuss limitations of this work.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

27

Justification: In Appendix B we provide the derivation of the claimed FLOPs in Section 3.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All hyperparameters and relevant details are provided in Section 4 and Ap-
pendix E
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

28

Answer: [Yes]

Justification: We provide a link to the code in the abstract.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the relevant details are provided in Section 4 and Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: When possible, e.g., for the throughput computation, we provide mean ±
standard deviations.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

29

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Computation resources are throughput calculation are listed in each table.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Discussed in Section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

30

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: Discussed in Section 6.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Citations to datasets are used throughout the work. Corresponding licenses are
included in Appendix F.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

31

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

32

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were used to improve writing and for editing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

33

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	Discrete Diffusion Models
	Block Diffusion Language Modeling

	Efficient Encoder-Decoder Diffusion
	Architecture
	Design Decisions
	Sampling Algorithm
	Training Algorithm
	E2D2 for Standard Masked Diffusion (MDLM)

	Experiments
	Experimental Design
	Results
	Ablations

	Related Work
	Conclusion
	Extended Background on Block Diffusion Language Models
	Forward Noise Process
	Reverse Denoising Process
	Negative Evidence Lower Bound (NELBO)

	Training FLOPs derivation
	FLOPs comparison to MDLM
	MDLM with Encoder-Decoder Architecture
	Additional Experimental Details
	Measuring Throughput
	Summarization
	Translation
	Mathematical Reasoning
	Language Modeling

	Assets
	Generated Samples
	E2D2
	BD3LM (N=21)

