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Abstract

While single-cell experiments provide deep cellular resolution within a single
sample, some single-cell experiments are inherently more challenging than bulk
experiments due to dissociation difficulties, cost, or limited tissue availability.
This creates a situation where we have deep cellular profiles of one sample or
condition, and bulk profiles across multiple samples and conditions. To bridge this
gap, we propose BuDDI (BUlk Deconvolution with Domain Invariance). BuDDI
utilizes domain adaptation techniques to effectively integrate available corpora of
case-control bulk and reference scRNA-seq observations to infer cell-type-specific
perturbation effects. We evaluated BuDDI’s performance on simulated and real
data with experimental designs of increasing complexity. In each experiment,
BuDDI outperformed all other comparative methods and baselines. As more
reference single-cell atlases are completed, BuDDI provides a path to combine these
resources with bulk-profiled treatment or disease signatures to study perturbations,
sex differences, or other factors at single-cell resolution.

1 Introduction

Single-cell RNA sequencing (scRNA-Seq) technologies have provided methods to interrogate how
cell-type proportions and cell-type-specific expression profiles vary within biological systems. In con-
trast, bulk RNA-Seq technologies lose information from individual cells and average cell-type-specific
expression values, but they are easier and cheaper to perform. Due to these inherent differences,
larger single-cell experiments typically provide more cell types and numbers of cells but are still
lacking in the breadth of individuals, diseases, and perturbations of existing bulk RNA-Seq data.
However, understanding cell-type-specific responses is key to understanding treatment response and
disease etiology. For example, the method of action of traditional disease-modifying antirheumatic
drugs (tDMARDs) is not well understood but is believed to target T-cells [1]. Unfortunately, there is
very limited single-cell data with tDMARDs treatments. However, there are large single-cell studies
measuring the arthritic synovial fluid [2, 3] without tDMARDs and bulk studies that track patients
before and after taking tDMARDs. This pattern of missing data is not particular to arthritis and
tDMARDs; it is also present in cohorts of rare diseases where the recruitment of new patients to
perform single-cell sequencing is infeasible. To effectively utilize the existing large bulk studies
and growing single-cell references, we need methodological advances that combine multi-condition
bulk and single-condition scRNA-Seq data to estimate cell-type-specific expression profiles across
the conditions observed in the bulk data. To accomplish this goal, we build on ideas from three
methodological approaches: bulk deconvolution [4–11], variational autoencoder (VAE) [12] models
for perturbation prediction [13–17], and disentanglement methods[18–20].
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Bulk deconvolution methods unify single-cell and bulk data types by attempting to deconvolve an
observed bulk expression profile as a sum of cell-type-specific expression profiles. One key limitation
of this deconvolution approach is that most methods assume the bulk expression profile is similar
to the reference single-cell profiles. We account for not only the differences between the bulk and
single-cell data but additionally other sources of variation, such as sample variability and perturbation
response.

Several generative methods exist to learn interpretable latent spaces that decompose the input single-
cell expression profiles into relevant sources of variation. These methods can be directly trained
to capture a specific source of variation or post-hoc-interpreted after training. Furthermore, there
exist several methods to learn a latent space such that shifts within the latent space represent specific
perturbation effects on an unobserved cell or cell type. Instead of leveraging perturbation responses
in other cells or cell types, we would like to leverage complex bulk expression profiles, not only cell
lines or single-cell profiles, to infer the cell-type-specific perturbation response.

To simulate accurate perturbation responses, it is key that perturbing one latent space does not affect
another latent space. This concept is related to domain invariance, where latent representations
are invariant to changes in a domain. One difference between our proposal and typical domain
invariance approaches is that our main goal is not for our method to be invariant of unseen domains,
but invariant to observed domains within our dataset of interest. In our case, we would like to model
each latent representation to be independent of one another, which could also be phrased as having
latent representations that are disentangled.

BuDDI combines strategies to learn domain-invariant representations that capture cell type propor-
tions, perturbation effects, and experimental variability. BuDDI not only learns interpretable latent
representations to understand the data better but can also compose changes in each latent space to
predict cell-type-specific perturbation responses.

2 The model structure of BuDDI

Figure 1: VAE structure of BuDDI.

BuDDI’s VAE structure (Fig. 1) reflects the belief that our observed gene expression data is generated
from at least four sources of variability: sample or technical variability (ze), condition-specific
variability (zp), differences in cell-type proportion (zy), and other sources of noise (zx). To ensure
each latent space is specific to its source of variability, an auxiliary loss is added to BuDDI to predict
the labels related to the sample, technology, condition, and cell-type proportion. To train BuDDI to
predict cell-type proportions, we create "pseudobulks", simulated bulk data generated from sampling
single-cell data, where we have ground truth cell-type proportions. Since BuDDI learns from bulk
and single-cell RNA-Seq data, the cell-type proportions are not always known; therefore, zy is trained
semi-supervised, and ze and zp are trained fully supervised. zx is unrestricted.

BuDDI extends the VAE framework [12] and utilizes the generative model structure introduced in
DIVA [21], a method to identify disentangled latent representations in cellular images. Similarly,
BuDDI treats each of these sources of variability as specific and invariant domains. Domain invariance
is key to BuDDI learning cell-type-specific perturbation effects since we can independently learn
representations for the perturbation and cell type and compose them together to learn a cell-type-
specific effect.

Unlike a VAE with a single latent space (z), DIVA and BuDDI learn independent latent spaces to
capture different sources of variability (experimental ze, perturbation zp, and remaining variability zx
). This is done through learning separate encoders, qϕe

(ze | x) , qϕp
(zp | x), and qϕx

(zx | x), and a
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single decoder. To capture variability due to cell type proportions, we directly append the observed
cell type proportion to the latent space when it is available or use a predicted cell type proportion from
an auxiliary predictor when it is unavailable. This implies that zy ≈ y, instead of being predictive of
y as done in the other latent spaces. The auxiliary predictor takes the gene expression x as input and
predicts the cell type proportion y; its weights are only updated when the cell type proportions are
known. The full details and a diagram of the BuDDI implementation are provided in the appendix
(4).

For all BuDDI models presented in this paper, we used an input dimension of 7000 genes, a 512-
dimension fully connected hidden layer, and a 64-dimensional latent representation. We used internal
hidden dimensions of 512 and 256 for the cell type proportion predictor. We used a single dense
hidden layer from the latent representation to predict the perturbation and experimental variables.

3 Experiments

3.1 BuDDI learns descriptive and domain-invariant latent representations

To validate that BuDDI works as expected, we first tested the simplest experimental design, where
we have matched observations across each source of variability. We used a dataset created by [22]
of peripheral blood mononuclear cells from two of the eight lupus patients with matched samples
that were either control samples or had interferon-Beta stimulation. To simulate bulk samples, we
omitted cell-type proportions from half of the pseudobulks during training. An overview of the
data included in our experimental design is shown in 4a. After training BuDDI, we measured the
extent of domain invariance across latent spaces. We compared the predictive accuracy of each latent
space in predicting its intended and unintended targets on a held-out test set, similar to the Separated
Attribute Predictability (SAP) score [23]. Each latent space approximated domain invariance: the
accuracy of each latent space to predict its intended source of variability was significantly higher
than a mismatched source of variability (5b). Furthermore, we also observed that BuDDI can learn
the cell-type proportions of the pseudobulk data accurately, as shown by the strong correspondence
between ground truth and predicted cell-type proportions (5c). After quantitative evaluation, we also
qualitatively evaluated the specificity of each latent space. We observed that the first two principal
components (PCs) divide each latent space by its target value (Fig. 2). Along the diagonal, the
source of variability was separated, and along the off-diagonal, the non-target sources of variability
were well mixed. This indicated that most of the variance in the latent spaces specifically captures
the target source of variability. We also observe a lack of clear structure in the slack latent space,
indicating that there is little remaining structured variability to be explained by the slack.

3.2 BuDDI accurately predicts cell-type-specific perturbation response

After validating that BuDDI learns specific latent space representations, we examined the extent to
which BuDDI predicts cell-type-specific perturbation responses when perturbation measurements
are only available in bulk data. Again, we used the data from [22] to generate our simulated data,
except using all eight available samples. Furthermore, to examine the method’s ability to identify
a cell-type specific effect and not simply a global shift, we only use stimulated CD14 monocytes
for simulation (6a). After training, the latent spaces were still generally predictive of and specific to
their source of variation. Next, we identified if BuDDI could predict the expression and effect size of
the perturbation for each cell type. We compared BuDDI against BayesPrism [5], PCA with latent
space projections, and a conditional VAE (CVAE)[24]. We evaluated each method on pseudobulks
generated from held-out single-cell RNA-Seq profiles. Across all metrics and cell types, BuDDI
outperformed all other methods (Fig. 3 left panel, 6, 7). Since our experimental design only perturbs
CD14 monocytes, it is unsurprising that we see performance degradation in that cell type; however,
BuDDI still outperforms all other methods and maintains a relatively high Pearson correlation for the
predicted stimulated expression (mean > 0.8) and log2 fold change (mean > 0.65).

3.3 BuDDI accurately identifies cell-type-specific sex differences

Finally, we examined the extent that BuDDI predicted cell-type-specific sex differences in the Tabula
Muris Senis dataset [25, 26]. Tabula Muris Senis consists of male and female mouse bulk and
single-cell expression data in several organs. We restricted our analysis to the liver, a sexually
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dimorphic organ. The challenge of this dataset is that there are no matched samples across any source
of variability. There were no technical replicates for any samples nor matched bulk and single-cell
samples. Furthermore, we do not have matched perturbation effects to examine sex differences
because each mouse was either male or female. We evaluated predictions using a held-out single-cell
female mouse experiment. We aimed to predict genes with the largest sex differences in each cell
type. In addition to BayesPrism, CVAE and PCA, we also compare against several baselines: 1)
random, shuffled predicted values; 2) zero, majority label (0); and 3) bulk, the differentially expressed
genes between the bulk samples. The bulk baseline represents the global shift in expression; therefore,
outperforming the bulk baseline indicates that the model identifies cell-type-specific differences.
We compared our results against two validation sets. The first set is the differentially expressed
genes between the single female and male mice provided by Tabula Muris Senis (details provided
in the Appendix). The second validation set is from an independent study of sex differences using
single-nucleus RNA-Seq data [27]. We included this secondary study since it has more biological
replicates and is from a complementary sequencing platform. BuDDI outperforms all other methods
and baselines in each cell type, including the bulk baseline, indicating that BuDDI can identify
cell-type-specific sex differences beyond a global shift in expression (Fig. 3 right, 8).

Figure 2: PCA of each latent space (columns) and colored by a source of variation (rows).

Figure 3: Left: RMSE of predicted log2 fold change. Right: AUPRC of predicted sex-specific genes.

4 Discussion

We introduce BuDDI, a method to learn cell-type-specific perturbation responses using reference
single-cell and multi-condition bulk data. BuDDI learns latent representations specific to a single
source of variation and independent of all other sources of variation. This model design enables
BuDDI to individually perturb one or more latent spaces and compose them to simulate cell-type
specific perturbations. We successively evaluated BuDDI on increasingly entangled data, moving
from data that had all, some, and then no matched samples across the sources of variability. We found
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that BuDDI outperforms all competitor models and baselines in each instance. BuDDI provides a
methodological solution to a missing data pattern that is common in genomic analyses of publicly
available data. BuDDI has several potential use cases, such as providing a way to analyze tissues
whose cells are difficult to dissociate at a single-cell resolution, to leverage difficult-to-obtain data
from patients with rare diseases, or to re-analyze the tens of thousands of heterogeneous existing
bulk samples. BuDDI strives to make the most out of existing bulk datasets in the era of large-scale
single-cell reference atlases.

5 Funding

This work was funded by the Gordon and Betty Moore Foundation (GBMF 4552), NHGRI of
the National Institutes of Health (1K99HG012945-01), NCI of the National Institutes of Health
(5R01CA237170-05, 5R01CA243188-04, 5R01CA200854-06)

6 Appendix

6.1 BuDDI model description

BuDDI extends the VAE framework [12] and uses a similar conceptual structure as DIVA [21]. The
entire VAE structure attempts to find a latent representation (z) that is likely to reconstruct the original
data (x). The goal is to maximize the marginal likelihood [12, 21]

pθ(x) =

∫
pθ(x | z)pθ(z)dz

pθ(x | z) is the decoder and uses a neural network to learn the parameters θ, where given z we
reconstruct x. Unfortunately, learning pθ(x) is intractable, since it requires integrating over all
possible latent representations z. Instead, we estimate it by learning a lower bound to pθ(x), by
learning an approximate posterior qϕ(z | x). qϕ(z | x) is our encoder, where ϕ are learned parameters
of the encoder neural network. We can rewrite pθ(x) as

log pθ(x) = Eqϕ(z|x)

[
log

(
pθ(x, z)

qϕ(z | x)

)]
+ Eqϕ(z|x)

[
log

(
qϕ(z | x)
pθ(z | x)

)]
= Lθ,ϕ(x) +DKL (qϕ(z | x)∥pθ(z | x))

Since DKL (qϕ(z | x)∥pθ(z | x)) is non-negative, Lθ,ϕ(x) is a lower bound on log pθ(x). Now we
learn parameters to maximize Lθ,ϕ(x), which can be rewritten as

Lθ,ϕ(x) = Eqϕ(z|x) [log (pθ(x | z)]− βDKL (qϕ(z | x)∥pθ(z))

where β is a weighting term to constrain the amount of variability that can be explained by the latent
space 48. Unlike a VAE with a single latent space (z), DIVA and BuDDI learn independent latent
spaces to capture different sources of variability (experimental ze, perturbation zp′ , and remaining
variability zx ). This is done through learning separate encoders, qϕe (ze | x) , qϕp (zp | x), and
qϕx

(zx | x), and a single decoder. To capture variability due to cell type proportions, we directly
append the observed cell type proportion to the latent space when it is available or use a predicted
cell type proportion from an auxiliary predictor when the cell type proportion is not available. This
implies that zy ≈ y, instead of being predictive of y as done in the other latent spaces. The auxiliary
predictor takes the gene expression x as input and predicts the cell type proportion, y, and it’s weights
are only updated when the cell type proportions are known. This is how BuDDI is able to predict the
cell type proportions in a semi-supervised fashion. The loss without the auxiliary proportion loss, but
including the additional latent spaces is the following:

Lθ,ϕ(x) =Eqϕe (ze|x)qϕp (zp|x)qϕx (zx|x)qϕy (zy|x) [log (pθ (x | ze′zp′zx′y))]− βeDKL (qϕe
(ze | x) ∥pθ (ze))

− βpD (qKL (zp | x) ∥pθ (zp))− βxDKL (qϕx
(zx | x) ∥pθ (zx))
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Unlike DIVA, we do not use conditional priors to separate the latent spaces from one another
and instead only use auxiliary classifiers on the experiment and perturbation-specific latent spaces,
qωe (e | ze) and qωp (p | zp), to constrain the latent spaces to their intended source of variability. The
full loss is

LBuDDI(x) = Lθ,ϕ(x)+αeEqϕe (ze|x) [log (qωe
(e | ze))]

+αpEqϕp (zp|x)
[
log

(
qωp

(p | zp)
)]

+αyE
[
log

(
pθy (y | x)

)]
A detailed diagram of the BuDDI implementation is provided in 4.

6.2 BuDDI training and implementation details

In generating the pseudobulks used for testing and training, cells were divided into two even sets
stratified by each source of variation: perturbation status, cell type, and sample ID. Therefore,
pseudobulks used in training will not have any cells seen in testing. BuDDI was implemented in
Keras version 2.12.0, and was trained using the Adam optimizer [28], with a learning rate of 0.005.
The non-slack terms are always set to 100 and x is set to 0.1. This parameter choice encourages
the non-slack latent representations to be biased towards fully capturing the source of variability,
since a larger term creates a stronger bottleneck on the latent representation and encourages stronger
disentanglement within the latent space [29]. The number of epochs [50, 100] and the classifier
weights [100, 1000, 10000] were identified using grid search. We wanted to minimize reconstruction
loss and the Spearman correlation of the true and estimated cell-type proportions on a training
validation set, which is 20% of the training set held out during training. After the initial set of
classifier weights was identified, they were further adjusted using the training set to encourage
further disentanglement of the latent spaces. For all models, we used 64 dimensions for each latent
representation and a batch size of 500. We used internal dimensions of 512 and 256 for the cell
type proportion predictor. We used a single 512-dimensional dense layer for the perturbation and
experimental predictors.

We created two separate encoder models with shared weights to train BuDDI cell-type proportions in
a semi-supervised manner. When the cell-type proportions are not known, the cell-type proportion
predictor weights are not updated, and its predictions are used in the latent space during training.
When the cell-type proportions are known, the cell-type proportion predictor weights are updated,
but the predictions are not used in the latent space. Instead, the true value is directly input into the
latent space during training. This is depicted as two separate model diagrams in 4. During training,
BuDDI switches between the supervised and unsupervised models within each epoch. In both cases,
the auxiliary classifiers for predicting the sources of variation, excluding the cell-type proportions,
are always supervised, and their weights are updated throughout the entire epoch.

The structure of each latent space is identical to one another, with two hidden layers of dimensions 512
and 256. In all experiments, we have two latent spaces representing experiment-specific variability,
ze, one that is predictive of the sample ID and the other that predicts whether the data comes from a
pseudobulk sample or a real bulk sample. For the BuDDI-noPert experiment, the perturbation latent
space zx is excluded from the entire model.

6.3 BuDDI simulation of perturbation response

BuDDI learns a separate latent space for each source of variability, allowing us to modify a specific
latent space to simulate a change related to that latent space. To do this, we use our training data to
sample latent codes that predict a specific source of variability. We can perturb a single latent space
or several latent spaces and combine them to produce the desired latent representation. To generate
a cell-type-specific perturbation effect, we use a y with the highest cell-type proportion for the cell
type of interest. We will combine this with latent codes related to unperturbed and perturbed samples.
Combining these two latent codes with the remaining latent codes relevant to the experiment, we
compared the gene expression differences between the perturbed and unperturbed samples for a
specific cell type. Depending on the desired analysis, the additional latent spaces could be sampled
randomly or specific to a sample of interest. For the Kang et al. [22] data with matched samples,
we sampled latent codes specific to each sample. For the sex-dependent liver analysis, we jointly
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sampled the latent slack, sample, perturbation, and bulk codes. When the latent spaces were observed
to have high amounts of independence between them, each latent space could be sampled more
independently. Conversely, if high dependence between latent spaces is observed, it is recommended
to jointly sample the latent spaces that are not directly relevant to the perturbation of interest.

6.4 CVAE model description

The CVAE [24] learns a latent representation conditioned on specific variables; in our case, we
implemented a CVAE conditioned on the sample ID, perturbation status, and whether the input data
is pseudobulk or a real bulk. The CVAE differs from a VAE in its implementation by appending
a 1-hot-encoded vector representing the sources of variation to the input to both the encoder and
the decoder. After training, new data is generated by changing the appended vector to represent
the perturbation of interest. However, unlike BuDDI the vector representing the source of variation
cannot be trained in a semi-supervised manner. Therefore, it is impossible to learn a model that is
conditional on the cell-type proportions and the perturbation status since we only have perturbed
observations from the bulk data, which has no cell-type proportion estimate. To get around this
limitation, we instead learn a latent space that captures the cell-type proportions and is independent
of all other sources of variation. This enables us to calculate cell-type-specific perturbation changes
by sampling from regions in the latent space specific to a cell type, then appending our latent code
that represents our perturbation of interest.

The CVAE was implemented in Keras. For consistency, we maintained the same latent code dimension
as BuDDI and the same dimension of encoder and decoder layers. We also used the same optimizer,
ADAM, with a learning rate of 0.005. The term was set to 1 in all experiments. values were
grid searched [0.1, 1, 10] to minimize the reconstruction error and identify a latent space that was
predictive of the cell-type proportions.

6.5 PCA model description

PCA was used to learn a low-dimensional data representation. We then learned a linear transformation
between the perturbed and non-perturbed samples in the low-dimensional representation. To learn a
cell-type-specific perturbation response, we used pseudobulks with a cell-type proportion where the
cell type of interest was the majority cell type. Next, we summed its low-dimensional representation
with the perturbation vector and projected the sample back into the original dimensionality of the data.
Since we had matched samples for the Kang et al. [22] data, we also learned a sample translation
vector and the perturbation vector to simulate a sample-, cell-type-, and perturbation-specific effect.
The number of latent dimensions used for PCA was 20, which explained > 90% of the variability in
both datasets.

6.6 Data processing

The single-cell data used in each experiment was processed using scanpy [30]. For all experiments,
the cell-type labels were taken from the original manuscript. The Kang et al. analysis data was
downloaded from SeuratData [31] and converted to h5ad format for downstream processing in scanpy.
In the Kang et al. analysis, we removed outlier cells with less than 500 or more than 2500 genes
expressed. We removed genes expressed in less than five cells.

The data for the sex-specific liver differences were downloaded from the Tabula Muris Senis
[25, 26] project (https://figshare.com/articles/dataset/Processed_files_to_use_
with_scanpy_/8273102/2), hosted by FigShare (https://doi.org/10.6084/m9.figshare.
8273102.v2). Due to a low number of cells and expressed genes in the liver dataset, we could only
analyze one male and one female mouse sample. Two male mice samples had a sufficient number of
cells for each cell type, but we restricted our analysis to post-pubescent mice (3 months or older),
which resulted in the filtering of one of the male mice. Furthermore, hepatic stellate cells were very
rarely observed (<27 cells per sample, 3.25 on average) and therefore combined with endothelial
cells of the hepatic sinusoid, a more abundant cell type with a similar expression profile. We did
not filter cells, but we removed genes expressed in less than three cells. Supp. Table 2 provides the
counts of cells by sample.

The bulk liver data was downloaded from Gene Expression Omnibus under accession ID GSE132040.
We filtered samples that were less than three months old. We did not perform any additional
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count processing on the single-cell data before pseudobulk generation for each dataset. Additional
processing was only done for identifying differentially expressed genes in the single-cell data. Raw
counts were used for differential expression analysis of the bulk data, as needed for pyDESeq2 [32].

6.7 Pseudobulk generation

After processing the data, as described in the Data processing section, we performed a 50/50 split
of the cells, stratified by sample and cell type. This ensured we did not observe any pseudobulks
with shared cells between the training and testing sets. To create the pseudobulks, we summed over
sampled cells from each individual dependent upon a specific cell-type proportion. We generated
three types of cell-type proportions: random, cell-type specific, and realistic. Random proportions
were sampled from a lognormal distribution, with a mean of 5 and a variance uniformly sampled
between 1 and 3. All proportions were scaled to sum to 1. The cell-type specific proportions were
generated by first creating a vector of the length of cell types where the cell-type of interest had
a proportion of 1 − ((#celltypes) ∗ 0.01), and the remaining cell types had a proportion of 0.01.
Lognormal noise with mean 0 and variance 1 was added to the cell-type proportions and then rescaled
such that they sum to 1. Suppose the new cell-type proportion did not have a Pearson correlation
coefficient > 0.95 with the original cell-type proportion vector before the noise was added. In that
case, noise vector was discarded, and a new one was sampled. The realistic cell-type proportion
estimator calculated the sample-specific cell-type proportion observed from the single-cell data. Noise
was added in the same way as for the random cell-type proportions. After the cell-type proportions
were sampled, we sampled a total of 5000 cells dependent upon the cell-type proportion and sum
over the counts to generate the pseudobulk values. Supp. Figure 5 depicts the generated pseudobulks
with each type of sampled proportion.

6.8 Differential expression of single-cell and bulk liver data

Differential single-cell expression was done using scanpy [30] and pyDESeq2 [32]. We first generated
cell-type-specific pseudobulks, generating ten samples and 30 cells sampled per cell type. Using these
pseudobulks, we used pyDESeq2 to identify the genes that were differentially expressed between
the sexes for each cell-type. For the bulk and pseudobulk pyDESeq2 analyses, genes with a mean
expression across all samples < 1 were removed from the analysis. We considered genes with
adjusted p-value < 0.01 as differentially expressed for all downstream analyses. The single-nucleus
differentially expressed genes were taken from [27].

6.9 Pseudobulk normalization

After the pseudobulk data was generated, it was uniformly processed for each experiment and model.
First, we identified 7000 genes that form the union between CIBERSORTx-identified signature genes
[4] and the genes we calculated to have the highest coefficient of variance. These genes were highly
overlapping (Supp. Figure 6). Next, we MinMax scaled the gene expression. Since gene counts
typically have long-tailed expression profiles, we clipped the expression at the 90th quantile before
scaling. Predicting source of variability using each latent space To predict each source of variability,
we used a Naive Bayes classifier. We reported the average F1 score on a held-out test set of 10% of
the data. We performed this classification task 30 times for each model. To take into account the
variability of BuDDI, we independently trained three separate BuDDI models and averaged their
performance.

6.10 Evaluation of genes predicted to be sex-dependent

Since we could not have matched samples from different sexes, we could not directly compare
sample- and cell-type-specific changes in gene expression due to sex. Instead, we predicted the genes
most affected by sex differences for each cell type. We compared the simulated male and female
gene expression for each model for each cell type. We then reported the median rank difference
between male and female simulated data. To calculate the area under the precision-recall curve
(AUPRC), we used the absolute value of the median rank difference. Our true values were either
from an independent single-nucleus experiment [27] that identified sex-dependent genes, or from
the genes identified as sex-dependent from the Tabula Muris Senis data [25, 26] used to generate the
pseudobulks. The comparative baselines were 1) random: shuffled ranks; 2) zero: a predictor that
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Figure 4: BuDDI model overview for the supervised (top) and unsupervised (bottom) models. The
red box highlights the true or estimated cell-type proportions used in BuDDI.

only reported zero, the majority label; and 3) bulk: the sex-dependent genes identified by analyzing
the bulk Tabula Muris Senis data.

7 Appendix Figures
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Figure 5: Evaluation of BuDDI on pseudobulk data with matched samples across each source of
variability. Panel a depicts a schematic of the experimental design. Panel b depicts a heatmap of the
average F1 score using each latent space to predict each source of variability. A high F1 score along
the matched latent space and source of variability, and a low F1 score where the latent space does
not match the source of variability is a measure of disentanglement across the latent spaces. Panel c
shows the performance of BuDDI at predicting the cell-type proportions. Panel d visualizes the first
two principal components (PCs) of each latent space (columns) and colors them by different sources
of variation (rows).
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Figure 6: Evaluation of BuDDI on cell-type-specific perturbation simulation. BuDDI on pseudobulk
data with matched samples across each source of variability. Panel a depicts a schematic of the
experimental design; we no longer include the single-cell perturbation response during training.
Panel b depicts the slack space when training BuDDI without (left) and with the perturbation latent
space (right). Here we observe that when we train BuDDI without the perturbation space, the slack
space picks up the perturbation response. This effect is greatly diminished once we include the
perturbation latent space. Panel c depicts the performance of BuDDI, PCA, and CVAE in predicting
the cell-type-specific expression and log2 fold change. In this experiment, only CD14 monocytes
are stimulated. To evaluate the model variability of BuDDI and CVAE, each model was trained and
evaluated three independent times and is included in Panel c.
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Figure 7: Latent space analysis of BuDDI on Kang et al. data set with an experimental design where
bulk samples are correlated with the sample IDs and perturbation status. Panel a depicts that average
F1 score of each latent space to predict each source of variation. Midpoint coloration is the average
across all observed F1 scores. Panel b compares the performance of BuDDI, CIBERSORTx, and
BayesPrism, in estimating the cell type proportions. Panel c depicts each of BuDDI’s latent spaces,
colored by source of variation. Panel d depicts the Pearson correlation of the simulated perturbation
expression, stratified by expression level.
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Figure 8: Evaluation of BuDDI to predict cell-type-specific differences in the mouse liver. Panel
a,b depict a schematic of the experimental design and data used for training and evaluation. Panel c
depicts the cell type and sex latent spaces colored by either the most abundant cell type or sex. Panel
d depicts the area under the Precision-Recall curve in predicting the differential gene between the
sexes for each cell type. Panel d, top, uses differentially expressed genes identified by an independent
single-nucleus experiment analyzing sex-specific differences in the liver. Panel d, bottom, uses
the union of differentially expressed genes from the aforementioned single-nucleus experiment and
the Tabula Muris Senis41,42 single-cell experiment. Bar height represents the mean area under the
precision-recall curve (AUPRC) and the black lines indicate the 95% confidence interval. To consider
the model variability of BuDDI and CVAE, each model was trained and evaluated three independent
times.
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