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ABSTRACT

We present Anchor–MoE, an anchored mixture-of-experts for probabilistic and
point regression. A base anchor prediction is concatenated with the inputs and
mapped to a compact latent space. A learnable metric window with a soft top-k
router induces sparse weights over lightweight MDN experts, which output residual
corrections and heteroscedastic scales. Training uses negative log-likelihood with
an optional held-out linear calibration to refine point accuracy. Theoretically, under
Hölder-smooth targets and fixed partition-of-unity weights with bounded overlap,
Anchor–MoE attains the minimax-optimal L2 rateN−2α/(2α+d). The CRPS gener-
alization gap is Õ

(√
(log(Mh) + P + k)/N

)
under bounded-overlap routing, and

an analogous scaling holds for test NLL under bounded moments. Empirically, on
standard UCI benchmarks, Anchor–MoE matches or surpasses strong baselines in
RMSE and NLL, achieving state-of-the-art probabilistic results on several datasets.
Anonymized code and scripts will be provided in the supplementary material.

1 INTRODUCTION

Regression is a cornerstone of machine learning: given covariates X and a real-valued response Y ,
the goal under mean squared error(MSE) loss is to estimate the conditional expectation f⋆(x) =
E[Y | X = x], which is the population risk minimizer. Regression methods are ubiquitous in
modern research, powering applications from climate forecasting Chau et al. (2021) and protein
engineering Michael et al. (2023) to chronic disease prognosis Zhang et al. (2023).

Most machine learning approaches cast regression as learning a deterministic mapping and opti-
mize mean-squared error, effectively estimating E[Y | X]. However, Kendall and Gal Kendall &
Gal (2017) show that explicitly modeling the full predictive distribution, especially heteroscedas-
tic noise—can improve point accuracy by weighting residuals with learned uncertainty. In this
probabilistic regression view we learn p(Y | X) rather than only its mean, enabling calibrated
uncertainty quantification and better downstream decisions (e.g., financial risk management), with
strong empirical

Building on these practical benefits, a range of probabilistic regression families has been proposed.
Kendall & Gal (2017) develop uncertainty–aware neural approaches for probabilistic regression;
Seiller et al. (2024) propose tree–based probabilistic ensembles; Rigby & Stasinopoulos (2005)
formalize distributional generalized additive models (GAMLSS) that model location, scale, and
shape. While all return full predictive distributions, they involve different trade–offs: deep and
ensemble methods can be computationally intensive and often reduce interpretability; GAMLSS
requires specifying the response distribution and link functions and can be challenging to scale in
very high–dimensional settings; and, in practice, some probabilistic models may favor calibration
over point accuracy on certain datasets.

Several recent works have sought to address these limitations. Hu et al. (2019) propose a neural
architecture that outputs a full predictive density in a single forward pass, substantially reducing
computation for deep probabilistic models. Zhang et al. (2020) develop an Improved Deep Mixture
Density Network (IDMDN) for regional wind-power probabilistic forecasting across multiple wind
farms, demonstrating robust accuracy in high-dimensional settings. Rügamer et al. (2023) blend
classical structured statistical effects with deep neural networks via semi-structured distributional
regression, enabling flexible modeling that accommodates both tabular and image data. Finally,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

x
Projection

z = Wϕ[x; a(x) ] + bϕ
Metric–window
κj(z; cj , sj)

Soft top-k
weights wj(x)

MDN experts ej(x)
{πj,c, µj,c, σj,c}Mc=1

Aggregate p(y | x) =
∑

j,c wj πj,c N (µj,c, σ
2
j,c)

Linear Calibrator (CAL)
µ′ = â µ+ b̂

Prob. metrics
NLL / CRPS (uncal.)

Point metric
RMSE on µ′

Anchor a(x) = fanchor(x)

concat [x; a(x)]

Figure 1: Anchor–MoE overview. (i) A base regressor produces the anchor from the same inputs,
we concatenate inputs and the anchor, then project to a latent z, score locality via a learnable metric–
window, and apply soft top-k routing to a few MDN experts. (ii) Experts output mixture parameters;
the weighted mixture yields the predictive density p(y | x) used for probabilistic metrics.(iii) For
point accuracy, we use least square method to calibrate the mean.

Martin Vicario et al. (2024) present an uncertainty-aware deep-learning pipeline that assigns reliability
scores to predictions based on quantified uncertainty, enhancing interpretability in safety-critical
applications. Collectively, these advances have helped push forward probabilistic regression and
uncertainty estimation.

Recently, Duan et al. (2020) introduced Natural Gradient Boosting (NGBoost), which fits the parame-
ters of a chosen predictive distribution by boosting decision–tree base learners with natural–gradient
updates. NGBoost is competitive on many tabular benchmarks with relatively little tuning, making it
simple to deploy. However, several limitations arise in regression settings. First, NGBoost requires the
user to pre–specify a parametric base distribution, and accuracy can degrade under misspecification.
Second, the original formulation is univariate; for multivariate targets one must either train separate
models or adopt an extension that models joint uncertainty. While O’Malley et al. (2021) extend
NGBoost to multivariate outputs by learning a joint distribution, this increases computational cost
and implementation complexity. Finally, beyond general boosting theory, the original work offers
limited task–specific statistical guarantees.

Mu & Lin (2025) demonstrate that the mixture-of-experts(MoE) model can better fitting the heteroge-
neous and complex data with less computational resources. Based on that, We propose Anchor–MoE,
a simple two-stage, modular architecture for probabilistic and point regression to overcome above
challenges. For Anchor-MoE, Stage 1 uses a small tuned gradient-boosted trees (GBDT) model
to produce an anchor mean µ̂a(x). Stage 2 concatenates the standardized anchor to the inputs and
projects to a compact latent space; a learnable metric–window kernel together with a soft top-k router
yields sparse weights over K lightweight mixture-of-density networks(MDN) experts. Experts output
a small Gaussian mixture. In the default the anchor predicts a residual on top of the anchor and a
variance. Training minimizes NLL with mild entropy regularization, that is, we augment the NLL
with a tiny entropy, see details in appendix. A disjoint calibration split fits a linear map on predicted
means to improve RMSE we report RMSE on calibrated means and NLL on the uncalibrated z-space
density. The design is plug-and-play, see Figure 1 for an overview.

1.0 0.5 0.0 0.5 1.0
x
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Predicted mean
95% prediction interval

Figure 2: Interval predicted by Anchor-MoE on 1-dimensional toy probabilistic regression problem.
Dots represents the data points. Black line is predicted mean and gray lines are upper and lower 95%
covered distribution predicted.

2 METHOD

In this section, we will introduce and analyze each component of our model and give a default
configuration which is used for experiment part at the end of this section.
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In standard prediction settings the object of interest is a scalar function such as E[Y | X = x]. In
probabilistic regression we instead aim to learn a full predictive law PΘ(x)(y | x). Our approach is to
parameterize PΘ(x) by a mixture family whose parameters Θ(x) are smooth functions of the input.

Concretely, Anchor–MoE first forms a strong anchor mean µa(x) using a small gradient–boosted
tree. The anchor is concatenated to the features and mapped to a compact latent space, from which
a metric–window router produces sparse (soft top-k) mixture weights. Each activated expert is a
lightweight MDN that predicts a local residual δ to the anchor and a scale, so that the resulting
predictive distribution is a mixture with means µa(x) + δ and heteroscedastic variances.

The next subsections detail the components: The latent projection and metric window (Section 2.2),
the latent metric–window and router (Section 2.3), the expert MDN heads and training objective
(Section 2.4), and the post-hoc mean calibration (Section 2.5).

2.1 BACKGROUND AND NOTATION

We consider i.i.d. samples (x, y) with x ∈ Rd and y ∈ R. A probabilistic regressor specifies a
conditional law pθ(y | x) with predictive mean µ(x) and variance σ2(x). We evaluate with the
average negative log-likelihood (NLL) on a test set {(xi, yi)}ni=1,

NLL =
1

n

n∑
i=1

[
− log pθ(yi | xi)

]
.

We also report the continuous ranked probability score (CRPS) Gebetsberger et al. (2018), defined
for a predictive CDF F (· | x) as

CRPS
(
F (· | x), y

)
=

∫ ∞

−∞

(
F (t | x)− 1{y ≤ t}

)2
dt.

In practice we use the standard closed-form for Gaussian mixtures.

An external anchor a(x) is a strong point predictor trained on the train/validation split. We use it in
two roles: (i) as an additional feature by concatenation of inputs and the anchor mean, and (ii) as a
residual reference so that expert means correct a(x) by a learned ∆(x).

We map the concatenated data to a D-dimensional latent code z via a linear projection and normal-
ization. A learnable metric window together with a soft top-k router produces weights α(z) over K
experts. Each expert outputs a small C-component Gaussian mixture with weights πj,c(x), means
µj,c(x), and scales σj,c(x) > 0. The predictive density is a mixture

pθ(y | x) =

K∑
j=1

αj(z)

C∑
c=1

πj,c(x)N
(
y; µeff

j,c(x), σ
2
j,c(x)

)
,

where in residual mode µeff
j,c(x) = a(x) + ∆j,c(x), and in free-mean mode µeff

j,c(x) = µj,c(x). Since
the model consists of many parts and each part has numerous hyper-parameters, we report a summary
table 1 of key hyper-parameters to the structure more clearer.

Table 1: Key hyper-parameters for each part

Module Key hyper-parameters

Anchor n_estimators, learning_rate, max_depth, subsample; select best_iter on validation

Projection / Latent latent dimension D; normalization on/off; weight decay λ

Metric window number of experts K; scale clamp [τmin, τmax]; window L2 λwin

Router top-k (k); temperature τ ; smoothing ε; load-balance coefficient λlb

Mixture of Experts (MDN) width h and depth L; components C; σ clamp [σmin, σmax]

Calibration calibration split size; linear map parameters (a, b)

3
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Figure 3: Loss landscapes and gradient fields for learning a normal distribution. Each panel shows
the score surface in the (µ, log σ) plane with its gradient vectors. The landscapes of NLL and
CRPS are identical up to a monotone transform, so both are proper and target the same optimum.
The difference lies in the gradients: without an anchor (top), the NLL field shows strong coupling
between µ and log σ, yielding slanted directions that can cause zig-zagging and early shrinkage of σ.
With Anchor+∆ (bottom), the parameterization recenters the mean around the anchor and reduces
mean–scale coupling; gradients become closer to axis-aligned and the path to the optimum is more
stable. The CRPS field is also smoother in the tails than NLL, leading to milder updates of σ when µ
is off target.

2.2 LATENT PROJECTION AND METRIC WINDOW

We map the input x to aD-dimensional latent code z using a linear projection followed by LayerNorm.

Locality is scored by a learnable metric window. Each expert j has a center cj and a positive scale
vector sj . The unnormalized score is

w̃j(z) = exp
(
− 1

2

∥∥(z − cj)⊙ s−1
j

∥∥2
2

)
,

For stability, we clamp all log-scales to a fixed range and add a small ℓ2 penalty on the log-scales.

To obtain sparse and robust routing, we keep the k largest entries of w(z) and renormalize within this
active set. During training, we apply a tiny smoothing ε within the active set to avoid zero gradients;
the same top-k rule is used at inference.

2.3 ROUTER

We follow the classic gating view of MoE Jacobs et al. (1991); Jordan & Jacobs (1994) and combine a
lightweight content router with the metric window.Given the latent code z, we form a query q =Wqz
and maintain keys {kj}Kj=1 in Rdr . We use scaled dot–product logits with temperature τ (cosine
normalization is optional):

ℓj(z) =
⟨q, kj⟩√
dr τ

.

We fuse the router with the locality weights w(z) by simple multiplication, then renormalize:

αj(z) ∝ wj(z) softmax(ℓ(z))j ,
∑
j

αj(z) = 1.

For specialization, we keep the k largest entries of α(z) and renormalize within this active set. During
training, a tiny smoothing ε is applied within the active set to avoid zero gradients; at inference we use

4
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the same top-k rule without smoothing. This router adds O(Kdr) work per example and suppresses
far-away experts while enabling content-dependent gating.

2.4 MIXTURE OF EXPERTS

MDN model the full conditional distribution and suit heteroscedastic or multi-modal targets Bishop
(1994). The window and the router produce nonnegative weights αj . Each expert is a small MDN
with C Gaussian components. Each expert outputs mixture weights via softmax, component means,
and positive scales. Scales are clamped to a fixed range for numerical stability.

Anchor coupling. Three modes are supported: anchor+delta as the default, anchor only, and free. A
small ℓ2 penalty on the residual discourages unnecessary drift. The anchor value is also concatenated
to the inputs of the expert and the router.

Predictive density. For a univariate target

p(y | x) =
K∑
j=1

C∑
c=1

αj(x)πj,c(x)ϕj,c(y | x),

where ϕj,c is a Gaussian density with mean µeff
j,c(x) and variance σ2

j,c(x). This design lets experts
specialize locally while the gates provide smooth interpolation.

2.5 CALIBRATION

We hold out a small calibration split and fit a single affine map by least squares in z space: µcal =
aµ+ b. At test time we apply this map to the model mean and report RMSE in original units. The
predictive variance is left unchanged and we report NLL on the original uncalibrated density.

3 THEORETICAL ANALYSIS

The analysis explains what each design choice controls and when gains should appear. It turns
the architecture into testable statements that can be checked on data. The assumptions are built
into the model: a bounded latent projection with clamped window scales gives smooth and stable
locality scores; top-k routing limits the number of active experts per input; variance clamping in the
latent space avoids degenerate likelihoods. From these ingredients the theory yields the following
predictions.

1. With the variance clamp in place, lowering NLL should be accompanied by lower RMSE on the
predictive mean.

2. At fixed k, increasing K improves risk up to a knee point, after which gains become marginal as
estimation error dominates.

3. Moving from k = 1 to k = 2 stabilises gating and often improves CRPS, with diminishing returns
for larger k.

4. Light entropy on the gates and small scale regularisation improve load balance, reduce routing
variance, and make training more stable.

5. Exposing the anchor by concatenation or by residual shift reduces mean bias, with larger benefits
on datasets that show stronger input dependent noise.

3.1 APPROXIMATION AND MINIMAX–OPTIMAL RATES

We assume the target regression function is Hölder–α smooth on a d–dimensional cube. A partition
of unity with K local windows and bounded overlap k gives an interpolation error that decays with
K:

approximation error ≍ K−2α/d.

5
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Fitting K experts from N samples under overlap k and per–expert capacity comp contributes an
estimation term

estimation error ≍ k compK
N

.

Balancing the two terms yields the usual choice

K⋆ ≍ N d/(2α+d),

and the corresponding risk achieves the minimax rate

E
[
∥ f̂ − f⋆ ∥2L2

]
≲ N−2α/(2α+d).

In our setting the latent projection is bounded, window scales are clamped, and routing activates only
k experts. These design choices enforce the bounded–overlap and smoothness conditions used above,
so the rate prediction is meaningful for the proposed model. We train with Gaussian NLL; because
predictive variances are clamped away from 0 and∞, lowering NLL also lowers the mean–squared
error of the predictive mean up to constant factors. This is why we report both NLL and RMSE in the
experiments.

3.2 GENERALISATION UNDER CRPS

CRPS is Lipschitz in the predictive cdf under the L1 metric, and the loss is bounded once expert
means and variances are bounded and the response is bounded. Write the bound as |CRPS| ≤ B

with B = Rf +Ry +
√
2/π σ, where Rf bounds the expert means, σ bounds the standard deviation

from above, and Ry bounds the response.

Let R be the population CRPS risk and R̂N its empirical counterpart on N samples. For any
δ ∈ (0, 1), with probability at least 1− δ,

R− R̂N ≤ 4RN (F) + 3B

√
log(2/δ)

2N
,

whereRN (F) is the empirical Rademacher complexity of the CRPS–induced function class.

Under mild size controls on the model, this complexity satisfies

RN (F) ≤ C

√
log(Mh) + P +K

N
,

with M mixture components per expert, expert width proxy h, router size P , and number of experts
K; C is a constant independent of N . With top-k bounded–overlap gating, the dependence on K can
be replaced by the active overlap k.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We first run a light heteroscedasticity screening with OLS residuals to confirm input-dependent noise,
then keep a single protocol across datasets. Following Hernández-Lobato & Adams (2015), we
evaluate on nine UCI datasets with a 90%/10% train/test split; inside the training fold, 20% is held
out to choose the number of boosting stages for the anchor by validation NLL, after which the chosen
stage is refit on the full training fold and the MoE is trained on top. Each experiment is repeated 20
times and we report the mean and standard error. The anchor mean is concatenated to the inputs;
a small disjoint calibration split fits a least-squares linear map on predicted means while leaving
variances unchanged. Unless stated otherwise, we fix the configuration summarized in Table 2 and
report NLL on the uncalibrated predictive density in z-scored space and RMSE on calibrated means
in the original scale. For PROTEIN, we subsample 10,000 examples per run and retrain NGBoost on
the same subsamples for fairness; for the remaining datasets we use all samples and cite NGBoost
from Duan et al. (2020).
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Table 2: Fixed configuration for experiments

Component Setting

Latent projection Dimension D=2

Experts K=8 experts; each expert is an MLP of width 128 with an MDN head of C=3 components
Router Top-k gating with k=2 and light smoothing
Variance clamp Predicted standard deviation clamped to [0.05, 1]

Anchor model Gradient-boosted trees; best iteration chosen by validation NLL and then refit on the full training fold

4.2 HETEROSCEDASTICITY DIAGNOSTICS

Since prior work shows that learning input-dependent variance can be beneficial Nix & Weigend
(1994); Kersting et al. (2007), we first check whether residual variance depends on the inputs before
comparing probabilistic models, it should help most when noise varies with the covariates. We
therefore run a light screening for heteroscedasticity on each dataset to contextualize the results.

We fit an Ordinary Least Squares(OLS) model and test input–dependent noise using standard diag-
nostics: Breusch–Pagan for linear variance in regressors Breusch & Pagan (1979), White’s general
test for heteroskedasticity White (1980), Goldfeld–Quandt along the fitted-value ordering Goldfeld &
Quandt (1965), Levene’s robust test across fitted-value bins Levene (1960), and a Spearman rank
correlation between absolute residuals and fitted values Spearman (1904).In our analysis we treat
the White test as the primary decision signal White (1980), with Breusch–Pagan and Levene used as
corroborating evidence Breusch & Pagan (1979); Levene (1960).

Table 3: Heteroscedasticity diagnostics on UCI datasets; extremely small p–values reject homoscedas-
ticity.

Dataset N pBP pWhite pGQ pSpearman|e| |ρ|Spearman pLevene R2_log_resid2

Yacht 308 1.006 588 × 10−12 4.513 610 × 10−18 2.957 812 × 10−155 2.621 576 × 10−11 0.368 3.948 916 × 10−35 0.117 072

Energy 768 4.981 111 × 10−62 1.134 108 × 10−100 5.950 234 × 10−54 2.233 622 × 10−13 0.260 9.763 824 × 10−40 0.047 926
Protein* 10000 0.000 000 0.000 000 1.351 570 × 10−183 0.000 000 0.301 7.939 445 × 10−205 0.046 301

Concrete 1030 9.204 946 × 10−26 8.574 022 × 10−38 1.757 200 × 10−37 6.057 033 × 10−18 0.264 5.597 492 × 10−24 0.041 329
Wine 1599 1.587 975 × 10−13 1.896 220 × 10−26 3.288 921 × 10−9 3.579 995 × 10−16 0.202 8.619 177 × 10−21 0.034 424

Housing 506 6.265 431 × 10−9 2.266 143 × 10−25 5.388 709 × 10−15 3.079 593 × 10−4 0.160 6.969 489 × 10−4 0.015 865
Kin8nm 8192 4.508 460 × 10−50 2.869 093 × 10−301 7.956 050 × 10−39 3.315 300 × 10−41 0.148 3.761 213 × 10−29 0.015 179

Naval 11934 1.000 000 0.000 000 2.346 512 × 10−3 3.442 543 × 10−33 0.110 4.532 954 × 10−77 0.004 240

All datasets reject homoscedasticity by the White test at the one percent level. Effect sizes differ:
Yacht is large (Spearman ≈ 0.37, R2≈ 0.12); Energy, Protein, Concrete, and Wine are moderate
(R2 ≈ 0.03–0.05; Spearman ≈ 0.20–0.30); Housing, Kin8nm, and Naval are small (R2 ≤ 0.016;
Spearman ≤0.16). Thus input–dependent noise is ubiquitous but uneven, and the expected gain from
learning variances should be strongest where these effect sizes are larger.

EMPIRICAL EXPERIMENTS

We run empirical experiments informed by the heteroscedasticity screening. Uncertainty quality is
evaluated with the average test negative log-likelihood, where lower values are better. The primary
baseline is NGBoost, and results for additional baselines are in the Appendix. Although Anchor–MoE
targets uncertainty estimation, a point prediction is obtained as the predictive mean, and we assess it
with test RMSE. For RMSE we apply a small least-squares mean calibration on a disjoint split as
described in Section 3.4, while NLL is computed on the uncalibrated density in z-scored space. Unless
stated otherwise the configuration matches the uncertainty experiments. We use gradient-boosted
trees as the default anchor for reproducibility, and other anchors can be substituted without changing
the pipeline. To quantify the contribution of each component we run ablations under the same setup.
In the default anchor plus delta mode a small boosted model produces an anchor mean, expert heads
learn residuals that correct this anchor and also output variances. In No-Anchor we remove the
anchor feature and the residual coupling so experts predict free means. In No-Router we disable the
dot-product router and rely only on the metric window with the same top-k mask and smoothing, then
renormalize. In No-Cal we compute RMSE on uncalibrated means. Main comparisons to NGBoost
and ablation outcomes are reported in Tables 5 and 4b.
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Table 4: UCI benchmarks: test NLL (left) and RMSE (right). Best per row in bold.

(a) NLL. NGBoost numbers are from Duan et al.
(2020); other baselines follow prior reports (see Ta-
ble 8 in the appendix). Anchor–MoE is competitive
on complex datasets.

Dataset N Anchor–MoE NGBoost

Boston 506 0.60 ± 0.11 2.43 ± 0.15
Concrete 1030 0.25 ± 0.06 3.04 ± 0.17
Energy 768 -1.68 ± 0.20 0.46 ± 0.06
Kin8nm 8192 0.12 ± 0.01 -0.49 ± 0.02
Naval 11934 -1.26 ± 0.02 -5.34 ± 0.04
Power 9568 -0.15 ± 0.02 2.79 ± 0.11
Protein 10000 1.06 ± 0.04 1.24 ± 0.04
Wine 1599 1.20 ± 0.02 4.96 ± 0.60
Yacht 308 -1.80 ± 0.04 0.20 ± 0.26

(b) RMSE. Anchor–MoE offers results comparable to
NGBoost.

Dataset N Anchor–MoE NGBoost

Boston 506 3.01 ± 0.14 2.94 ± 0.53
Concrete 1030 4.45 ± 0.16 5.06 ± 0.61
Energy 768 0.47 ± 0.02 0.46 ± 0.06
Kin8nm 8192 0.07 ± 0.00 0.16 ± 0.00
Naval 11934 0.00 ± 0.00 0.00 ± 0.00
Power 9568 3.21 ± 0.05 3.79 ± 0.18
Protein 10000 4.41 ± 0.02 4.44 ± 0.02
Wine 1599 0.62 ± 0.01 0.60 ± 0.01
Yacht 308 0.62 ± 0.06 0.50 ± 0.20
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Figure 4: Learning dynamics on a toy 1D dataset: No-Anchor (top) vs Anchor (+∆, bottom) at 0%,
33%, 67%, and 100% fit. Line as in Figure 1. Without anchor, updates emphasize global trend and
show larger oscillations with tail variance inflation; with anchor, updates are balanced, the central
plateau is preserved earlier, and predictive intervals are better calibrated.

Table 5: Comparison on UCI Benchmark dataset as measured by NLL while ablating key components
of Anchor-MoE. Bolding is as in Table 1.

Dataset N Anchor-MoE Anchor Router Calibration

Boston 506 0.60 ± 0.11 0.83 ± 0.24 0.51 ± 0.05 0.52 ± 0.05
Concrete 1030 0.25 ± 0.06 0.73 ± 0.04 0.20 ± 0.05 0.20 ± 0.06
Energy 768 -1.68 ± 0.2 -1.30 ± 0.05 -0.76 ± 0.05 -0.96 ± 0.05
Kin8nm 8192 0.12 ± 0.01 0.68 ± 0.02 1.00 ± 0.01 0.97± 0.01
Naval 11934 -1.26 ± 0.02 -1.09 ± 0.02 -1.10 ± 0.02 -1.12± 0.02
Power 9568 -0.15 ± 0.02 -0.05 ± 0.03 -0.15 ± 0.02 -0.18 ± 0.02
Protein 10000 1.06± 0.04 0.63 ± 0.01 1.05 ± 0.02 0.90 ± 0.03
Wine 1599 1.20± 0.02 1.52 ± 0.43 1.16 ± 0.02 1.21±0.03
Yacht 308 -1.80± 0.04 0.24 ± 0.42 -1.76± 0.03 -1.83 ± 0.03

5 CONCLUSION

We presented Anchor–MoE, a modular approach for point and probabilistic regression. A small
tree model provides an anchor mean, a metric window with a soft top-k router dispatches inputs
sparsely to mixture-density experts, scaling Anchor–MoE with expert sharding and switch-style
routing, which is compatible with existing systems Lepikhin & et al. (2020); Fedus et al. (2021) and
is a natural next step. And a one dimensional post hoc calibrator corrects mean bias. The parts are
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loosely coupled, easy to ablate, and the same design can be adapted to classification or survival by
changing the likelihood.

A central finding is the alignment between heteroscedasticity diagnostics and empirical gains. Datasets
with strong input dependent noise such as Yacht, as indicated by very small test p values together
with larger effect sizes in the simple R2 on log(e2) and in the absolute Spearman correlation, are
exactly where Anchor–MoE delivers the clearest improvements in test negative log-likelihood and
better interval behavior. On datasets with moderate signals such as Energy, Concrete, Wine, Power,
and Protein, Anchor–MoE improves likelihood metrics consistently while keeping root mean squared
error close to the best baseline; the anchor plus delta design lets experts spend capacity on local
residuals and variance rather than relearning the global mean. When diagnostics point to weak
heteroscedasticity as in Housing, Kin8nm, and Naval, the advantage in likelihood narrows or can
reverse, and simple mean focused models can be sufficient for point accuracy. This pattern matches
the intended role of the method: model uncertainty where noise truly varies with inputs, avoid
unnecessary variance modeling when noise is nearly constant.

Ablations clarify mechanism. Removing the anchor pushes experts to absorb mean bias through vari-
ance inflation, which can reduce likelihood quality and harm coverage. Disabling the router removes
content dependent specialization and leaves only the window kernel to gate, which consistently hurts
likelihood and sometimes point accuracy on complex data. Removing mean calibration increases bias
and worsens root mean squared error without a benefit to likelihood in the z scored space. Together,
these results support the default of anchor concatenation and residual correction, soft top k routing
with bounded overlap, and a light least squares mean calibration.

Theoretical guidance also matches practice. Bounded overlap routing and fixed expert capacity
control estimation error, while the window partition controls approximation. Keeping a small number
of experts and a small top k across datasets respects these capacity assumptions, and the observed
stability across random splits is consistent with generalization bounds stated for continuous ranked
probability score and with the link between negative log-likelihood and mean squared error under
bounded variances. In short, the design choices used in the main tables are the ones that make the
theory applicable.

For practitioners, a simple rule emerges from the diagnostics. If a quick screening rejects homoscedas-
ticity with very small p values and the effect size summaries are nontrivial for example absolute
Spearman around 0.2 or higher and the simple R2 on log(e2) around a few percent or higher then
Anchor–MoE is likely to deliver tangible gains in likelihood and interval quality at low tuning cost.
If the screening suggests nearly constant noise, a strong mean regressor with minimal uncertainty
modeling can be preferred, or Anchor–MoE can be run in a lighter configuration. Future work
includes replacing held out mean calibration with calibration by design, reducing residual variance
hedging in anchor free modes, and exploring capacity controlled routers with adaptive top k or
temperature for better robustness under covariate shift.

LLM USAGE DISCLOSURE

We used ChatGPT (OpenAI, Aug–Sep 2025) solely to (i) explore related-work queries, (ii) polish
wording/grammar, and (iii) receive non-substantive debugging suggestions for implementation. The
LLM did not generate new scientific content, derivations, figures, or results. No proprietary or
personally identifiable data were provided to the LLM; all citations and code changes were manually
verified. The authors bear full responsibility for the accuracy and integrity of the paper.
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A APPENDIX

Augmented NLL. We augment the NLL by a tiny entropy term:

L = NLL + λt,Ex

[ K∑
j=1

pj(x) log pj(x)
]

using a small positive λt encourages high entropy routing and prevents early collapse.
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High-dimensional scaling .

Anchor–MoE adapts to intrinsic dimension in two common cases.

Manifold case. AssumeX lies on a compactC1 submanifoldM⊂ [0, 1]d with intrinsic dimension d0
and positive reach. Using a fixed geodesic partition of unity with bounded overlap, the approximation
term scales as K−2α/d0 while the estimation term is unchanged. Hence

E ∥f̂ − f⋆∥2L2(M) ≤ C1K
−2α/d0 + C2

k compK

N
.

Balancing the two terms gives the rate N−2α/(2α+d0) at K ≍ Nd0/(2α+d0).

Sparse case. If f⋆(x) depends only on s coordinates with s much smaller than d, a partition of unity
in s dimensions yields

E ∥f̂ − f⋆∥2L2 ≤ C1K
−2α/s + C2

k compK

N
,

so the rate is N−2α/(2α+s) at K ≍ Ns/(2α+s). If the active coordinate set must be learned, an
additional model selection penalty of order (s log d)/N typically augments the estimation term.

Practical guideline. ChooseK by balancingK−2α/dint with (k compK)/N , where dint is the relevant
intrinsic dimension: d in full space, d0 on a manifold, or s under sparsity.

Table 6: Test NLL on UCI datasets. Anchor–MoE numbers are from our runs; the other baselines are
taken from prior reports of Gal & Ghahramani (2016); Lakshminarayanan et al. (2017); Gal et al.
(2017), . Best per row in bold. Protein dataset is removed as it is resampled in this study.

Dataset N Anchor–MoE MC dropout Deep Ensembles Concrete Dropout Gaussian Process GAMLSS DistForest

Boston 506 0.60 ± 0.11 2.46 ± 0.25 2.41 ± 0.25 2.72 ± 0.01 2.37 ± 0.24 2.73 ± 0.56 2.67 ± 0.08
Concrete 1030 0.25 ± 0.06 3.04 ± 0.09 3.06 ± 0.18 3.51 ± 0.00 3.03 ± 0.11 3.24 ± 0.08 3.38 ± 0.05
Energy 768 -1.68 ± 0.20 1.99 ± 0.09 1.38 ± 0.22 2.30 ± 0.00 0.66 ± 0.17 1.24 ± 0.86 1.53 ± 0.14
Kin8nm 8192 0.12 ± 0.01 -0.95 ± 0.03 -1.20 ± 0.02 -0.65 ± 0.00 -0.11 ± 0.03 -0.26 ± 0.02 -0.40 ± 0.01
Naval 11934 -1.26 ± 0.02 -3.80 ± 0.05 -5.63 ± 0.05 -5.87 ± 0.05 -0.98 ± 0.02 -5.56 ± 0.07 -4.84 ± 0.01
Power 9568 -0.15 ± 0.02 2.80 ± 0.05 2.79 ± 0.04 2.75 ± 0.01 3.81 ± 0.05 2.86 ± 0.04 2.68 ± 0.05
Wine 1599 1.20 ± 0.02 0.93 ± 0.06 0.94 ± 0.12 1.70 ± 0.00 0.95 ± 0.06 0.97 ± 0.09 1.05 ± 0.15
Yacht 308 -1.80 ± 0.04 1.55 ± 0.12 1.18 ± 0.21 1.75 ± 0.00 0.10 ± 0.26 0.80 ± 0.56 2.94 ± 0.09

Table 7: Comparison on UCI Benchmark dataset as measured by RMSE while ablating key com-
ponents of Anchor-MoE. Bolding is as in Table 1. Calibration can reduces RMSE significantly on
Energy dataset, although it slightly increase RMSE on others.

Dataset N Anchor-MoE Anchor Router Calibration

Boston 506 3.01 ± 0.14 4.14 ± 0.28 2.88 ± 0.12 2.75 ± 0.10
Concrete 1030 4.45 ± 0.16 7.75 ± 0.15 4.44 ± 0.14 4.18 ± 0.12
Energy 768 0.47 ± 0.02 1.48 ± 0.13 1.23 ± 0.04 1.01 ± 0.03
Kin8nm 8192 0.07 ± 0.00 0.11 ± 0.00 0.15 ± 0.00 0.15± 0.00
Naval 11934 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00± 0.00
Power 9568 3.21 ± 0.05 4.01 ± 0.04 3.22 ± 0.05 3.16 ± 0.05
Protein 10000 4.41± 0.02 4.71 ± 0.03 4.42 ± 0.03 4.37 ± 0.02
Wine 1599 0.62± 0.01 0.65 ± 0.01 0.62 ± 0.00 0.61± 0.00
Yacht 308 0.62± 0.06 4.19± 0.33 0.62 ± 0.04 0.52 ± 0.04

A1. MINIMAX–OPTIMAL RATE OF ANCHOR–MOE (NO DIMENSION REDUCTION)

Notation. For d ∈ N let Fα(L) be the isotropic Hölder ball of order α > 0 and radius L > 0 on
[0, 1]d (van der Vaart, 1998, Def. 24.1). We write ∥ · ∥2 for the L2([0, 1]d) norm and RN (H) for
the empirical Rademacher complexity (Anthony & Bartlett, 1999, Ch. 11). Let the lattice mesh be
h := K−1/d.
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Predictor and risk. The model is probabilistic (MDN). We evaluate the risk of the predictive mean.
Let

f̂K,N (x) := Ep̂(y|x)[Y ]

be the mean of the learned predictive density p̂(y | x). All bounds below concern f̂K,N .

Problem setup. Observe i.i.d. (Xi, Yi) with Xi ∼ Unif[0, 1]d and Yi = f⋆(Xi) + εi where
εi ∼ N (0, σ2) and f⋆ ∈ Fα(L). We analyse the integrated squared riskRN = E

[
∥ f̂K,N − f⋆ ∥22

]
.

Model class (theoretical abstraction). The practical anchor mean can be absorbed into experts’
mean functions without changing rates. We consider

HK =
{
x 7→

K∑
j=1

wj(x) ej(x) : {wj} is a PoU on [0, 1]d, ej ∈ E
}
,

where ej(·) denotes the expert mean function and E is a bounded–capacity MDN mean class (fixed
across K).

Assumptions.

(A1) No dimension reduction. fϕ = Id on [0, 1]d; equivalently one may allow an invertible affine
map fϕ(x) = Ax+ b with bounded condition number, which only rescales constants.

(A2) Partition of unity (PoU) with bounded overlap. Let {xj}Kj=1 be a regular lattice with mesh
h = K−1/d. There exists a compactly supported PoU {wj}Kj=1 (e.g., tensor-product B-splines)
such that wj ≥ 0,

∑
j wj(x) = 1 for all x, diam(suppwj) ≲ h, and at most k of the wj(x)

are nonzero for any x (bounded overlap). At the boundary, cells are truncated and weights
renormalized.

(A3) Experts of bounded capacity. Each expert mean ej ∈ E has fixed complexity comp inde-
pendent of K (e.g., uniform Lipschitz/covering numbers or pseudo-dimension bounds; MDN
variances are bounded away from 0 and∞ so training is well-conditioned).

A1.1 INFORMATION–THEORETIC LOWER BOUND

Lemma A.1 (Minimax lower bound). For any estimator f̂N based on N samples,

sup
f⋆∈Fα(L)

E
[
∥ f̂N − f⋆ ∥22

]
≥ C0N

−2α/(2α+d).

Proof sketch. By the metric entropy ofFα(L), logN(ε,Fα(L), ∥·∥2) ≍ ε−d/α (van der Vaart, 1998,
Thm. 24.4). A standard Fano/Assouad argument yields the rate with C0 = C0(L,α, d) > 0.

A1.2 APPROXIMATION BY LOCAL INTERPOLATION (POU)

Let {xj}Kj=1 be as in (A2). Define

f̃K(x) :=

K∑
j=1

wj(x) f
⋆(xj).

Lemma A.2 (Interpolation error). Under (A2), for f⋆ ∈ Fα(L),∥∥ f̃K − f⋆ ∥∥2 ≤ C1 h
α = C1K

−α/d,

hence
∥∥ f̃K − f⋆ ∥∥22 = O

(
K−2α/d

)
.

Proof sketch. On each cell, |f⋆(x)− f⋆(xj)| ≤ L ∥x− xj∥α ≲ Lhα. Because
∑

j wj = 1 and the
overlap is uniformly bounded by k, integration over [0, 1]d yields the claim (the overlap constant is
absorbed into C1).
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A1.3 ESTIMATION ERROR (SAFE FORM)

Lemma A.3 (Estimation error — safe form). Under (A2)–(A3) with overlap k and per–expert
complexity comp (both independent of K), there exists C > 0 (depending on k, comp but not on
K,N ) such that

E
[
∥ f̂K,N − f̃K ∥22

]
≤ C

k compK

N
.

Proof sketch. ForHK = {x 7→
∑K

j=1 wj(x)ej(x)}, bounded overlap implies

RN (HK) ≤ 1

N

K∑
j=1

Eσ

[
sup
ej∈E

N∑
i=1

σi wj(xi) ej(xi)
]

≲

√
k compK

N
.

A standard contraction/ERM argument turns this into the stated squared error bound.

Lemma A.4 (NLL–L2 link for Gaussian experts). Assume the predictive density is Gaussian with
mean m(x) and variance σ2(x), and that 0 < σ ≤ σ(x), σ∗(x) ≤ σ < ∞ for all x. Let
f∗(x) = E[Y | X = x] and v∗(x) = Var(Y | X = x) = (σ∗(x))2. Then

ExcessNLL := E
[
−log pm,σ(Y | X)

]
−E

[
−log pf∗,σ∗(Y | X)

]
≤ c1 E

[
(m(X)−f∗(X))2

]
+ c2 E

[
(σ(X)−σ∗(X))2

]
,

with explicit constants

c1 =
1

2σ2
, c2 ≤

1

2σ2
+

3σ2

2σ4
.

Proof. Decompose, for each x,

∆(x) = E
[
(Y −m(x))2 − (Y − f∗(x))2

2σ(x)2

∣∣∣X = x

]
︸ ︷︷ ︸

∆mean(x)

+
1

2

(
log

σ(x)2

v∗(x)
+
v∗(x)

σ(x)2
− 1

)
︸ ︷︷ ︸

∆var(x)

.

Mean term. Since E[(Y −m)2 | X = x] = v∗(x) + (m(x)− f∗(x))2, we have

∆mean(x) =
(m(x)− f∗(x))2

2σ(x)2
≤ (m(x)− f∗(x))2

2σ2
.

Taking expectation over X gives the constant c1.

Variance term (tight quadratic bound). Fix x and define fx(σ) = log σ2 + v∗(x)σ−2 so that
∆var(x) =

1
2

(
fx(σ(x))− fx(σ∗(x))

)
. We have

f ′x(σ) =
2

σ
− 2v∗(x)

σ3
, f ′′x (σ) = −

2

σ2
+

6v∗(x)

σ4
.

Because (σ∗(x))2 = v∗(x), it holds that f ′x(σ
∗(x)) = 0. On σ ∈ [σ, σ],∣∣f ′′x (σ)∣∣ ≤ 2

σ2
+

6 v∗(x)

σ4
≤ 2

σ2
+

6σ2

σ4
=: L.

By the L-smoothness inequality (Taylor with remainder, using f ′x(σ
∗) = 0),

fx(σ)− fx(σ∗) ≤ L

2
(σ − σ∗)2, ⇒ ∆var(x) ≤

L

4
(σ(x)− σ∗(x))2.

Taking expectation over X yields c2 = L/4 ≤ 1
2σ2 + 3σ2

2σ4 .

Combine both parts and integrate over X to conclude.

Proof of Main Bound. We work under (A1)–(A3): (A1) f⋆ ∈ Fα(L) on [0, 1]d; (A2) a fixed Lips-
chitz partition of unity (PoU) {ψj}Kj=1 with mesh h ≍ K−1/d, compact supports of diameter ≲ h,
and bounded overlap k (for all x, at most k indices have ψj(x)>0); (A3) each expert class Gj has
bounded capacity “comp” (e.g. pseudo-dimension or a uniform covering-number proxy), independent
of K. Risk is w.r.t. the marginal of X on [0, 1]d (with density bounded above/below).

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Decomposition. Let f̂K,N be the ERM over the PoU-mixture classFK :=
{∑K

j=1 ψjgj : gj ∈ Gj
}

with squared loss. Standard arguments yield an oracle inequality (see, e.g., localized Rademacher or
quadratic-loss ERM bounds):

E
[
∥f̂K,N − f⋆∥22

]
≤ 2 inf

f∈FK

∥f − f⋆∥22︸ ︷︷ ︸
approximation

+ C EN (FK)︸ ︷︷ ︸
estimation

,

for a universal constant C > 0 (depending only on bounded moments and the curvature of squared
loss).

Approximation error C1K
−2α/d. By (A1) and classical local polynomial/Taylor approximation

on a mesh of size h ≍ K−1/d, there exist local polynomials pj of degree ⌊α⌋ such that∥∥∥f⋆ − K∑
j=1

ψjpj

∥∥∥2
L2
≤ C ′

1 h
2α ≍ C1K

−2α/d,

where the PoU provides a stable partition and the overlap is bounded by k (so constants
are independent of K). Since Gj contains such local approximants (by capacity assumption),
inff∈FK

∥f − f⋆∥22 ≤ C1K
−2α/d.

Estimation error C2(k comp)K/N . Write H := {(x, y) 7→ (y −
∑

j ψj(x)gj(x))
2 : gj ∈ Gj}.

Using a standard symmetrization and contraction for squared loss, the (localized) excess-risk term
can be upper bounded by a multiple of the squared Rademacher complexity of the mean function
class FK (due to the Bernstein/strong-convexity condition of squared loss):

EN (FK) ≲
(
RN (FK)

)2
.

Now FK is a PoU-sum of K classes with bounded overlap k:

FK =


K∑
j=1

ψjgj : gj ∈ Gj

 .

By sub-additivity of Rademacher complexity and ∥ψj∥∞ ≤ 1,

RN (FK) ≤ E
∥∥∥ K∑

j=1

ψj · Gj
∥∥∥
R
≤

K∑
j=1

RN (ψj · Gj) ≤
K∑
j=1

RN (Gj).

Because at each x at most k terms are active, a sharper bound uses the overlap to get

RN (FK) ≤
√
k
( K∑

j=1

RN (Gj)2
)1/2

.

Under (A3), for each j, RN (Gj) ≲
√
comp/N (e.g. linear/MLP heads with O(comp) parameters or

a class with metric entropy controlled by “comp”). Therefore,

RN (FK) ≲
√
k
(

K comp
N

)1/2

⇒ EN (FK) ≲
(
RN (FK)

)2

≲
k compK

N
.

This gives the claimed estimation term with some constant C2 > 0 (depending only on bounded
moments and the loss curvature).

Balancing. Combining the two parts,

E
[
∥f̂K,N − f⋆∥22

]
≤ C1K

−2α/d + C2
k compK

N
.

Optimizing over K yields K⋆ ≍ Nd/(2α+d) and

sup
f⋆∈Fα(L)

E
[
∥f̂K⋆,N − f⋆∥22

]
≲ N−2α/(2α+d),

which matches the information-theoretic lower bound up to constants.
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A1.6 REMARKS

(i) Anchors. The baseline “anchor” mean can be folded into expert means; it does not affect rates.
(ii) When a logK estimation term is valid. If window locations/bandwidths are fixed (non-

learned), per-point aggregation uses a fixed top-k rule, and strong parameter sharing makes
the effective number of free parameters independent of K, Lemma A.3 can be refined to
E∥ f̂K,N − f̃K ∥22 ≲ logK+comp

N . Without these structural constraints, the O(K/N) bound is
recommended.

(iii) Target standardization. Z-scoring Y only rescales constants inRN .

A2. GENERALISATION BOUND

We study the population–empirical gap under the CRPS loss. For a predictive density pθ,ϕ(· | x)
define

ℓ
(
pθ,ϕ(· | x), y

)
:= CRPS

(
pθ,ϕ, y

)
, R(θ, ϕ) := E(x,y)∼D

[
ℓ(pθ,ϕ, y)

]
,

and its empirical version

R̂N (θ, ϕ) :=
1

N

N∑
i=1

ℓ
(
pθ,ϕ, yi

)
.

Assumptions.

(G1) (CRPS regularity and boundedness). With the standard definition CRPS(F, y) =
∫
R
(
F (z)−

1{z ≥ y}
)2
dz, the map F 7→ CRPS(F, y) is 2-Lipschitz under the L1 metric on CDFs.

Assume expert means are uniformly bounded |ej(x)| ≤ Rf and the predictive variance satisfies
σ(x) ∈ [σ, σ], and y ∈ [−Ry, Ry] almost surely (otherwise clip y). Then the loss is bounded by

B ≤ Rf +Ry +
√

2
π σ .

(G2) (Model capacity). For the MDN expert classHM,h (mixture size M , width h), RN (HM,h) ≤
Ch

√
log(Mh)

N . For the router class GP,K with P parameters and softmax widthK, RN (GP,K) ≤

Cg

√
P+K
N . (If the router’s final weight matrix is fully counted in P , the extra “+K” can be

omitted.)

Composite complexity and contraction. Let FK,M,h,P denote the induced class of predictive
CDFs/densities parameterised by (K,M, h, P ). By the standard contraction inequality,

RN

(
ℓ◦FK,M,h,P

)
≤ 2RN (FK,M,h,P ) (A.1)

≤ 2C∗

√
log(Mh) + P +K

N
, C∗ := max{Ch, Cg} ≤ Ch + Cg. (A.2)

Theorem A.5 (Generalisation bound for Anchor–MoE). Let (θ̂, ϕ̂) be the parameters obtained after
training on N samples. Under (G1)–(G2), for any δ ∈ (0, 1), with probability at least 1− δ,

R(θ̂, ϕ̂)− R̂N (θ̂, ϕ̂) ≤ 2RN

(
ℓ◦FK,M,h,P

)
+ 3B

√
log(2/δ)

2N
(A.3)

≤ 4RN (FK,M,h,P ) + 3B

√
log(2/δ)

2N
= Õ

(
N−1/2

)
. (A.4)

Discussion. The bound scales as

Õ
()(√

(log(Mh) + P +K)/N
)
,

i.e. logarithmic in Mh and
√
·/N in P and K. Under a top-k bounded-overlap gating (each input

activates at most a constant number k of experts), the dependence on K can be replaced by k.
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A3. HIGH-DIMENSIONAL SCALING

We show that Anchor–MoE enjoys intrinsic-dimension scaling in two common high-dimensional
regimes: (i) data supported on a low-dimensional manifold; (ii) sparse coordinate dependence. In
both cases the ambient dimension d disappears from the rate, which depends only on the intrinsic
dimension d0 (or sparsity s).

Setting A (low-dimensional manifold). LetM⊂ [0, 1]d be a compact C1 submanifold of intrinsic
dimension d0 and positive reach. Let µM be the normalised d0-dimensional volume (Hausdorff)
measure onM, and interpret L2(M) with respect to µM. We write X ∼ µM (instead of Unif(M)).
Assume Y = f⋆(X) + ε with ε ∼ N (0, σ2) and f⋆ ∈ Fα(L;M), the isotropic Hölder ball onM.
Let {wj}Kj=1 be a fixed (non-learned) geodesic partition of unity (PoU) onM with mesh size h and
bounded overlap k, so that diam(suppwj) ≲ h and at most k weights are nonzero at any x ∈ M.
Experts have bounded capacity as in (A3) of Section A1.
Theorem A.6 (Manifold rate). There exist constants C1, C2 > 0 (depending only on L,α, the
curvature/geometry of M, the overlap k, and expert capacity) such that the predictive mean
f̂K,N (x) =

∑K
j=1 wj(x) ej(x) satisfies

E
[
∥ f̂K,N − f⋆ ∥2L2(M)

]
≤ C1K

−2α/d0 + C2
k compK

N
.

Choosing K⋆ ≍ Nd0/(2α+d0) yields

sup
f⋆∈Fα(L;M)

E
[
∥ f̂K,N − f⋆ ∥2L2(M)

]
≲ N−2α/(2α+d0).

Sketch. Geodesic covering numbers onM scale as h−d0 , hence K ≍ h−d0 . Local Hölder interpola-
tion on each chart gives ∥ f̃K−f⋆∥2L2(M) ≲ h2α = K−2α/d0 , mirroring Lemma A.2 with d replaced
by d0. Bounded overlap and fixed-capacity experts yield the estimation term C k compK/N as in
Lemma A.3. Balancing the two terms gives the rate.

Setting B (sparse coordinate dependence). Assume there exists S ⊂ {1, . . . , d} with |S| =
s ≪ d such that f⋆(x) = g⋆(xS). Suppose the PoU {wj} and gating are functions of xS (or of
a representation bi-Lipschitz in xS), and experts have bounded capacity. Here L2 is with respect
to the marginal law of X; if the marginal density of XS is bounded above/below on [0, 1]s, all
constants depend only on these bounds. The theorem below is an oracle bound (the index set S is
assumed known). If S is unknown and must be learned, an additional model-selection penalty of
order Õ

(
(s log d)/N

)
typically appears in the estimation term.

Theorem A.7 (Sparse rate). Under the sparse dependence assumption,

E
[
∥ f̂K,N − f⋆ ∥2L2

]
≤ C1K

−2α/s + C2
k compK

N
,

so that with K⋆ ≍ Ns/(2α+s),

sup
f⋆

E
[
∥ f̂K,N − f⋆ ∥2L2

]
≲ N−2α/(2α+s).

Sketch. Construct the PoU and local interpolation on the s-dimensional coordinate subspace. Then
K ≍ h−s and ∥ f̃K − f⋆∥22 ≲ h2α = K−2α/s. The estimation term follows as in Lemma A.3.

Bi-Lipschitz invariance. We record stability under bi-Lipschitz reparameterisations, which only
rescales constants.
Lemma A.8 (Change of variables under bi-Lipschitz maps). Let T : U → V be bi-Lipschitz on a
d0-dimensional domain U with constants a ≤ ∥T (x)− T (x′)∥/∥x− x′∥ ≤ b. There exist constants
c1, c2 > 0 depending only on a, b, d0 such that, for any g, h : V → R,

c1 ∥ g − h ∥L2(V ) ≤ ∥(g − h) ◦ T∥L2(U) ≤ c2 ∥ g − h ∥L2(V ),
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and [ g ◦ T ]Cα(U) ≲ bα [ g ]Cα(V ). Positive reach ofM yields uniformly bi-Lipschitz charts and a
bounded-overlap geodesic covering; hence covering numbers scale as h−d0 and Jacobian distortions
are absorbed into constants (as in Lemma A.3, since the overlap k is constant and expert capacity is
fixed).

Remarks. (i) The generalisation bound of Section A scales as Õ
(√

(log(Mh) + P +K)/N
)
.

Under bounded-overlap/top-k gating (each input activates at most k experts), the K-dependence in
the complexity term can be replaced by k (a constant).
(ii) The balancing choices areK⋆ ≍ Nd0/(2α+d0) (manifold) andK⋆ ≍ Ns/(2α+s) (sparse), offering
practical guidance for coarse model selection.

Table 8: Compute & capacity comparison on the California Housing dataset. Anchor–MoE is
reported at three scales: (1) D=2, k=1, h=4, (2) D=4, k=3, h=8, (3) D=8, k=6, h=16. FLOPs denotes
per-sample forward-pass FLOPs. Parameters: for neural models we count trainable weights; for
tree ensembles (NGBoost/DistForest) we approximate by the total number of leaves across trees.
For NGBoost/DistForest, FLOPs/pt are estimated by summing 2× depth over trees (one threshold
comparison plus an accumulate per level); for Gaussian Process (GP), FLOPs/pt use the variance-
aware prediction cost ≈ 2N2 with N = 3000 training points (subset), which dominates the O(Nd)
kernel-vector term. Anchor–MoE uses anchor concatenation with a light GBDT (200 trees, depth
2); the table reports the MoE trunk only—adding the anchor contributes ≈ 800 leaf parameters and
negligible per-sample compute, and does not change conclusions. All train times are wall-clock
on the same split and preprocessing; MC Dropout uses 10 MC passes; Deep Ensemble uses the
configuration shown in the row label.

Model Flops Parameters Train Time (s) Infer Throughput

Anchor-MoE1 80 94 12.5 337575.1
Anchor-MoE2 504 574 19.9 295165.4
Anchor-MoE3 2712 2972 24.8 193002.2

NGBoost 1800 2400 40.3 17143.8
MC Dropout 17664 17922 16.8 120482.7

Deep Ensemble 30528 31110 43.4 15275.6
DistForest 19034 2403901 34.8 12617.6

Gausian Process 18000000 11 170.2 3193.3

Summary. The best configuration among the top entries is D=2, K=2, k=2, val-CRPS=0.2497,
test-RMSE=0.4829. Across the top ten, the most frequent latent dimension is D=2, the most frequent
number of experts is K=2, and the most frequent active experts is k=2. Validation CRPS and test
RMSE rank models consistently, and training time scales mainly with K and the early-stopping epoch.
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Algorithm 1 Anchor–MoE training, calibration, and testing

1: Split:
D → Dtrain ∪̇ Dtest; Dtrain → DTV ∪̇ Dcal; DTV → Dtr ∪̇ Dva.

2: GBDT selection (on TR/VA):
3: for t = 1, . . . , Tg do
4: et ← RMSE

(
yva, GBDTt(Xva)

)
5: t⋆ ← argmint et
6: Train a fresh GBDTt⋆ on (Xtr, ytr) to obtain fsub

7: Refit GBDTt⋆ on (XTV, yTV) to obtain f̂

8: Phase-1 (TR/VA): anchor z-score, feature standardization, MoE early selection
9: (µtr, σtr)← mean/std(ytr)

10: ztr ← zsc(ytr;µtr, σtr); zva ← zsc(yva;µtr, σtr)
11: αtr ← zsc

(
fsub(Xtr);µtr, σtr

)
; αva ← zsc

(
fsub(Xva);µtr, σtr

)
12: X̃tr ← [Xtr, αtr]; X̃va ← [Xva, αva]

13: (mtr, str)← col-mean/std(X̃tr)

14: X̄tr ← std(X̃tr;mtr, str); X̄va ← std(X̃va;mtr, str)
15: initialize Θ1

16: for t = 1, . . . , Tmax do
17: Θt+1 ← Θt − η∇Θ NLL

(
X̄tr, ztr; Θt

)
18: t⋆MoE ← argmint NLL

(
X̄va, zva; Θt

)
19: Θ† ← Θt⋆MoE

20: Phase-2 (TV/CAL/TEST): freeze early epoch, refit on TV, prep CAL/TEST
21: (µtv, σtv)← mean/std(yTV)
22: ztv ← zsc(yTV;µtv, σtv)
23: for S ∈ {TV, cal, test} do
24: αS ← zsc

(
f̂(XS);µtv, σtv

)
; X̃S ← [XS , αS ]

25: (mtv, stv)← col-mean/std(X̃TV)

26: X̄S ← std(X̃S ;mtv, stv) for S ∈ {TV, cal, test}
27: reload Θ†

28: for t = 1, . . . , t⋆MoE do
29: Θ← Θ− η∇Θ NLL

(
X̄TV, ztv; Θ

)
30: Calibration (on CAL): linear post-hoc map for mean)
31: µ̂orig

cal ← σtv · µ̂z(X̄cal; Θ) + µtv

32: (a, b)← argmina,b
∥∥ a µ̂orig

cal + b− ycal
∥∥2
2

33: Test: report calibrated RMSE (orig) and NLL (z-space)
34: µ̂orig

test ← σtv · µ̂z(X̄test; Θ) + µtv

35: µ̂cal
test ← a µ̂orig

test + b
36: RMSE← RMSE

(
ytest, µ̂

cal
test

)
37: NLLz ← NLL

(
X̄test, zsc(ytest;µtv, σtv); Θ

)
38: return Θ∗=Θ, (a, b), RMSE, NLLz
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Table 9: Anchor–MoE hyper-parameter ablation on California. We sweepD∈{2, 4, 8},K∈{2, 4, 6},
k∈{1, 2,K}. Each entry reports validation CRPS/NLL, test RMSE and wall-clock training time. A
balanced choice is D=8,K=2, k=2.

D K k CRPSval / NLLval / RMSEtest Train (s)

8 2 2 0.2893 / 0.6873 / 0.5501 6.8
8 2 1 0.2819 / 0.7180 / 0.5540 7.1
4 6 2 0.2825 / 0.7031 / 0.5594 10.4
8 6 6 0.2792 / 0.6330 / 0.5643 10.6
8 4 4 0.2800 / 0.6527 / 0.5778 8.6
4 4 2 0.2838 / 0.7070 / 0.5808 9.0

Table 10: California Housing hyperparameter grid, top-10 by validation CRPS then test RMSE.

D K k val-CRPS val-NLL test-RMSE train-sec best-iter-GBDT best-ep-MoE

2 2 2 0.2497 -0.1642 0.4829 93.1 174 167
2 4 2 0.2499 -0.1621 0.4829 118.9 174 161
2 2 all 0.2500 -0.1592 0.4828 99.3 174 165
4 2 2 0.2504 -0.1576 0.4854 111.7 174 154
2 6 2 0.2505 -0.1556 0.4853 141.7 174 154
4 4 2 0.2506 -0.1556 0.4856 131.7 174 151
4 2 all 0.2509 -0.1532 0.4862 118.6 174 150
8 2 2 0.2510 -0.1526 0.4868 125.9 174 148
2 4 all 0.2511 -0.1519 0.4868 129.2 174 147
8 4 2 0.2512 -0.1511 0.4872 140.6 174 145
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