

ANCHOR-MOE: A MEAN ANCHORED MIXTURE OF EXPERTS FOR PROBABILISTIC REGRESSION

004
005 **Anonymous authors**
006 Paper under double-blind review

ABSTRACT

011 We present **Anchor-MoE**, an anchored mixture-of-experts for probabilistic and
012 point regression. A base anchor prediction is concatenated with the inputs and
013 mapped to a compact latent space. A learnable metric window with a soft top- k
014 router induces sparse weights over lightweight MDN experts, which output residual
015 corrections and heteroscedastic scales. Training uses negative log-likelihood with
016 an optional held-out linear calibration to refine point accuracy. Theoretically, under
017 Hölder-smooth targets and fixed partition-of-unity weights with bounded overlap,
018 Anchor-MoE attains the minimax-optimal L^2 rate $N^{-2\alpha/(2\alpha+d)}$. The CRPS gener-
019 alization gap is $\tilde{\mathcal{O}}(\sqrt{(\log(Mh) + P + k)/N})$ under bounded-overlap routing, and
020 an analogous scaling holds for test NLL under bounded moments. Empirically, on
021 standard UCI benchmarks, Anchor-MoE matches or surpasses strong baselines in
022 RMSE and NLL, achieving state-of-the-art probabilistic results on several datasets.
023 Anonymized code and scripts will be provided in the supplementary material.

1 INTRODUCTION

027 Regression is a cornerstone of machine learning: given covariates \mathbf{X} and a real-valued response Y ,
028 the goal under mean squared error(MSE) loss is to estimate the conditional expectation $f^*(x) =$
029 $\mathbb{E}[Y \mid \mathbf{X} = x]$, which is the population risk minimizer. Regression methods are ubiquitous in
030 modern research, powering applications from climate forecasting Chau et al. (2021) and protein
031 engineering Michael et al. (2023) to chronic disease prognosis Zhang et al. (2023).

032 Most machine learning approaches cast regression as learning a deterministic mapping and optimize
033 mean-squared error, effectively estimating $\mathbb{E}[\mathbf{Y} \mid \mathbf{X}]$. However, Kendall and Gal Kendall &
034 Gal (2017) show that explicitly modeling the full predictive distribution, especially heteroscedastic
035 noise—can improve point accuracy by weighting residuals with learned uncertainty. In this
036 probabilistic regression view we learn $p(\mathbf{Y} \mid \mathbf{X})$ rather than only its mean, enabling calibrated
037 uncertainty quantification and better downstream decisions (e.g., financial risk management), with
038 strong empirical

039 Building on these practical benefits, a range of probabilistic regression families has been proposed.
040 Kendall & Gal (2017) develop uncertainty-aware neural approaches for probabilistic regression;
041 Seiller et al. (2024) propose tree-based probabilistic ensembles; Rigby & Stasinopoulos (2005)
042 formalize distributional generalized additive models (GAMLSS) that model location, scale, and
043 shape. While all return full predictive distributions, they involve different trade-offs: deep and
044 ensemble methods can be computationally intensive and often reduce interpretability; GAMLSS
045 requires specifying the response distribution and link functions and can be challenging to scale in
046 very high-dimensional settings; and, in practice, some probabilistic models may favor calibration
047 over point accuracy on certain datasets.

048 Several recent works have sought to address these limitations. Hu et al. (2019) propose a neural
049 architecture that outputs a full predictive density in a single forward pass, substantially reducing
050 computation for deep probabilistic models. Zhang et al. (2020) develop an *Improved Deep Mixture*
051 *Density Network* (IDMDN) for regional wind-power probabilistic forecasting across multiple wind
052 farms, demonstrating robust accuracy in high-dimensional settings. Rügamer et al. (2023) blend
053 classical structured statistical effects with deep neural networks via semi-structured distributional
regression, enabling flexible modeling that accommodates both tabular and image data. Finally,

Figure 1: **Anchor-MoE overview.** (i) A base regressor produces the anchor from the same inputs, we concatenate inputs and the anchor, then project to a latent z , score locality via a learnable metric–window, and apply soft top- k routing to a few MDN experts. (ii) Experts output mixture parameters; the weighted mixture yields the predictive density $p(y | x)$ used for probabilistic metrics. (iii) For point accuracy, we use least square method to calibrate the mean.

Martin Vicario et al. (2024) present an uncertainty-aware deep-learning pipeline that assigns reliability scores to predictions based on quantified uncertainty, enhancing interpretability in safety-critical applications. Collectively, these advances have helped push forward probabilistic regression and uncertainty estimation.

Recently, Duan et al. (2020) introduced Natural Gradient Boosting (NGBoost), which fits the parameters of a chosen predictive distribution by boosting decision–tree base learners with natural–gradient updates. NGBoost is competitive on many tabular benchmarks with relatively little tuning, making it simple to deploy. However, several limitations arise in regression settings. First, NGBoost requires the user to pre–specify a parametric base distribution, and accuracy can degrade under misspecification. Second, the original formulation is univariate; for multivariate targets one must either train separate models or adopt an extension that models joint uncertainty. While O’Malley et al. (2021) extend NGBoost to multivariate outputs by learning a joint distribution, this increases computational cost and implementation complexity. Finally, beyond general boosting theory, the original work offers limited task–specific statistical guarantees.

Mu & Lin (2025) demonstrate that the mixture-of-experts(MoE) model can better fitting the heterogeneous and complex data with less computational resources. Based on that, We propose Anchor–MoE, a simple two-stage, modular architecture for probabilistic and point regression to overcome above challenges. For Anchor–MoE, Stage 1 uses a small tuned gradient–boosted trees (GBDT) model to produce an anchor mean $\hat{\mu}_a(x)$. Stage 2 concatenates the standardized anchor to the inputs and projects to a compact latent space; a learnable metric–window kernel together with a soft top- k router yields sparse weights over K lightweight mixture-of-density networks(MDN) experts. Experts output a small Gaussian mixture. In the default the anchor predicts a residual on top of the anchor and a variance. Training minimizes NLL with mild entropy regularization, that is, we augment the NLL with a tiny entropy, see details in appendix. A disjoint calibration split fits a linear map on predicted means to improve RMSE we report RMSE on calibrated means and NLL on the uncalibrated z -space density. The design is plug-and-play, see Figure 1 for an overview.

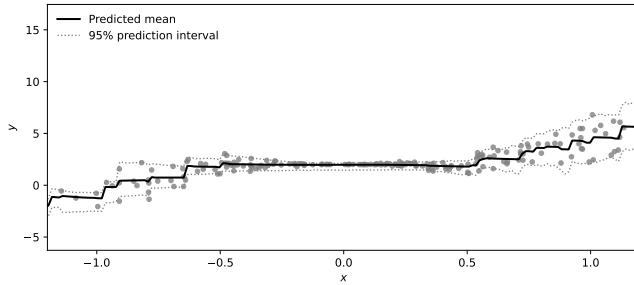


Figure 2: Interval predicted by Anchor–MoE on 1-dimensional toy probabilistic regression problem. Dots represents the data points. Black line is predicted mean and gray lines are upper and lower 95% covered distribution predicted.

2 METHOD

In this section, we will introduce and analyze each component of our model and give a default configuration which is used for experiment part at the end of this section.

108 In standard prediction settings the object of interest is a scalar function such as $\mathbb{E}[Y \mid X = x]$. In
 109 probabilistic regression we instead aim to learn a full predictive law $P_{\Theta(x)}(y \mid x)$. Our approach is to
 110 parameterize $P_{\Theta(x)}$ by a mixture family whose parameters $\Theta(x)$ are smooth functions of the input.
 111

112 Concretely, Anchor–MoE first forms a strong anchor mean $\mu_a(x)$ using a small gradient–boosted
 113 tree. The anchor is concatenated to the features and mapped to a compact latent space, from which
 114 a metric–window router produces sparse (soft top- k) mixture weights. Each activated expert is a
 115 lightweight MDN that predicts a local residual δ to the anchor and a scale, so that the resulting
 116 predictive distribution is a mixture with means $\mu_a(x) + \delta$ and heteroscedastic variances.
 117

118 The next subsections detail the components: The latent projection and metric window (Section 2.2),
 119 the latent metric–window and router (Section 2.3), the expert MDN heads and training objective
 120 (Section 2.4), and the post-hoc mean calibration (Section 2.5).

121 2.1 BACKGROUND AND NOTATION

122 We consider i.i.d. samples (x, y) with $x \in \mathbb{R}^d$ and $y \in \mathbb{R}$. A probabilistic regressor specifies a
 123 conditional law $p_{\theta}(y \mid x)$ with predictive mean $\mu(x)$ and variance $\sigma^2(x)$. We evaluate with the
 124 average negative log-likelihood (NLL) on a test set $\{(x_i, y_i)\}_{i=1}^n$,
 125

$$126 \quad 127 \quad 128 \quad \text{NLL} = \frac{1}{n} \sum_{i=1}^n [-\log p_{\theta}(y_i \mid x_i)].$$

129
 130 We also report the continuous ranked probability score (CRPS) Gebetsberger et al. (2018), defined
 131 for a predictive CDF $F(\cdot \mid x)$ as
 132

$$133 \quad 134 \quad \text{CRPS}(F(\cdot \mid x), y) = \int_{-\infty}^{\infty} (F(t \mid x) - \mathbf{1}\{y \leq t\})^2 dt.$$

135 In practice we use the standard closed-form for Gaussian mixtures.
 136

137 An external anchor $a(x)$ is a strong point predictor trained on the train/validation split. We use it in
 138 two roles: (i) as an additional feature by concatenation of inputs and the anchor mean, and (ii) as a
 139 residual reference so that expert means correct $a(x)$ by a learned $\Delta(x)$.
 140

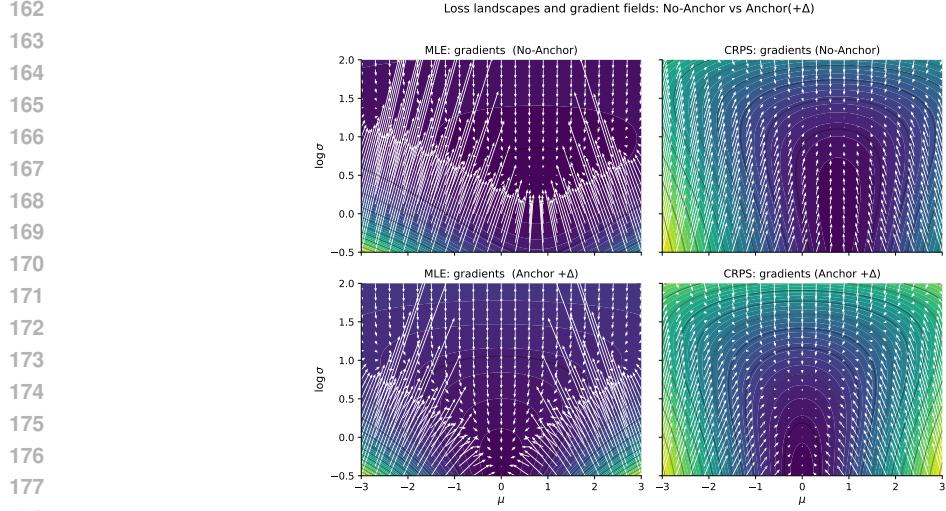
141 We map the concatenated data to a D -dimensional latent code z via a linear projection and normal-
 142 ization. A learnable metric window together with a soft top- k router produces weights $\alpha(z)$ over K
 143 experts. Each expert outputs a small C -component Gaussian mixture with weights $\pi_{j,c}(x)$, means
 144 $\mu_{j,c}(x)$, and scales $\sigma_{j,c}(x) > 0$. The predictive density is a mixture
 145

$$146 \quad p_{\theta}(y \mid x) = \sum_{j=1}^K \alpha_j(z) \sum_{c=1}^C \pi_{j,c}(x) \mathcal{N}(y; \mu_{j,c}^{\text{eff}}(x), \sigma_{j,c}^2(x)),$$

147
 148 where in residual mode $\mu_{j,c}^{\text{eff}}(x) = a(x) + \Delta_{j,c}(x)$, and in free-mean mode $\mu_{j,c}^{\text{eff}}(x) = \mu_{j,c}(x)$. Since
 149 the model consists of many parts and each part has numerous hyper-parameters, we report a summary
 150 table 1 of key hyper-parameters to the structure more clearer.
 151

152 153 Table 1: Key hyper-parameters for each part

154 155 Module	156 157 158 159 160 161 Key hyper-parameters
Anchor	n_estimators, learning_rate, max_depth, subsample; select best_iter on validation
Projection / Latent	latent dimension D ; normalization on/off; weight decay λ
Metric window	number of experts K ; scale clamp $[\tau_{\min}, \tau_{\max}]$; window L2 λ_{win}
Router	top- k (k); temperature τ ; smoothing ε ; load-balance coefficient λ_{lb}
Mixture of Experts (MDN)	width h and depth L ; components C ; σ clamp $[\sigma_{\min}, \sigma_{\max}]$
Calibration	calibration split size; linear map parameters (a, b)



179 Figure 3: Loss landscapes and gradient fields for learning a normal distribution. Each panel shows
180 the score surface in the $(\mu, \log \sigma)$ plane with its gradient vectors. The landscapes of NLL and
181 CRPS are identical up to a monotone transform, so both are proper and target the same optimum.
182 The difference lies in the gradients: without an anchor (top), the NLL field shows strong coupling
183 between μ and $\log \sigma$, yielding slanted directions that can cause zig-zagging and early shrinkage of σ .
184 With Anchor+ Δ (bottom), the parameterization recenters the mean around the anchor and reduces
185 mean-scale coupling; gradients become closer to axis-aligned and the path to the optimum is more
186 stable. The CRPS field is also smoother in the tails than NLL, leading to milder updates of σ when μ
187 is off target.

2.2 LATENT PROJECTION AND METRIC WINDOW

We map the input x to a D -dimensional latent code z using a linear projection followed by LayerNorm. Locality is scored by a learnable metric window. Each expert j has a center c_j and a positive scale vector s_j . The unnormalized score is

$$\tilde{w}_j(z) = \exp\left(-\frac{1}{2} \|(z - c_j) \odot s_j^{-1}\|_2^2\right),$$

For stability, we clamp all log-scales to a fixed range and add a small ℓ_2 penalty on the log-scales.

To obtain sparse and robust routing, we keep the k largest entries of $w(z)$ and renormalize within this active set. During training, we apply a tiny smoothing ε within the active set to avoid zero gradients; the same top- k rule is used at inference.

2.3 ROUTER

We follow the classic gating view of MoE Jacobs et al. (1991); Jordan & Jacobs (1994) and combine a lightweight content router with the metric window. Given the latent code z , we form a query $q = W_q z$ and maintain keys $\{k_j\}_{j=1}^K$ in \mathbb{R}^{d_r} . We use scaled dot-product logits with temperature τ (cosine normalization is optional):

$$\ell_j(z) = \frac{\langle q, k_j \rangle}{\sqrt{d_r} \tau}.$$

We fuse the router with the locality weights $w(z)$ by simple multiplication, then renormalize:

$$\alpha_j(z) \propto w_j(z) \text{softmax}(\ell(z))_j, \quad \sum_j \alpha_j(z) = 1.$$

For specialization, we keep the k largest entries of $\alpha(z)$ and renormalize within this active set. During training, a tiny smoothing ε is applied within the active set to avoid zero gradients; at inference we use

216 the same top- k rule without smoothing. This router adds $\mathcal{O}(Kd_r)$ work per example and suppresses
 217 far-away experts while enabling content-dependent gating.
 218

219 **2.4 MIXTURE OF EXPERTS**
 220

221 MDN model the full conditional distribution and suit heteroscedastic or multi-modal targets Bishop
 222 (1994). The window and the router produce nonnegative weights α_j . Each expert is a small MDN
 223 with C Gaussian components. Each expert outputs mixture weights via softmax, component means,
 224 and positive scales. Scales are clamped to a fixed range for numerical stability.
 225

226 Anchor coupling. Three modes are supported: anchor+delta as the default, anchor only, and free. A
 227 small ℓ_2 penalty on the residual discourages unnecessary drift. The anchor value is also concatenated
 228 to the inputs of the expert and the router.

229 Predictive density. For a univariate target

$$230 \quad 231 \quad p(y | x) = \sum_{j=1}^K \sum_{c=1}^C \alpha_j(x) \pi_{j,c}(x) \phi_{j,c}(y | x), \\ 232 \quad 233$$

234 where $\phi_{j,c}$ is a Gaussian density with mean $\mu_{j,c}^{\text{eff}}(x)$ and variance $\sigma_{j,c}^2(x)$. This design lets experts
 235 specialize locally while the gates provide smooth interpolation.
 236

237 **2.5 CALIBRATION**
 238

239 We hold out a small calibration split and fit a single affine map by least squares in z space: $\mu_{\text{cal}} =$
 240 $a\mu + b$. At test time we apply this map to the model mean and report RMSE in original units. The
 241 predictive variance is left unchanged and we report NLL on the original uncalibrated density.
 242

243 **3 THEORETICAL ANALYSIS**
 244

245 The analysis explains what each design choice controls and when gains should appear. It turns
 246 the architecture into testable statements that can be checked on data. The assumptions are built
 247 into the model: a bounded latent projection with clamped window scales gives smooth and stable
 248 locality scores; top- k routing limits the number of active experts per input; variance clamping in the
 249 latent space avoids degenerate likelihoods. From these ingredients the theory yields the following
 250 predictions.
 251

- 252 1. With the variance clamp in place, lowering NLL should be accompanied by lower RMSE on the
 253 predictive mean.
- 254 2. At fixed k , increasing K improves risk up to a knee point, after which gains become marginal as
 255 estimation error dominates.
- 257 3. Moving from $k = 1$ to $k = 2$ stabilises gating and often improves CRPS, with diminishing returns
 258 for larger k .
- 259 4. Light entropy on the gates and small scale regularisation improve load balance, reduce routing
 260 variance, and make training more stable.
- 261 5. Exposing the anchor by concatenation or by residual shift reduces mean bias, with larger benefits
 262 on datasets that show stronger input dependent noise.

264 **3.1 APPROXIMATION AND MINIMAX-OPTIMAL RATES**
 265

267 We assume the target regression function is Hölder- α smooth on a d -dimensional cube. A partition
 268 of unity with K local windows and bounded overlap k gives an interpolation error that decays with
 269 K :

$$269 \quad \text{approximation error} \asymp K^{-2\alpha/d}.$$

270 Fitting K experts from N samples under overlap k and per-expert capacity comp contributes an
271 estimation term

$$272 \quad \text{estimation error} \asymp \frac{k \text{comp} K}{N}.$$

$$273$$

274 Balancing the two terms yields the usual choice

$$275 \quad K^* \asymp N^{d/(2\alpha+d)},$$

$$276$$

277 and the corresponding risk achieves the minimax rate

$$278 \quad \mathbb{E} \left[\|\hat{f} - f^*\|_{L^2}^2 \right] \lesssim N^{-2\alpha/(2\alpha+d)}.$$

$$279$$

$$280$$

281 In our setting the latent projection is bounded, window scales are clamped, and routing activates only
282 k experts. These design choices enforce the bounded-overlap and smoothness conditions used above,
283 so the rate prediction is meaningful for the proposed model. We train with Gaussian NLL; because
284 predictive variances are clamped away from 0 and ∞ , lowering NLL also lowers the mean-squared
285 error of the predictive mean up to constant factors. This is why we report both NLL and RMSE in the
286 experiments.

288 3.2 GENERALISATION UNDER CRPS

$$289$$

290 CRPS is Lipschitz in the predictive cdf under the L^1 metric, and the loss is bounded once expert
291 means and variances are bounded and the response is bounded. Write the bound as $|\text{CRPS}| \leq B$
292 with $B = R_f + R_y + \sqrt{2/\pi} \bar{\sigma}$, where R_f bounds the expert means, $\bar{\sigma}$ bounds the standard deviation
293 from above, and R_y bounds the response.

294 Let \mathcal{R} be the population CRPS risk and $\hat{\mathcal{R}}_N$ its empirical counterpart on N samples. For any
295 $\delta \in (0, 1)$, with probability at least $1 - \delta$,

$$296 \quad \mathcal{R} - \hat{\mathcal{R}}_N \leq 4\mathcal{R}_N(\mathcal{F}) + 3B \sqrt{\frac{\log(2/\delta)}{2N}},$$

$$297$$

$$298$$

300 where $\mathcal{R}_N(\mathcal{F})$ is the empirical Rademacher complexity of the CRPS-induced function class.

301 Under mild size controls on the model, this complexity satisfies

$$302 \quad \mathcal{R}_N(\mathcal{F}) \leq C \sqrt{\frac{\log(Mh) + P + K}{N}},$$

$$303$$

$$304$$

305 with M mixture components per expert, expert width proxy h , router size P , and number of experts
306 K ; C is a constant independent of N . With top- k bounded-overlap gating, the dependence on K can
307 be replaced by the active overlap k .

309 4 EXPERIMENTS

$$310$$

312 4.1 EXPERIMENTAL SETUP

313 We first run a light heteroscedasticity screening with OLS residuals to confirm input-dependent noise,
314 then keep a single protocol across datasets. Following Hernández-Lobato & Adams (2015), we
315 evaluate on nine UCI datasets with a 90%/10% train/test split; inside the training fold, 20% is held
316 out to choose the number of boosting stages for the anchor by validation NLL, after which the chosen
317 stage is refit on the full training fold and the MoE is trained on top. Each experiment is repeated 20
318 times and we report the mean and standard error. The anchor mean is concatenated to the inputs;
319 a small disjoint calibration split fits a least-squares linear map on predicted means while leaving
320 variances unchanged. Unless stated otherwise, we fix the configuration summarized in Table 2 and
321 report NLL on the uncalibrated predictive density in z-scored space and RMSE on calibrated means
322 in the original scale. For PROTEIN, we subsample 10,000 examples per run and retrain NGBoost on
323 the same subsamples for fairness; for the remaining datasets we use all samples and cite NGBoost
from Duan et al. (2020).

Table 2: Fixed configuration for experiments

Component	Setting
Latent projection	Dimension $D=2$
Experts	$K=8$ experts; each expert is an MLP of width 128 with an MDN head of $C=3$ components
Router	Top- k gating with $k=2$ and light smoothing
Variance clamp	Predicted standard deviation clamped to $[0.05, 1]$
Anchor model	Gradient-boosted trees; best iteration chosen by validation NLL and then refit on the full training fold

4.2 HETROSCEDASTICITY DIAGNOSTICS

Since prior work shows that learning input-dependent variance can be beneficial Nix & Weigend (1994); Kersting et al. (2007), we first check whether residual variance depends on the inputs before comparing probabilistic models, it should help most when noise varies with the covariates. We therefore run a light screening for heteroscedasticity on each dataset to contextualize the results.

We fit an Ordinary Least Squares(OLS) model and test input-dependent noise using standard diagnostics: Breusch–Pagan for linear variance in regressors Breusch & Pagan (1979), White’s general test for heteroskedasticity White (1980), Goldfeld–Quandt along the fitted-value ordering Goldfeld & Quandt (1965), Levene’s robust test across fitted-value bins Levene (1960), and a Spearman rank correlation between absolute residuals and fitted values Spearman (1904). In our analysis we treat the White test as the primary decision signal White (1980), with Breusch–Pagan and Levene used as corroborating evidence Breusch & Pagan (1979); Levene (1960).

Table 3: Heteroscedasticity diagnostics on UCI datasets; extremely small p -values reject homoscedasticity.

Dataset	PPBP	PWhite	PGQ	PPwhite	$ \mu _{\text{parameter}}$	PLcone	PLcone	$\log_{10} \text{log_resid}$
Yacht	308	1.006588×10^{-12}	4.513619×10^{-18}	$2.957812 \times 10^{-155}$	$2.621576 \times 10^{-113}$	0.368	3.948816×10^{-35}	0.117702
Energy	768	4.981113×10^{-62}	$1.341108 \times 10^{-100}$	5.950234×10^{-60}	2.233622×10^{-60}	0.260	9.763824×10^{-40}	0.047926
Protein	10000	0.000000	0.000000	$1.351570 \times 10^{-183}$	0.000000	0.360	7.93945×10^{-205}	0.046306
Concrete	1030	2.014946×10^{-20}	5.874222×10^{-38}	1.757200×10^{-37}	6.057033×10^{-18}	0.264	5.597492×10^{-24}	0.041329
Wise	13	1.887777×10^{-13}	3.248777×10^{-13}	3.248777×10^{-13}	8.327777×10^{-13}	0.260	8.619167×10^{-13}	0.041329
Housing	506	2.665433×10^{-9}	2.266143×10^{-25}	5.388709×10^{-15}	3.079583×10^{-4}	0.160	9.96788×10^{-4}	0.135865
Kin8nm	8192	4.508460×10^{-50}	$2.869393 \times 10^{-301}$	7.956050×10^{-39}	3.315300×10^{-41}	0.140	3.761213×10^{-29}	0.155179
Naval	11934	1.000000	0.000000	2.346512×10^{-3}	3.442543×10^{-33}	0.110	4.532594×10^{-77}	0.004240

All datasets reject homoscedasticity by the White test at the one percent level. Effect sizes differ: Yacht is large (Spearman ≈ 0.37 , $R^2 \approx 0.12$); Energy, Protein, Concrete, and Wine are moderate ($R^2 \approx 0.03\text{--}0.05$; Spearman $\approx 0.20\text{--}0.30$); Housing, Kin8nm, and Naval are small ($R^2 \leq 0.016$; Spearman ≤ 0.16). Thus input-dependent noise is ubiquitous but uneven, and the expected gain from learning variances should be strongest where these effect sizes are larger.

EMPIRICAL EXPERIMENTS

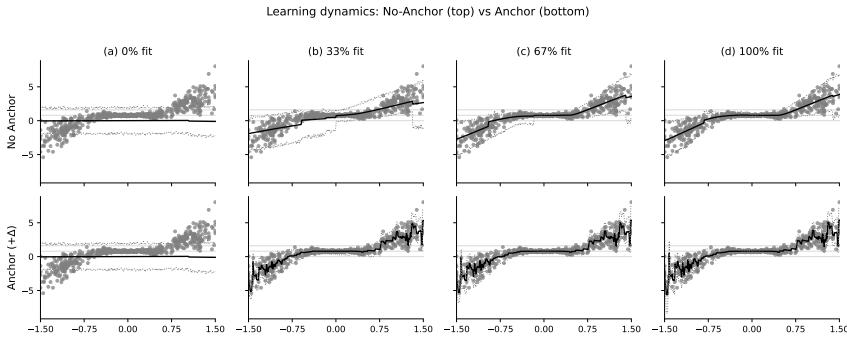
We run empirical experiments informed by the heteroscedasticity screening. Uncertainty quality is evaluated with the average test negative log-likelihood, where lower values are better. The primary baseline is NGBoost, and results for additional baselines are in the Appendix. Although Anchor-MoE targets uncertainty estimation, a point prediction is obtained as the predictive mean, and we assess it with test RMSE. For RMSE we apply a small least-squares mean calibration on a disjoint split as described in Section 3.4, while NLL is computed on the uncalibrated density in z-scored space. Unless stated otherwise the configuration matches the uncertainty experiments. We use gradient-boosted trees as the default anchor for reproducibility, and other anchors can be substituted without changing the pipeline. To quantify the contribution of each component we run ablations under the same setup. In the default anchor plus delta mode a small boosted model produces an anchor mean, expert heads learn residuals that correct this anchor and also output variances. In No-Anchor we remove the anchor feature and the residual coupling so experts predict free means. In No-Router we disable the dot-product router and rely only on the metric window with the same top-k mask and smoothing, then renormalize. In No-Cal we compute RMSE on uncalibrated means. Main comparisons to NGBoost and ablation outcomes are reported in Tables 5 and 4b.

378 Table 4: UCI benchmarks: test NLL (left) and RMSE (right). Best per row in **bold**.
379380 (a) NLL. NGBoost numbers are from Duan et al.
381 (2020); other baselines follow prior reports (see Ta-
382 ble 8 in the appendix). Anchor–MoE is competitive
383 on complex datasets.

Dataset	<i>N</i>	Anchor–MoE	NGBoost
Boston	506	0.60 ± 0.11	2.43 ± 0.15
Concrete	1030	0.25 ± 0.06	3.04 ± 0.17
Energy	768	-1.68 ± 0.20	0.46 ± 0.06
Kin8nm	8192	0.12 ± 0.01	-0.49 ± 0.02
Naval	11934	-1.26 ± 0.02	-5.34 ± 0.04
Power	9568	-0.15 ± 0.02	2.79 ± 0.11
Protein	10000	1.06 ± 0.04	1.24 ± 0.04
Wine	1599	1.20 ± 0.02	4.96 ± 0.60
Yacht	308	-1.80 ± 0.04	0.20 ± 0.26

(b) RMSE. Anchor–MoE offers results comparable to NGBoost.

Dataset	<i>N</i>	Anchor–MoE	NGBoost
Boston	506	3.01 ± 0.14	2.94 ± 0.53
Concrete	1030	4.45 ± 0.16	5.06 ± 0.61
Energy	768	0.47 ± 0.02	0.46 ± 0.06
Kin8nm	8192	0.07 ± 0.00	0.16 ± 0.00
Naval	11934	0.00 ± 0.00	0.00 ± 0.00
Power	9568	3.21 ± 0.05	3.79 ± 0.18
Protein	10000	4.41 ± 0.02	4.44 ± 0.02
Wine	1599	0.62 ± 0.01	0.60 ± 0.01
Yacht	308	0.62 ± 0.06	0.50 ± 0.20

405 Figure 4: Learning dynamics on a toy 1D dataset: No-Anchor (top) vs Anchor (+Δ, bottom) at 0%,
406 33%, 67%, and 100% fit. Line as in Figure 1. Without anchor, updates emphasize global trend and
407 show larger oscillations with tail variance inflation; with anchor, updates are balanced, the central
408 plateau is preserved earlier, and predictive intervals are better calibrated.410 Table 5: Comparison on UCI Benchmark dataset as measured by NLL while ablating key components
411 of Anchor–MoE. Bolding is as in Table 1.

Dataset	<i>N</i>	Anchor–MoE	Anchor	Router	Calibration
Boston	506	0.60 ± 0.11	0.83 ± 0.24	0.51 ± 0.05	0.52 ± 0.05
Concrete	1030	0.25 ± 0.06	0.73 ± 0.04	0.20 ± 0.05	0.20 ± 0.06
Energy	768	-1.68 ± 0.2	-1.30 ± 0.05	-0.76 ± 0.05	-0.96 ± 0.05
Kin8nm	8192	0.12 ± 0.01	0.68 ± 0.02	1.00 ± 0.01	0.97 ± 0.01
Naval	11934	-1.26 ± 0.02	-1.09 ± 0.02	-1.10 ± 0.02	-1.12 ± 0.02
Power	9568	-0.15 ± 0.02	-0.05 ± 0.03	-0.15 ± 0.02	-0.18 ± 0.02
Protein	10000	1.06 ± 0.04	0.63 ± 0.01	1.05 ± 0.02	0.90 ± 0.03
Wine	1599	1.20 ± 0.02	1.52 ± 0.43	1.16 ± 0.02	1.21 ± 0.03
Yacht	308	-1.80 ± 0.04	0.24 ± 0.42	-1.76 ± 0.03	-1.83 ± 0.03

426

5 CONCLUSION

427
428 We presented Anchor–MoE, a modular approach for point and probabilistic regression. A small
429 tree model provides an anchor mean, a metric window with a soft top-k router dispatches inputs
430 sparsely to mixture-density experts, scaling Anchor–MoE with expert sharding and switch-style
431 routing, which is compatible with existing systems Lepikhin & et al. (2020); Fedus et al. (2021) and
is a natural next step. And a one dimensional post hoc calibrator corrects mean bias. The parts are

432 loosely coupled, easy to ablate, and the same design can be adapted to classification or survival by
 433 changing the likelihood.

434
 435 A central finding is the alignment between heteroscedasticity diagnostics and empirical gains. Datasets
 436 with strong input dependent noise such as Yacht, as indicated by very small test p values together
 437 with larger effect sizes in the simple R^2 on $\log(e^2)$ and in the absolute Spearman correlation, are
 438 exactly where Anchor–MoE delivers the clearest improvements in test negative log-likelihood and
 439 better interval behavior. On datasets with moderate signals such as Energy, Concrete, Wine, Power,
 440 and Protein, Anchor–MoE improves likelihood metrics consistently while keeping root mean squared
 441 error close to the best baseline; the anchor plus delta design lets experts spend capacity on local
 442 residuals and variance rather than relearning the global mean. When diagnostics point to weak
 443 heteroscedasticity as in Housing, Kin8nm, and Naval, the advantage in likelihood narrows or can
 444 reverse, and simple mean focused models can be sufficient for point accuracy. This pattern matches
 445 the intended role of the method: model uncertainty where noise truly varies with inputs, avoid
 446 unnecessary variance modeling when noise is nearly constant.

447 Ablations clarify mechanism. Removing the anchor pushes experts to absorb mean bias through vari-
 448 ance inflation, which can reduce likelihood quality and harm coverage. Disabling the router removes
 449 content dependent specialization and leaves only the window kernel to gate, which consistently hurts
 450 likelihood and sometimes point accuracy on complex data. Removing mean calibration increases bias
 451 and worsens root mean squared error without a benefit to likelihood in the z scored space. Together,
 452 these results support the default of anchor concatenation and residual correction, soft top k routing
 453 with bounded overlap, and a light least squares mean calibration.

454 Theoretical guidance also matches practice. Bounded overlap routing and fixed expert capacity
 455 control estimation error, while the window partition controls approximation. Keeping a small number
 456 of experts and a small top k across datasets respects these capacity assumptions, and the observed
 457 stability across random splits is consistent with generalization bounds stated for continuous ranked
 458 probability score and with the link between negative log-likelihood and mean squared error under
 459 bounded variances. In short, the design choices used in the main tables are the ones that make the
 460 theory applicable.

461 For practitioners, a simple rule emerges from the diagnostics. If a quick screening rejects homoscedas-
 462 ticity with very small p values and the effect size summaries are nontrivial for example absolute
 463 Spearman around 0.2 or higher and the simple R^2 on $\log(e^2)$ around a few percent or higher then
 464 Anchor–MoE is likely to deliver tangible gains in likelihood and interval quality at low tuning cost.
 465 If the screening suggests nearly constant noise, a strong mean regressor with minimal uncertainty
 466 modeling can be preferred, or Anchor–MoE can be run in a lighter configuration. Future work
 467 includes replacing held out mean calibration with calibration by design, reducing residual variance
 468 hedging in anchor free modes, and exploring capacity controlled routers with adaptive top k or
 469 temperature for better robustness under covariate shift.

470 LLM USAGE DISCLOSURE

471 We used ChatGPT (OpenAI, Aug–Sep 2025) solely to (i) explore related-work queries, (ii) polish
 472 wording/grammar, and (iii) receive non-substantive debugging suggestions for implementation. The
 473 LLM did not generate new scientific content, derivations, figures, or results. No proprietary or
 474 personally identifiable data were provided to the LLM; all citations and code changes were manually
 475 verified. The authors bear full responsibility for the accuracy and integrity of the paper.

476

477

478

479

480

481

482

483

484

485

486 REFERENCES
487

488 Martin Anthony and Peter L. Bartlett. *Neural Network Learning: Theoretical Foundations*. Cambridge
489 Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 1999.
490 ISBN 978-0-521-66153-0. URL <https://doi.org/10.1017/CBO9780511624216>.

491 Christopher M. Bishop. Mixture density networks. Technical Report NCRG/94/004, Neural Comput-
492 ing Research Group, Aston University, 1994.

493 Trevor S. Breusch and Adrian R. Pagan. A simple test for heteroscedasticity and random coefficient
494 variation. *Econometrica*, 47(5):1287–1294, 1979.

495 Siu Lun Chau, Shahine Bouabid, and Dino Sejdinovic. Deconditional downscaling with gaussian
496 processes. *Advances in Neural Information Processing Systems*, 34:17813–17825, 2021.

497 Tony Duan, Avati Anand, Daisy Yi Ding, Khanh K Thai, Sanjay Basu, Andrew Ng, and Alejan-
498 dro Schuler. Ngboost: Natural gradient boosting for probabilistic prediction. In *International
499 conference on machine learning*, pp. 2690–2700. PMLR, 2020.

500 William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
501 models with simple and efficient sparsity. *arXiv:2101.03961*, 2021.

502 Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
503 uncertainty in deep learning. In *international conference on machine learning*, pp. 1050–1059.
504 PMLR, 2016.

505 Yarin Gal, Jiri Hron, and Alex Kendall. Concrete dropout. *Advances in neural information processing
506 systems*, 30, 2017.

507 Manuel Gebetsberger, Jakob W Messner, Georg J Mayr, and Achim Zeileis. Estimation methods
508 for nonhomogeneous regression models: Minimum continuous ranked probability score versus
509 maximum likelihood. *Monthly Weather Review*, 146(12):4323–4338, 2018.

510 Stephen M. Goldfeld and Richard E. Quandt. Some tests for homoscedasticity. *Econometrica*, 33(4):
511 532–535, 1965.

512 José Miguel Hernández-Lobato and Ryan Adams. Probabilistic backpropagation for scalable learning
513 of bayesian neural networks. In *International conference on machine learning*, pp. 1861–1869.
514 PMLR, 2015.

515 Tianyu Hu, Qinglai Guo, Zhengshuo Li, Xinwei Shen, and Hongbin Sun. Distribution-free probability
516 density forecast through deep neural networks. *IEEE transactions on neural networks and learning
517 systems*, 31(2):612–625, 2019.

518 Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive mixtures
519 of local experts. *Neural Computation*, 3(1):79–87, 1991.

520 Michael I. Jordan and Robert A. Jacobs. Hierarchical mixtures of experts and the em algorithm.
521 *Neural Computation*, 6(2):181–214, 1994.

522 Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer
523 vision? *Advances in neural information processing systems*, 30, 2017.

524 Kristian Kersting, Christian Plagemann, Patrick Pfaff, and Wolfram Burgard. Most likely het-
525 eroscedastic gaussian process regression. In *ICML*, 2007.

526 Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
527 uncertainty estimation using deep ensembles. *Advances in neural information processing systems*,
528 30, 2017.

529 Dmitry Lepikhin and et al. Gshard: Scaling giant models with conditional computation and automatic
530 sharding. *arXiv:2006.16668*, 2020.

531 Howard Levene. Robust tests for equality of variances. In *Contributions to Probability and Statistics*,
532 pp. 278–292. Stanford University Press, 1960.

540 Celia Martin Vicario, Dalia Rodriguez-Salas, Andreas Maier, Stefan Hock, Joji Kuramatsu, Bernd
 541 Kallmuenzer, Florian Thamm, Oliver Taubmann, Hendrik Ditt, Stefan Schwab, Arnd Dörfler,
 542 and Iris Muehlen. Uncertainty-aware deep learning for trustworthy prediction of long-term
 543 outcome after endovascular thrombectomy. *Scientific Reports*, 14, 03 2024. doi: 10.1038/
 544 s41598-024-55761-8.

545 Richard Michael, Jacob Kæstel-Hansen, Peter Mørch Groth, Simon Bartels, Jesper Salomon, Pengfei
 546 Tian, Nikos S Hatzakis, and Wouter Boomsma. Assessing the performance of protein regression
 547 models. *bioRxiv*, pp. 2023–06, 2023.

549 Siyuan Mu and Sen Lin. A comprehensive survey of mixture-of-experts: Algorithms, theory, and
 550 applications. *arXiv preprint arXiv:2503.07137*, 2025.

552 David A. Nix and Andreas S. Weigend. Estimating the mean and variance of the target probability
 553 distribution. In *IEEE Intl. Conf. on Neural Networks*, pp. 55–60, 1994.

555 Michael O’Malley, Adam M Sykulski, Rick Lumpkin, and Alejandro Schuler. Multivariate proba-
 556 bilistic regression with natural gradient boosting. *arXiv preprint arXiv:2106.03823*, 2021.

558 Robert A. Rigby and D. M. Stasinopoulos. Generalized additive models for location, scale and shape
 559 (gamlss). *Journal of the Royal Statistical Society: Series C (Applied Statistics)*, 54(3):507–554,
 560 2005. doi: 10.1111/j.1467-9876.2005.00510.x.

562 David Rügamer, Chris Kolb, and Nadja Klein. Semi-structured distributional regression. *The
 563 American Statistician*, 78:1–25, 01 2023. doi: 10.1080/00031305.2022.2164054.

565 Alexandre Seiller, Éric Gaussier, Emilie Devijver, Marianne Clausel, and Sami Alkhouri. Ensembles
 566 of probabilistic regression trees. *arXiv preprint arXiv:2406.14033*, 2024.

568 Charles Spearman. The proof and measurement of association between two things. *The American
 569 Journal of Psychology*, 15(1):72–101, 1904.

571 Aad W. van der Vaart. *Asymptotic Statistics*. Cambridge Series in Statistical and Probabilistic
 572 Mathematics. Cambridge University Press, Cambridge, 1998. ISBN 978-0-521-78450-5. doi:
 573 10.1017/CBO9780511802256. URL <https://doi.org/10.1017/CBO9780511802256>.

575 Halbert White. A heteroskedasticity-consistent covariance matrix estimator and a direct test for
 576 heteroskedasticity. *Econometrica*, 48(4):817–838, 1980.

578 Hao Zhang, Yongqian Liu, Jie Yan, Shuang Han, Li Li, and Quan Long. Improved deep mixture
 579 density network for regional wind power probabilistic forecasting. *IEEE Transactions on Power
 580 Systems*, 35(4):2549–2560, 2020. doi: 10.1109/TPWRS.2020.2971607.

581 Shuaijie Zhang, Fan Yang, Lijie Wang, Shucheng Si, Jianmei Zhang, and Xue Fuzhong. Personalized
 582 prediction for multiple chronic diseases by developing the multi-task cox learning model. *PLOS
 583 Computational Biology*, 19:e1011396, 09 2023. doi: 10.1371/journal.pcbi.1011396.

586 A APPENDIX

588 **Augmented NLL.** We augment the NLL by a tiny entropy term:

$$590 \quad \mathcal{L} = \text{NLL} + \lambda_t \mathbb{E}_x \left[\sum_{j=1}^K p_j(x) \log p_j(x) \right]$$

593 using a small positive λ_t encourages high entropy routing and prevents early collapse.

594
595 **High-dimensional scaling** .

596 Anchor–MoE adapts to intrinsic dimension in two common cases.

597 *Manifold case.* Assume X lies on a compact C^1 submanifold $\mathcal{M} \subset [0, 1]^d$ with intrinsic dimension d_0
598 and positive reach. Using a fixed geodesic partition of unity with bounded overlap, the approximation
599 term scales as $K^{-2\alpha/d_0}$ while the estimation term is unchanged. Hence
600

601
$$\mathbb{E} \|\hat{f} - f^*\|_{L^2(\mathcal{M})}^2 \leq C_1 K^{-2\alpha/d_0} + C_2 \frac{k \text{comp } K}{N}.$$

602

603 Balancing the two terms gives the rate $N^{-2\alpha/(2\alpha+d_0)}$ at $K \asymp N^{d_0/(2\alpha+d_0)}$.604 *Sparse case.* If $f^*(x)$ depends only on s coordinates with s much smaller than d , a partition of unity
605 in s dimensions yields
606

607
$$\mathbb{E} \|\hat{f} - f^*\|_{L^2}^2 \leq C_1 K^{-2\alpha/s} + C_2 \frac{k \text{comp } K}{N},$$

608

609 so the rate is $N^{-2\alpha/(2\alpha+s)}$ at $K \asymp N^{s/(2\alpha+s)}$. If the active coordinate set must be learned, an
610 additional model selection penalty of order $(s \log d)/N$ typically augments the estimation term.611 *Practical guideline.* Choose K by balancing $K^{-2\alpha/d_{\text{int}}}$ with $(k \text{comp } K)/N$, where d_{int} is the relevant
612 intrinsic dimension: d in full space, d_0 on a manifold, or s under sparsity.
613614 Table 6: Test NLL on UCI datasets. Anchor–MoE numbers are from our runs; the other baselines are
615 taken from prior reports of Gal & Ghahramani (2016); Lakshminarayanan et al. (2017); Gal et al.
616 (2017), . Best per row in **bold**. Protein dataset is removed as it is resampled in this study.
617618
619

Dataset	N	Anchor–MoE	MC dropout	Deep Ensembles	Concrete Dropout	Gaussian Process	GAMLSS	DistForest
Boston	506	0.60 ± 0.11	2.46 ± 0.25	2.41 ± 0.25	2.72 ± 0.01	2.37 ± 0.24	2.73 ± 0.56	2.67 ± 0.08
Concrete	1030	0.25 ± 0.06	3.04 ± 0.09	3.06 ± 0.18	3.51 ± 0.00	3.03 ± 0.11	3.24 ± 0.08	3.38 ± 0.05
Energy	768	-1.68 ± 0.20	1.99 ± 0.09	1.38 ± 0.22	2.30 ± 0.00	0.66 ± 0.17	1.24 ± 0.86	1.53 ± 0.14
Kin8nm	8192	0.12 ± 0.01	-0.95 ± 0.03	-1.20 ± 0.02	-0.65 ± 0.00	-0.11 ± 0.03	-0.26 ± 0.02	-0.40 ± 0.01
Naval	11934	-1.26 ± 0.02	-3.80 ± 0.05	-5.63 ± 0.05	-5.87 ± 0.05	-0.98 ± 0.02	-5.56 ± 0.07	-4.84 ± 0.01
Power	9568	-0.15 ± 0.02	2.80 ± 0.05	2.79 ± 0.04	2.75 ± 0.01	3.81 ± 0.05	2.86 ± 0.04	2.68 ± 0.05
Wine	1599	1.20 ± 0.02	0.93 ± 0.06	0.94 ± 0.12	1.70 ± 0.00	0.95 ± 0.06	0.97 ± 0.09	1.05 ± 0.15
Yacht	308	-1.80 ± 0.04	1.55 ± 0.12	1.18 ± 0.21	1.75 ± 0.00	0.10 ± 0.26	0.80 ± 0.56	2.94 ± 0.09

620
621 Table 7: Comparison on UCI Benchmark dataset as measured by RMSE while ablating key com-
622 ponents of Anchor–MoE. Bolding is as in Table 1. Calibration can reduces RMSE significantly on
623 Energy dataset, although it slightly increase RMSE on others.
624630
631

Dataset	N	Anchor–MoE	Anchor	Router	Calibration
Boston	506	3.01 ± 0.14	4.14 ± 0.28	2.88 ± 0.12	2.75 ± 0.10
Concrete	1030	4.45 ± 0.16	7.75 ± 0.15	4.44 ± 0.14	4.18 ± 0.12
Energy	768	0.47 ± 0.02	1.48 ± 0.13	1.23 ± 0.04	1.01 ± 0.03
Kin8nm	8192	0.07 ± 0.00	0.11 ± 0.00	0.15 ± 0.00	0.15 ± 0.00
Naval	11934	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
Power	9568	3.21 ± 0.05	4.01 ± 0.04	3.22 ± 0.05	3.16 ± 0.05
Protein	10000	4.41 ± 0.02	4.71 ± 0.03	4.42 ± 0.03	4.37 ± 0.02
Wine	1599	0.62 ± 0.01	0.65 ± 0.01	0.62 ± 0.00	0.61 ± 0.00
Yacht	308	0.62 ± 0.06	4.19 ± 0.33	0.62 ± 0.04	0.52 ± 0.04

643 A1. MINIMAX–OPTIMAL RATE OF ANCHOR–MOE (NO DIMENSION REDUCTION)

644
645 **Notation.** For $d \in \mathbb{N}$ let $\mathcal{F}_\alpha(L)$ be the isotropic Hölder ball of order $\alpha > 0$ and radius $L > 0$ on
646 $[0, 1]^d$ (van der Vaart, 1998, Def. 24.1). We write $\|\cdot\|_2$ for the $L^2([0, 1]^d)$ norm and $\mathfrak{R}_N(\mathcal{H})$ for
647 the empirical Rademacher complexity (Anthony & Bartlett, 1999, Ch. 11). Let the lattice mesh be
648 $h := K^{-1/d}$.

648 **Predictor and risk.** The model is probabilistic (MDN). We evaluate the risk of the *predictive mean*.
 649 Let

$$650 \quad \hat{f}_{K,N}(x) := \mathbb{E}_{\hat{p}(y|x)}[Y]$$

651 be the mean of the learned predictive density $\hat{p}(y | x)$. All bounds below concern $\hat{f}_{K,N}$.
 652

653 **Problem setup.** Observe i.i.d. (X_i, Y_i) with $X_i \sim \text{Unif}[0, 1]^d$ and $Y_i = f^*(X_i) + \varepsilon_i$ where
 654 $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$ and $f^* \in \mathcal{F}_\alpha(L)$. We analyse the integrated squared risk $\mathcal{R}_N = \mathbb{E}[\|\hat{f}_{K,N} - f^*\|_2^2]$.
 655

656 **Model class (theoretical abstraction).** The practical anchor mean can be absorbed into experts'
 657 mean functions without changing rates. We consider
 658

$$659 \quad \mathcal{H}_K = \left\{ x \mapsto \sum_{j=1}^K w_j(x) e_j(x) : \{w_j\} \text{ is a PoU on } [0, 1]^d, e_j \in \mathcal{E} \right\},$$

662 where $e_j(\cdot)$ denotes the *expert mean function* and \mathcal{E} is a bounded-capacity MDN mean class (fixed
 663 across K).
 664

665 Assumptions.

666 (A1) **No dimension reduction.** $f_\phi = \text{Id}$ on $[0, 1]^d$; equivalently one may allow an invertible affine
 667 map $f_\phi(x) = Ax + b$ with bounded condition number, which only rescales constants.
 668

669 (A2) **Partition of unity (PoU) with bounded overlap.** Let $\{x_j\}_{j=1}^K$ be a regular lattice with mesh
 670 $h = K^{-1/d}$. There exists a compactly supported PoU $\{w_j\}_{j=1}^K$ (e.g., tensor-product B-splines)
 671 such that $w_j \geq 0$, $\sum_j w_j(x) = 1$ for all x , $\text{diam}(\text{supp } w_j) \lesssim h$, and at most k of the $w_j(x)$
 672 are nonzero for any x (bounded overlap). At the boundary, cells are truncated and weights
 673 renormalized.
 674

675 (A3) **Experts of bounded capacity.** Each expert mean $e_j \in \mathcal{E}$ has fixed complexity comp inde-
 676 pendent of K (e.g., uniform Lipschitz/covering numbers or pseudo-dimension bounds; MDN
 677 variances are bounded away from 0 and ∞ so training is well-conditioned).
 678

678 A1.1 INFORMATION-THEORETIC LOWER BOUND

680 **Lemma A.1** (Minimax lower bound). *For any estimator \hat{f}_N based on N samples,*

$$682 \quad \sup_{f^* \in \mathcal{F}_\alpha(L)} \mathbb{E}[\|\hat{f}_N - f^*\|_2^2] \geq C_0 N^{-2\alpha/(2\alpha+d)}.$$

684 *Proof sketch.* By the metric entropy of $\mathcal{F}_\alpha(L)$, $\log N(\varepsilon, \mathcal{F}_\alpha(L), \|\cdot\|_2) \asymp \varepsilon^{-d/\alpha}$ (van der Vaart, 1998,
 685 Thm. 24.4). A standard Fano/Assouad argument yields the rate with $C_0 = C_0(L, \alpha, d) > 0$. \square
 686

688 A1.2 APPROXIMATION BY LOCAL INTERPOLATION (PoU)

689 Let $\{x_j\}_{j=1}^K$ be as in (A2). Define
 690

$$691 \quad \tilde{f}_K(x) := \sum_{j=1}^K w_j(x) f^*(x_j).$$

694 **Lemma A.2** (Interpolation error). *Under (A2), for $f^* \in \mathcal{F}_\alpha(L)$,*

$$696 \quad \|\tilde{f}_K - f^*\|_2 \leq C_1 h^\alpha = C_1 K^{-\alpha/d},$$

697 hence $\|\tilde{f}_K - f^*\|_2^2 = \mathcal{O}(K^{-2\alpha/d})$.
 698

699 *Proof sketch.* On each cell, $|f^*(x) - f^*(x_j)| \leq L \|x - x_j\|^\alpha \lesssim L h^\alpha$. Because $\sum_j w_j = 1$ and the
 700 overlap is uniformly bounded by k , integration over $[0, 1]^d$ yields the claim (the overlap constant is
 701 absorbed into C_1). \square

702 A1.3 ESTIMATION ERROR (SAFE FORM)
703704 **Lemma A.3** (Estimation error — safe form). *Under (A2)–(A3) with overlap k and per-expert
705 complexity comp (both independent of K), there exists $C > 0$ (depending on k, comp but not on
706 K, N) such that*

707
$$\mathbb{E}[\|\hat{f}_{K,N} - \tilde{f}_K\|_2^2] \leq C \frac{k \text{comp} K}{N}.$$

708

709 *Proof sketch.* For $\mathcal{H}_K = \{x \mapsto \sum_{j=1}^K w_j(x) e_j(x)\}$, bounded overlap implies
710

711
$$\mathfrak{R}_N(\mathcal{H}_K) \leq \frac{1}{N} \sum_{j=1}^K \mathbb{E}_\sigma \left[\sup_{e_j \in \mathcal{E}} \sum_{i=1}^N \sigma_i w_j(x_i) e_j(x_i) \right] \lesssim \sqrt{\frac{k \text{comp} K}{N}}.$$

712

713 A standard contraction/ERM argument turns this into the stated squared error bound. \square
714715 **Lemma A.4** (NLL– L^2 link for Gaussian experts). *Assume the predictive density is Gaussian with
716 mean $m(x)$ and variance $\sigma^2(x)$, and that $0 < \underline{\sigma} \leq \sigma(x), \sigma^*(x) \leq \bar{\sigma} < \infty$ for all x . Let
717 $f^*(x) = \mathbb{E}[Y | X = x]$ and $v^*(x) = \text{Var}(Y | X = x) = (\sigma^*(x))^2$. Then*718 ExcessNLL := $\mathbb{E}[-\log p_{m,\sigma}(Y | X)] - \mathbb{E}[-\log p_{f^*,\sigma^*}(Y | X)] \leq c_1 \mathbb{E}[(m(X) - f^*(X))^2] + c_2 \mathbb{E}[(\sigma(X) - \sigma^*(X))^2]$,
719 with explicit constants
720

721
$$c_1 = \frac{1}{2\underline{\sigma}^2}, \quad c_2 \leq \frac{1}{2\underline{\sigma}^2} + \frac{3\bar{\sigma}^2}{2\underline{\sigma}^4}.$$

722

723 *Proof.* Decompose, for each x ,
724

725
$$\Delta(x) = \mathbb{E} \left[\underbrace{\frac{(Y - m(x))^2 - (Y - f^*(x))^2}{2\sigma(x)^2} | X = x}_{\Delta_{\text{mean}}(x)} \right] + \underbrace{\frac{1}{2} \left(\log \frac{\sigma(x)^2}{v^*(x)} + \frac{v^*(x)}{\sigma(x)^2} - 1 \right)}_{\Delta_{\text{var}}(x)}.$$

726

727 **Mean term.** Since $\mathbb{E}[(Y - m)^2 | X = x] = v^*(x) + (m(x) - f^*(x))^2$, we have
728

729
$$\Delta_{\text{mean}}(x) = \frac{(m(x) - f^*(x))^2}{2\sigma(x)^2} \leq \frac{(m(x) - f^*(x))^2}{2\underline{\sigma}^2}.$$

730

731 Taking expectation over X gives the constant c_1 .
732733 **Variance term (tight quadratic bound).** Fix x and define $f_x(\sigma) = \log \sigma^2 + v^*(x) \sigma^{-2}$ so that
734 $\Delta_{\text{var}}(x) = \frac{1}{2} (f_x(\sigma(x)) - f_x(\sigma^*(x)))$. We have
735

736
$$f'_x(\sigma) = \frac{2}{\sigma} - \frac{2v^*(x)}{\sigma^3}, \quad f''_x(\sigma) = -\frac{2}{\sigma^2} + \frac{6v^*(x)}{\sigma^4}.$$

737

738 Because $(\sigma^*(x))^2 = v^*(x)$, it holds that $f'_x(\sigma^*(x)) = 0$. On $\sigma \in [\underline{\sigma}, \bar{\sigma}]$,
739

740
$$|f''_x(\sigma)| \leq \frac{2}{\underline{\sigma}^2} + \frac{6v^*(x)}{\underline{\sigma}^4} \leq \frac{2}{\underline{\sigma}^2} + \frac{6\bar{\sigma}^2}{\underline{\sigma}^4} =: L.$$

741

742 By the L -smoothness inequality (Taylor with remainder, using $f'_x(\sigma^*) = 0$),
743

744
$$f_x(\sigma) - f_x(\sigma^*) \leq \frac{L}{2} (\sigma - \sigma^*)^2, \quad \Rightarrow \quad \Delta_{\text{var}}(x) \leq \frac{L}{4} (\sigma(x) - \sigma^*(x))^2.$$

745

746 Taking expectation over X yields $c_2 = L/4 \leq \frac{1}{2\underline{\sigma}^2} + \frac{3\bar{\sigma}^2}{2\underline{\sigma}^4}$.
747748 Combine both parts and integrate over X to conclude. \square
749750 *Proof of Main Bound.* We work under (A1)–(A3): (A1) $f^* \in \mathcal{F}_\alpha(L)$ on $[0, 1]^d$; (A2) a fixed Lips-
751 chitz partition of unity (PoU) $\{\psi_j\}_{j=1}^K$ with mesh $h \asymp K^{-1/d}$, compact supports of diameter $\lesssim h$,
752 and bounded overlap k (for all x , at most k indices have $\psi_j(x) > 0$); (A3) each expert class \mathcal{G}_j has
753 bounded capacity “comp” (e.g. pseudo-dimension or a uniform covering-number proxy), independent
754 of K . Risk is w.r.t. the marginal of X on $[0, 1]^d$ (with density bounded above/below).
755

Decomposition. Let $\hat{f}_{K,N}$ be the ERM over the PoU-mixture class $\mathcal{F}_K := \{\sum_{j=1}^K \psi_j g_j : g_j \in \mathcal{G}_j\}$ with squared loss. Standard arguments yield an *oracle inequality* (see, e.g., localized Rademacher or quadratic-loss ERM bounds):

$$\mathbb{E}[\|\hat{f}_{K,N} - f^*\|_2^2] \leq 2 \underbrace{\inf_{f \in \mathcal{F}_K} \|f - f^*\|_2^2}_{\text{approximation}} + C \underbrace{\mathfrak{E}_N(\mathcal{F}_K)}_{\text{estimation}},$$

for a universal constant $C > 0$ (depending only on bounded moments and the curvature of squared loss).

Approximation error $C_1 K^{-2\alpha/d}$. By (A1) and classical local polynomial/Taylor approximation on a mesh of size $h \asymp K^{-1/d}$, there exist local polynomials p_j of degree $\lfloor \alpha \rfloor$ such that

$$\left\| f^* - \sum_{j=1}^K \psi_j p_j \right\|_{L^2}^2 \leq C'_1 h^{2\alpha} \asymp C_1 K^{-2\alpha/d},$$

where the PoU provides a stable partition and the overlap is bounded by k (so constants are independent of K). Since \mathcal{G}_j contains such local approximants (by capacity assumption), $\inf_{f \in \mathcal{F}_K} \|f - f^*\|_2^2 \leq C_1 K^{-2\alpha/d}$.

Estimation error $C_2(k \text{comp})K/N$. Write $\mathcal{H} := \{(x, y) \mapsto (y - \sum_j \psi_j(x) g_j(x))^2 : g_j \in \mathcal{G}_j\}$. Using a standard symmetrization and contraction for squared loss, the (localized) excess-risk term can be upper bounded by a multiple of the *squared* Rademacher complexity of the mean function class \mathcal{F}_K (due to the Bernstein/strong-convexity condition of squared loss):

$$\mathfrak{E}_N(\mathcal{F}_K) \lesssim (\mathfrak{R}_N(\mathcal{F}_K))^2.$$

Now \mathcal{F}_K is a *PoU-sum* of K classes with bounded overlap k :

$$\mathcal{F}_K = \left\{ \sum_{j=1}^K \psi_j g_j : g_j \in \mathcal{G}_j \right\}.$$

By sub-additivity of Rademacher complexity and $\|\psi_j\|_\infty \leq 1$,

$$\mathfrak{R}_N(\mathcal{F}_K) \leq \mathbb{E} \left\| \sum_{j=1}^K \psi_j \cdot \mathcal{G}_j \right\|_{\mathfrak{R}} \leq \sum_{j=1}^K \mathfrak{R}_N(\psi_j \cdot \mathcal{G}_j) \leq \sum_{j=1}^K \mathfrak{R}_N(\mathcal{G}_j).$$

Because at each x at most k terms are active, a sharper bound uses the *overlap* to get

$$\mathfrak{R}_N(\mathcal{F}_K) \leq \sqrt{k} \left(\sum_{j=1}^K \mathfrak{R}_N(\mathcal{G}_j)^2 \right)^{1/2}.$$

Under (A3), for each j , $\mathfrak{R}_N(\mathcal{G}_j) \lesssim \sqrt{\text{comp}/N}$ (e.g. linear/MLP heads with $O(\text{comp})$ parameters or a class with metric entropy controlled by “comp”). Therefore,

$$\mathfrak{R}_N(\mathcal{F}_K) \lesssim \sqrt{k} \left(\frac{k \text{comp}}{N} \right)^{1/2} \Rightarrow \mathfrak{E}_N(\mathcal{F}_K) \lesssim \left(\mathfrak{R}_N(\mathcal{F}_K) \right)^2 \lesssim \frac{k \text{comp} K}{N}.$$

This gives the claimed estimation term with some constant $C_2 > 0$ (depending only on bounded moments and the loss curvature).

Balancing. Combining the two parts,

$$\mathbb{E}[\|\hat{f}_{K,N} - f^*\|_2^2] \leq C_1 K^{-2\alpha/d} + C_2 \frac{k \text{comp} K}{N}.$$

Optimizing over K yields $K^* \asymp N^{d/(2\alpha+d)}$ and

$$\sup_{f^* \in \mathcal{F}_\alpha(L)} \mathbb{E}[\|\hat{f}_{K^*,N} - f^*\|_2^2] \lesssim N^{-2\alpha/(2\alpha+d)},$$

which matches the information-theoretic lower bound up to constants. \square

810 A1.6 REMARKS
811

812 (i) **Anchors.** The baseline ‘‘anchor’’ mean can be folded into expert means; it does not affect rates.
 813 (ii) **When a $\log K$ estimation term is valid.** If window locations/bandwidths are fixed (non-
 814 learned), per-point aggregation uses a fixed top- k rule, and strong parameter sharing makes
 815 the *effective* number of free parameters independent of K , Lemma A.3 can be refined to
 816 $\mathbb{E}\|\hat{f}_{K,N} - \tilde{f}_K\|_2^2 \lesssim \frac{\log K + \text{comp}}{N}$. Without these structural constraints, the $\mathcal{O}(K/N)$ bound is
 817 recommended.

818 (iii) **Target standardization.** Z-scoring Y only rescales constants in \mathcal{R}_N .
 819

820 A2. GENERALISATION BOUND
821

822 We study the population–empirical gap under the CRPS loss. For a predictive density $p_{\theta,\phi}(\cdot | x)$
 823 define

$$824 \ell(p_{\theta,\phi}(\cdot | x), y) := \text{CRPS}(p_{\theta,\phi}, y), \quad \mathcal{R}(\theta, \phi) := \mathbb{E}_{(x,y) \sim \mathcal{D}}[\ell(p_{\theta,\phi}, y)],$$

825 and its empirical version

$$826 \hat{\mathcal{R}}_N(\theta, \phi) := \frac{1}{N} \sum_{i=1}^N \ell(p_{\theta,\phi}, y_i).$$

830 Assumptions.
831

832 (G1) **(CRPS regularity and boundedness).** With the standard definition $\text{CRPS}(F, y) = \int_{\mathbb{R}} (F(z) -$
 833 $\mathbf{1}\{z \geq y\})^2 dz$, the map $F \mapsto \text{CRPS}(F, y)$ is 2-Lipschitz under the L^1 metric on CDFs.
 834 Assume expert means are uniformly bounded $|e_j(x)| \leq R_f$ and the predictive variance satisfies
 835 $\sigma(x) \in [\underline{\sigma}, \bar{\sigma}]$, and $y \in [-R_y, R_y]$ almost surely (otherwise clip y). Then the loss is bounded by

$$836 B \leq R_f + R_y + \sqrt{\frac{2}{\pi}} \bar{\sigma}.$$

837 (G2) **(Model capacity).** For the MDN expert class $\mathcal{H}_{M,h}$ (mixture size M , width h), $\mathfrak{R}_N(\mathcal{H}_{M,h}) \leq$
 838 $C_h \sqrt{\frac{\log(Mh)}{N}}$. For the router class $\mathcal{G}_{P,K}$ with P parameters and softmax width K , $\mathfrak{R}_N(\mathcal{G}_{P,K}) \leq$
 839 $C_g \sqrt{\frac{P+K}{N}}$. (If the router’s final weight matrix is fully counted in P , the extra ‘‘+ K ’’ can be
 840 omitted.)

841 **Composite complexity and contraction.** Let $\mathcal{F}_{K,M,h,P}$ denote the induced class of predictive
 842 CDFs/densities parameterised by (K, M, h, P) . By the standard contraction inequality,

$$843 \mathfrak{R}_N(\ell \circ \mathcal{F}_{K,M,h,P}) \leq 2 \mathfrak{R}_N(\mathcal{F}_{K,M,h,P}) \tag{A.1}$$

$$844 \leq 2 C_* \sqrt{\frac{\log(Mh) + P + K}{N}}, \quad C_* := \max\{C_h, C_g\} \leq C_h + C_g. \tag{A.2}$$

845 **Theorem A.5** (Generalisation bound for Anchor–MoE). *Let $(\hat{\theta}, \hat{\phi})$ be the parameters obtained after
 846 training on N samples. Under (G1)–(G2), for any $\delta \in (0, 1)$, with probability at least $1 - \delta$,*

$$847 \mathfrak{R}(\hat{\theta}, \hat{\phi}) - \hat{\mathcal{R}}_N(\hat{\theta}, \hat{\phi}) \leq 2 \mathfrak{R}_N(\ell \circ \mathcal{F}_{K,M,h,P}) + 3B \sqrt{\frac{\log(2/\delta)}{2N}} \tag{A.3}$$

$$848 \leq 4 \mathfrak{R}_N(\mathcal{F}_{K,M,h,P}) + 3B \sqrt{\frac{\log(2/\delta)}{2N}} = \tilde{\mathcal{O}}(N^{-1/2}). \tag{A.4}$$

849 **Discussion.** The bound scales as
 850

$$851 \tilde{\mathcal{O}}\left(\sqrt{(\log(Mh) + P + K)/N}\right),$$

852 i.e. logarithmic in Mh and $\sqrt{\cdot/N}$ in P and K . Under a top- k bounded-overlap gating (each input
 853 activates at most a constant number k of experts), the dependence on K can be replaced by k .

864 A3. HIGH-DIMENSIONAL SCALING
865

866 We show that Anchor–MoE enjoys intrinsic-dimension scaling in two common high-dimensional
867 regimes: (i) data supported on a low-dimensional manifold; (ii) sparse coordinate dependence. In
868 both cases the ambient dimension d disappears from the rate, which depends only on the intrinsic
869 dimension d_0 (or sparsity s).
870

871 **Setting A (low-dimensional manifold).** Let $\mathcal{M} \subset [0, 1]^d$ be a compact C^1 submanifold of intrinsic
872 dimension d_0 and positive reach. Let $\mu_{\mathcal{M}}$ be the normalised d_0 -dimensional volume (Hausdorff)
873 measure on \mathcal{M} , and interpret $L^2(\mathcal{M})$ with respect to $\mu_{\mathcal{M}}$. We write $X \sim \mu_{\mathcal{M}}$ (instead of $\text{Unif}(\mathcal{M})$).
874 Assume $Y = f^*(X) + \varepsilon$ with $\varepsilon \sim \mathcal{N}(0, \sigma^2)$ and $f^* \in \mathcal{F}_{\alpha}(L; \mathcal{M})$, the isotropic Hölder ball on \mathcal{M} .
875 Let $\{w_j\}_{j=1}^K$ be a fixed (non-learned) geodesic partition of unity (PoU) on \mathcal{M} with mesh size h and
876 bounded overlap k , so that $\text{diam}(\text{supp } w_j) \lesssim h$ and at most k weights are nonzero at any $x \in \mathcal{M}$.
877 Experts have bounded capacity as in (A3) of Section A1.

878 **Theorem A.6** (Manifold rate). *There exist constants $C_1, C_2 > 0$ (depending only on L, α , the
879 curvature/geometry of \mathcal{M} , the overlap k , and expert capacity) such that the predictive mean
880 $\hat{f}_{K,N}(x) = \sum_{j=1}^K w_j(x) e_j(x)$ satisfies*

$$881 \quad \mathbb{E} \left[\|\hat{f}_{K,N} - f^*\|_{L^2(\mathcal{M})}^2 \right] \leq C_1 K^{-2\alpha/d_0} + C_2 \frac{k \text{ comp } K}{N}.$$

884 Choosing $K^* \asymp N^{d_0/(2\alpha+d_0)}$ yields

$$885 \quad \sup_{f^* \in \mathcal{F}_{\alpha}(L; \mathcal{M})} \mathbb{E} \left[\|\hat{f}_{K,N} - f^*\|_{L^2(\mathcal{M})}^2 \right] \lesssim N^{-2\alpha/(2\alpha+d_0)}.$$

888 *Sketch.* Geodesic covering numbers on \mathcal{M} scale as h^{-d_0} , hence $K \asymp h^{-d_0}$. Local Hölder interpolation
889 on each chart gives $\|\hat{f}_{K,N} - f^*\|_{L^2(\mathcal{M})}^2 \lesssim h^{2\alpha} = K^{-2\alpha/d_0}$, mirroring Lemma A.2 with d replaced
890 by d_0 . Bounded overlap and fixed-capacity experts yield the estimation term $C k \text{ comp } K/N$ as in
891 Lemma A.3. Balancing the two terms gives the rate. \square
892

893 **Setting B (sparse coordinate dependence).** Assume there exists $S \subset \{1, \dots, d\}$ with $|S| = s \ll d$ such that $f^*(x) = g^*(x_S)$. Suppose the PoU $\{w_j\}$ and gating are functions of x_S (or of
894 a representation bi-Lipschitz in x_S), and experts have bounded capacity. Here L^2 is with respect
895 to the marginal law of X ; if the marginal density of X_S is bounded above/below on $[0, 1]^s$, all
896 constants depend only on these bounds. The theorem below is an *oracle* bound (the index set S is
897 assumed known). If S is unknown and must be learned, an additional model-selection penalty of
898 order $\tilde{\mathcal{O}}((s \log d)/N)$ typically appears in the estimation term.
899

900 **Theorem A.7** (Sparse rate). *Under the sparse dependence assumption,*

$$902 \quad \mathbb{E} \left[\|\hat{f}_{K,N} - f^*\|_{L^2}^2 \right] \leq C_1 K^{-2\alpha/s} + C_2 \frac{k \text{ comp } K}{N},$$

905 so that with $K^* \asymp N^{s/(2\alpha+s)}$,

$$906 \quad \sup_{f^*} \mathbb{E} \left[\|\hat{f}_{K,N} - f^*\|_{L^2}^2 \right] \lesssim N^{-2\alpha/(2\alpha+s)}.$$

909 *Sketch.* Construct the PoU and local interpolation on the s -dimensional coordinate subspace. Then
910 $K \asymp h^{-s}$ and $\|\hat{f}_{K,N} - f^*\|_2^2 \lesssim h^{2\alpha} = K^{-2\alpha/s}$. The estimation term follows as in Lemma A.3. \square
911

912 **Bi-Lipschitz invariance.** We record stability under bi-Lipschitz reparameterisations, which only
913 rescales constants.

914 **Lemma A.8** (Change of variables under bi-Lipschitz maps). *Let $T : U \rightarrow V$ be bi-Lipschitz on a
915 d_0 -dimensional domain U with constants $a \leq \|T(x) - T(x')\|/\|x - x'\| \leq b$. There exist constants
916 $c_1, c_2 > 0$ depending only on a, b, d_0 such that, for any $g, h : V \rightarrow \mathbb{R}$,*

$$917 \quad c_1 \|g - h\|_{L^2(V)} \leq \|(g - h) \circ T\|_{L^2(U)} \leq c_2 \|g - h\|_{L^2(V)},$$

918 and $[g \circ T]_{C^\alpha(U)} \lesssim b^\alpha [g]_{C^\alpha(V)}$. Positive reach of \mathcal{M} yields uniformly bi-Lipschitz charts and a
 919 bounded-overlap geodesic covering; hence covering numbers scale as h^{-d_0} and Jacobian distortions
 920 are absorbed into constants (as in Lemma A.3, since the overlap k is constant and expert capacity is
 921 fixed).
 922

923 **Remarks.** (i) The generalisation bound of Section A scales as $\tilde{\mathcal{O}}(\sqrt{(\log(Mh) + P + K)/N})$.
 924 Under bounded-overlap/top- k gating (each input activates at most k experts), the K -dependence in
 925 the complexity term can be replaced by k (a constant).
 926 (ii) The balancing choices are $K^* \asymp N^{d_0/(2\alpha+d_0)}$ (manifold) and $K^* \asymp N^{s/(2\alpha+s)}$ (sparse), offering
 927 practical guidance for coarse model selection.
 928

929 Table 8: Compute & capacity comparison on the California Housing dataset. Anchor–MoE is
 930 reported at three scales: (1) **D=2, k=1, h=4**, (2) **D=4, k=3, h=8**, (3) **D=8, k=6, h=16**. *FLOPs* denotes
 931 per-sample forward-pass FLOPs. *Parameters*: for neural models we count trainable weights; for
 932 tree ensembles (NGBoost/DistForest) we approximate by the total number of leaves across trees.
 933 For NGBoost/DistForest, FLOPs/pt are estimated by summing $2 \times$ depth over trees (one threshold
 934 comparison plus an accumulate per level); for Gaussian Process (GP), FLOPs/pt use the variance-
 935 aware prediction cost $\approx 2N^2$ with $N = 3000$ training points (subset), which dominates the $O(Nd)$
 936 kernel-vector term. Anchor–MoE uses anchor concatenation with a light GBDT (200 trees, depth
 937 2); the table reports the MoE trunk only—adding the anchor contributes ≈ 800 leaf parameters and
 938 negligible per-sample compute, and does not change conclusions. All train times are wall-clock
 939 on the same split and preprocessing; MC Dropout uses 10 MC passes; Deep Ensemble uses the
 940 configuration shown in the row label.
 941

Model	Flops	Parameters	Train Time (s)	Infer Throughput
Anchor-MoE1	80	94	12.5	337575.1
Anchor-MoE2	504	574	19.9	295165.4
Anchor-MoE3	2712	2972	24.8	193002.2
NGBoost	1800	2400	40.3	17143.8
MC Dropout	17664	17922	16.8	120482.7
Deep Ensemble	30528	31110	43.4	15275.6
DistForest	19034	2403901	34.8	12617.6
Gausian Process	18000000	11	170.2	3193.3

950 Summary. The best configuration among the top entries is D=2, K=2, k=2, val-CRPS=0.2497,
 951 test-RMSE=0.4829. Across the top ten, the most frequent latent dimension is D=2, the most frequent
 952 number of experts is K=2, and the most frequent active experts is k=2. Validation CRPS and test
 953 RMSE rank models consistently, and training time scales mainly with K and the early-stopping epoch.
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971

972
973
974
975
976

Algorithm 1 Anchor–MoE training, calibration, and testing

977 1: **Split:**
 978 $\mathcal{D} \rightarrow \mathcal{D}_{\text{train}} \dot{\cup} \mathcal{D}_{\text{test}}; \quad \mathcal{D}_{\text{train}} \rightarrow \mathcal{D}_{\text{TV}} \dot{\cup} \mathcal{D}_{\text{cal}}; \quad \mathcal{D}_{\text{TV}} \rightarrow \mathcal{D}_{\text{tr}} \dot{\cup} \mathcal{D}_{\text{va}}.$

979 2: **GBDT selection (on TR/VA):**
 980 3: **for** $t = 1, \dots, T_g$ **do**
 981 4: $e_t \leftarrow \text{RMSE}(y_{\text{va}}, \text{GBDT}_t(X_{\text{va}}))$
 982 5: $t^* \leftarrow \arg \min_t e_t$
 983 6: *Train* a fresh GBDT $_{t^*}$ on $(X_{\text{tr}}, y_{\text{tr}})$ to obtain f_{sub}
 984 7: *Refit* GBDT $_{t^*}$ on $(X_{\text{TV}}, y_{\text{TV}})$ to obtain \hat{f}

985 8: **Phase-1 (TR/VA): anchor z-score, feature standardization, MoE early selection**
 986 9: $(\mu_{\text{tr}}, \sigma_{\text{tr}}) \leftarrow \text{mean/std}(y_{\text{tr}})$
 987 10: $z_{\text{tr}} \leftarrow \text{zsc}(y_{\text{tr}}; \mu_{\text{tr}}, \sigma_{\text{tr}}); \quad z_{\text{va}} \leftarrow \text{zsc}(y_{\text{va}}; \mu_{\text{tr}}, \sigma_{\text{tr}})$
 988 11: $\alpha_{\text{tr}} \leftarrow \text{zsc}(f_{\text{sub}}(X_{\text{tr}}); \mu_{\text{tr}}, \sigma_{\text{tr}}); \quad \alpha_{\text{va}} \leftarrow \text{zsc}(f_{\text{sub}}(X_{\text{va}}); \mu_{\text{tr}}, \sigma_{\text{tr}})$
 989 12: $\tilde{X}_{\text{tr}} \leftarrow [X_{\text{tr}}, \alpha_{\text{tr}}]; \quad \tilde{X}_{\text{va}} \leftarrow [X_{\text{va}}, \alpha_{\text{va}}]$
 990 13: $(m_{\text{tr}}, s_{\text{tr}}) \leftarrow \text{col-mean/std}(\tilde{X}_{\text{tr}})$
 991 14: $\bar{X}_{\text{tr}} \leftarrow \text{std}(\tilde{X}_{\text{tr}}; m_{\text{tr}}, s_{\text{tr}}); \quad \bar{X}_{\text{va}} \leftarrow \text{std}(\tilde{X}_{\text{va}}; m_{\text{tr}}, s_{\text{tr}})$
 992 15: initialize Θ_1
 993 16: **for** $t = 1, \dots, T_{\text{max}}$ **do**
 994 17: $\Theta_{t+1} \leftarrow \Theta_t - \eta \nabla_{\Theta} \text{NLL}(\bar{X}_{\text{tr}}, z_{\text{tr}}; \Theta_t)$
 995 18: $t^*_{\text{MoE}} \leftarrow \arg \min_t \text{NLL}(\bar{X}_{\text{va}}, z_{\text{va}}; \Theta_t)$
 996 19: $\Theta^{\dagger} \leftarrow \Theta_{t^*_{\text{MoE}}}$

997 20: **Phase-2 (TV/CAL/TEST): freeze early epoch, refit on TV, prep CAL/TEST**
 998 21: $(\mu_{\text{tv}}, \sigma_{\text{tv}}) \leftarrow \text{mean/std}(y_{\text{TV}})$
 999 22: $z_{\text{tv}} \leftarrow \text{zsc}(y_{\text{TV}}; \mu_{\text{tv}}, \sigma_{\text{tv}})$
 1000 23: **for** $S \in \{\text{TV, cal, test}\}$ **do**
 1001 24: $\alpha_S \leftarrow \text{zsc}(\hat{f}(X_S); \mu_{\text{tv}}, \sigma_{\text{tv}}); \quad \tilde{X}_S \leftarrow [X_S, \alpha_S]$
 1002 25: $(m_{\text{tv}}, s_{\text{tv}}) \leftarrow \text{col-mean/std}(\tilde{X}_S)$
 1003 26: $\bar{X}_S \leftarrow \text{std}(\tilde{X}_S; m_{\text{tv}}, s_{\text{tv}})$ for $S \in \{\text{TV, cal, test}\}$
 1004 27: reload Θ^{\dagger}
 1005 28: **for** $t = 1, \dots, t^*_{\text{MoE}}$ **do**
 1006 29: $\Theta \leftarrow \Theta - \eta \nabla_{\Theta} \text{NLL}(\bar{X}_{\text{TV}}, z_{\text{tv}}; \Theta)$

1007 30: **Calibration (on CAL): linear post-hoc map for mean**
 1008 31: $\hat{\mu}_{\text{cal}}^{\text{orig}} \leftarrow \sigma_{\text{tv}} \cdot \hat{\mu}_z(\bar{X}_{\text{cal}}; \Theta) + \mu_{\text{tv}}$
 1009 32: $(a, b) \leftarrow \arg \min_{a, b} \|a \hat{\mu}_{\text{cal}}^{\text{orig}} + b - y_{\text{cal}}\|_2^2$

1010 33: **Test: report calibrated RMSE (orig) and NLL (z-space)**
 1011 34: $\hat{\mu}_{\text{test}}^{\text{orig}} \leftarrow \sigma_{\text{tv}} \cdot \hat{\mu}_z(\bar{X}_{\text{test}}; \Theta) + \mu_{\text{tv}}$
 1012 35: $\hat{\mu}_{\text{test}}^{\text{cal}} \leftarrow a \hat{\mu}_{\text{test}}^{\text{orig}} + b$
 1013 36: $\text{RMSE} \leftarrow \text{RMSE}(y_{\text{test}}, \hat{\mu}_{\text{test}}^{\text{cal}})$
 1014 37: $\text{NLL}_z \leftarrow \text{NLL}(\bar{X}_{\text{test}}, \text{zsc}(y_{\text{test}}; \mu_{\text{tv}}, \sigma_{\text{tv}}); \Theta)$
 1015 38: **return** $\Theta^* = \Theta, (a, b), \text{RMSE}, \text{NLL}_z$

1022
1023
1024
1025

1026
1027
1028
1029
1030
1031
1032
1033

1034 Table 9: Anchor–MoE hyper-parameter ablation on California. We sweep $D \in \{2, 4, 8\}$, $K \in \{2, 4, 6\}$,
1035 $k \in \{1, 2, K\}$. Each entry reports validation CRPS/NLL, test RMSE and wall-clock training time. A
1036 balanced choice is $D=8$, $K=2$, $k=2$.

1037

1038

D	K	k	$\text{CRPS}_{\text{val}} / \text{NLL}_{\text{val}} / \text{RMSE}_{\text{test}}$	Train (s)
8	2	2	0.2893 / 0.6873 / 0.5501	6.8
8	2	1	0.2819 / 0.7180 / 0.5540	7.1
4	6	2	0.2825 / 0.7031 / 0.5594	10.4
8	6	6	0.2792 / 0.6330 / 0.5643	10.6
8	4	4	0.2800 / 0.6527 / 0.5778	8.6
4	4	2	0.2838 / 0.7070 / 0.5808	9.0

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

Table 10: California Housing hyperparameter grid, top-10 by validation CRPS then test RMSE.

1062

1063

D	K	k	val-CRPS	val-NLL	test-RMSE	train-sec	best-iter-GBDT	best-ep-MoE
2	2	2	0.2497	-0.1642	0.4829	93.1	174	167
2	4	2	0.2499	-0.1621	0.4829	118.9	174	161
2	2	all	0.2500	-0.1592	0.4828	99.3	174	165
4	2	2	0.2504	-0.1576	0.4854	111.7	174	154
2	6	2	0.2505	-0.1556	0.4853	141.7	174	154
4	4	2	0.2506	-0.1556	0.4856	131.7	174	151
4	2	all	0.2509	-0.1532	0.4862	118.6	174	150
8	2	2	0.2510	-0.1526	0.4868	125.9	174	148
2	4	all	0.2511	-0.1519	0.4868	129.2	174	147
8	4	2	0.2512	-0.1511	0.4872	140.6	174	145

1072

1073

1074

1075

1076

1077

1078

1079