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ABSTRACT

Recently Transformer-based models have advanced point cloud understanding by
leveraging self-attention mechanisms, however, these methods often overlook la-
tent information in less prominent regions, leading to increased sensitivity to per-
turbations and limited global comprehension. To solve this issue, we introduce
PointACL, an attention-driven contrastive learning framework designed to ad-
dress these limitations. Our method employs an attention-driven dynamic masking
strategy that guides the model to focus on under-attended regions, enhancing the
understanding of global structures within the point cloud. Then we combine the
original pre-training loss with a contrastive learning loss, improving feature dis-
crimination and generalization. Extensive experiments validate the effectiveness
of PointACL, as it achieves state-of-the-art performance across a variety of 3D
understanding tasks, including object classification, part segmentation, and few-
shot learning. Specifically, when integrated with different Transformer backbones
like Point-MAE and PointGPT, PointACL demonstrates improved performance
on datasets such as ScanObjectNN, ModelNet40, and ShapeNetPart. This high-
lights its superior capability in capturing both global and local features, as well as
its enhanced robustness against perturbations and incomplete data.

1 INTRODUCTION

Point clouds are widely applicable in fields such as robotics (Chen et al., 2020; Tan et al., 2001),
autonomous driving (Chen et al., 2017; 2020), augmented reality (Arena et al., 2022), and virtual
reality (Garrido et al., 2021) as a representation of objects in three-dimensional space. These diverse
applications highlight the significance of obtaining detailed and insightful 3D representations. De-
spite their potential, the irregular and sparse nature of point cloud data poses significant challenges
to precise and efficient 3D processing and understanding.

Recent advancements in deep neural networks, especially Transformer-based models (Pang et al.,
2022; Chen et al., 2024; Yu et al., 2022) employing self-supervised learning, have shown promise in
point cloud understanding. These models leverage the attention mechanism to capture complex rela-
tionships between point patches, prioritizing critical regions for understanding the point cloud while
downplaying less significant areas. Originally designed for natural language, attention mechanism
has been successfully adapted for 2D vision. However, unlike natural language (Devlin, 2018) or
images (He et al., 2022), which often contain redundant information such as contextual structures
and backgrounds, point cloud data are inherently sparse, meaning that each point or region is critical
to the overall representation. This scarcity of redundant information implies that Transformer-based
models, when neglecting less prominent point patches, may inadvertently overlook essential latent
information. This observation leads us to a pivotal question: Can we design a framework that lever-
ages latent information from the global regions of point clouds?

To answer this question, we re-examine the attention weights in Transformer-based point cloud
models. As illustrated in Figure 1, we find that models like Point-MAE (Yu et al., 2022) and Point-
GPT (Chen et al., 2024) primarily rely on a limited set of high-attention patches for analysis. This
reliance presents two significant issues: (1) Increased sensitivity to perturbations. Over-focusing
on high-attention patches makes the models more susceptible to noise and incomplete data, as dis-
turbances in these areas disproportionately affect performance. (2) Limited global understanding.
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Figure 1: Illustration of PointACL’s Advantages. Point-MAE is employed as the backbone of
our proposed PointACL. Left: PointACL emphasizes extracting global information from a greater
number of patches. Right: PointACL demonstrates greater robustness than previous methods.

Ignoring potential information in low-attention patches constrains the model’s ability to develop a
comprehensive understanding of the point cloud’s global structure.

To solve these issues, we introduce PointACL, an Attention-driven Contrastive Learning frame-
work for point clouds that can be seamlessly integrated into existing Transformer-based models.
Our approach comprises two key components: First, an attention-driven dynamic masking strategy
is proposed that aims to mitigate the model’s reliance on a limited subset of key patches by guiding it
to focus on under-attended regions. Specifically, we construct a dynamic masking probability based
on the latest self-attention significance scores, prioritizing masking the patches that contribute most
to the global feature representation. This strategy encourages the model to infer global features from
less prominent patches, thus fostering a more comprehensive and robust understanding of the point
cloud. Furthermore, we combine the original pre-training loss with a contrastive learning objec-
tive. It allows the model to retain its task-specific learning capabilities while enhancing its global
understanding and generalization through contrastive learning. Compared to previous methods, our
approach better captures the global structure of point clouds rather than focusing solely on local
features. Consequently, under various noisy environments such as Gaussian noise, rotation, scaling,
and point dropout, PointACL significantly enhances the model’s robustness.

Our PointACL achieves state-of-the-art performance across various 3D understanding tasks. Specifi-
cally, for object classification, PointACL attains accuracies of 89.9% on the challenging PB-T50-RS
setting of ScanObjectNN and 94.1% on ModelNet40, with its performance advantage persisting
even when competing models are allocated additional training time. In few-shot learning, it sets
new benchmarks across all evaluation tasks. Moreover, PointACL demonstrates enhanced robust-
ness against perturbations and incomplete data, consistently outperforming previous approaches un-
der various noisy environments such as Gaussian noise, rotation, scaling, and point dropout. These
results highlight PointACL’s potential to effectively address the limitations of existing Transformer-
based models by capturing comprehensive global structures and fine-grained local details.

Our main contributions can be summarized as follows: (I) We propose PointACL, a novel frame-
work that combines self-attention mechanisms with contrastive learning for point cloud understand-
ing which enhances the model’s ability to capture global structures and significantly improves its ro-
bustness and generalization capabilities. (II) We propose an attention-driven dynamic masking strat-
egy that encourages the model to focus on under-attended regions, ensuring learning from diverse
patches rather than over-relying on a small subset. (III) Extensive experimental results demonstrate
that PointACL can be seamlessly integrated into mainstream transformer architectures and achieve
significant improvements across a variety of 3D understanding tasks.

2 RELATED WORKS

Self-Supervised Learning for NLP and Image. Self-supervised learning (SSL) has emerged as
a powerful paradigm in natural language processing (NLP) (Erhan et al., 2010; Zhu et al., 2023b)
and computer vision (Radford, 2018; Goodfellow et al., 2020; Yu et al., 2017; Misra & Maaten,
2020; Qian et al., 2021; Abdelfattah et al., 2024; Liang et al., 2024), enabling models to learn
rich representations from unlabeled data. The core idea is to design pretext tasks that encourage
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models to capture underlying data structures. In NLP, BERT (Devlin, 2018) exemplifies this by
randomly masking input tokens and training the model to predict them, fostering deep contextual
understanding. ELMo (Sarzynska-Wawer et al., 2021) utilizes bidirectional LSTMs to generate con-
textualized word embeddings, while GPT (Radford, 2018) adopts an autoregressive approach with
a unidirectional Transformer to predict the next word, fine-tuning all parameters for specific tasks.
In computer vision, contrastive learning initially dominated SSL for images, focusing on grouping
similar (augmented) images closer and pushing dissimilar ones apart in the feature space. However,
recent generative SSL methods have begun to outperform contrastive approaches. Masked Autoen-
coders (He et al., 2022) randomly mask a significant portion of image patches and train the model
to reconstruct the missing pixels, leading to effective visual representations. BEiT (Bao et al., 2021)
extends this by tokenizing image patches and predicting masked tokens, integrating NLP techniques
into vision tasks. Additionally, Image GPT (Luppino et al., 2021) treats images as sequences of
pixels and trains a Transformer to autoregressively predict pixels without explicit spatial structure,
demonstrating strong representation learning. This shift towards generative self-supervised learn-
ing methods not only demonstrates their ability to capture comprehensive data representations and
improve performance in NLP and computer vision but also highlights their significant potential in
advancing point cloud processing and analysis. Building upon these advancements, our work ex-
tends the principles of self-supervised learning from NLP and computer vision to 3D point cloud
analysis. By adopting strategies akin to masked token prediction in BERT and reconstruction in
Masked Autoencoders, we introduce an attention-driven dynamic masking approach that encour-
ages the model to capture comprehensive structural information from point clouds.

Self-Supervised Learning for Point Cloud. Various methods have been investigated for self-
supervised representation learning on point clouds (Wang et al., 2024; Liu et al., 2024; Wu et al.,
2024; Zhang et al., 2023; 2024; Han et al., 2024). Many previous works focused on generative
modeling with generative adversarial networks and autoencoders, aiming to reconstruct input point
clouds using different architectural designs (Min et al., 2022; Yu et al., 2022; Sauder & Sievers,
2019; Li et al., 2018a; Achlioptas et al., 2018; Wang et al., 2022). PointMAE (Pang et al., 2022)
proposes a effective scheme of masked autoencoders for point cloud self-supervised learning. Point-
M2AE (Zhang et al., 2022a) further employs a hierarchical transformer architecture and implements
a specific masking strategy. PointGPT (Chen et al., 2024) propose a point cloud auto-regressive
generation task to pre-train transformer models. Moreover, contrastive methods also have been ex-
tensively explored (Qian et al., 2022; Xue et al., 2023; 2024; Navaneet et al., 2020; Zhang et al.,
2021; Xie et al., 2020; Huang et al., 2023). DepthContrast (Zhang et al., 2021) generates augmented
depth maps and conducts instance discrimination on the extracted global features. MVIF (Jing
et al., 2020) employs cross-modal and cross-view invariance constraints to enable self-supervised
learning of modal- and view-invariant features. OcCo (Wang et al., 2021) aims to reconstruct the
original point cloud from an occluded version observed in camera views. Some studies focus on
integrating cross-modal information, utilizing knowledge from language or image models to en-
hance 3D learning (Qi et al., 2023; Dong et al., 2022; Qi et al., 2024; Saito & Poovvancheri, 2024).
PointCLIP (Zhang et al., 2022b) facilitates the alignment between point clouds encoded by CLIP
and corresponding 3D category text descriptions, enhancing cross-modal understanding. PointCLIP
V2 (Zhu et al., 2023a) uses a shape projection module to guide CLIP in generating more realistic
depth maps and prompts a GPT model to create 3D-specific text for CLIP’s textual encoder input.
Unlike previous approaches that primarily rely on random or fixed masking strategies in generative
frameworks, PointACL leverages the model’s inherent attention distribution to dynamically select
high-attention regions for masking. This encourages the model to focus on under-represented low-
attention areas, enabling it to learn more comprehensive and robust point cloud features.

3 METHODS

The overall framework of PointACL is illustrated in Figure 2. First, the Attention-driven Dynamic
Masking module generates an attention-guided masked point cloud. Both the masked point cloud
and the original input point cloud are then fed into the shared backbone model to obtain the global
features of each input. By aligning the features from these two branches with contrastive loss,
we guide the model to focus on the low-attention regions of the point clouds, thereby improving
feature discrimination and generalization. During the pre-training stage, we train the model using
a combination of contrastive loss and the original pre-training loss—such as the reconstruction loss
from PointMAE (Pang et al., 2022) or the generation loss from PointGPT (Chen et al., 2024). After

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Input Point Cloud 

Token
Embed.

Input Tokens 𝑇𝑇𝑠𝑠

..
× N

..

Latent Representations 𝐹𝐹𝑠𝑠

CLS

CLS 𝑇𝑇1

𝑇𝑇1

𝑇𝑇2

𝑇𝑇2

𝑇𝑇3

𝑇𝑇3

𝑇𝑇𝑁𝑁

𝑇𝑇𝑁𝑁
⋯⋯

Dynamic Mask Probability Self-Attention Matrix ASelected Top-K
Mask Patches

KNN

FPS

Base Probability
Perturbation Probability

Input Tokens

Attention-
driven 

Dynamic 
Masking

Global Feature 𝐻𝐻𝑠𝑠

Global Feature 𝐻𝐻𝑚𝑚

Global 
Representation 

Alignment

Original Loss 
Minimization

3D Embedding Transformer 
Blocks

𝑔𝑔𝜃𝜃

Task-Spec. 
Head

Masked Point Cloud 

Token
Embed.

Input Tokens 𝑇𝑇𝑚𝑚

..
× N

..

Latent Representations 𝐹𝐹𝑚𝑚

KNN

FPS

3D Embedding Transformer 
Blocks

𝑔𝑔𝜃𝜃

Task-Spec. 
Head

Specific Representation 𝑅𝑅𝑚𝑚

Specific Representation 𝑅𝑅𝑠𝑠

Global Feature Token Point Cloud Token Mask Token Standard Branch

Masked Branch

Figure 2: Overview of the PointACL Framework. PointACL consists of two branches that share
the same weights: a standard mode branch and a masked mode branch. An attention-driven dynamic
masking module generates a masked point cloud by selecting less activated patches from the output
of the standard mode branch. Both branches process their respective inputs through the shared
Transformer blocks to obtain latent representations. Finally, a joint contrastive loss is used to align
the representations of these two branches.

pre-training, we employ the backbone model without the masking strategy, leveraging the learned
latent representations for downstream tasks.

3.1 PRELIMINARY

Transformer-based self-supervised learning. Given a point cloud X ∈ RP×3, we utilize Farthest
Point Sampling (FPS) and K-Nearest Neighbors (KNN) algorithms to identify n center points C
and their corresponding k nearest neighbors, forming n point patches P . Following the previous
methods (Pang et al., 2022; Chen et al., 2024), each point patch is normalized to integrate local in-
formation. A lightweight token embedding module, implemented via PointNet, subsequently trans-
forms these normalized local patches into trainable point tokens T . These point tokens, together
with positional embeddings, are input into the transformer blocks to produce latent representations
F . For different tasks, these latent representations are input into task-specific heads, where they are
transformed into specific representations adapted to the task. The learning pipeline based on the
Transformer architecture is as follows:

F = Transformer(T ), (1)

R = HeadTask−Spec.(F ). (2)
For Point-MAE, HeadTask−Spec. denotes the reconstruction head. For PointGPT, HeadTask−Spec.

denotes the prediction head.

Point patch attention. We employ the self-attention mechanism in the transformer architecture to
compute the attention weights of point patches relative to the global feature. A new set of input
tokens T ∈ R(N+1)×d, consisting of the point tokens T p ∈ RN×d and a learnable global feature
token T f ∈ R1×d, is utilized to compute the queries Q ∈ R(N+1)×d , keys K ∈ R(N+1)×d , and
values V ∈ R(N+1)×d. The attention matrix A is subsequently derived from the dot product of the
queries and keys. Since the first element of the input tokens T1 corresponds to the global feature
token, the first row of the attention matrix can be interpreted as the contribution of each token to the
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global feature. Considering the output tokens depend on both the attention matrix and the values,
we incorporate the norm of Vj when determining the significance score of token j. Consequently,
the attention matrix and significance score for point patch j are computed as follows:

A = Softmax(QKT /
√
d), (3)

Sj =
A1,j × ∥Vj∥∑
i=2 A1,i × ∥Vi∥

, (4)

where i, j ∈ 2, ..., N + 1. For a multi-head attention layer, we compute the significance scores for
each head separately and aggregate them by taking the sum over all heads.

3.2 ATTENTION-DRIVEN DYNAMIC MASKING

To fully harness the advantages of the self-attention mechanism and mitigate the model’s reliance
on a small subset of key patches, we propose an attention-driven dynamic masking strategy, which
guides the model to focus on low-attention regions and enforces a more comprehensive understand-
ing of the global structure in challenging scenarios by dynamically masking high-attention areas.

A straightforward idea is to mask the top k patches with the highest significance scores, as they are
key to the model’s understanding of the point cloud. However, a fixed masking probability merely
shifts the model’s attention without engaging a broader set of patches. As the model becomes reliant
on new areas of focus, it similarly falls into the trap of limited comprehension of the point cloud. Our
primary objective is to ensure that high-attention regions have a higher likelihood of being masked.
Therefore, we suggest a dynamic masking. Specifically, we construct an updatable base masking
probability using the latest self-attention significance scores, prioritizing the masking of patches
that currently contribute significantly to the global features. Additionally, a perturbation probability,
derived from a uniform distribution U [0, 1], is introduced to enhance the variability of the masking
probability. Based on this concept, the final dynamic masking probability pdy is expressed as:

pdy = log (Softmax(S/τpro))− log (− log ε) , ε ∈ U [0, 1], (5)

where τpro is a temperature hyperparameter which controls the sharpness of the base masking prob-
ability. A lower temperature (less than 1) results in a sharper distribution, meaning that regzions
with the highest attention are more likely to be masked. Based on the dynamic masking probability,
we apply simple Top-K strategy to select the k point patches Pmask ∈ RK×3 to be masked:

Pmask = Top-K(pdy, k). (6)

They are then replaced with learnable mask tokens. In this manner, regions that attract high attention
are more likely to be masked, promoting a deeper understanding of the global structure by the model.

3.3 LEARNING OBJECTIVE

To further improve the model’s feature discrimination and generalization, we introduce the con-
trastive loss to the pre-training stage, which combines the original pre-training loss with a contrastive
learning objective, enabling the model to retain task-specific learning capabilities while enhancing
its global understanding.

Global representation alignment. The dynamically selected masked token Tm and the standard
token T s are both input into a shared-weight model, producing two distinct levels of point cloud
latent representations Fm and F s. Unlike the masked latent representations, the complete point
cloud retains all original information. Although the masking strategy results in the loss of some
regional details, both representations still correspond to the same underlying point cloud entity.
Therefore, we expect the global features extracted from the masked point cloud to align with those
derived from the standard point cloud. This alignment ensures that the model captures the overall
structure of the point cloud without over-relying on specific local regions. To achieve this, we
introduce a contrastive learning objective:

Lcontra = − 1

2b

∑
i

(
log

exp(Hm
i ·Hs

i /τsim)∑
j exp(H

m
i ·Hs

j /τsim)
+ log

exp(Hs
i ·Hm

i /τsim)∑
j exp(H

s
i ·Hm

j /τsim)

)
, (7)
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where b is the number of point clouds in a batch; τsim is a temperature hyperparameter; Hm
i and

Hs
i are the normalized projection features of Fm

i and F s
i . By omitting the high-attention regions

in the masked point clouds, the contrastive objective incentivizes the model to focus on and extract
valuable information from less emphasized areas. This process facilitates the learning of a more
holistic latent representation, thereby improving the model’s capacity to effectively differentiate
between various point cloud objects.

Contrastive learning enhancement. While traditional contrastive learning methods have demon-
strated significant success in unsupervised and self-supervised learning, relying solely on contrastive
loss may weaken the model’s performance on specific tasks. This limitation arises from the model’s
inability to fully exploit the advantages of the existing framework. To address this issue, we propose
that a better solution is to integrate the contrastive loss into the existing framework. This approach
preserves the model’s task-specific learning capabilities while leveraging contrastive learning to
further improve its global understanding and generalization capacity. The proposed total loss is
formulated as follows:

Ltotal = Lorigin + λLcontra, (8)

where Lorigin represents the original loss in the existing framework; λ is a weight hyperparameter
that controls the contribution of contrastive learning loss. During the pre-training phase, Point-
MAE’s original pre-training loss Lorigin is equivalent to the reconstruction loss Lre. For PointGPT,
Lorigin refers to the generation loss Lge. Therefore, we jointly optimizes the reconstruction (or
generation) and contrastive losses, ensuring that the model not only achieves high-quality recon-
structions (or generations) but also learns globally consistent feature representations. Through this
strategy, PointACL exhibits strong potential for adaptability and scalability across a wide range of
multi-task learning scenarios, ultimately improving the model’s overall performance.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate PointACL framework on three benchmark datasets commonly used in 3D
point cloud analysis. ScanObjectNN (Uy et al., 2019) comprises approximately 15,000 real-world
3D objects from 15 categories derived from indoor RGB-D scans, presenting challenges like back-
ground clutter, occlusions, and sensor noise, thus testing the robustness and generalization of our
method in realistic scenarios. ModelNet40 (Wu et al., 2015) is a synthetic dataset with 12,311 CAD
models across 40 categories, split into 9,843 for training and 2,468 for testing, providing clean and
uniformly sampled point clouds ideal for assessing classification performance without real-world
complexities. ShapeNetPart (Yi et al., 2016) contains 16,881 models across 16 categories, each
annotated with point-level part labels totaling 50 classes, enabling evaluation of fine-grained part
segmentation and demonstrating the versatility of our approach in detailed 3D understanding tasks.

Backbone models. To evaluate the seamless integration of the proposed method into existing
Transformer-based models for point cloud processing, we employed different backbone architec-
tures, specifically Point-MAE and PointGPT-S, to validate the algorithm’s effectiveness. Experimen-
tal results across various tasks indicate that the method is adaptable and enhances the performance
of these Transformer architectures, thereby demonstrating its versatility and practical applicability.

Experimental details. Our input point clouds are obtained by sampling 1,024 points from each raw
point cloud. Each point cloud is then divided into 64 patches with 32 points each. The PointACL
model is pre-trained for a total of 600 epochs: the first 300 epochs focus on the original task alone,
and the next 300 epochs incorporate both original pre-training and contrastive learning objectives.
We use the Adam optimizer with an initial learning rate of 0.001, a weight decay of 0.05, and a
batch size of 128. The learning rate is adjusted using a cosine decay schedule. All experiments are
implemented using the PyTorch framework and conducted on four NVIDIA V100 GPUs.

4.2 EXPERIMENTAL RESULTS

Real-world object classification on ScanObjectNN. Table 1 compares our proposed PointACL
method with existing approaches on the ScanObjectNN dataset across OBJ-BG, OBJ-ONLY, and
PB-T50-RS settings. Our PointACL consistently outperforms these state-of-the-art methods. Com-
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Table 1: Object classification on ScanObjectNN and ModelNet40. We report the Top-1 classifi-
cation accuracy (%) of PointACL with Point-MAE and PointGPT-S as backbones respectively. On
ScanObjectNN, * denotes using simple rotational augmentation for training. On ModelNet40, *
denotes the results obtained by voting.

Methods Reference ScanObjectNN ModelNet40
OBJ-BG OBJ-ONLY PB-T50-RS

Supervised Learning Only

PointNet (Qi et al., 2017a) CVPR 17 73.3 79.2 68.0 89.0
PointNet++ (Qi et al., 2017b) NeurIPS 17 82.3 84.3 77.9 90.2
PointCNN (Li et al., 2018b) NeurIPS 18 86.1 85.5 78.5 91.7
DGCNN (Wang et al., 2019) TOG 19 82.8 86.2 78.1 92.0
PRANet (Cheng et al., 2021) TIP 21 - - 81.0 92.9
MVTN (Hamdi et al., 2021) ICCV 21 - - 82.8 93.8
PointNeXt (Qian et al., 2022) NeurIPS 22 - - 87.7 92.9
PointMLP (Ma et al., 2022) ICLR 22 - - 85.4 94.1
RepSurf-U (Ran et al., 2022) CVPR 22 - - 84.3 93.8
ADS (Hong et al., 2023) ICCV 23 - - 87.5 94.0

with Self-Supervised Representation Learning

Point-BERT (Yu et al., 2022) CVPR 22 87.4 88.1 83.1 92.7
MaskPoint (Liu et al., 2022) CVPR 22 89.3 88.1 84.3 92.6
Point-M2AE (Zhang et al., 2022a) NeurIPS 22 91.2 88.8 86.4 93.4
PointDif (Zheng et al., 2024) CVPR 24 93.3 91.9 87.6 -
GPM (Li et al., 2024) CVPR 24 90.2 90.0 84.8 93.3

Point-MAE (Pang et al., 2022) ECCV 22 90.0 88.3 85.2 93.2
+PointACL - 90.9 88.8 85.4 93.7
↑ Improve - +0.9 +0.5 +0.2 +0.5

PointGPT-S (Chen et al., 2024) NeurIPS 23 91.6 90.0 86.9 93.3
+PointACL - 92.3 91.6 87.1 93.5
↑ Improve - +0.7 +1.6 +0.2 +0.2

Point-MAE* (Pang et al., 2022) ECCV 22 92.8 91.2 89.0 93.8
+PointACL* - 93.1 91.7 89.2 94.1
↑ Improve - +0.3 +0.5 +0.2 +0.3

PointGPT-S* (Chen et al., 2024) NeurIPS 23 93.4 92.4 89.2 94.0
+PointACL* - 94.5 93.5 89.9 94.1
↑ Improve - +1.1 +1.1 +0.7 +0.1

pared to Point-MAE (Pang et al., 2022), PointACL achieves higher accuracies by +0.9%, +0.5%, and
+0.2% on OBJ-BG, OBJ-ONLY, and PB-T50-RS, respectively. Against PointGPT-S (Chen et al.,
2024), PointACL attains improvements of +0.7%, +1.6%, and +0.2% on the same splits. With sim-
ple rotational augmentation (marked with *), PointACL sets new state-of-the-art results, achieving
up to 94.5% on OBJ-BG, 93.5% on OBJ-ONLY and 89.9% on PB-T50-RS. These results demon-
strate that PointACL effectively enhances feature representation for point cloud data, particularly in
challenging scenarios with background noise and object perturbations. The consistent performance
gains across all settings highlight the robustness and efficacy of our approach.

Synthetic object classification on ModelNet40. Table 1 presents the performance of our proposed
PointACL method compared to existing self-supervised learning approaches on the ModelNet40
dataset, evaluated both without voting and with voting. Our PointACL achieves an accuracy of
93.7% without voting and 94.1% with voting, surpassing previous methods without adding addi-
tional parameters. Specifically, compared to Point-MAE, PointACL improves accuracy by +0.5%
without voting and +0.3% with voting. When compared to PointGPT-S, our method achieves gains
of +0.2% and +0.1%, respectively. These results demonstrate that PointACL effectively enhances
feature representation learning for 3D point cloud data, leading to superior classification perfor-
mance on ModelNet40.

Few-shot classification on ModelNet40. Our PointACL framework was evaluated on the Model-
Net40 dataset under few-shot learning settings, and the results are presented in Table 2. Following
standard practice, we carry out 10 separate experiments for each setting and reported mean accuracy
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Table 2: Few-shot classification on ModelNet40. We re-
port the mean accuracy (%) with standard deviation over 10
independent experiments.

Methods 5-way 10-way

10-shot 20-shot 10-shot 20-shot

Supervised Learning Only

PointNet 52.0±3.8 57.8±4.9 46.6±4.3 35.2±4.8
PointNet-CrossPoint 90.9±1.9 93.5±4.4 84.6±4.7 90.2±2.2
DGCNN 31.6±2.8 40.8±4.6 19.9±2.1 16.9±1.5
DGCNN-CrossPoint 92.5±3.0 94.9±2.1 83.6±5.3 87.9±4.2

with Self-Supervised Representation Learning

Point-BERT 94.6±3.1 96.3±2.7 91.0±5.4 92.7±5.1
MaskPoint 95.0±3.7 97.2±1.7 91.4±4.0 93.4±3.5
Point-M2AE 96.8±1.8 98.3±1.4 92.3±4.5 95.0±3.0

Point-MAE 96.3±2.5 97.8±1.8 92.6±4.1 95.0±3.0
+PointACL 96.7±2.7 98.2±1.6 92.8±4.0 95.3±3.2
PointGPT 96.8±2.0 98.6±1.1 92.6±4.6 95.2±3.4
+PointACL 97.1±2.3 98.8±1.3 93.0±4.0 95.6±3.0

Table 3: Part segmentation perfor-
mance on the ShapeNetPart dataset.
We report the mean Intersection over
Union (mIoU) across instances (Ins.)
and classes (Cls.).

Methods Ins. mIoU Cls.mIoU

Supervised Learning Only

PointNet 83.7 80.4
PointNet++ 85.1 81.9
DGCNN 85.2 82.3

with Self-Supervised Representation Learning

Point-BERT 85.6 84.1
GPM 85.8 84.2

Point-MAE 86.1 84.2
+PointACL 86.2 85.0
↑ Improve +0.1 +0.8

PointGPT-S 86.2 84.1
+PointACL 86.3 84.4
↑ Improve +0.1 +0.3

along with the standard deviation. Compared to both supervised learning methods and other self-
supervised representation learning approaches, PointACL consistently achieves higher accuracy. In
the 5-way 10-shot task, our method attains an accuracy of 97.1% with a standard deviation of 2.3%,
outperforming previous methods. Similarly, in the 10-way 20-shot setting, PointACL achieves an
accuracy of 95.6%, demonstrating superior generalization with limited labeled data.

Part segmentation on ShapeNetPart. We evaluated the effectiveness of our PointACL framework
on the part segmentation task using the ShapeNetPart dataset, as shown in Table 3. PointACL
achieves superior performance compared to both traditional supervised models like PointNet and
DGCNN and recent self-supervised methods like Point-MAE and PointGPT-S. Specifically, our
method attains an instance mIoU of 86.2% and a class mIoU of 85.0%, showing improvements over
existing methods. These results demonstrate that our attention-driven contrastive learning strategy
effectively enhances the model’s ability to segment parts in complex 3D shapes, confirming the
efficacy of PointACL in advancing the state-of-the-art in point cloud segmentation.

4.3 ABLATION STUDIES

In our ablation studies, we use PointGPT-S as the backbone and conduct extensive experiments
on ScanObjectNN to validate the effectiveness of each component. More importantly, we also per-
formed robustness tests to assess the model’s resilience under various noisy environments, including
Gaussian noise, rotation, scaling, and point dropout.

Mask strategy and loss optimization function. Table 4(a) summarizes the ablation study on dif-
ferent mask strategies and loss functions for the OBJ-BG and OBJ-ONLY settings. We evaluated
No Mask, Random Mask, Low-Attention Mask, and High-Attention Mask strategies, combined with
the original generation loss (Lorigin) and the proposed contrastive loss (Lcontra). Without mask-
ing, the baseline model achieves accuracies of 91.6% (OBJ-BG) and 90.0% (OBJ-ONLY). Applying
a Random Mask slightly improves performance, and adding Lcontra further enhances accuracies to
92.1% and 90.9%. The Low-Attention Mask strategy yields marginal gains, but when combined with
Lcontra, it reaches 92.0% and 91.4%. The High-Attention Mask strategy delivers the best results.
With Lorigin alone, it attains 91.9% (OBJ-BG) and 91.2% (OBJ-ONLY). Incorporating Lcontra

boosts performance to 92.3% and 91.6%, the highest in our study. This demonstrates that masking
the most informative regions forces the model to learn robust features from less informative areas,
and the contrastive loss Lcontra enhances feature discrimination. In summary, the combination of
the High-Attention Mask strategy and the contrastive loss Lcontra significantly improves classifica-
tion accuracy, highlighting the effectiveness of both components in our method.

Mask ratio. As shown in Table 4(b), the model’s performance improves with increasing masking,
peaking at a mask ratio of R = 0.6. which achieves classification accuracies of 92.3% on the OBJ-
BG dataset and 91.6% on the OBJ-ONLY dataset. However, a higher mask ratio (0.8) hinders the
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Table 4: Ablation studies of components in PointACL. We report the overall accuracy (%) on
ScanObjectNN with PointGPT-S as our backbone. The settings adopted by PointACL are marked .

(a) Mask Strategy and Loss Optimization Function.

Mask Strategy Lorigin Lcontra OBJ-BG OBJ-ONLY

NO Mask ✓ - 91.6 90.0
Random Mask ✓ - 91.7 90.5
Random Mask ✓ ✓ 92.1 90.9
Low-Attention Mask ✓ - 91.7 90.7
Low-Attention Mask ✓ ✓ 92.0 91.4
High-Attention Mask ✓ - 91.9 91.2
High-Attention Mask ✓ ✓ 92.3 91.6

(b) Mask Ratio.

R OBJ-BG OBJ-ONLY

0.2 91.7 90.9
0.4 91.9 91.2
0.6 92.3 91.6
0.8 91.6 90.5

(c) Probability Temperature.

τpro OBJ-BG OBJ-ONLY

0.3 91.6 91.4
0.5 92.3 91.6
0.7 92.1 91.6
0.9 91.9 91.4

(d) Contrastive Loss Weight.

λ OBJ-BG OBJ-ONLY

0.4 91.7 90.9
0.6 92.3 91.6
0.8 92.1 90.9
1 91.7 91.0

Table 5: Robustness analysis. We report the classification accuracy (%) with four noisy environ-
ments: Gaussian noise, rotation, scaling, and droppoint on ScanObjectNN.

DataSet Methods Gaussian Noise Rotation Scaling DropPoint

σ=0.01 σ=0.03 X[-30 30] Y[-30 30] Z[-30 30] (0.5, 1.5) 0.2 0.6

OBJ-BG

Point-MAE 77.5 47.2 72.1 87.6 72.5 86.2 87.4 84.9
+PointACL 81.8 60.6 77.3 90.5 77.3 89.3 90.7 89.7
↑ Improve +4.3 +13.4 +5.2 +2.9 +4.8 +3.1 +3.3 +4.8

PointGPT-S 78.6 51.5 72.3 89.3 74.0 88.3 90.7 85.0
+PointACL 81.8 57.8 76.8 91.9 79.2 90.4 91.4 86.1
↑ Improve +3.2 +6.3 +4.5 +2.6 +5.2 +2.1 +0.7 +1.1

OBJ-ONLY

Point-MAE 70.9 37.0 75.4 86.7 74.9 84.0 86.6 84.5
+PointACL 76.2 54.2 78.5 88.6 79.7 86.7 88.5 87.6
↑ Improve +5.3 +17.2 +3.1 +1.9 +4.8 +2.7 +1.9 +3.1

PointGPT-S 71.2 39.4 72.3 89.3 74.5 86.6 89.7 85.9
+PointACL 73.3 41.3 79.9 92.3 81.8 90.0 91.2 87.4
↑ Improve +2.1 +1.9 +7.6 +3.0 +7.3 +3.4 +1.5 +1.5

model’s performance due to the loss of critical information necessary for accurate predictions. This
emphasizes the importance of an optimal mask ratio that balances data complexity with sufficient
information retention for robust classification.

Probability temperature. We further explore the effects of varying the temperature hyperparameter
in the dynamic masking probability. Results in Table 4(c) indicate that setting τpro to 0.5 yields the
highest classification accuracies, achieving 92.3% on OBJ-BG and 91.6% on OBJ-ONLY. This sug-
gests that this temperature value effectively masks the region of higher attention while maintaining
a certain level of dynamic selection, allowing the model to improve global understanding.

Contrastive loss weight. The analysis of contrastive loss weight in Table 4(d) demonstrates that λ =
0.6 strikes the best balance between the original loss and the contrastive loss. This optimal balance
maximizes overall performance and enhances accuracy across both datasets. By fine-tuning the loss
weights, PointACL effectively leverages contrastive learning to improve global understanding and
generalization capabilities while maintaining task-specific performance.

Robustness analysis. To assess the robustness of our PointACL framework, we conducted ex-
periments on the ScanObjectNN dataset under different noisy environments, including Gaussian
noise, rotation, scaling, and point dropout, as detailed in Table 5. Compared to the state-of-the-
art models Point-MAE and PointGPT-S, our method consistently achieves higher classification ac-
curacies across both OBJ-BG and OBJ-ONLY settings. For instance, under Gaussian noise with
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Point-MAEInput PointGPT PointACL Point-MAEInput PointGPT PointACL

Figure 3: Attention visualization of PointACL with Point-MAE and PointGPT. Patches with
high attention are closer to red, while patches with low attention are closer to blue. Point-MAE is
employed as the backbone of our proposed PointACL.

σ = 0.03, PointACL outperforms Point-MAE by up to 13.4% and PointGPT-S by 6.3%. Similar
improvements are observed with rotational perturbations around the X, Y, and Z axes, scaling fac-
tors ranging from 0.5 to 1.5, and point dropout rates of 20% and 60%. These results demonstrate
that our attention-driven dynamic masking strategy and contrastive learning significantly enhance
the model’s resilience to noise and transformations. The consistent performance gains highlight
PointACL’s ability to capture more comprehensive and discriminative features, making it robust in
real-world scenarios where point clouds often contain noise, occlusions, and varying orientations.

4.4 QUALITATIVE ANALYSIS

As shown in Figure 3, we visualize the classification heatmaps generated by different models (Point-
MAE, PointGPT, and our proposed PointACL), which reveals significant distinctions in how each
model attends to various regions of the point clouds. PointACL exhibits a more balanced and com-
prehensive activation across both prominent and under-represented areas of the input data. This
observation directly corresponds with the issues highlighted in our introduction, where we identi-
fied that existing Transformer-based models tend to overlook latent information in less prominent
regions, resulting in limited global understanding and increased sensitivity to perturbations. By
integrating our attention-driven dynamic masking strategy, PointACL effectively encourages the
model to focus on under-attended regions, thus enhancing its ability to capture the global structural
information of the point cloud. Additionally, the contrastive learning further refines feature dis-
crimination and generalization. In contrast, the heatmaps of Point-MAE and PointGPT indicate a
predominant focus on high-attention regions, potentially neglecting valuable information elsewhere.
The richer and more evenly distributed activations in PointACL’s heatmaps substantiate its supe-
rior capacity for comprehensive point cloud analysis, confirming the efficacy of our approach in
addressing the limitations of existing models and underscoring the advantages of our methods.

5 CONCLUSION

In this work, we present PointACL, an attention-driven contrastive learning framework. By integrat-
ing an attention-driven dynamic masking strategy with contrastive learning, our method leverages
the model’s inherent attention distribution to dynamically mask high-attention regions. This ap-
proach guides the network to focus on under-attended low-attention areas, enabling it to learn more
comprehensive and robust point cloud feature representations. Our extensive experiments demon-
strate that PointACL significantly enhances the understanding of global structures in point clouds,
leading to notable improvements across various tasks, including object classification, part segmenta-
tion, and few-shot learning. We hope that our work can inspire more explorations of self-supervised
learning and contrastive learning in point cloud understanding.
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A APPENDIX

A.1 ABLATION STUDY ANALYSIS

Training strategy analysis. Given that PointACL determines mask patches based on the attention
weights of the backbone network, we suggest two strategies for obtaining these attention weights.
The first strategy initializes the network with random attention and applies the attention-driven dy-
namic masking for adaptive attention refinement during subsequent training. Following standard
protocol, the model undergoes pre-training for 300 epochs. This approach does not incur any ad-
ditional training overhead. The second strategy, by contrast, employs attention learned from the
standard branch for initialization, aiming to dynamically adjust the model’s dependencies in a tar-
geted manner. This method necessitates 300 epochs of pre-training in the standard branch, followed
by another 300 epochs in the dual branch, resulting in a total of 600 epochs.

Furthermore, we introduce PointACL during the fine-tuning phase of downstream tasks to further
evaluate the scalability and effectiveness of our approach. Two strategies are employed here as well:
one leverages the pre-trained attention for initialization, while the other requires an additional 300
epochs of training to obtain attention learned from the standard branch for initialization.

Our experimental results, presented in Table 6, demonstrate the inherent advantages of our PointACL
over existing approaches (such as Point-MAE and PointGPT-S) under the same training time and
training phase. For Point-MAE, with 300 pre-training epochs or 300 fine-tuning epochs, PointACL
achieves an accuracy of 90.5% on the OBJ-BG dataset, surpassing Point-MAE’s 90.0% by a margin
of 0.5%. This improvement persists when both methods are trained for 600 epochs during the fine-
tuning phase, with PointACL reaching 90.9% accuracy compared to Point-MAE’s 90.0%. Similarly,
when evaluating against PointGPT-S, PointACL continues to exhibit superior performance. With
both models trained for 300 fine-tuning epochs on OBJ-ONLY, PointACL attains an accuracy of
90.9% compared to PointGPT-S’s 90.2%. Even when the training epochs are extended to 600,
PointACL maintains its advantage, achieving 91.6% accuracy, outperforming PointGPT-S by 1.4%.
On the OBJ-BG dataset, a similar pattern is observed, where PointACL consistently outperforms
PointGPT-S regardless of training duration.

The superior performance of PointACL across various datasets, training epochs, and application
phases validates the efficacy of our framework. It demonstrates the performance gains of PointACL
are not a consequence of longer training times but are a direct result of designed framework contribu-
tions—namely, the attention-driven dynamic masking strategy with contrastive learning. By focus-
ing on under-attended regions and enhancing feature discrimination, PointACL effectively captures
both global and local features, leading to enhanced robustness and generalization.

Table 6: Training strategy analysis. We report the classification accuracy (%) on ScanObjectNN.

DataSet Methods Pre-Training Epoch Finetune Epoch

300 600 300 600

OBJ-BG

Point-MAE 90.0 90.2 90.0 90.0
+PointACL 90.5 90.5 90.5 90.9
↑ Improve +0.5 +0.3 +0.5 +0.9

PointGPT-S 91.6 91.7 91.6 91.9
+PointACL 91.9 91.9 92.1 92.3
↑ Improve +0.3 +0.2 +0.5 +0.4

OBJ-ONLY

Point-MAE 88.3 88.5 88.3 88.3
+PointACL 88.8 89.8 89.2 88.8
↑ Improve +0.5 +1.3 +0.9 +0.5

PointGPT-S 90.0 90.2 90.0 90.2
+PointACL 90.5 91.4 90.9 91.6
↑ Improve +0.5 +1.2 +0.9 +1.4

Mask strategy analysis. We conduct a thorough investigation into the effects of various masking
strategies and masking ratios on the classification performance under the OBJ-BG and OBJ-ONLY
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Table 7: Mask strategy analysis. We report the classification accuracy (%) on ScanObjectNN.

Mask Strategy Mask Ratio Mask Probability OBJ-BG OBJ-ONLY

Random Mask

0.2 - 91.6 90.0
0.4 - 91.7 90.2
0.6 - 92.1 90.9
0.8 - 90.5 89.8

Low-Attention Mask

0.2 Fixed 91.6 90.0
0.4 Fixed 91.9 90.2
0.6 Fixed 91.7 90.5
0.8 Fixed 91.1 90.0

High-Attention Mask

0.2 Fixed 91.9 90.2
0.4 Fixed 91.9 90.9
0.6 Fixed 91.9 90.9
0.8 Fixed 91.3 90.0

High-Attention Mask

0.2 Dynamic 91.7 90.9
0.4 Dynamic 91.9 91.2
0.6 Dynamic 92.3 91.6
0.8 Dynamic 91.6 90.5

settings. Four distinct masking strategies are evaluated: Random Masking, Low-Attention Mask-
ing, High-Attention Masking with Fixed Masking Probability, and High-Attention Masking with
Dynamic Masking Probability. The detailed experimental results are presented in Table 7. For the
Random Mask strategy, we observe that increasing the mask ratio from 0.2 to 0.6 leads to improved
performance, with accuracies peaking at 92.1% on OBJ-BG and 90.9% on OBJ-ONLY when the
mask ratio is 0.6. However, further increasing the mask ratio to 0.8 results in a decmidrule in ac-
curacy. This suggests that masking too many patches hinders the model’s ability to learn effective
representations. The Low-Attention Mask strategy shows a similar trend but does not surpass the
performance of the Random Mask. The highest accuracy achieved with this strategy is 91.9% on
OBJ-BG at a mask ratio of 0.4, indicating that masking low-attention regions with a fixed probability
offers limited benefits in enhancing model performance. When employing the High-Attention Mask
with Fixed Mask Probability, the model achieves comparable results to the Random Mask strategy,
with a maximum accuracy of 91.9% on OBJ-BG across multiple mask ratios. This suggests that
while masking high-attention regions can encourage the model to focus on under-represented areas,
a fixed mask probability may not fully capitalize on this strategy’s potential.

In contrast, the High-Attention Mask with Dynamic Mask Probability demonstrates notable perfor-
mance improvements. Specifically, at a mask ratio of 0.6, our model attains the highest accuracies
of 92.3% on OBJ-BG and 91.6% on OBJ-ONLY, outperforming all other masking strategies. The
dynamic adjustment of the mask probability based on attention weights allows the model to more ef-
fectively target and mask the most prominent regions, thereby compelling it to learn richer features
from less attended areas. This dynamic approach enhances the model’s ability to capture global
structural information and reduces its reliance on a limited set of salient features.

The experimental results confirm the effectiveness of the proposed attention-driven dynamic mask-
ing strategy, which enhances feature representation and classification performance by encouraging
the model to learn from under-attended regions. This approach addresses the limitations of prior
methods that overly focus on prominent local features, improving robustness and generalization in
3D point cloud analysis.

A.2 ROBUTNESS ANALYSIS

We evaluate the robustness of our method against existing approaches under Gaussian noise condi-
tions using the OBJ-BG and OBJ-ONLY subsets of the ScanObjectNN dataset. To simulate noisy
point clouds, we add Gaussian noise X ∼ N (0, σ2) to all points, incrementally increasing the noise
level by varying σ from 0 to 0.05 with step size = 0.005.
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Figure 4: Gaussian noise analysis on ScanObjectNN. While the performance of existing meth-
ods decmidrules sharply with increasing Gaussian noise, this issue is mitigated by incorporating
PointACL. Notably, when Point-MAE is used as the backbone network, our PointACL significantly
enhances its robustness, resulting in minimal accuracy degradation.

As illustrated in Figure 4, while the accuracy of all methods decmidrules as the noise standard devi-
ation σ increases, PointACL exhibits a slower performance degradation, demonstrating its superior
ability to handle noisy point clouds. Notably, PointACL significantly improves the robustness of the
Point-MAE backbone and outperforms baseline methods such as Point-MAE and PointGPT, par-
ticularly under extreme noise conditions (σ = 0.05). This improvement can be attributed to our
attention-guided dynamic masking strategy, which encourages the model to focus on under-attended
regions, thereby enhancing its capacity to capture comprehensive global structural information from
point clouds. By not solely relying on salient local features, PointACL mitigates sensitivity to
noise-induced perturbations. Additionally, the integration of contrastive learning with the original
task further refines feature discrimination, enabling the model to distinguish subtle variations in
data even under noisy conditions. The consistently strong performance across both the OBJ-BG and
OBJ-ONLY datasets underscores the versatility and reliability of PointACL in diverse settings.

In real-world applications, 3D data is often affected by noise from sensor inaccuracies and environ-
mental factors, making PointACL’s robustness to Gaussian noise especially valuable. Its strong per-
formance under such conditions demonstrates its practicality for tasks where data quality is uncer-
tain, underscoring the effectiveness of our framework and its advantage over existing Transformer-
based methods.

A.3 FEATURE DISTRIBUTION ANALYSIS

Figure 5 illustrates the evolution of the global feature distribution using t-SNE during the fine-tuning
of PointACL, with Point-MAE as the backbone, on the ModelNet40 dataset. In the early stage
feature distribution, the feature space is highly scattered with overlapping clusters, indicating that the
backbone has not yet learned to effectively discriminate between different classes. As the backbone
starts to align global representations from standard branch and masked branch based on attention-
driven dynamic masking, the transitional feature distribution shows a notable improvement, with
clusters becoming more distinct. However, there still remains some inter-class overlap.

In the final feature distribution, the clusters are well-separated and compact, reflecting a highly
discriminative feature space. The backbone has successfully learned to distinguish between different
classes with a high degree of accuracy. The representative clusters at the bottom of each visualization
further emphasize this progression, showing a clear transition from mixed and overlapping clusters
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Figure 5: Feature distribution visualization on ModelNet40. Top: An overview of the evolution
of feature distributions across all 40 classes. Bottom: Detailed depiction of the evolution of feature
distributions for selected typical classes.

in the early stages to well-defined and isolated clusters in the final stage. These visualizations
highlight the effectiveness of the PointACL, demonstrating a clear trajectory of improvement in
feature discrimination, culminating in a robust and well-defined feature space.

A.4 LIMATATION ANALYSIS

Despite the significant improvements achieved by PointACL, there are still areas that offer oppor-
tunities for further enhancement. For example, while our method has been validated on specific
datasets, applying it to a broader range of datasets could further demonstrate its generalizability and
robustness. Additionally, although we have shown that PointACL integrates seamlessly with certain
Transformer-based architectures, exploring its compatibility with an even wider variety of models
could highlight its versatility even more. These considerations open avenues for future research to
build upon our work and continue advancing the field of point cloud analysis.

A.5 FUTURE WORKS

While the proposed PointACL framework has shown significant improvements in point cloud analy-
sis tasks, there are several promising directions for future research to further enhance its capabilities
and applications. One potential avenue is the integration of multi-modal data sources to enrich
point cloud representations. By incorporating complementary information from modalities such as
images, textual descriptions, or LiDAR intensity values, the model can leverage cross-modal corre-
lations to learn more comprehensive and robust feature embeddings. This multi-modal fusion could
enhance the model’s ability to understand complex scenes and improve performance in tasks like
3D object detection and semantic segmentation. Another direction is the exploration of hierarchical
or multi-scale feature learning within the PointACL framework. By capturing features at various
spatial resolutions, the model can better represent both local geometric details and global structural
contexts. This enhancement could be particularly beneficial for handling large-scale point clouds
or scenes with significant variations in point densities. Lastly, applying the PointACL approach to
other types of data representations, such as meshes or voxels, could broaden its applicability across
different domains in 3D data processing. Exploring transfer learning techniques between these rep-
resentations may also provide insights into shared structures and features among various 3D data
forms.

By pursuing these future research directions, we aim to further advance the capabilities of PointACL,
contributing to the development of more robust, efficient, and versatile models for point cloud anal-
ysis. These enhancements have the potential to impact a wide range of applications, including
robotics, augmented reality, virtual reality, and autonomous navigation, by enabling more accurate
and comprehensive understanding of complex 3D environments.
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