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Abstract
Prototyping complex computer-aided design (CAD) models in modern softwares
can be very time-consuming. This is due to the lack of intelligent systems that
can quickly generate simpler intermediate parts. We propose Text2CAD, the
first AI framework for generating text-to-parametric CAD models using designer-
friendly instructions for all skill levels. Furthermore, we introduce a data annotation
pipeline for generating text prompts based on natural language instructions for
the DeepCAD dataset using Mistral and LLaVA-NeXT. The dataset contains ∼
170K models and ∼ 660K text annotations, from abstract CAD descriptions (e.g.,
generate two concentric cylinders) to detailed specifications (e.g., draw two circles
with center (x, y) and radius r1, r2, and extrude along the normal by d...). Within
the Text2CAD framework, we propose an end-to-end transformer-based auto-
regressive network to generate parametric CAD models from input texts. We
evaluate the performance of our model through a mixture of metrics, including
visual quality, parametric precision, and geometrical accuracy. Our proposed
framework shows great potential in AI-aided design applications. Project page is
available at https://sadilkhan.github.io/text2cad-project/.

1 Introduction
A ring shape is created by drawing
two concentric circles on the XY
plane and scaled by 1 and unit 1.2
respectively, and extruding it along
the Z-axis 0.1 unit to form a 3D
model with a hollow center.

A simple rectangular base
of length 0.05 unit, width
0.05 unit and height 1 unit

A long rectangular shape.

Figure 1: Designers can efficiently gen-
erate parametric CAD models from text
prompts. The prompts can vary from
abstract shape descriptions to detailed
parametric instructions.

Computer-Aided Design (CAD) plays a crucial role in in-
dustrial design and additive manufacturing (AM), revolu-
tionizing the way products are prototyped [7]. This type of
prototyping requires feature-based part modeling [7], pre-
cision measurements [40], and creative part editing [60] at
different design stages [40, 60]. While CAD software saves
the final model as a boundary representation (B-Rep) [22],
the design process often involves a chain of 2D sketches
(e.g., circles, lines, splines) and 3D operations (e.g., extru-
sion, loft, fillet) [56, 58, 59, 19]. This representation allows
the designers to control the design history and iteratively
refine the final models.
Despite their capabilities, modern CAD tools lack the AI-

assisted design integration [37]. In Figure 1, we illustrate
how an intelligent system capable of generating parametric
CAD models from textual descriptions can be utilized to as-
semble a complex 3D model. Although tools like FreeCAD
[1], SolidWorks [46], and Para-Solid [45] offer 3D CAD
models from catalogs like McMaster-Carr [2] for the reuse
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of existing CAD models, no such system currently exists that can generate parametric CAD models
from textual design descriptions. One primary challenge for developing such a system is defining
suitable textual descriptions for parametric CAD generation, making it difficult to create deep learning
methods that accurately convert these descriptions into precise CAD models.

To address this gap, in this paper we propose Text2CAD as the first AI framework for generating
parametric CAD models represented by construction sequences (i.e., parameters for 2D sketches
and extrusions) from design-related text prompts. We faced two primary challenges in fulfilling this
goal: (1) the unavailability of the dataset and (2) a network to map the texts into CAD construction
sequences. Towards this end, we introduce a data annotation pipeline to generate a dataset containing
textual descriptions of the CAD models in DeepCAD [56] dataset. We leverage the open-source Large
Language Models (LLMs) [16] and Vision Language Models [27, 26] for this task. Our annotated
text prompts are multi-level in nature ranging from highly abstract (e.g., a long rectangular shape,
a thin S-shaped object) to more specific with detailed parametric descriptions (e.g., first draw a
rectangle from (x1, y1) and (x2, y2).... then extrude the sketch along z-axis..). These prompts are
designed for users of all skill levels and can contain arithmetic logic and numerical expressions
as part of the design details. Within this framework, we introduce Text2CAD Transformer [49], a
conditional deep-generative network for generating CAD construction language † from text prompt
in an auto-regressive fashion.

Currently, there are works on text-to-3D generation [25, 34, 51, 32, 12] that have shown significant
advancements in creating 3D scenes and shapes from textual descriptions. But existing text-to-3D
methods are not applicable for generating CAD models from text descriptions as the final output of
these models is neither parametric nor human-editable in nature. Very recently web API from zoo
developers [4] has introduced CAD generation app using text prompt from users and programmable
scripting language (as KittiCADLanguage†) for designers to edit and modify. However, the generated
CAD models are obtained in the form of solid-body, and not decomposed to its intermediate sketch-
and-extrusion steps as proposed in our Text2CAD. On the other hand, Given raw numerical data
of any parametric CAD model, current state-of-the-art large language models (LLMs), such as
pre-trained Mistral-50b [16] or GPT-4 [35] and open source Llama [47] may only derive procedural
scripting codes for other APIs, such as FreeCAD [38] or OpenSCAD [30], to generate a model.
However, in contrast to our Text2CAD, such LLM augmented CAD generation approach will not
be designer-friendly, not suitable for beginner-level designers, will not automate the development
process in easy ways, and will restrict the re-usability of the scripts in case of complex shapes.
Alternatively, Using state-of-the-art vision language models, such as LLaVa [27, 26], GPT-4V [61],
as an alternative for deducing CAD construction sequences performs poorly because of two main
reasons – (1) no training datasets are available that provide natural language-based design instructions
as annotations for raw CAD construction sequences and (2) most VLMs are trained on categorical
description/caption datasets of 3D objects (e.g., LLaVA-NeXT [26] predicts ‘two concentric hollow
cylinders ’as toilet paper). We remove the above limitations in our Text2CAD by creating new
large-scale annotations for DeepCAD [56] dataset using responses from LLMs and VLMs to train
our multi-modal model. Our contributions can be summarized as follows:

• We propose Text2CAD as the first AI framework for generating parametric 3D CAD models
using textual descriptions.

• We introduce a data annotation pipeline that leverages both LLMs and VLMs to generate a
dataset that contains text prompts with varying level of complexities and parametric details.

• We propose an end-to-end transformer-based autoregressive architecture for generating CAD
design history from input text prompts.

• Our experimental analysis demonstrates superior performance over the two-stage baseline
method adapted for the task at hand.

The rest of the sections are organized as follows: Section 2 reviews the related work in CAD domains.
Section 3 outlines our data annotation pipeline. Section 4 details our proposed Text2CAD transformer
architecture. Section 5 presents our experimental results. Section 6 discusses the limitations of our
current framework, and Section 7 concludes the paper.

†In this paper, the phrases ‘CAD construction language ’, ‘CAD design history ’and ‘CAD construction
sequence ’are used interchangeably.

†https://github.com/KittyCAD/modeling-app/tree/main?tab=readme-ov-file
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2 Related Work
Datasets and Generative models for CAD: Current datasets and generative models for CAD are
limited and often not suited for developing knowledge-based CAD applications. Some datasets focus
solely on 2D sketch design [43, 10, 44], and other popular datasets like ABC [20], Fusion360 Gallery
[55], Thingi10K [62], and CC3D [6, 9] provide 3D meshes, BRep (boundary representation), and
other geometry or topology related annotations that are suitable for 3D modeling. DeepCAD [56]
dataset, a subset of ABC, and Fusion360 [55] provide CAD construction sequences in the form of
sketch and extrusion to deduce design history. However, CAD models may consist of numerous other
types of operations beside extrusion, and such construction sequences with other CAD operations are
not available in the current datasets. Finally, there is no dataset available that provides textual design
descriptions as annotations to create a conversational AI system for CAD modeling.

Current supervised learning methods that fall under sequence-to-sequence Sketch/CAD language
modeling [56, 58, 19, 10] filters out unnecessary metadata from lengthy raw design files and represent
them as desired sequence of input/output tokens. For instance, Ganin et al. [10] represents design
files as messages in Protocol Buffer [48] format. Hierarchical Neural Coding (HNC) method [58]
represents the desired design sequence in tree structure of 2D sketch loops, 2D bounding boxes over
all loops as profile, and 3D bounding boxes over all profiles as solid. CAD-SIGNet [19] represents
CAD construction language as a sequence composed of 2D sketch and extrusion parameters. In
Text2CAD method, we map the raw design history obtained from DeepCAD metadata into textual
descriptions.

CAD Construction Language using Transformers: Transformer-based [49] network architecture
is the preferred choice for many deep learning-based applications related to CAD modeling [56], 3D
scan-to-CAD reverse engineering [19, 23], representation learning [18] and others [39]. CAD as a
language [10] describe how 2D sketches can be transformed into design language by sequencing
tokens of 2D parametric curves as message passing units. Mixture of Transformer [49] and Pointer
Networks [50] decode the sketch parameters in auto-regressive fashion.

Formalizing constrained 2D sketches, i.e., collection of curves (e.g., line, arc, circle and splines)
with dimensional and geometric constraints (e.g., co-incidence, perpendicular, co-linearity), as a
language for CAD modeling has been studied over last few years [36, 10, 33, 54, 24]. However, the
first proposal of developing a CAD language interface was suggested decades ago in [41]. Among the
recent works in this direction, SketchGen [36] represents 2D sketches as a sequence of the tokens for
curves and constraints. The decoder-only transformer model in [36] predicts optimal sketches through
nucleus sampling [13] of token embedding vectors, focusing on replicating drawing processes of
CAD designers. Polygen [33] method also employs Transformer model [49] to generate detailed
3D polygonal meshes by learning joint distribution on vertices and faces of a CAD. As an extension
of [33], TurtleGen [54] also propose decoder-only transformer model to learn joint distribution of
vertices and edges together that form sketches and represented as graphs in CAD models.

3D CAD modeling steps as a language is not directly formulated by any state-of-the-art multi-
modal CAD learning methods [56, 29, 19, 59, 9, 31, 58, 24]. Khan et al. [19] propose a novel
auto-regressive generation of sketch-and-extrusion parameters directly from 3D point clouds as input
whereas DeepCAD [56], SkexGen [59], HNC [58] and MultiCAD [29] adopts a two-stage strategy to
generate the output. MultiCAD [29] adopt multi-modal contrastive learning to associate geometry
features with features of CAD construction sequences whereas CAD-SIGNet [19] requires an extra
step as user feedback to vote for one of the many generated sketches at current step to predict the next
one. Unlike previous approaches, our proposed Text2CAD transformer is the first auto-regressive
network that generates CAD construction sequences directly from textual descriptions.

3 Text2CAD Data Annotation

The diagram in Figure 2 outlines the process of generating textual annotations for DeepCAD dataset
[56] using Large Language Models (LLMs) [17, 35, 47] and Vision Language Models (VLMs)
[27, 26]. These annotations describe the corresponding CAD construction workflow in human
interpretable format. To enrich the DeepCAD [56] dataset with textual annotations, we implement
a two-stage description generation pipeline using the capabilities of both LLMs and VLMs. The
two stages are - (1) generating abstract shape descriptions using VLM, and (2) extracting multi-level
textual instructions from LLM based on the shape descriptions and design details provided in the
dataset. An example text prompt for the CAD model shown in top-left of the Figure 2: ‘The CAD

3



3D CAD Model

Multi-View Images
(MVI) Extractor

VLM Prompt

Shape information

Minimal Metadata
Generator

Natural Language Instruction (NLI)
Generation Prompt

K-Shot

Multi-Level Natural Language
Instruction (NLI) Generation Prompt

 Expert Level
CAD Instructions

 Intermediate Level
CAD Instructions

 Beginner Level
CAD Instructions

 Abstract Level
CAD Instructions

Level-0 Level-1 Level-2 Level-3

DeepCAD
Dataset

  “final_shape”: “A cylindrical object with a flat 
                                top and bottom”
     “parts”: { “part_1”:  {
                   "coordinate_system": {
                         "Euler Angles": [0.0, 0.0, 0.0],
                         "Translation Vector": [0.1071, 0.1071,          
0.0974] }, 
                   "sketch": {
                          "face_1": {
                                  "loop_1": {
                                           "circle_1": {
                                                     "Center": [0.112, 0.112],
                                                      "Radius": 0.112
                                            } ... }, ... }
                   "extrusion": {
                       "extrude_depth_towards_normal": 0.0,
                       "extrude_depth_opposite_normal":
0.0487,
                       "sketch_scale": 0.6429,
                       "operation":
"NewBodyFeatureOperation: }, ...}

LLaVaNext +
Mistral-7B

Minimal JSON

[INST]
 You are a senior CAD engineer and you are tasked to provide natural language
instructions to a junior CAD designer for generating a parametric CAD model.

 Overview information about the CAD assembly JSON:
 1. The CAD assembly json lists the process of constructing a CAD model.
 2. Every CAD model consists of one or multiple intermediate CAD parts.
 3. These intermediate CAD parts are listed in the "parts" key of the CAD assembly
JSON.
 4. The first intermediate CAD part is the base part and the subsequent parts build
upon the previously constructed parts using the operation defined for that part.
 5. All intermediate parts combine to a final cad model.

Every intermediate CAD part is generated using the following steps:
 Step 1: Draw a 2D sketch.
 Step 2: Scale the 2D sketch using the sketch_scale scaling parameter.
 Step 3: Transform the scaled 2D sketch into 3D Sketch using the euler angles and
translation.
 Step 4: Extrude the 2D sketch to generate the 3D model. ......   [/INST]

[INST] This is an image of a Computer Aided Design (CAD) model.  You
are a senior CAD engineer who knows the object name, where and how
the CAD model is used. Give an accurate natural language description
about the CAD model to a junior CAD designer who can design it from
your simple description. Wrap the description in the following tags
<OBJECT> and </OBJECT>.
Following are some bad examples:
1. CAD model
2. Metal object
Abide by the following rules.
Rules:
1. Do not use words like - "blue", "shadow", "transparent", "metal",
"plastic", "image", "black", "grey", "CAD model", "abstract", "orange",
"purple", "golden", "green"
2. .... /INST]

Minimal Json

Raw Json

NLI Prompt

Mistral-50B (MoE)

NLI Response

VLM Prompt

Example NLI Prompt

Figure 2: Text2CAD Data Annotation Pipeline: Our data annotation pipeline generates multi-level
text prompts describing the construction workflow of a CAD model with varying complexities. We
use a two-stage method - (Stage 1) Shape description generation using VLM (Stage 2) Multi-Level
textual annotation generation using LLM.

model consists of a cylindrical object with a flat top and bottom connected by a curved surface and
slightly tapered towards the bottom. This object is created by first setting up a coordinate system,
then sketching two concentric circles and drawing a closed loop with lines and an arc on a shared
plane. The sketch is then extruded along the normal direction to form a solid body. The resulting
part has a height of approximately 0.0487 units ’. In this example, the phrase in the violet color is
generated by a VLM. An LLM uses this description along with the CAD construction information to
generate the prompt.

Shape Descriptions using VLM: The initial step of our annotation generation pipeline involves
generating abstract object-level descriptions of the CAD models using LLaVA-NeXT [26] model.
The objective in this step is to accurately capture the structural descriptions of the 3D shape, such
as "a ring-like structure", "a cylinder", or "a hexagon with a cylinder on top". We generate shape
descriptions for both the final CAD model and its intermediate parts. We first produce multi-view
images from predetermined camera angles for each individual parts and the final CAD model. These
images are then utilized in a predefined prompt (refer to the top-right of Figure 2) for the LLaVA-
NeXT [26] model to generate simplified shape descriptions of all individual parts as well as the
complete final shape.

Multi-level Design Instructions using LLM: In this stage, multiple textual annotations correspond-
ing to different design details of a CAD model are generated using Mixtral-50B [17] through a series
of steps (refer to the middle-column in Figure 2). The DeepCAD [56] dataset contains CAD construc-
tion sequences in JSON format. We first preprocess the raw CAD construction sequences using a
‘Minimal Metadata Generator ’which replaces random, meaningless keys with more meaningful terms
(e.g.,"part_1", "loop_1"). This step aims to reduce the hallucinations [14] by Mixtral-50B [17]. The
minimal metadata is further augmented with the shape descriptions for each parts and the final model
generated by the VLM. The output of this process is a condensed representation of the shapes and their
relational attributes within the CAD design (see bottom-left in Figure 2). With the minimal metadata
at hand, we then craft a prompt (refer to the bottom-right in Figure 2) to generate detailed natural
language instructions (NLI) ensuring a minimal loss of information from the minimal metadata.
Afterward, the NLI responses are refined by LLM using a k-shot [5] "Multi-Level Natural Language
Instruction Generation Prompt" to generate multi-level instructions of different specificity and details.
We categorize these levels as:

• Abstract level (L0): Abstract Shape Descriptions of the final CAD model extracted using
VLM in the first stage.
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• Beginner level (L1): Simplified Description - Aimed at laypersons or preliminary design
stages, this level provides a simplified account of the design steps, eschewing complex
measurements and jargon.

• Intermediate level (L2): Generalized Geometric Description - This level abstracts some
of the details, providing a generalized description that balances comprehensibility with
technical accuracy.

• Expert level (L3): Detailed Geometric Description with Relative Values - Here, the instruc-
tions include precise geometric descriptions and relative measurements, catering to users
who require an in-depth understanding or are performing the CAD modeling task.

Our annotations consist of the generated multi-level instructions at the final stage. We generate these
annotations over the course of 10 days. It’s worth noting that one can directly generate the multi-level
instructions from the minimal metadata without creating the detailed natural language instructions in
the second stage. We observe that this strategy increases the LLM’s tendency for hallucinations [14]
and it generates more inaccurate multi-level instructions. Instead our method follows chain-of-thought
prompting strategy as outlined in [52] which greatly reduces such bottleneck. More details on our
annotation pipeline are provided in Section 10 and 11 of the supplementary material.

4 Text2CAD Transformer
The Text2CAD transformer architecture, as shown in Figure 3, is designed to transform natural
language descriptions into 3D CAD models by deducing all its intermediate design steps autoregres-
sively. Given an input text prompt T ∈ RNp , where Np is the number of words in the text, our model
learns the probability distribution, P (C|T ) defined as

P (C|T ) =
Nc∏
t=1

P (ct|c1:t−1, T ; θ) (1)

where C is the output CAD sequence, Nc is the number of tokens in C and θ is the learnable model
parameter. We represent C as a sequence of sketch and extrusion tokens as proposed in [19]. Each to-
ken ct ∈ C is a 2D token that either denotes a (1) 2D-coordinate of the primitives in sketch, (2) one of
the extrusion parameters (euler angles/translation vector/extrusion distances/boolean operation/sketch
scale) or (3) one of the end tokens (curve/loop/face/sketch/extrusion/start sequence/end sequence).
Following [56, 19]. We quantize the 2D coordinates as well as the continuous extrusion parameters
in 8 bits resulting in 256 class labels for each token. An example CAD sequence representation is
provided in Figure 3 (in blue table). For more details, please refer to the supplementary section 9.

Now we elaborate on the various components of the architecture, detailing the processes involved in
converting text to CAD representations. Let the input text prompt at timestep t− 1 be T ∈ RNp and
the input CAD subsequence C1:t−1 ∈ RNt−1×2.

Pretrained Bert Encoder: The initial step in the Text2CAD network involves encoding the textual
description provided by the user. This description can range from highly abstract, beginner-friendly
instructions to detailed, expert-level commands. To handle this diversity, we used a pre-trained BERT
(Bidirectional Encoder Representations from Transformers) [8] model, denoted BERTpre-trained. The
input text T ∈ RNt is tokenized and passed through the BERT [8] model to generate contextual
embedding:

T = BERTpre-trained(T ) (2)

Here, T ∈ RNp×dp represents the sequence of token embedding vectors that capture the semantic
meaning of the input text, where Np is the number of tokens and dp is the dimension of the embedding.

Adaptive Layer. An adaptive layer consisting of 1 transformer encoder layer, refines the output T
of the BERT [8] encoder to better suit the CAD domain aligning with the specific vocabulary and
structural requirements of CAD instructions. The adaptive layer outputs the embedding Tadapt ∈
RNp×dp using

Tadapt = AdaptiveLayer(T) (3)

CAD Sequence Embedder: Each token in the input CAD subsequence C1:t−1 is initially rep-
resented as a one-hot vector with a dimension of 256, resulting in a one-hot representation,
Co

1:t−1 ∈ RNt−1×2×256. For the sake of simplicity, we represent Co
1:t−1 = [Cox

1:t−1;C
oy
1:t−1],
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The CAD model consists of a stylized letter
'O' shaped object, resembling a curved,
metallic, hollow ring. The sketch is initially
drawn on a coordinate plane, followed by an
extrusion operation to form a solid body. The
resulting height of the part is approximately
0.75 units.

MHA Cross-Attention FFN

  Transformer Decoder Block

1 0

139 139

139 266

5 0

4 0

52 176

139 44

Pre-trained 
BeRT Encoder

Adaptive Layer 

The CAD model features an elegant, curved,
hollow design inspired by the stylized letter
'O'.

Create the first part of the CAD model, a
stylized letter 'O' shaped object. Begin by
setting up a new coordinate system with
Euler angles of (0.0, 0.0, -90.0) and
translation vector (0, 0.0208, 0) ..... The
sketch consists of loops and two faces.  
Loop1: ..... Loop2: ..... Extrude the sketch
along ... 

The CAD model features an elegant, curved,
hollow design inspired by the stylized letter
'O'.

Downsampler

2 0

150 0

139 0

139 0

142 0

139 44

6 0Extrusion Tokens

139 139

139 266

5 0

4 0

52 176

139 44

5 0

2 0

150 0

139 0

139 0

142 0

139 44

6 0

1 0

MLP

Reconstructed
3D CAD Model

Trainable Parameters Frozen Parameters

More Detailed 
 For Experts Level

Instructions

Highly Abstract
Beginner CAD Designer

Friendly Instructions

Positional
Encoding

Input CAD
Tokens

Output CAD
Tokens

(139,266)

(139,139)

(225,176)(52,176)

(139,44)

Sketch Tokens

Figure 3: Network architecture: Text2CAD Transformer takes as input a text prompt T and a
CAD subsequence C1:t−1 of length t− 1. The text embedding Tadapt is extracted from T using a
pretrained BeRT Encoder ( [8]) followed by a trainable Adaptive layer. The resulting embedding
Tadapt and the CAD sequence embedding F0

t−1 is passed through L decoder blocks to generate the
full CAD sequence in auto-regressive way.

where Cox
1:t−1,C

oy
1:t−1 ∈ RNt−1×256. The initial CAD sequence embedding F0

t−1 ∈ RNt−1×d is
obtained using Eq. 4

F0
t−1 = Cox

1:t−1W
x
t−1 +Coy

1:t−1W
y
t−1 +P (4)

, where Wx
t−1,W

y
t−1 ∈ RNt−1×d are learnable weights and P ∈ RNt−1×d is the positional encoding.

Layer-wise Cross Attention. We use a standard transformer decoder [49] with layer-wise cross-
attention mechanism between the CAD and the text embedding within the decoder blocks. The
layerwise cross-attention mechanism facilitates the integration of contextual text features with the
CAD embedding, allowing the model to focus on relevant parts of the text during CAD construction.
Each decoder block l takes as input CAD embedding Fl−1

t−1 and text embedding Tadapt, where Fl−1
t−1 is

the output of the previous decoder block (for the first decoder block, the input CAD embedding is
F0

t−1). At first, the CAD embedding Fl
t−1 ∈ RNt−1×d is generated from Fl−1

t−1 using

Fl
t−1 = MHA(Fl−1

t−1) (5)

, where MHA is the multi-head self-attention [49] operation. Afterwards, We downsample Tadapt to
generate Tl

adapt ∈ RNp×d using
Tl

adapt = TadaptW
l
adapt (6)

, where Wl
adapt ∈ Rdp×d is the learnable projection matrix. The cross-attention mechanism involves

query (Q), key (K), and value (V) generation using

Q = Fl
t−1WQ, K = Tl

adaptWK , V = Tl
adaptWV (7)

Here, WQ ∈ Rd×dq , WK ∈ Rd×dk , and WV ∈ Rd×dv are learned projection matrices. The
cross-attention output A ∈ RNt−1×dv is computed as:

A = Softmax

(
QK⊤
√
dk

)
V (8)

where dk is the dimensionality of the key vectors. The cross attention mechanism enables the model
to dynamically adjust the importance of different parts of the text relative to the CAD sequence.
Afterwards, the output embedding of the decoder block l is generated using

Fl
t−1 ← LayerNorm(FFN(LayerNorm(Fl

t−1 +Dropout(A)))) (9)
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Create the first part of the CAD model, an intermediate cylindrical object. Begin by
setting up a new coordinate system at the origin with no rotation, where the Euler
angles are set to (0.0, 0.0, 0.0) and the translation vector is (0.0, 0.0, 0.0).

Next, create a 2D sketch on Face 1 of the coordinate system. Within the sketch,
construct two concentric circles as loops. Loop 1 is a circle with a center at (0.1875,
0.1875) and radius of 0.1875. Loop 2 is also a circle with the same center at (0.1875,
0.1875) but with a smaller radius of 0.0754.

Now, extrude the sketch along the normal direction by a depth of 0.75, and ensure no
depth in the opposite direction. Set the scaling parameter for the sketch to 0.375.
Perform a 'New Body' operation to create a new solid body from the extruded sketch.

The first part has the following dimensions: length of 0.375 (from the sketch scale),
width of 0.375 (from the sketch scale), and height of 0.75 (from the extrude depth).
This part closely resembles a cylindrical object, slightly curved along its length.

a cylindrical object.
The CAD model consists of an intermediate
cylindrical object. This object is created by
setting up a coordinate system, sketching two
concentric circles on a shared plane, and then
extruding the sketch along the normal direction
to form a solid body. The resulting part has a
height of approximately 0.75 units.

The CAD model consists
of a cylindrical object.

Abstract Level (L0)
Prompt and Output Model

Intermediate Level (L2)
Prompt and Output Model

Expert Level (L3) Prompt
and Output Model

Beginner Level (L1) Prompt
and Output Model

Groudtruth
CAD model

Ex
tr

us
io

n 
H

ei
gh

t :
  0

.7
5

Extrusion Details

Simple sketch details

Shape description

Figure 4: Parametric CAD model generation by Text2CAD transformer using different text prompts.
Our text prompts follow a certain structure highlighting the different design aspects of CAD construc-
tion workflow (shown in different colors). Abstract (L0) and Beginner (L1) level prompts contain
shape descriptions (teal color) whereas Intermediate (L2) and Expert (L3) level prompts are more
parametric and contain design details for sketch and extrusion (yellow and red).
,where FFN is the feed foward network [49] and LayerNorm is the Layer Normalization [49].
The complete Transformer decoder block is repeated L times, allowing for deeper integration and
refinement of the text and CAD tokens. The final CAD embedding FL

t−1 ∈ RNt−1×d is passed to an
MLP to generate the output CAD sequence. We use Cross-Entropy loss during training.

5 Experiment
Dataset. We use the DeepCAD [56] dataset which contains approximately ∼ 150k training CAD
sequences and ∼ 8k test and validation sequences in sketch-and-extrude format. Following, [56, 19],
the sketches and the final CAD models are normalized within a unit bounding box. For each sample
in the dataset, four design prompts ranging from abstract to expert levels (L0, L1, L2, L3) are
generated using our data annotation pipeline resulting in ∼ 600k training samples, and ∼ 32k test
and validation samples.

Implementation Details. Text2CAD transformer consists of L = 8 decoder blocks with 8 self-
attention heads. The learning rate is 0.001 with AdamW [28] optimizer. Dropout is 0.1. Maximum
number of word tokens, Np is fixed as 512 and CAD tokens Nc as 272. The dimension dp for the
pre-trained Bert encoder [8] embedding T as well as Tadapt is 1024. The CAD sequence embedding
d is 256. Following [19], the first two decoder blocks do not use any cross-attention operation
between the text embedding and the CAD sequence embedding. The Text2CAD transformer has been
trained with teacher-forcing [53] strategy for 160 epochs using 1 Nvidia A100-80GB GPU for 2 days.
During inference, top-1 sampling has been used to autoregressively generate the CAD sequences
from an input text.

Baseline. Since there are no existing methods for generating parametric CAD sequences from text
prompts, we use DeepCAD [56] and our Text2CADw/oAL (i.e., without Adaptive Layer) variant
as our baselines. To adjust DeepCAD [56] for performing CAD generation from text inputs, the
Adaptive Layer [56] (see Section 4) is trained to map the pre-trained BERT [8] embedding T into
the ground truth latent vector z. During inference, the predicted latent vector z is then passed to the
pre-trained DeepCAD [56] decoder to generate the CAD sequences. For Text2CADw/oAL, the
pre-trained BERT [8] embedding T is directly passed to the transformer decoder.

Experimental Setup. For setting up our evaluation protocol, the selection of the input text prompts
and desired outcomes of the CAD models are depicted in Figure 4. Our textual annotations follow a
certain structure. In the abstract (L0) and beginner (L1) level prompts, the shape descriptions are more
prevalent (in teal color in Figure 4). The intermediate level prompts augment simple sketch (in yellow
color) and extrusion (in red color) details with the shape descriptions. Expert-level prompts include
more precise details for each of the design aspects previously highlighted. In all our experiments
discussed below, we use these four levels of prompts following the aforementioned formats. However,
we have conducted another experiment, where we interpolate between the abstract and expert prompts
to generate multiple new prompts and observe the performance of our model on these prompts. Due
to the space restriction, we provide the results of this experiment in the supplementary Section 12.

5.1 Evaluation
Our goal is to evaluate how well the generated CAD sequences align with their respective input text
prompts. We concentrate on two primary aspects: (1) examining the parametric correspondence be-
tween the predicted CAD sequences and the input text prompts, and (2) conducting visual inspections
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DeepCAD 

Text2CAD

Input Text

... three parts - a
rectangular ...  cylindrical

... cylindrical ... for the first
part. ... lines ... circle.

Extrude ... 0.0725 . Next ...
circle ... extrude ... 0.1813.

Lastly, ... circle ... extrude ...
0.1813 ... rectangular...

length 0.0725 ... width 0.75
... height 0.5 units ...

Evaluation

The CAD model
features a

rectangular metal
plate with four holes

along its length.

The second model has
four holes along its

length, matching the
description, unlike the

first model with
scattered holes.

The second model
matches the description

of three parts: a
rectangular prism with

curved top, and two
cylindrical objects.

... a cylindrical object ... The sketch
consists of two concentric circles: loop 1
has a center at (0.0577, 0.0577) and a
radius of 0.0577, and loop 2 has the

same center and a radius of 0.0288 ...
Extrude the 2D sketch along the normal

direction by 0.1442 units. The second part
of the CAD model is a rectangular prism
with a hole ... Extrude ... by 0.1154 units.

For the third part ... extrude the 2D sketch
... by 0.1731 units...

A three-dimensional
geometric shape

composed of
interconnected

triangles, forming a
symmetrical star-like

structure.

The second model 
accurately represents
a star-like structure

with precise geometric
details, matching the

text description.

A CAD model of
a circular object

with a central
hole,

resembling a
wheel or a gear.

The second model
accurately

represents a wheel
with a central hole

and clear
geometric details.

The first part of
the CAD model is a
rectangular prism

with a rounded
top and a

cylindrical hole
running through

its center.

The second model
better matches the
description with a
rectangular prism,
rounded top, and a

central cylindrical hole.

... interconnected
series of circles ...

six arcs, one
circle, and three
additional circles
... height ... 0.03

units.

The second model
consists of

interconnected circles
as described, while the
first one does not align

with the text description.

The second model better
matches the description with

cylindrical objects and a
rectangular hole, aligned as

specified.

Figure 5: Qualitative results of the reconstructed CAD models of DeepCAD [56] and Text2CAD
on DeepCAD [56] dataset. From top to bottom - Input Texts, Reconstructed CAD models using
DeepCAD [56] and Text2CAD respectively and GPT-4V [35] Evaluation.

of the reconstructed 3D CAD models. Currently, there is no standardized benchmark for text-to-3D
models that can be directly applied to this task. Existing methods for text-to-3D [51, 15] utilize
pre-trained CLIP [42] models to measure the alignment between reconstructed 3D models and their
text prompts. However, CLIP [42] scores may not adequately evaluate the geometric [57] and the
parametric aspects of CAD designs. Therefore, inspired by [57, 11], we employ three evaluation
metrics to thoroughly measure the parametric and geometric alignment between the generated CAD
designs and the text prompts.

A. CAD Sequence Evaluation: In this evaluation strategy, we comprehensively assess the parametric
correspondence between the generated CAD sequences with the input text. We use the groud truth
CAD sequence for this purpose. We only use this evaluation strategy for expert-level (L3) prompts.
Since, expert-level prompts, being highly detailed with parametric details, exhibit a higher one-to-one
correspondence with the ground truth CAD construction sequences compared to other levels.

To measure the correspondence between the ground truth and the predicted sequence, the strategy
outlined in [19] is followed. We evaluate the F1 scores of the primitives and extrusions by aligning
the predicted loops with the ground truth loops within the same sketch using the Hungarian matching
algorithm [21] (An example is provided in supplementary Figure 10). The geometric alignment
between the ground truth and reconstructed CAD models is measured using the chamfer distance
(CD). The Invalidity Ratio (IR) is calculated to measure the proportion of invalid CAD sequences
(i.e.,sequences that can not generate any CAD model).

Table 1: Quantitative evaluation between DeepCAD [56] and our method (AL is Adaptive Layer).
The scores are evaluated only for Expert Level (L3) prompts. The results include F1 scores for
primitives and extrusions as well as mean and median CD and IR. CD is multiplied by 103.

Model F1↑ Median
CD↓

Mean
CD↓ IR↓Line Arc Circle Extrusion

DeepCAD 76.78 20.04 65.14 88.72 32.82 97.93 10.00
Text2CAD w/o AL 78.88 27.18 71.44 93.28 0.82 35.91 2.69
Text2CAD 81.13 36.03 74.25 93.31 0.37 26.41 0.93

Table 1 summarizes the quantitative results between the baseline methods and our final Text2CAD
transformer. Compared to the baselines (rows 1-2), our model (row 3) achieves higher F1 scores
for all the primitives and extrusion, with the most notable being an 80% improvement in the F1
score for arcs. The results indicate a better correspondence between the expert-level prompts and the
predicted CAD sequences. Notably, our model significantly outperforms the baseline DeepCAD [56]
in terms of median CD and invalidity ratio by a factor of ∼ 88.7 and ∼ 10.75 respectively. The
higher CD despite having relatively high F1 scores for DeepCAD [56] indicates that even though
DeepCAD [56] can recognize the primitives and the number of extrusions from the input texts, it
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A flat, circular
object with four
evenly spaced

holes around its
perimeter

DeepCAD 

Text2CAD

Input Text

Evaluation

The second model is a
hexagonal prism with a
central cylindrical hole,
matching the prompt’s

description accurately in
shape and features.

... hexagonal prism 
with a cylindrical hole 
... hexagon shape ...

circular shape ...
extruded along the
normal direction ...

height ... 0.225 units.

...rectangular metal
bracket with two
holes on opposite

sides... circle ... , and
the second shape

consists of lines and
arcs ... height ...

0.1268 units.

The second model is
more accurate: it

matches the bracket's
shape and hole

placement.

The second model is
more accurate: it has
four perimeter holes.

The second model is more
accurate: it has a

rectangular prism with
cylindrical holes, consistent
with the prompt instructions.

... rectangular prism with a
cylindrical hole in the center ...

four lines ... circle in the center of
the rectangle ... 

        Scale ... 0.75. Extrude ...
0.125 units ... Length: 0.5
Extrude ... 0.25 units ... 

Part 1 ... from Part 2 will be
joined together ...

The second model
matches the description:

rectangular metal
bracket shape, four

aligned holes present.

A 3D model of a
rectangular metal
bracket with four

holes along its length,
used for securing
objects together. 

Figure 6: Additional Qualitative results of the reconstructed CAD models of DeepCAD [56] and
Text2CAD on DeepCAD [56] dataset. From top to bottom - Input Texts, Reconstructed CAD models
using DeepCAD [56] and Text2CAD respectively and GPT-4V [35] Evaluation.

fails to correctly parameterize those primitives and the extrusions. Compared to DeepCAD [56],
the Text2CAD transformer predicts more accurate sketches and extrusion parameters thanks to its
layerwise cross-attention mechanism. In Figure 5 and 6, some qualitative results are shown.

Table 1 (rows 2 and 3) shows the results between Text2CADw/oAL and our final model. The
incorporation of the Adaptive layer in the Text2CAD transformer improves the F1 scores for primitives
such as lines, arcs, and circles. Notably, there is a 2.85% increase of F1 scores for lines, 32.56% for
arcs, and 3.93% for circles. Moreover, the improvement is particularly striking in terms of the IR,
which sees a remarkable reduction by a factor of ∼ 2.9.

Table 2: GPT-4 evaluation of the CAD models generated from 1000 prompts per level and User
studies of 100 samples per level. In both evaluations, overall Text2CAD is a favored choice over
DeepCAD [56].

Model GPT-4 Evaluation (%) User Study-based Evluation (%)
Abstract Level

(L0)
Beginner

Level (L1)
Intermediate
Level (L2)

Expert
Level (L3)

Abstract Level
(L0)

Beginner
Level (L1)

Intermediate
Level (L2)

Expert
Level (L3)

Undecided 0.80 0.5 1 0.70 - - - -
DeepCAD 47.40 51.15 40.20 36.06 50.95 48.73 44.94 41.14
Text2CAD 51.80 48.35 58.80 63.24 49.05 51.27 55.06 58.86

B. GPT-4V Evaluation: To perform the visual inspections of the 3D CAD models generated from
abstract (L0), beginner (L1), intermediate (L2), expert (L3) level prompts, GPT-4V [35] has been
used. We follow the protocol outlined in [57] and generate a meta prompt that consists of multi-view
images of the reconstructed CAD models from both DeepCAD [56] and our model as well as the
input text prompts. Following this, GPT-4V [35] provides a verdict on which model predictions
accurately reflect the text descriptions in terms of shape and geometry. But if the two models are very
similar in shape and match the input text accurately, then it outputs ‘Undecided’.

We randomly select 1,000 samples for each level from the test dataset and generate a verdict per
sample using GPT-4V [35]. Table 2 (left) presents the final results. These results indicate that overall
Text2CAD outperforms baseline DeepCAD [56]. Additionally, we observe that the performance
gap between Text2CAD and DeepCAD [56] is minimal at the abstract (L0) and beginner (L1)
levels, despite Text2CAD losing by 2.8% at the beginner level. However, as the complexity and
parametric details of the prompts increase, the gap widens significantly. Text2CAD outperforms
DeepCAD [56] at the intermediate (L2) and expert (L3) levels, leading by as much as 18.6% and
27.18% respectively. This indicates that Text2CAD is more inclusive of the highly detailed design
prompts. In supplementary Figure 11, we have provided some examples.
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a circular object with a 
cylindrical hole in the center a ring

a round item having a central hole that is
cylindrical in shape

A 3D star shape
with 5 points

A star shape consisting of 5
triangles joined together

A three-dimensional geometric shape composed of
interconnected triangles, forming a symmetrical

star-like structure.

Figure 7: Visual examples of 3D CAD model generation using varied prompts. (1) Three different
prompts yielding the same ring-like model, some without explicitly mentioning ’ring’. (2) Three
diverse prompts resulting in same star-shaped model, each emphasizing different star characteristics.

C. User Study-based Evaluation: We conduct a user study with 100 randomly selected examples per
level to evaluate the preference between our method and DeepCAD [56]. Five CAD designers with
varying experience levels participate in the evaluation. Each participant is shown multi-view images
of the reconstructed 3D CAD models from both methods side by side, along with their corresponding
input texts. They are then asked to determine which CAD model is more geometrically accurate
and easier to edit to achieve the desired outcome. Each participant evaluates 20 samples per level.
The final result is provided in Table 2 (right). To our surprise, the result follows a similar pattern as
GPT-4V [35] evaluation with a minimal performance gap in the abstract (L0) and beginner (L1)
levels and a wider gap for more detailed intermediate (L2) and expert (L3) prompts.

5.2 Prompt Diversity
The diversity of the generated textual prompts in the Text2CAD dataset depends on both the variety
of CAD models available in the DeepCAD [56] dataset, as well as the performance of Mistral [16]
and LLaVA-Next [26]. To enhance prompt variety, we have focused more on generating shape
descriptions from LLaVA-Next [26] rather than only object names. For example, in our annotation "a
ring" can be sometimes described as "a circular object with a cylindrical hole in the center". This
approach enables our transformer model to learn to generate the same CAD models using different
styles of textual prompts. In Figure 7, we show two examples where the network generated same
CAD models from various types of prompts.

6 Limitation
Despite the promising results of Text2CAD, several limitations exist. Firstly, LLaVA-NeXT [26]
is sensitive to the perspective distortions in multi-view images, which affects the generated shape
descriptions and final LLM-generated prompts. Secondly, effective tokenization of numerical parame-
ters in texts is still an open research problem in NLP. In Text2CAD transformer architecture, we used
BERT [8] tokenizer which might tokenize some numerical parameters as an UNK token. Thirdly, the
lack of standardized benchmarks for evaluating text-to-CAD generation poses challenges in assessing
model performance comprehensively. Furthermore, the DeepCAD [56] dataset is imbalanced, pre-
dominantly featuring rectangular and cylindrical shapes, which limits the model’s robustness towards
more complex shapes. Some failure cases are described in supplementary Section 13.

7 Conclusion
In this paper, we introduce Text2CAD, the first AI framework designed to generate parametric
CAD models from text prompts suitable for users of all skill levels. Our contributions include
a two-stage data annotation pipeline using Mistral-50B [16] and LLaVA-NeXT [26] and a novel
end-to-end trainable Text2CAD Transformer architecture that effectively transforms natural language
instructions into sequential CAD models. Through a comprehensive evaluation, including GPT-4V
[35] assessments and user studies by CAD designers, we demonstrate that Text2CAD outperforms the
adapted two-stage baseline, especially as the complexity and detail of the prompts increase. Future
work will focus on addressing the current limitations, such as reducing annotation inaccuracies and
improving dataset diversity, to further enhance the robustness and applicability of Text2CAD.
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9 CAD Sequence Representation

Table 3 shows all the tokens used in our CAD sequence representation. We use the same representation
as proposed by Khan et al [19] which uses a sketch-and-extrude format. Each 2D sketch consists of
multiple faces and each face consists of multiple loops and every loop either contains a line and a arc
or a circle. Loops are always closed (i.e.,same start and end coordinate). We parameterize the curves
in the following way

• Line: Start and End coordinate.
• Arc: Start, Mid and End coordinate.
• Circle: Center and top-most coordinate.

Finally, we represent a sketch using a sequence of 2D coordinates only with specific end tokens
for the end of curve, loop, face and sketch. Each extrusion sequence consists of the 10 parameters
followed by an end of extrusion token. These are

• Euler Angles: 3 parameters (θ, ϕ, γ) determining the orientation of the sketch plane.
• Translation Vector: 3 parameters (τx, τy, τz) that describe the translation of the sketch

plane.
• Sketch Scale: 1 parameter (σ) for scaling the 2D sketches.
• Extrude distances: 2 parameters (d+, d−) containing the extrusion distances towards and

opposite of the normal of the sketch plane.
• Boolean Operation: 1 parameter (β) determining the extrusion operation. There are 4

extrusion operation in DeepCAD [56] dataset namely - solid body, cut, join and intersection.

Except the boolean operation and all the end tokens, all the 2D sketch parameters as well as the
extrusion parameters are quantized in 8 bits.

Table 3: CAD sequence representation used in our experiment.

Sequence
Type

Token
Type

Token
Value

Token
Representation Description

pad 0 (0, 0) Padding Token
cls 1 (1, 0) Start Token
end 1 (1, 0) End Token
es 2 (2, 0) End Sketch
ef 3 (3, 0) End Face
el 4 (4, 0) End Loop
ec 5 (5, 0) End Curve

(px, py) J11 ..266K2 (px, py) Coordinates

Extrusion
Sequence

d+ J11 ..266K (d+, 0)
Extrusion Distance Towards

Sketch Plane Normal

d− J11 ..266K (d−, 0)
Extrusion Distance Opposite

Sketch Plane Normal
τx J11 ..266K (τx, 0)

Sketch Plane Originτy J11 ..266K (τy, 0)
τz J11 ..266K (τz, 0)
θ J11 ..266K (θ, 0)

Sketch Plane Orientationϕ J11 ..266K (ϕ, 0)
γ J11 ..266K (γ, 0)
σ J11 ..266K (σ, 0) Sketch Scaling Factor
β {7, 8, 9, 10} (β, 0) Boolean (New, Cut, Join, Intersect)
ee 6 (6, 0) End Extrude

10 Implementation Details for Data Annotation

As mentioned in Section 3, we use LLaVA-NeXT [26] for the VLM oriented task and Mistral-
50B [16] for LLM tasks. We use 1 Nvidia A100-40GB GPU to run LLaVA-NeXT [26] and 4 Nvidia
A100-80GB GPUs to run Mistral-50B [16].
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"final_shape": "A cylindrical object with a flat top and
bottom, and a slightly tapered middle section.",
     "parts": {"part_1": {
        "extrusion": {
            "extrude_depth_tow ards_normal": 0.1046,
             "extrude_depth_opposite_normal": 0.0,
              "sketch_scale": 0.75,
                 "operation": "NewBodyFeatureOperation" },
     "coordinate_system": {
         "Euler Angles": [0.0, 0.0, 0.0],
         "Translation Vector": [0.0, 0.0,0.0]},
     "sketch": {
         "face_1": {
             "loop_1": {
                 "circle_1": {
                     "Center": [0.375, 0.375],
                   "Radius": 0.375}}}},
     "description": {
         "shape": "A cylindrical object with a flat top and    
bottom, and a slightly tapered middle section.",
         "length": 0.7499999633140781,
         "width": 0.7499999633140781,
         "height": 0.10461455694430137 }}}

{
     "entities": {
         "FI4bCL9y0XvsF52": {
             "name": "Extrude 1", 
             "type": "ExtrudeFeature", 
             "profiles": [ {
                 "profile": "JGC", 
                 "sketch": "FQgWGf8WhgalpUy" }
              ], 
              "extent_two": {
                 "distance": {
                 "type": "ModelParameter", 
                 "role": "AgainstDistance", 
                "name": "none", 
                "value": 0.0 }, 
                 "type": "DistanceExtentDefinition", 
..... (Other entity related omitted for bverity)
     "operation": "NewBodyFeatureOperation", 
          "start_extent": {
              "type": "ProfilePlaneStartDefinition" }, 
          "extent_type": "OneSideFeatureExtentType"}, 
    "FQgWGf8WhgalpUy": {
        "transform": {
             "origin": { "y": 0.0,  "x": 0.0,  "z": 0.0 }, 
             "y_axis": { "y": 1.0,  "x": 0.0,  "z": 0.0 }, 
             "x_axis": { "y": 0.0,  "x": 1.0,  "z": 0.0 }, 
             "z_axis": { "y": 0.0,  "x": 0.0,  "z": 1.0 } }, 
     "type": "Sketch", 
     "name": "Sketch 1", 
     "profiles": { "JGC": {
             "center_point": { "y": 0.0,  "x": 0.0,  "z": 0.0 }, 
     "properties": {...}
     "reference_plane": {...}
     "properties": {
           "bounding_box": {
               "max_point": {"y": 0.09104851445359824,
                                        "x": 0.09104851445359824, 
                                        "z": 0.025400000000000002} .....
}]}}

Random Keys 
are removed

Shape information
from LLaVANext

DeepCAD JSON

Minimal JSON

Restructuring

 Redundant Information
is removed

Figure 8: An example of Minimal metadata JSON (right) generated from DeepCAD [56] JSON
(left). During the minimal metadata generation, random keys (e.g.,"FI4bCL9y0XvsF52") or redundant
design information (e.g.,{"type": "ModelParameter", "role": "AgainstDistance"}) is removed.

11 Additional Details on Data Annotation Pipeline

Since LLMs are prone to hallucinations [14], we employ several strategies to mitigate this issue.
Firstly, we observe that when we directly pass the raw DeepCAD [56] jsons to Mistral [16] instead of
the minimal metadata to generate the detailed natural language instructions, the model often uses
the random keys provided in the dictionary to refer to the corresponding curves or the sketches.
Additionally, the json contains redundant information that is not necessary in the final CAD con-
struction. To overcome this, we generate minimal metadata by restructuring the dictionary into a
more human-readable format. In Figure 8, we provide an example DeepCAD [56] Json (left) and a
minimal data(right)

12 Additional Experimental Details on Interpolated prompts

In this section, we provide details on our model’s performance on text prompts that contain different
structure than the training samples. To generate these prompts, we pass all four text prompts
(i.e.,abstract, beginner, intermediate and expert) of a CAD model to GPT-4V [35] and ask to
generate 20 more samples by interpolating between the all the levels. Figure 12 and Figure 13 shows
visual results of two examples. The results indicate that Text2CAD can effectively handle varying
level of prompt structures, generating accurate and similar CAD models in shape compared to the
ground truth. It retains the overall geometry for prompts with highly abstract shape descriptions
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... rectangular prism ...
Part 1... line ... (0.0,0.0)
... (0.001,0.0) ... line ...
sketch scale ... 0.25 ...

extrude ... 0.75

Invalidity Discrepancy

... rectangular prism base ...
extruded ... Z direction 0.0012
... width ... 17.09 mm (0.1709
m) and a length ... 49.37 mm

(0.4937 m).
Create the second part, ... This

part is then joined with the
previous parts ...

A simple, symmetrical,
metallic object with a
curved, looped shape,
resembling a stylized
letter 'S' or a twisted

ribbon.

The CAD model
includes a flat shape
with a curved edge,

similar to a spatula or
paddle

Text2CAD

Input 
Text

INVALIDINVALIDINVALID INVALIDINVALIDINVALID

Figure 9: Failure cases for Text2CAD Transformer. Invalid Samples (left): The network fails to
generate any valid CAD model. Discrepancy Cases (right): The generated CAD model does not
match the input text prompts.

(first and second row in Figure 12 and Figure 13 ) . As the parametric details increase in the text
prompts, it generates the precise CAD model as the ground truth (third and fourth row in Figure 12
and Figure 13)

13 Discussion on Failure Cases

In this section, we describe two types of failure cases for Text2CAD Transformer. In Figure 9, we
have shown examples of both type of cases.

1. Invalidity: In this scenario, the model fails to generate any CAD model from the text prompts. As
reported in Table 1, this occurs in approximately 1% of the test samples. In these cases, the model
predicts invalid sketch or extrusion parameters, such as the same start and end points for lines or arcs,
or zero values for extrusion depth on both sides.

2. Discrepancy: Discrepancy refers to situations where the generated model does not precisely match
the shape described in the text prompts. This is more prevalent in our model than invalidity and
is harder to quantify. We notice that this occurs when prompts are more focused on object name
(e.g.,spatula, paddle) rather than parametric descriptions. We argue that this issue comes from noisy
VLM annotations. As mentioned in the Section 6, the perspective distortions in multi-view images
can affect the accuracy of shape or object name recognition. These noisy descriptions propagate into
other prompt levels using the annotation pipeline.
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Primitive Matching

Ground Truth Sketches Predicted Sketches

Sketch Index

Loop Index

1 2

1 2 3 1 2

Loop Matching
For Sketch 1

1

1 2

Primitive Matching Primitive Matching

Primitive Matching

Primitive Matching

Matched 
Primitive Pairs

Hungarian Matching

Cost Matrix

Cost Matrix

Recall

Precision

F1

Line Arc Circle

Loop Matching
For Sketch 2

Figure 10: F1 score calculation for CAD sequence evaluation as proposed in [19].
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The CAD model features a cylindrical object with a cylindrical hole in the center.

Text2CAD DeepCAD

Text Prompt & Asset
Alignment Evaluation
Geometric Details Evaluation

Verdict: Second Model

Abstract Prompt (L0)

The CAD model consists of a three-dimensional rectangular prism made by sketching six
lines and extruding the resulting shape using a specified coordinate system. The prism

has a flat top and bottom, with a height of approx. 0.15 units and a width of 0.375 units.

Text2CAD DeepCAD

Text Prompt & Asset
Alignment Evaluation
Geometric Details Evaluation

Verdict: First Model

Beginner Prompt (L1)

... a three-dimensional, rectangular prism with a flat top and bottom. Begin by setting up
a new coordinate system with Euler angles of X = 0.0°, Y = 0.0°, Z = -90.0°, and a

translation vector of X = 0.0, Y = 0.5, Z = 0.0. Next, draw a 2D sketch consisting of eight
lines on the specified coordinate system. Lines 1 to 4 form the bottom layer with lengths

of 0.1278, 0.375, and 0.5 units. ...

... a rectangular metal bracket with two holes on opposite sides. The bracket is
created by first setting up a coordinate system, then sketching two shapes on two

parallel planes. The first shape is a circle on one plane, and the second shape
consists of lines and arcs on the other plane ...

Text2CAD DeepCAD

Text Prompt & Asset
Alignment Evaluation
Geometric Details Evaluation

Verdict: First Model

Expert Prompt (L3)

Text2CAD DeepCAD

Text Prompt & Asset
Alignment Evaluation
Geometric Details Evaluation

Verdict: First Model

Intermediate Prompt (L2)

Figure 11: GPT-4V Evaluation Strategy: Four prompts (one per level) are randomly sampled from
the test set. These prompts are used to reconstruct CAD models from the predicted CAD sequences
using both DeepCAD [56] and the proposed Text2CAD. Nine multi-view images of these models
are rendered using Open3D [3] and stacked in 3 × 3 grid, which are used for the GPT-4V [35]
evaluation. GPT-4V [35] analyzes their alignment with the initial text prompt and their geometric
details and provides a final verdict for this comparison. As shown in the evaluation, our model
performs better when input text prompts contain more parametric details.
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The CAD model consists of a disc with a
raised rim and four cylindrical holes,
distributed evenly around the outer edge.

A CAD model of a circular object with
four holes around its perimeter. The
holes are evenly spaced and have a
cylindrical shape. The object appears
to be a flat disc with a raised rim.

Create a circular disc CAD model
with four evenly spaced holes by
setting up a coordinate system,
sketching circles, scaling,
transforming, and extruding the
design.

Construct a CAD model of a circular
object with four holes by
establishing a coordinate system,
sketching circles for the base and
holes, scaling, transforming, and
extruding into a 3D disc with a raised
rim.

Create a circular object with four holes by
defining a new coordinate system,
sketching a base circle and four smaller
circles (holes), scaling the sketch by a
factor of 0.75, transforming the 2D sketch
into 3D, and extruding the 2D sketch along
the normal vector to create the final 3D
model. The CAD model consists of a raised
rim with four evenly-spaced cylindrical
holes around its perimeter. The overall
shape of this CAD assembly is a disc-like
object with a height of approximately 0.75
units.

Begin by creating a new coordinate system with Euler angles of [0.0, 0.0,
-90.0] and a translation vector of [0.0, 0.0625, 0.0]. Next, create a sketch for
the main body with a circle at the center with coordinates [0.375, 0.375] and a
radius of 0.375. Duplicate the circle to create four holes at the following
positions: Hole 1: [0.125, 0.375]- Hole 2: [0.375, 0.125]- Hole 3: [0.375, 0.625]
- Hole 4: [0.625, 0.375].Each hole has a diameter of 0.125 and a radius of
0.0625. Scale the entire sketch by a factor of 0.75. Perform a 3D
transformation on the scaled 2D sketch using the existing coordinate system
with the Euler angles and translation vector defined. Extrude the 2D sketch
along the normal vector by 0.0625 units, and in the opposite direction by 0
units, to create the final 3D model. The CAD model has the following
dimensions: - Length: 0.75 - Width: 0.0625 - Height: 0.75

Generate a CAD model of a disc
with four holes, starting with a
coordinate system setup,
sketching the base and holes,
scaling, transforming, and
extruding to form a raised rim.
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The CAD model features a circular disc
with a pronounced rim and four cylindrical
holes evenly distributed around its edge.

The CAD model shows a circular disc
with four cylindrical holes evenly spaced
around the perimeter, featuring a raised
rim.

A CAD model illustrating a circular
disc with a raised rim and four
cylindrical holes distributed evenly
around the perimeter.

A basic CAD depiction of a
circular object resembling a disc
with a raised rim and four
uniformly spaced cylindrical holes.

Groudtruth CAD model

Extrusion 
Height :  0.07

The CAD model features a disc with a
raised rim and four cylindrical holes
evenly spaced around its perimeter.

The CAD model is a disc with a raised
rim and evenly spaced holes around its
perimeter, reflecting a flat disc shape.

Develop a CAD model by sketching
a circular base with four holes,
defining a new coordinate system,
scaling the sketch, and transforming
it into a 3D object with a raised rim
and cylindrical holes.

The CAD drawing presents a disc
featuring a raised rim with four cylindrical
holes, equally spaced around the outer
edge.

Figure 12: Visual results of Text2CAD on interpolated text prompts generated by GPT-4V [35]. From
top to bottom, the geometric details in the text prompts increase.
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Begin by setting up a coordinate system, then
sketch a rectangle on the X-Y plane, add a
circle in the center, and extrude the shapes

Set up a coordinate system and sketch a
rectangle on the X-Y plane with a circle
in the center. Extrude the sketch to form
a solid body

Set up a coordinate system with
Euler angles (0.0, 0.0, 0.0) and
translation vector (0.0, 0.0, 0.0).
Sketch a rectangle on the X-Y plane
with a circle in the center and
extrude the sketch

Create a coordinate system with
Euler angles (0.0, 0.0, 0.0) and
translation vector (0.0, 0.0, 0.0).
Sketch a rectangle on the X-Y
plane, add a circle in the center,
and extrude the shapes

Set up a coordinate system using Euler
angles (0.0, 0.0, 0.0) and translation
vector (0.0, 0.0, 0.0). Sketch a rectangle
on the X-Y plane with corners at (0.0, 0.0),
(0.75, 0.0), (0.75, 0.375), and (0.0, 0.375).
Add a circle with center at (0.375, 0.1875)
and radius 0.1125. Extrude the sketch

Create a coordinate system with Euler
angles (0.0, 0.0, 0.0) and translation
vector (0.0, 0.0, 0.0). Sketch a rectangle
on the X-Y plane with corners at (0.0,
0.0), (0.75, 0.0), (0.75, 0.375), and (0.0,
0.375). Add a circle with center at
(0.375, 0.1875) and radius 0.1125.
Extrude the sketch to create a solid

Create the first part of the CAD model, a
rectangular block with a cylindrical hole in
the center. Set up a new coordinate system
with Euler angles (0.0, 0.0, 0.0) and
translation vector (0.0, 0.0, 0.0). Sketch a
rectangle on the X-Y plane with corners at
(0.0, 0.0), (0.75, 0.0), (0.75, 0.375), and
(0.0, 0.375). Add a circle with center at
(0.375, 0.1875) and radius 0.1125. Scale
the sketch by 0.75. Extrude the sketch

Create the first part of the CAD model, a rectangular prism with a cylindrical
hole in the center. Set up a new coordinate system with Euler angles (0.0,
0.0, 0.0) and a translation vector (0.0, 0.0, 0.0). Create the first face of the
sketch using four lines: line 1 from (0.0, 0.0) to (0.75, 0.0), line 2 from (0.75,
0.0) to (0.75, 0.375), line 3 from (0.75, 0.375) to (0.0, 0.375), line 4 from (0.0,
0.375) to (0.0, 0.0). Create the second face of the sketch as a circle with
center at (0.375, 0.1875) and radius of 0.1125. Scale the sketch by 0.75.
Extrude the sketch along the normal direction by 0.225 units. The extrusion
depth opposite the normal is 0.0. Create a new solid body for this operation.
The part has dimensions: length 0.75 units, width 0.375 units, and height 0.23
units (including the extrusion depth)

Create a rectangular block with a cylindrical
hole in the center by sketching and extruding
shapes on the X-Y plane

Start by creating a rectangular block
with a cylindrical hole in the center
using a simple extrusion process

Create the first part of the CAD
model by setting up a coordinate
system with Euler angles of (0.0,
0.0, 0.0) and translation vector of
(0.0, 0.0, 0.0). Sketch a rectangle
on the X-Y plane with corners at
(0.0, 0.0), (0.75, 0.0), (0.75, 0.375),
and (0.0, 0.375). Add a circle with
center at (0.375, 0.1875) and
radius of 0.1125. Extrude the
sketch along the normal direction

Create the CAD model by setting
up a coordinate system, sketching
a rectangle on the X-Y plane,
adding a circle in the center, and
extruding the shapes

Start by setting up a coordinate
system, sketch a rectangle on the
X-Y plane, add a circle in the
center, and extrude the shapes to
create a solid

The CAD model is a rectangular
block with a circular hole through
its center

The CAD model features a
rectangular object with a
cylindrical hole in the center
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Radius : 0.1125
(0.375, 0.1875)

Length: 0.75
Width: 0.375

Groudtruth CAD model

Figure 13: Visual results of Text2CAD on interpolated text prompts generated by GPT-4V [35]. From
top to bottom, the geometric details in the text prompts increase.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In Section 5 (Experiment), we evaluated our method using various evaluation
strategies to justify our contribution.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have provided a limitation section of our method in the main paper. Please
refer to Section 6 (Limitation).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: We do not have any theoretical result. Our contribution is focused on novel
application in CAD domains.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided the experimental setup in Section 5 (Experiment). We have
also provided the LLM and VLM prompts that we used in the Figure 2 and 11.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Currently we have not published our code and dataset. As mentioned in the
abstract, we will publish both of them soon.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided the data-splits, hyperparameter details, training and inference
setup in Section 5 (Experiment).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: Given that there is no standardized benchmark for our task (text-to-CAD) at
hand, it’s not applicable for our method.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please refer to Section 5 (Experiment) and Section 10 (Implementation Details
on Data Annotation Pipeline).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes we have followed the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have provided the positive impact of our framework in Section 1 (Introduc-
tion). We are not yet aware of any negative societal impacts as of now.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We will implement thorough verification processes to identify and mitigate
any potential misuse of our data before releasing the annotations.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited every dataset and other supporting architecture/framework to
the best of our knowledge.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new assets are generated via our data annotation pipeline. (Please refer to
Section 3 (Data Annotation Pipeline).

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: NA

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: NA

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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