
Recurrent Distance Filtering for Graph Representation Learning

Yuhui Ding 1 Antonio Orvieto 2 Bobby He 1 Thomas Hofmann 1

Abstract

Graph neural networks based on iterative one-
hop message passing have been shown to strug-
gle in harnessing the information from distant
nodes effectively. Conversely, graph transform-
ers allow each node to attend to all other nodes
directly, but lack graph inductive bias and have
to rely on ad-hoc positional encoding. In this
paper, we propose a new architecture to recon-
cile these challenges. Our approach stems from
the recent breakthroughs in long-range model-
ing provided by deep state-space models: for a
given target node, our model aggregates other
nodes by their shortest distances to the target
and uses a linear RNN to encode the sequence
of hop representations. The linear RNN is param-
eterized in a particular diagonal form for stable
long-range signal propagation and is theoretically
expressive enough to encode the neighborhood
hierarchy. With no need for positional encod-
ing, we empirically show that the performance
of our model is comparable to or better than that
of state-of-the-art graph transformers on various
benchmarks, with a significantly reduced compu-
tational cost. Our code is open-source at https:
//github.com/skeletondyh/GRED.

1. Introduction
Graphs are ubiquitous for representing complex interactions
between individual entities, such as in social networks (Tang
et al., 2009), recommender systems (Ying et al., 2018) and
molecules (Gilmer et al., 2017), and have thus attracted
a lot of interest from researchers seeking to apply deep
learning to graph data. Message passing neural networks
(MPNNs) (Gilmer et al., 2017) have been the dominant ap-
proach in this field. These models iteratively update the

1Department of Computer Science, ETH Zürich 2ELLIS Insti-
tute Tübingen, MPI-IS, Tübingen AI Center. Correspondence to:
Yuhui Ding <yuhui.ding@inf.ethz.ch>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Λ

ΛΛ

Λ

Λ
Λ Λ

2
2

3

Λ2

I
Target
node v Diagonal linear RNN output

Figure 1. Illustration of the filtering effect on the neighborhood,
induced by the linear RNN. The filter weight is determined by the
eigenvalues Λ of the transition matrix and the shortest distance to
the target node. We expand on this in Section 3.

representation of a target node by aggregating the represen-
tations of its neighbors. Despite progress in semi-supervised
node classification tasks (Kipf & Welling, 2017; Veličković
et al., 2018), MPNNs have been shown to have difficulty in
effectively harnessing the information of distant nodes (Alon
& Yahav, 2021; Dwivedi et al., 2022b). To reach a node
that is k hops away from the target node, an MPNN needs
at least k layers. As a result, the receptive field for the
target node grows exponentially with k, including many
duplicates of nodes that are close to the target node. The
information from such an exponentially growing receptive
field is compressed into a fixed-size representation, making
it insensitive to the signals from distant nodes (a.k.a. over-
squashing (Topping et al., 2022; Di Giovanni et al., 2023)).
This limitation may hinder the application of MPNNs to
tasks that require long-range reasoning.

Inspired by the success of attention-based transformer ar-
chitectures in modeling natural languages (Vaswani et al.,
2017; Devlin et al., 2019) and images (Dosovitskiy et al.,
2021), several recent works have adapted transformers for
graph representation learning to address the aforementioned
issue (Ying et al., 2021; Kim et al., 2022; Chen et al., 2022;
Ma et al., 2023). Graph transformers allow each node to
attend to all other nodes directly through a global atten-

1

https://github.com/skeletondyh/GRED
https://github.com/skeletondyh/GRED

Recurrent Distance Filtering for Graph Representation Learning

tion mechanism, and therefore make the information flow
between distant nodes easier. However, a naive global atten-
tion mechanism alone doesn’t encode any structural infor-
mation about the underlying graph. Hence, state-of-the-art
graph transformers rely on ad hoc positional encoding (e.g.,
eigenvectors of the graph Laplacian) as extra features to
incorporate the graph inductive bias. There is no consensus
yet on the optimal type of positional encoding. Which posi-
tional encoding to use and its associated hyper-parameters
need to be tuned carefully (Rampášek et al., 2022). Besides,
while graph transformers have empirically shown improve-
ment on some graph benchmarks compared with classical
MPNNs, the former are much more computationally expen-
sive (Dwivedi et al., 2022b).

Captivated by the above challenges and the need for pow-
erful, theoretically sound and computationally efficient ap-
proaches to graph representation learning, we propose a new
model, Graph Recurrent Encoding by Distance (GRED).
Each layer of our model consists of a permutation-invariant
neural network (Zaheer et al., 2017) and a linear recurrent
neural network (Orvieto et al., 2023b) that is parameterized
in a particular diagonal form following the recent advances
in state space models (Gu et al., 2022b; Smith et al., 2023).
To generate the representation for a target node, our model
categorizes all other nodes into multiple sets according to
their shortest distances to the target node. The permutation-
invariant neural network generates a representation for each
set of nodes that share the same shortest distance to the
target node, and then the linear recurrent neural network en-
codes the sequence of the set representations, starting from
the set with the maximum shortest distance and ending at
the target node itself. Since the order of the sequence is nat-
urally encoded by the recurrent neural network, our model
can encode the neighborhood hierarchy of the target node
without the need for positional encoding. The architecture
of GRED is illustrated in Figure 2.

The diagonal parameterization of the linear RNN (Orvieto
et al., 2023b) has been shown to make long-range signal
propagation more stable than a vanilla RNN, and enables
our model to effectively harness the information of distant
nodes. More specifically, it enables our model to directly
learn the eigenvalues of the transition matrix, which con-
trol how fast the signals from distant nodes decay as they
propagate towards the target node (see Figure 1 for an illus-
tration), and at the same time allows efficient computation
with parallel scans. Furthermore, while the use of a linear
recurrent neural network is motivated by long-range signal
propagation, we theoretically prove its expressive power
in terms of injective functions over sequences, which is of
independent interest, and based on that we conclude that
our model is more expressive than 1-WL (Xu et al., 2019).
We evaluate our model on a series of graph benchmarks to
support its efficacy. The performance of our model is signif-

icantly better than that of MPNNs, and is comparable to or
better than that of state-of-the-art graph transformers while
requiring no positional encoding and significantly reducing
computation time.

To summarize, the main contributions of our paper are as
follows:

• We propose a principled new model for graph repre-
sentation learning that can effectively and efficiently
harness the information of distant nodes. The archi-
tecture is composed of permutation-invariant neural
networks and linear recurrent neural networks with
diagonal parameterization.

• We theoretically prove that a linear recurrent neural
network is able to express an injective mapping over
sequences, which makes our architecture more expres-
sive than 1-WL.

• Without the need for positional encoding, our model
has achieved strong empirical performance on multiple
widely used graph benchmarks, which is comparable to
or better than that of state-of-the-art graph transformers,
with higher training efficiency.

2. Related Work
We review below the literature on expanding MPNN’s re-
ceptive field, including multi-hop MPNNs and graph trans-
formers, as well as current trends in recurrent models for
long-range reasoning on sequential data.

Multi-hop MPNNs. Multi-hop MPNNs leverage the in-
formation of multiple hops for each layer. Among existing
works, MixHop (Abu-El-Haija et al., 2019) uses powers
of the normalized adjacency matrix to access k-hop nodes.
k-hop GNN (Nikolentzos et al., 2020) iteratively applies
MLPs to combine two consecutive hops and propagates
information towards the target node. Feng et al. (2022) the-
oretically analyze the expressive power of general k-hop
MPNNs and enhance it with subgraph information. These
works proved that higher-hop information can improve the
expressiveness of MPNNs, but they didn’t address how to
preserve long-range information during propagation as we
do. SPN (Abboud et al., 2022) is shown to alleviate over-
squashing empirically. It first aggregates neighbors of the
same hop but simply uses weighted summation to combine
hop representations, which cannot guarantee the expressive-
ness of the model. On the contrary, we prove that our model,
capable of modeling long-range dependency, is also theoreti-
cally expressive. PathNN (Michel et al., 2023) encodes each
individual path that emanates from a node and aggregates
these paths to compute the node representation. DRew (Gut-
teridge et al., 2023) gradually aggregates more hops at each
layer and allows skip connections between different nodes.

2

Recurrent Distance Filtering for Graph Representation Learning

1
2

36

4

5

7
8

9

3 1
6

2

4

85
9

7

(a)

(b)

MLPLN Task
Head

LN LRU MLP

skip

sum MLPLN

skip

Encoder
Multiset aggregation

(Nodes at same distance w.r.t. target)

+ΛWin +Λ2WinWin= MLP
+

1

2
3
4
5

7
6

8
9

1

+ΛWin +Λ2WinWin
+

2
3
4
8

9
+Λ3Win5 5 1

7
6

Mutiset
Aggreg.

=

Graph Recurrent Encoding by Distance (GRED) block

x number of layers

Linear Recurrent Network
(Aggregated features propagated to target)

= MLP

Figure 2. (a) Sketch of the architecture. MLPs and Layer Normalization operate independently at each node or aggregated multiset.
Information of the distant nodes is propagated to the target node through a linear RNN – specifically an LRU (Orvieto et al., 2023b). (b)
Depiction of the GRED layer operation for two different target nodes. The gray rectangular boxes indicate the application of multiset
aggregation. Finally, the new representation for the target node is computed from the RNN output through an MLP.

Graph transformers. Graph transformers (Ying et al.,
2021; Wu et al., 2021; Chen et al., 2022; Rampášek et al.,
2022; Zhang et al., 2023; Ma et al., 2023) have recently
attracted a lot of interest because the global attention mech-
anism allows each node to directly attend to all other nodes.
To bake in the graph structural information, graph trans-
formers typically use positional encoding (Li et al., 2020;
Dwivedi et al., 2022a) as extra features. More specifically,
Graphormer (Ying et al., 2021) adds learnable biases to the
attention matrix for different shortest distances. However,
the sequential order of hops is not encoded into the model,
and Graphormer still needs node degrees to augment node
features. SAT (Chen et al., 2022) and GraphTrans (Wu et al.,
2021) stack message passing layers and self-attention lay-
ers together to obtain local information before the global

attention. Rampášek et al. (2022) empirically compare dif-
ferent configurations of positional encoding, message pass-
ing and global attention. Zhang et al. (2023) suggest the
use of resistance distance as relative positional encoding.
Ma et al. (2023) use learnable positional encoding initial-
ized with random walk probabilities. He et al. (2023) use
MPNNs to encode graph patches generated by a graph clus-
tering algorithm and apply MLP-Mixer (Tolstikhin et al.,
2021)/ViT (Dosovitskiy et al., 2021) to patch embeddings,
but require node/patch positional encoding and selecting the
number of patches.

State space models and linear RNNs. Efficient process-
ing of long sequences is one of the paramount challenges
in contemporary deep learning. Attention-based transform-

3

Recurrent Distance Filtering for Graph Representation Learning

ers (Vaswani et al., 2017) provide a scalable approach to
sequential modeling but suffer from quadratically increas-
ing inference/memory complexity as the sequence length
grows. While many approaches exist to alleviate this is-
sue, like efficient memory management (Dao et al., 2022;
Dao, 2024) and architectural modifications (Wang et al.,
2020; Kitaev et al., 2020; Child et al., 2019; Beltagy et al.,
2020; Wu et al., 2020), the sequence length in modern large
language models is usually kept to 2k/4k tokens for this
reason (e.g. Llama2 (Touvron et al., 2023)). On top of
high inference and memory cost, the attention mechanism
often does not provide the correct inductive bias for long-
range reasoning beyond text (Tay et al., 2021). Due to the
issues outlined above, the community has witnessed the rise
of innovative recurrent alternatives to the attention mech-
anism, named state space models (SSMs). The first SSM,
S4, was introduced by Gu et al. (2022a) based on the theory
of polynomial signal approximation (Gu et al., 2020; 2023)
and significantly surpassed all modern transformer vari-
ants on the challenging long-range benchmark (Tay et al.,
2021). Since then, a plethora of variants have been pro-
posed (Hasani et al., 2023; Gupta et al., 2022; Smith et al.,
2023; Peng et al., 2023). Deep SSMs have reached outstand-
ing results in various domains, including language (Fu et al.,
2023), vision (Nguyen et al., 2022) and audio (Goel et al.,
2022). At inference time, all SSMs coincide with a stack
of linear RNNs, interleaved with position-wise MLPs and
normalization layers. The linearity of the RNNs enables fast
parallel processing using FFTs (Gu et al., 2022a) or parallel
scans (Smith et al., 2023). The connection between SSMs
and linear RNNs is reinforced by Linear Recurrent Unit
(LRU) (Orvieto et al., 2023b) that matches the performance
of deep SSMs. While SSMs rely on the discretization of a
structured continuous-time latent dynamical system, LRU
is directly designed for a discrete-time system. The main
difference between LRU and a standard linear RNN is that
LRU operates in the complex domain and its diagonal transi-
tion matrix is trained using polar parameterization for stable
signal propagation.

3. Architecture
In this section, we present the GRED layer, which is the
building unit of our architecture. We start with some prelim-
inary notations and then describe how our layer computes
node representations. Finally, we analyze its computational
complexity.

Preliminaries. Let G = (V,E) denote an undirected and
unweighted graph, where V denotes the set of nodes and
E denotes the set of edges. For any two nodes v, u ∈ V ,
we use d(v, u) to represent the shortest distance between v
and u, and we let d(v, v) = 0. For each target node v, we
categorize all other nodes into different hops according to

their shortest distances to v:

Nk(v) = {u | d(v, u) = k} for k = 0, 1, . . . ,K (1)

where K is the diameter of G or a hyper-parameter speci-
fied for the task in hand. {Nk(v)}Kk=1 can be obtained for
every node v ∈ V by running the Floyd–Warshall algo-
rithm (Floyd, 1962; Warshall, 1962) in parallel during data
preprocessing and they are saved as masks.

GRED layer. The input to the ℓ-th layer is a set of node
representations {{h(ℓ−1)

v ∈ Rd | v ∈ V }}. To compute the
output representation h

(ℓ)
v of this layer for a generic target

node v, the layer first generates a representation for each
set of nodes that share the same shortest distance to v (grey
dashed boxes in Figure 2):

x
(ℓ)
v,k = AGG

({{
h(ℓ−1)
u | u ∈ Nk(v)

}})
(2)

where {{·}} denotes a multiset, and AGG is an injective mul-
tiset function which we parameterize with two wide multi-
layer perceptrons (MLPs)1, as usual in the literature (Zaheer
et al., 2017; Xu et al., 2019):

x
(ℓ)
v,k = MLP2

(∑
u∈Nk(v)

MLP1

(
h(ℓ−1)
u

))
∈ Rd. (3)

These set representations (x(ℓ)
v,0,x

(ℓ)
v,1, . . . ,x

(ℓ)
v,K) naturally

form a sequence according to the shortest distances. Then
we encode this sequence using a linear RNN:

s
(ℓ)
v,k = As

(ℓ)
v,k−1 +Bx

(ℓ)
v,K−k for k = 0, . . . ,K (4)

where s
(ℓ)
v,k ∈ Rds represents the hidden state of the RNN

and s
(ℓ)
v,−1 = 0. A ∈ Rds×ds denotes the state transition

matrix and B ∈ Rds×d is a matrix to transform the input
of the RNN. Here in Equation (4) the RNN encoding starts
from x

(ℓ)
v,K , proceeds from right to left, and ends at x(ℓ)

v,0,
which corresponds to the signals from distant nodes propa-
gating towards the target node. The neighborhood hierarchy
of the target node v would then be encoded into the final
hidden state s

(ℓ)
v,K of the RNN. Note that as in Figure 2(b),

different nodes have different sequences to describe their
respective neighborhoods, and the RNN computations for
all nodes can be batched. Although for a particular target
node, some edges between hop k (k ≥ 1) and hop k + 1
are omitted by converting its neighborhood into a sequence,
those edges would be taken into account for other target
nodes. Therefore, considering all node representations as
a whole, our model preserves the full graph structural in-
formation. We theoretically prove the expressiveness of the
linear RNN and our model in Section 4.

1In practice, with just one hidden layer.

4

Recurrent Distance Filtering for Graph Representation Learning

In our model, we parameterize the linear RNN in a partic-
ular diagonal form. Recall that, over the space of ds × ds
non-diagonal real matrices, the set of non-diagonalizable (in
the complex domain) matrices has measure zero (Bhatia,
2013). Hence, with probability one over random initial-
izations, A is diagonalizable, i.e., A = V ΛV −1, where
Λ = diag(λ1, . . . , λds

) ∈ Cds×ds gathers the eigenvalues
of A, and columns of V are the corresponding eigenvectors.
Equation (4) is then equivalent to the following diagonal
recurrence in the complex domain, up to a linear transfor-
mation of the hidden state s which can be merged with the
output projection Wout (Equation (7)):

s
(ℓ)
v,k = Λs

(ℓ)
v,k−1 +Winx

(ℓ)
v,K−k (5)

where Win = V −1B ∈ Cds×d. Unrolling the recurrence,
we have:

s
(ℓ)
v,K =

K∑
k=0

ΛkWinx
(ℓ)
v,k. (6)

Equation (6) can be thought of as a filter over the hops
from the target node (Figure 1), and the filter weights are
determined by the magnitudes of the eigenvalues Λ and the
shortest distances to the target node. Following the mod-
ern literature on deep SSMs (Gupta et al., 2022; Gu et al.,
2022b), we directly initialize (without loss of generality) the
system in the diagonal form and have Λ and Win as train-
able parameters2. To guarantee stability (the eigenvalues
should be bounded by the unit disk), we adopt the recently
introduced LRU initialization (Orvieto et al., 2023b) that
parameterizes the eigenvalues with log-transformed polar
coordinates. Through directly learning eigenvalues Λ, our
model learns to control the influence of signals from distant
nodes on the target node, and thus addresses over-squashing
caused by iterative 1-hop mixing. Another advantage of
the diagonal linear recurrence is that it can leverage par-
allel scans (Blelloch, 1990; Smith et al., 2023) to avoid
computing s sequentially on modern hardware.

The output representation h
(ℓ)
v is generated by a non-linear

transformation of the last hidden state s
(ℓ)
v,K :

h(ℓ)
v = MLP3

(
ℜ
[
Wouts

(ℓ)
v,K

])
(7)

where Wout ∈ Cd×ds is a trainable weight matrix and ℜ[·]
denotes the real part of a complex-valued vector. While
sufficiently wide MLPs with one hidden layer can param-
eterize any non-linear mapping, following again the lit-
erature on state-space models we choose to place here a

2As done in all state-space models (Gu et al., 2022a; Smith
et al., 2023), we do not optimize over the complex numbers but
instead parameterize, for instance, real and imaginary components
of Win as real parameters. The imaginary unit i is then used to
aggregate the two components in the forward pass.

gated linear unit (GLU) (Dauphin et al., 2017): GLU(x) =
(W1x)⊙ σ(W2x), with σ the sigmoid function and ⊙ the
element-wise product.

The final architecture is composed of stacking several of
such layers described above. In practice, we merge MLP1

in Equation (3) with the non-linear transformation in Equa-
tion (7) of the previous layer (or of the feature encoder) to
make the entire architecture more compact. We add skip
connections to both the MLP and the LRU and apply layer
normalization to the input of each residual branch. The
overall architecture is illustrated in Figure 2(a).

Computational complexity. For each distance k, the com-
plexity of aggregating the representations of nodes from
Nk(v) for every v ∈ V is that of one round of message
passing, which is O(|E|). So the total complexity of Equa-
tion (3) for all nodes and distances is O(K|E|). In prac-
tice, since {Nk(v)}Kk=1 are pre-computed, Equation (3) for
different k’s can be performed in parallel to speed up the
computation. The sequential computation of Equation (5)
has total complexity O(K|V |). However, the linearity of
the recurrence and the diagonal state transition matrix en-
able fast parallel scans to further improve the efficiency. In
the above analysis, K is upper bounded by the graph di-
ameter, which is usually much smaller than the number of
nodes in real-world datasets. Even in the worst case where
the diameter is large, we can keep the complexity of each
layer tractable with a smaller constant K and still access
the global information by ensuring the product of model
depth and K is no smaller than the diameter. As a result
of the compact and parallelizable architectural design, our
model is highly efficient during training, as evidenced by
our experimental results.

4. Expressiveness Analysis
In this section, we theoretically analyze the expressive ca-
pabilities of the linear RNN (Equation (5)) and the overall
model. Wide enough linear RNNs have been shown to be
able to approximate convolutional filters (Li et al., 2022),
and model non-linear dynamic systems when interleaved
with MLPs (Orvieto et al., 2023a). In the context of this
paper, we are interested in whether the linear RNN can accu-
rately encode the sequence of hop representations (generated
by Equation (3)) that describes the neighborhood hierarchy
of the target node. To answer this question, in the following,
we prove that if the hidden state is large enough, a linear
RNN can express an injective mapping over sequences:

Theorem 4.1 (Injectivity of linear RNNs). Let {xv =
(xv,0,xv,1,xv,2, . . . ,xv,Kv

) | v ∈ V } be a set of sequences
(of different lengths Kv ≤ K) of vectors with a (possi-
bly uncountable) set of features X ⊂ Rd. Consider a di-
agonal linear complex-valued RNN with ds-dimensional

5

Recurrent Distance Filtering for Graph Representation Learning

Table 1. Test classification accuracy (in percent) of our model in comparison with baselines. Performance of baselines is reported by the
benchmark (Dwivedi et al., 2023) or their original papers. “-” indicates the baseline didn’t report its performance on that dataset. We
follow the parameter budget ≈ 500K.

Model MNIST CIFAR10 PATTERN CLUSTER

GCN (Kipf & Welling, 2017) 90.705±0.218 55.710±0.381 85.614±0.032 69.026±1.372
GAT (Veličković et al., 2018) 95.535±0.205 64.223±0.455 78.271±0.186 70.587±0.447
GIN (Xu et al., 2019) 96.485±0.252 55.255±1.527 85.590±0.011 64.716±1.553
GatedGCN (Bresson & Laurent, 2017) 97.340±0.143 67.312±0.311 85.568±0.088 73.840±0.326

EGT (Hussain et al., 2022) 98.173±0.087 68.702±0.409 86.821±0.020 79.232±0.348
SAN (Kreuzer et al., 2021) - - 86.581±0.037 76.691±0.65
SAT (Chen et al., 2022) - - 86.848±0.037 77.856±0.104
GPS (Rampášek et al., 2022) 98.051±0.126 72.298±0.356 86.685±0.059 78.016±0.180
Graph MLP-Mixer (He et al., 2023) 98.320±0.040 73.960±0.330 - -
GRIT (Ma et al., 2023) 98.108±0.111 76.468±0.881 87.196±0.076 80.026±0.277

GRED (Ours) 98.383±0.012 76.853±0.185 86.759±0.020 78.495±0.103

hidden state, parameters Λ ∈ diag(Cds),Win ∈ Cds×d

and recurrence rule sv,k = Λsv,k−1 + Winxv,Kv−k,
initialized at sv,−1 = 0 ∈ Rds for each v ∈ V . If
ds ≥ (K + 1)d, then there exist Λ,Win such that the
map R : (xv,0,xv,1,xv,2, . . . ,xv,K) 7→ sv,K (with zero
right-padding if Kv < K) is bijective. Moreover, if the set
of RNN inputs has countable cardinality |X | = N ≤ ∞,
then selecting ds ≥ d is sufficient for the existence of an
injective linear RNN mapping R.

The proof can be found in Appendix A. Here we assume
zero-padding for Kv < K (for mini-batch training). If
some nodes coincidentally have zero-valued features, we
can select a special token which is not in the dictionary of
node features as the padding token. In practice, such an
operation is not necessary because node representations are
first fed into an MLP before the linear RNN, which can
learn to shift them away from zero.

Based on Theorem 4.1, and the well-known conclusion that
the parameterization given by Equation (3) can express an
injective multiset function (Xu et al., 2019), we have the
following corollary:

Corollary 4.2. A wide enough GRED layer is capable of
expressing an injective mapping of the list (hv, {{hu | u ∈
N1(v)}}, {{hu | u ∈ N2(v)}}, . . . , {{hu | u ∈ NKv

(v)}}) for
each v ∈ V .

This corollary in turn implies the following result:

Corollary 4.3 (Expressiveness of GRED). When K > 1,
one wide enough GRED layer is more expressive than any
1-hop message passing layer.

Proof. We note that 1-WL assumes an injective mapping of
1-hop neighborhood, i.e., (hv, {{hu | u ∈ N1(v)}}), which

is a special case of GRED (K = 1). When K > 1, the
output of one GRED layer at node v, given the injectivity of
the linear RNN and AGG, provides a more detailed charac-
terization of its neighborhood than 1-hop message passing.
This means that if v’s 1-hop neighborhood changes, the
output of the GRED layer will also be different. Therefore,
GRED is able to distinguish any two non-isomorphic graphs
that are distinguishable by 1-WL. Moreover, GRED can
distinguish two non-isomorphic graphs which 1-WL cannot
(see Figure 7 in the appendix for an example).

We note that Feng et al. (2022) have already proven that
multi-hop MPNNs are more expressive than 1-WL, but
are upper bounded by 3-WL, which also applies to our
model. Different from them, we achieve such expressiveness
with a compact and parameter-efficient architecture (i.e., the
number of parameters does not increase with K), which is
of independent interest and bridges the gap between theory
and practice.

5. Experiments
In this section, we evaluate our model on widely used graph
benchmarks (Dwivedi et al., 2023; 2022b). In all experi-
ments, we train our model using the Adam optimizer with
weight decay (Loshchilov & Hutter, 2019) and use the co-
sine annealing schedule with linear warm-up for the first 5%
epochs. We compare our model against popular MPNNs
including GCN (Kipf & Welling, 2017), GAT (Veličković
et al., 2018), GIN (Xu et al., 2019), GatedGCN (Bresson
& Laurent, 2017), and multi-hop MPNN variants (Feng
et al., 2022; Michel et al., 2023; Gutteridge et al., 2023), as
well as several state-of-the-art graph transformers including
Graphormer (Ying et al., 2021), SAT (Chen et al., 2022),
GPS (Rampášek et al., 2022), Graph MLP-Mixer (He et al.,

6

Recurrent Distance Filtering for Graph Representation Learning

Table 2. Test MAE on ZINC 12K with parameter budget ≈ 500K.

Model Test MAE ↓
GCN (Kipf & Welling, 2017) 0.278±0.003
GAT (Veličković et al., 2018) 0.384±0.007
GIN (Xu et al., 2019) 0.387±0.015
GatedGCN (Bresson & Laurent, 2017) 0.282±0.015
PNA (Corso et al., 2020) 0.188±0.004
KP-GIN (Feng et al., 2022) 0.093±0.007
PathNN (Michel et al., 2023) 0.090±0.004

SAN (Kreuzer et al., 2021) 0.139±0.006
Graphormer (Ying et al., 2021) 0.122±0.006
K-subgraph SAT (Chen et al., 2022) 0.094±0.008
GPS (Rampášek et al., 2022) 0.070±0.004
Graph MLP-Mixer (He et al., 2023) 0.073±0.001
GRIT (Ma et al., 2023) 0.059±0.002

GRED (Ours) 0.077±0.002

2023) and GRIT (Ma et al., 2023). We also measure the
training time and memory consumption of GRED to demon-
strate its high efficiency. We use three distinct colors to indi-
cate the performance of our model, the best MPNN, and the
best graph transformer. We detail the hyper-parameters used
for our model in the appendix (Table 5). In Appendix B, we
validate GRED’s robustness to over-squashing and compare
GRED with SPN (Abboud et al., 2022).

Benchmarking GNNs. We first evaluate our model on
the node classification datasets: PATTERN and CLUSTER,
and graph classification datasets: MNIST and CIFAR10
from (Dwivedi et al., 2023). To get the representation for the
entire graph, we simply do average pooling over all node rep-
resentations. Our model doesn’t use any positional encoding.
We train our model four times with different random seeds
and report the average accuracy with standard deviation.
The results are shown in Table 1. From the table we see that
graph transformers generally perform better than MPNNs.
Among the four datasets, PATTERN models communities
in social networks and all nodes are reachable within 3 hops,
which we conjecture is why the performance gap between
graph transformers and MPNNs is only marginal. For a
more difficult task, like CIFAR10, that requires information
from a relatively larger neighborhood, graph transformers
work more effectively. GRED performs well on all four
datasets and consistently outperforms MPNNs. Notably, on
MNIST and CIFAR10, GRED achieves the best accuracy,
outperforming state-of-the-art models Graph MLP-Mixer
and GRIT, which validates that our model can effectively
aggregate information beyond the local neighborhood.

ZINC 12K. Next, we report the test MAE of our model
on ZINC 12K (Dwivedi et al., 2023). The average MAE

Table 3. Test performance on Peptides-func/struct.

Model Peptides-func Peptides-struct
Test AP ↑ Test MAE ↓

GCN∗ 0.6860±0.0050 0.2460±0.0007
GINE∗ 0.6621±0.0067 0.2473±0.0017
GatedGCN∗ 0.6765±0.0047 0.2477±0.0009
PathNN 0.6816±0.0026 0.2540±0.0046
DRew 0.6996±0.0076 0.2781±0.0028
DRew+LapPE 0.7150±0.0044 0.2536±0.0015

SAN+LapPE 0.6384±0.0121 0.2683±0.0043
GPS 0.6535±0.0041 0.2500±0.0005
Graph-MLPMixer 0.6970±0.0080 0.2475±0.0015
GRIT 0.6988±0.0082 0.2460±0.0012

GRED (Ours) 0.7085±0.0027 0.2503±0.0019
GRED+LapPE 0.7133±0.0011 0.2455±0.0013

and standard deviation of four runs with different random
seeds are shown in Table 2 along with baseline performance
from their original papers. From Table 2 we can observe
that the performance of our model is significantly better
than that of existing MPNNs. In particular, GRED outper-
forms other multi-hop MPNN variants (Feng et al., 2022;
Michel et al., 2023), which shows our architecture is more
effective in aggregating multi-hop information. Comparing
GRED with graph transformers, we find that it outperforms
several graph transformer variants (SAN, Graphormer, and
K-subgraph SAT) and approaches the state-of-the-art model.
This is impressive given that our model doesn’t require any
positional encoding. These results evidence that our model
can encode graph structural information through the natural
inductive bias of recurrence.

Long Range Graph Benchmark. To further test the long-
range modeling capability of GRED, we evaluate it on the
Peptides-func and Peptides-struct datasets from (Dwivedi
et al., 2022b). We follow the 500K parameter budget and
train our model four times with different random seeds. The
results are displayed in Table 3. The performance of GCN,
GINE and GatedGCN (marked with ∗) comes from a recent
report (Tönshoff et al., 2023) that extensively tuned their
hyper-parameters with positional encoding. Performance
of other baselines is reported by respective papers. We can
observe that, even without positional encoding, GRED sig-
nificantly outperforms all baselines except DRew+LapPE
on Peptides-func, and its performance on Peptides-struct
also matches that of the best graph transformer. Note that on
Peptides-struct, DRew+LapPE performs worse than GRED.
These results demonstrate the strong long-range modeling
capability of our architecture itself. As a supplement, we
test GRED+LapPE by concatenating Laplacian positional
encoding with node features, and we find it slightly im-

7

Recurrent Distance Filtering for Graph Representation Learning

Figure 3. Learned (complex) eigenvalues of the first GRED layer
on CIFAR10 and Peptides-func.

proves the performance. We leave the combination of more
advanced positional encoding with GRED to future work.

To illustrate how GRED can learn to preserve long-range
information, we examine the eigenvalues learned by the
linear RNN (i.e., Λ in Equation (5)) after training, as shown
in Figure 3. We observe from the figure that the eigenvalues
are pushed close to 1 for the long-range task Peptides-func,
which prevent the signals of distant nodes from decaying too
fast. Compared with Peptides-func, CIFAR10 requires the
model to utilize more information from the local neighbor-
hood, so the magnitudes of the eigenvalues become smaller.

Table 4. Average training time per epoch and GPU memory con-
sumption for GRIT and GRED.

Model ZINC 12K CIFAR10 Peptides-func

GRIT 23.9s 244.4s 225.6s
1.9GB 4.6GB 22.5GB

GRED 3.7s 27.8s 158.9s
1.5GB 1.4GB 18.5GB

Speedup 6.5× 8.8× 1.4×

Figure 4. Effect of K on performance.

Training efficiency. To demonstrate the high efficiency of
our model, we record the average training time per epoch

and GPU memory consumption on ZINC, CIFAR10 and
Peptides-func. We compare our measurements with those
of the state-of-the-art graph transformer GRIT. Both mod-
els are trained using the same batch size and on a single
RTX A5000 GPU with 24GB memory. As shown in Ta-
ble 4, our model improves the training efficiency by a huge
margin, which stems from our compact and parallelizable
architecture design.

Effect of K on performance. Recall that the length of re-
currence K can be regarded as a hyper-parameter in GRED.
In Figure 4, we show how different K values affect the per-
formance of GRED on CIFAR10, ZINC and Peptides-func,
keeping the depth and hidden dimension of the architecture
unchanged (without positional encoding). On CIFAR10 and
ZINC, while directly setting K as the diameter already out-
performs classical MPNNs, we find that the optimal K value
that yields the best performance lies strictly between 1 and
the diameter. This may be because information that is too
far away is less important for these two tasks (interestingly,
the best K value for CIFAR10 is similar to the width of a
convolutional kernel on a normal image). On Peptides-func,
the performance is more monotonic with K. When K = 40,
GRED outperforms the best graph transformer GRIT. We
observe no further performance gain on Peptides-func when
we increase K to 60.

Figure 5. Performance of GRED using RNNs of different flavors.

Comparing RNNs of different flavors. Finally, we high-
light the necessity of the LRU component (Equation (5))
of GRED by replacing it with a vanilla RNN, a standard
LSTM cell or 8-head self-attention. The performance of
different variants is shown in Figure 5. We use the same
number of layers and K for all models and tune the learn-
ing rate, weight decay and dropout rate in the same grid.
None of the variants use positional encoding. We can ob-
serve that GREDLSTM performs better than GREDRNN on
CIFAR10 and Peptides-func. Since LSTM can alleviate the
training instability of the vanilla RNN, the improvement
of GREDLSTM over GREDRNN is particularly large on the
long-range dataset Peptides-func. GREDAttn allows direct
interaction with each hop and thus also yields good perfor-
mance on Peptides-func. However, self-attention cannot
provide good inductive bias because it cannot model the

8

Recurrent Distance Filtering for Graph Representation Learning

order of the hop sequence, which can explain why the per-
formance of GREDAttn is the worst on ZINC. GREDLRU
consistently outperforms the other variants, attributed to its
advanced parameterization for stable signal propagation and
great expressive power.

6. Conclusion
In this paper, we introduce the Graph Recurrent Encoding
by Distance (GRED) model for graph representation learn-
ing. By integrating permutation-invariant neural networks
with linear recurrent neural networks, GRED effectively har-
nesses information from distant nodes without the need for
positional encoding or computationally expensive attention
mechanisms. Theoretical and empirical evaluations con-
firm GRED’s superior performance compared with existing
MPNNs and highly competitive results compared with state-
of-the-art graph transformers at a higher training efficiency.
This positions GRED as a powerful, efficient, and promising
model for graph representation learning.

Acknowledgements
We thank the anonymous reviewers for their valuable feed-
back, which helped us improve the paper. Antonio Orvieto
acknowledges the financial support of the Hector Founda-
tion. Yuhui Ding would like to personally thank Jiaxin
Zhang for her support during the stressful time before the
deadline.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References
Abboud, R., Dimitrov, R., and Ceylan, I. I. Shortest path

networks for graph property prediction. In Learning on
Graphs Conference, 2022.

Abu-El-Haija, S., Perozzi, B., Kapoor, A., Alipourfard, N.,
Lerman, K., Harutyunyan, H., Ver Steeg, G., and Gal-
styan, A. Mixhop: Higher-order graph convolutional ar-
chitectures via sparsified neighborhood mixing. In ICML,
2019.

Alon, U. and Yahav, E. On the bottleneck of graph neural
networks and its practical implications. In ICLR, 2021.

Beltagy, I., Peters, M. E., and Cohan, A. Long-
former: The long-document transformer. arXiv preprint
arXiv:2004.05150, 2020.

Bhatia, R. Matrix analysis. Springer Science & Business
Media, 2013.

Blelloch, G. E. Prefix sums and their applications, 1990.

Bresson, X. and Laurent, T. Residual gated graph convnets.
arXiv preprint arXiv:1711.07553, 2017.

Chen, D., O’Bray, L., and Borgwardt, K. Structure-aware
transformer for graph representation learning. In ICML,
2022.

Child, R., Gray, S., Radford, A., and Sutskever, I. Gen-
erating long sequences with sparse transformers. arXiv
preprint arXiv:1904.10509, 2019.

Corso, G., Cavalleri, L., Beaini, D., Liò, P., and Veličković,
P. Principal neighbourhood aggregation for graph nets.
In NeurIPS, 2020.

Dao, T. Flashattention-2: Faster attention with better paral-
lelism and work partitioning. In ICLR, 2024.

Dao, T., Fu, D., Ermon, S., Rudra, A., and Ré, C. Flashat-
tention: Fast and memory-efficient exact attention with
io-awareness. In NeurIPS, 2022.

Dauphin, Y. N., Fan, A., Auli, M., and Grangier, D. Lan-
guage modeling with gated convolutional networks. In
ICML, 2017.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In NAACL, 2019.

Di Giovanni, F., Giusti, L., Barbero, F., Luise, G., Lio, P.,
and Bronstein, M. M. On over-squashing in message
passing neural networks: The impact of width, depth, and
topology. In ICML, 2023.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. In
ICLR, 2021.

Dwivedi, V. P., Luu, A. T., Laurent, T., Bengio, Y., and Bres-
son, X. Graph neural networks with learnable structural
and positional representations. In ICLR, 2022a.

Dwivedi, V. P., Rampášek, L., Galkin, M., Parviz, A., Wolf,
G., Luu, A. T., and Beaini, D. Long range graph bench-
mark. In NeurIPS, 2022b.

Dwivedi, V. P., Joshi, C. K., Luu, A. T., Laurent, T., Bengio,
Y., and Bresson, X. Benchmarking graph neural networks.
JMLR, 2023.

9

Recurrent Distance Filtering for Graph Representation Learning

Feng, J., Chen, Y., Li, F., Sarkar, A., and Zhang, M. How
powerful are k-hop message passing graph neural net-
works. In NeurIPS, 2022.

Floyd, R. W. Algorithm 97: shortest path. Communications
of the ACM, 1962.

Fu, D. Y., Dao, T., Saab, K. K., Thomas, A. W., Rudra, A.,
and Re, C. Hungry hungry hippos: Towards language
modeling with state space models. In ICLR, 2023.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In ICML, 2017.

Goel, K., Gu, A., Donahue, C., and Ré, C. It’s raw! audio
generation with state-space models. In ICML, 2022.

Gu, A., Dao, T., Ermon, S., Rudra, A., and Ré, C. Hippo:
Recurrent memory with optimal polynomial projections.
In NeurIPS, 2020.

Gu, A., Goel, K., and Re, C. Efficiently modeling long
sequences with structured state spaces. In ICLR, 2022a.

Gu, A., Gupta, A., Goel, K., and Ré, C. On the parameteri-
zation and initialization of diagonal state space models.
In NeurIPS, 2022b.

Gu, A., Johnson, I., Timalsina, A., Rudra, A., and Ré, C.
How to train your hippo: State space models with gener-
alized orthogonal basis projections. In ICLR, 2023.

Gupta, A., Gu, A., and Berant, J. Diagonal state spaces are
as effective as structured state spaces. In NeurIPS, 2022.

Gutteridge, B., Dong, X., Bronstein, M. M., and Di Gio-
vanni, F. Drew: Dynamically rewired message passing
with delay. In ICML, 2023.

Hasani, R., Lechner, M., Wang, T.-H., Chahine, M., Amini,
A., and Rus, D. Liquid structural state-space models. In
ICLR, 2023.

He, X., Hooi, B., Laurent, T., Perold, A., LeCun, Y., and
Bresson, X. A generalization of vit/mlp-mixer to graphs.
In ICML, 2023.

Hussain, M. S., Zaki, M. J., and Subramanian, D. Global
self-attention as a replacement for graph convolution. In
SIGKDD, 2022.

Kim, J., Nguyen, D., Min, S., Cho, S., Lee, M., Lee, H., and
Hong, S. Pure transformers are powerful graph learners.
In NeurIPS, 2022.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In ICLR, 2017.

Kitaev, N., Kaiser, Ł., and Levskaya, A. Reformer: The
efficient transformer. In ICLR, 2020.

Kreuzer, D., Beaini, D., Hamilton, W., Létourneau, V., and
Tossou, P. Rethinking graph transformers with spectral
attention. In NeurIPS, 2021.

Li, P., Wang, Y., Wang, H., and Leskovec, J. Distance en-
coding: Design provably more powerful neural networks
for graph representation learning. In NeurIPS, 2020.

Li, Z., Han, J., E, W., and Li, Q. Approximation and op-
timization theory for linear continuous-time recurrent
neural networks. JMLR, 2022.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. In ICLR, 2019.

Ma, L., Lin, C., Lim, D., Romero-Soriano, A., Dokania,
P. K., Coates, M., Torr, P., and Lim, S.-N. Graph inductive
biases in transformers without message passing. In ICML,
2023.

Michel, G., Nikolentzos, G., Lutzeyer, J. F., and Vazirgian-
nis, M. Path neural networks: Expressive and accurate
graph neural networks. In ICML, 2023.

Nguyen, E., Goel, K., Gu, A., Downs, G. W., Shah, P., Dao,
T., Baccus, S. A., and Ré, C. S4nd: Modeling images and
videos as multidimensional signals using state spaces. In
NeurIPS, 2022.

Nikolentzos, G., Dasoulas, G., and Vazirgiannis, M. k-hop
graph neural networks. Neural Networks, 2020.

Orvieto, A., De, S., Gulcehre, C., Pascanu, R., and Smith,
S. L. On the universality of linear recurrences followed by
nonlinear projections. arXiv preprint arXiv:2307.11888,
2023a.

Orvieto, A., Smith, S. L., Gu, A., Fernando, A., Gulcehre,
C., Pascanu, R., and De, S. Resurrecting recurrent neural
networks for long sequences. In ICML, 2023b.

Peng, B., Alcaide, E., Anthony, Q., Albalak, A., Arcadinho,
S., Cao, H., Cheng, X., Chung, M., Grella, M., GV, K. K.,
et al. Rwkv: Reinventing rnns for the transformer era.
arXiv preprint arXiv:2305.13048, 2023.

Rampášek, L., Galkin, M., Dwivedi, V. P., Luu, A. T., Wolf,
G., and Beaini, D. Recipe for a general, powerful, scal-
able graph transformer. In NeurIPS, 2022.

Smith, J. T., Warrington, A., and Linderman, S. W. Simpli-
fied state space layers for sequence modeling. In ICLR,
2023.

Tang, J., Sun, J., Wang, C., and Yang, Z. Social influence
analysis in large-scale networks. In SIGKDD, 2009.

10

Recurrent Distance Filtering for Graph Representation Learning

Tay, Y., Dehghani, M., Abnar, S., Shen, Y., Bahri, D., Pham,
P., Rao, J., Yang, L., Ruder, S., and Metzler, D. Long
range arena: A benchmark for efficient transformers. In
ICLR, 2021.

Tolstikhin, I. O., Houlsby, N., Kolesnikov, A., Beyer, L.,
Zhai, X., Unterthiner, T., Yung, J., Steiner, A., Keysers,
D., Uszkoreit, J., et al. Mlp-mixer: An all-mlp architec-
ture for vision. In NeurIPS, 2021.

Tönshoff, J., Ritzert, M., Rosenbluth, E., and Grohe, M.
Where did the gap go? reassessing the long-range graph
benchmark. arXiv preprint arXiv:2309.00367, 2023.

Topping, J., Di Giovanni, F., Chamberlain, B. P., Dong, X.,
and Bronstein, M. M. Understanding over-squashing and
bottlenecks on graphs via curvature. In ICLR, 2022.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Attention
is all you need. In NeurIPS, 2017.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio,
P., and Bengio, Y. Graph attention networks. In ICLR,
2018.

Wang, S., Li, B. Z., Khabsa, M., Fang, H., and Ma, H.
Linformer: Self-attention with linear complexity. arXiv
preprint arXiv:2006.04768, 2020.

Warshall, S. A theorem on boolean matrices. Journal of the
ACM (JACM), 1962.

Wu, Z., Liu, Z., Lin, J., Lin, Y., and Han, S. Lite transformer
with long-short range attention. In ICLR, 2020.

Wu, Z., Jain, P., Wright, M., Mirhoseini, A., Gonzalez, J. E.,
and Stoica, I. Representing long-range context for graph
neural networks with global attention. In NeurIPS, 2021.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In ICLR, 2019.

Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen,
Y., and Liu, T.-Y. Do transformers really perform badly
for graph representation? In NeurIPS, 2021.

Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton,
W. L., and Leskovec, J. Graph convolutional neural net-
works for web-scale recommender systems. In SIGKDD,
2018.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R. R., and Smola, A. J. Deep sets. In
NeurIPS, 2017.

Zhang, B., Luo, S., Wang, L., and He, D. Rethinking the
expressive power of gnns via graph biconnectivity. In
ICLR, 2023.

11

Recurrent Distance Filtering for Graph Representation Learning

A. Proof of Theorem 4.1
Proof. For now, let us assume for ease of exposition that all sequences are of length K. Also, let us, for simplicity, omit the
dependency on v ∈ V and talk about generic sequences.

The proof simply relies on the idea of writing the linear recurrence in matrix form (Gu et al., 2022b; Orvieto et al., 2023a).
Note that for a generic input x = (x0,x1,x2, . . . ,xK) ∈ Rd×(K+1), the recurrence output can be rewritten in terms of
powers of Λ = diag(λ1, λ2, . . . , λds) as follows:

sK =

K∑
k=0

ΛkWinxk. (8)

We now present sufficient conditions for the map R : (x0,x1,x2, . . . ,xK) 7→ sK to be injective or bijective. The proof for
bijectivity does not require the set of node features to be in a countable set, and it is simpler.

Bijective mapping. First, let us design a proper matrix Win ∈ Rds×d. We choose ds = (K + 1)d and set Win =
Id×d ⊗ 1(K+1)×1. As a result, the RNN will independently process each dimension of the input with a sub-RNN of size
(K+1). The resulting sK ∈ R(K+1)d will gather each sub-RNN output by concatenation. We can then restrict our attention
to the first dimension of the input sequence:

(sK)1:(K+1) =

K∑
k=0

diag(λ1, λ2, . . . , λK+1)
k1(K+1)×1xk,1. (9)

This sum can be written conveniently by multiplication using a Vandermonde matrix:

(sK)1:(K+1) =

λK
1 λK−1

1 · · · λ1 1

λK
2 λK−1

2 · · · λ2 1
...

...
. . .

...
...

λK
K+1 λK−1

K+1 · · · λK+1 1

x←0:K,1. (10)

where x←0:K,1 is the input sequence (first dimension) in reverse order. The proof is concluded by noting that Vandermonde
matrices of size (K+1)× (K+1) are full-rank since they have non-zero determinant

∏
1≤i<j≤(K+1)(λi−λj) ̸= 0, under

the assumption that all λi are distinct. Note that one does not need complex eigenvalues to achieve this, both Λ and Win can
be real. However, as discussed by Orvieto et al. (2023a), complex eigenvalues improve conditioning of the Vandermonde
matrix.

Injective mapping. The condition for injectivity is that if x ̸= x̂, then R(x) ̸= R(x̂). In formulas,

sK − ŝK =

K∑
k=0

ΛkWin(xk − x̂k) ̸= 0 (11)

Let us assume the state dimension coincides with the input dimension, and let us set Win = Id×d. Then, we have the
condition:

sK − ŝK =

K∑
k=0

Λk(xk − x̂k) ̸= 0. (12)

Since Λ = diag(λ1, λ2, . . . , λd) is diagonal, we can study each component of sK − ŝK separately. We therefore require

sK,i − ŝK,i =

K∑
k=0

λk
i (xk,i − x̂k,i) ̸= 0 ∀i ∈ {1, 2, . . . , d}. (13)

We can then restrict our attention to linear one-dimensional RNNs (i.e. filters) with one-dimensional input x ∈ R1×(K+1).
We would like to choose λ ∈ C such that

K∑
k=0

λk(xk − x̂k) ̸= 0 (14)

12

Recurrent Distance Filtering for Graph Representation Learning

γλ

(zv1)⊥ (zv2)⊥

Figure 6. Proof illustration for Theorem 4.1. The set Z⊥ is depicted as union of hyperplanes, living in RK+1 and here sketched in three
dimensions. The curve γλ : λ 7→ (1, λ, λ2, · · · , λK) is shown as a blue line. The proof shows that, for λ ∈ R, the support of γλ is not
entirely contained in Z⊥.

Under the assumption |X | = N ≤ ∞, x− x̄ is a generic signal in a countable set (N(N −1)/2 = Ω(N2) possible choices).
Let us rename z := x− x̄ ∈ Z ⊂ R1×(K+1), |Z| = Ω(N2). We need

⟨λ̄, z⟩ ≠ 0, ∀z ∈ Z, where λ̄ = (1, λ, λ2, · · · , λK) (15)

Such λ can always be found in the real numbers, and the reason is purely geometric. We need

λ̄ /∈ Z⊥ :=
⋃
z∈Z

z⊥.

Note that dim(z⊥) = K, so dim(Z⊥) = K due to the countability assumption — in other words the Lebesgue measure
vanishes: µ(Z⊥;RK+1) = 0. If λ̄ were an arbitrary vector, we would be done since we can pick it at random and with
probability one λ̄ /∈ Z⊥. But λ̄ is structured (lives on a 1-dimensional manifold), so we need one additional step.

Note that λ̄ is parametrized by λ, and in particular R ∋ λ 7→ λ̄ ∈ RK+1 is a curve in RK+1, we denote this as γλ. Now,
crucially, note that the support of γλ is a smooth curved manifold for K > 1. In addition, crucially, 0 /∈ γλ. We are done: it
is impossible for the γλ curve to live in a K dimensional space composed of a union of hyperplanes; it indeed has to span
the whole RK+1, without touching the zero vector (see Figure 6). The reason why it spans the whole RK+1 comes from the
Vandermonde determinant! Let {λ1, λ2, · · · , λK+1} be a set of K + 1 distinct λ values. The Vandermonde matrix

λK
1 λK−1

1 · · · λ1 1

λK
2 λK−1

2 · · · λ2 1
...

...
. . .

...
...

λK
K+1 λK−1

K+1 · · · λK+1 1

has determinant

∏
1≤i<j≤(K+1)(λi − λj) ̸= 0 — it’s full rank, meaning that the vectors λ̄1, λ̄2, . . . , λ̄K+1 span the whole

RK+1. Note that λ 7→ λ̄ is a continuous function, so even though certain λ̄i might live on Z⊥ there exists a value in between
them which is not contained in Z⊥.

B. Additional Results
To validate the robustness of GRED to over-squashing, we consider the Tree-NeighborsMatch task proposed by Alon
& Yahav (2021). Following the same experimental setup as Alon & Yahav (2021), we report the training accuracy of
GRED in Table 6 to show how well GRED can harness long-range information to fit the data. As a comparison, we quote

13

Recurrent Distance Filtering for Graph Representation Learning

1 2

3 6

54

4

5

3

1 6

2

61

3

2 4

5

2 4

5

6

3

1 1
3
2 4

5
1
+

6

1
3
2

1
+

Figure 7. GRED provides distinct updates for the two graphs above. Such graphs, however, are indistinguishable by the 1-WL isomorphism
test, assuming (worst-case) nodes have identical features.

Table 5. Hyper-parameters for GRED. For PATTERN and CLUSTER, K is the diameter of the graph. For GRED+LapPE in Table 3, the
Laplacian PE uses the 10 smallest eigenvectors and a hidden dimension of 16.

Hyper-parameter ZINC 12K MNIST CIFAR10 PATTERN CLUSTER Peptides-func Peptides-struct

Layers 11 4 8 10 16 8 4
K 4 2 4 - - 40 4

Dropout 0.2 0.15 0.15 0.2 0.2 0.2 0.2
d 72 128 96 64 64 88 128
ds 72 96 64 64 64 88 96

Learning rate 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Weight decay 0.1 0.1 0.1 0.1 0.2 0.2 0.2

Epochs 2000 600 600 100 100 200 200
Batch size 32 16 16 32 32 32 32

the performance of GIN which uses the same multiset aggregation as GRED. For GIN, a network with r+1 layers is trained
for each tree depth in the original paper (Alon & Yahav, 2021), while for GRED the number of layers is only around half of
the tree depth, with an appropriate K > 1 to avoid under-reaching. Over-squashing starts to affect GIN at r = 4, preventing
the model from effectively using distant information to perfectly fit the data. On the contrary, GRED is not affected by
over-squashing across different tree depths.

We further evaluate GRED on NCI1 and PROTEINS from TUDataset. We follow the experimental setup of SPN (Abboud
et al., 2022), and report the average test accuracy and standard deviation across 10 train/val/test splits, as shown in Table 7.
We use the same K for GRED as for SPN and cite the performance reported by the SPN paper (Abboud et al., 2022). Our
model generalizes well to TUDataset and shows good performance. Furthermore, GRED outperforms SPN (Abboud et al.,
2022) with the same number of hops, which verifies that GRED is a better architecture for aggregating large neighborhoods.

Table 6. Accuracy across tree depths.

Model r = 2 3 4 5 6 7 8

GIN 1.0 1.0 0.77 0.29 0.20 - -
GRED 1.0 1.0 1.0 1.0 1.0 1.0 0.95

Table 7. Performance (accuracy) of GRED on TUDataset.

Model NCI1 PROTEINS

DGCNN 76.4±1.7 72.9±3.5
DiffPool 76.9±1.9 73.7±3.5
ECC 76.2±1.4 72.3±3.4
GIN 80.0±1.4 73.3±4.0
GraphSAGE 76.0±1.8 73.0±4.5
SPN (K = 10) 78.2±1.2 74.5±3.2
GRED (K = 10) 82.6±1.4 75.0±2.9

14

